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CHARACTERISTIC CLASSES
AND TRANSFER RELATIONS IN COBORDISM

M. BAKURADZE, M. JIBLADZE, AND V. V. VERSHININ

(Communicated by Paul Goerss)

Abstract. Decompositions of products of the Ray elements by free genera-
tors of small dimensions in the symplectic cobordism ring are obtained. In
particular it is stated that most of the 4n-dimensional generators, for n small,
after multiplication by the Ray elements φi, i > 0, land in the ideal generated
by Ray elements of low dimension.

1. Introduction

Immediately after its first appearence in the papers of J. Milnor [12] and S. P. No-
vikov [14], the symplectic cobordism attracted attention of many homotopy theo-
rists. However, unlike the cobordism theories corresponding to other classical Lie
groups — e.g. nonoriented (O(n)), oriented (SO(n)) and complex (U(n)) — the
structure of its coefficient ring remains largely unknown. In the study of sym-
plectic cobordism various methods have been applied: the classical Adams spectral
sequence [14], the Adams-Novikov spectral sequence [18, 20], the Atiyah-Hirzebruch
spectral sequence [16], the use of characteristic classes and generalizations of for-
mal groups [15, 5], and cobordism with singularities [19]. In this paper we apply
the transfer maps to the study of the symplectic cobordism ring. Transfers first
appeared in group theory at the beginning of the twentieth century in the works of
I. Schur, as natural maps from the abelianization of a group to abelianizations of
its subgroups, and then were generalized to other homologies and cohomologies of
groups (see, e.g. [4]). In the work of J. C. Becker and P. H. Gottlieb [2], transfer
maps were constructed as morphisms in the stable category and since then have
been widely used in homotopy theory.

Since the work of S. P. Novikov [14] it is known that rationally the symplectic
cobordism ring MSp∗ is isomorphic to the polynomial ring on an infinite number
of generators which appear in dimensions 4n for all natural n. In the torsion part
the key role is played by the family of elements φi ∈MSp8i−3 of order 2 defined by
Nigel Ray [15].
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Most of the relations between the Ray elements φi and free generators in the
torsion part of the symplectic cobordism ring up to dimension 32 [18, 19] can be
conventionally subdivided into three types: to the first type correspond relations
which mainly follow from relations in the integral part coming from MSp4n. In
more detail, relations of the first type have form (x+ y)φi = 0, and these relations
follow from the fact that the sum of free generators x+ y is divisible by 2, whereas
the Ray elements are of order 2. Relations of the second type have form zφi = 0
where z is again a 4n-dimensional generator from the free part. The aim of the
present paper is to elucidate origins of relations of the third type mentioned in the
abstract above.

Let ζ denote the universal Sp(1)-bundle. Then ζ1⊗C ζ2⊗C ζ3 is a symplectic
bundle over BSp(1)×BSp(1)×BSp(1). Also ζ1⊗C ζ2

2 and ζ1⊗R ζ2 are symplectic
bundles over BSp(1)×BSp(1).

Section 2 is devoted to the calculation of transfers [1, 6, 2, 11]. In Section 3 we
prove the following main result:

Theorem 1.1. Let xi = p1(ζi), i = 1, 2, be the first Conner-Floyd symplectic
Pontyagin class. Let φj , j > 0, be the Ray elements, and let n be such that MSp4m

is torsion free for m 6 2n− 1. Then:

a) the element φjp1(ζ1⊗C ζ2
2 ) is divisible by φ0x1 + φ1x

2
1 + ...+ φ[n/2]x

2[n/2]
1 ;

b) φjp1(ζ1⊗R ζ2) = 0

in the ring MSp∗(HP (n)2) = MSp∗[[x1, x2]]/(xn+1
i ).

In Section 4 we will see that in terms of the coefficients aklm of the first Conner-
Floyd symplectic Pontryagin class

p1(ζ1⊗
C
ζ2⊗
C
ζ3) =

∑
k+l+m>1

aklmp
k
1(ζ1)pl1(ζ2)pm1 (ζ3),

the structure of MSp4k, k 6 4, can be interpreted as follows:

k MSp4k generators
1 Z a011

2 Z+ Z a012, a111

3 Z+ Z+ Z a022, a011a111, a211

4 Z+ Z+ Z+ Z+ Z a014, a011a211, a122, a
2
111, 2y4

Then Theorem 1.1 implies

Corollary 1.2. For i > 0 one has :

a) φia001 = φia012 = φia022 = φia014 = 0;
b) φia111 and φia122 belong to the ideal φ0MSp∗;
c) φia211 belongs to the ideal φ0MSp∗ + φ1MSp∗.

Relations of Corollary 1.2 imply that multiplication by the elements φi, i > 0,
carries most of the low-dimensional generators from the free part of MSp4n to the
ideal generated by the elements φ0 and φ1.
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2. Preliminaries and calculations with transfer

Let ξ and Λ be, respectively, the universal U(1)-bundle and the universal Spin(3)-
bundle. Thus the sphere bundle of Λ is π : BU(1)→ BSp(1), and one has

π∗(ζ) = ξ + ξ̄,(2.1)

π∗(Λ) = ξ2 + R,(2.2)

ζ ⊗
H
ζ = Λ + R,(2.3)

where ζ is the universal Sp(1)-bundle as above. Let N denote the normalizer of the
torus U(1) in Sp(1). The classifying space BN coincides with the orbit space of the
complex projective space CP (∞) under the free involution I, which acts via

I : [z0, z1, ...] 7→ [−z̄1, z̄0, ...]

in homogeneous coordinates.
The bundle p : BN→ BSp(1) coincides with the projective bundle of Λ and one

has the canonical splitting

(2.4) p∗(Λ) = µ+ ν,

defined by projectivisation p, where µ and ν denote real plane and line bundles,
respectively. Of course for the double covering q : BU(1)→ BN one has q∗(µ) = ξ2

and q∗(ν) = R.
Let τπ and τp be the transfer maps of the bundles π and p [2, 6, 11]. The next

lemma follows from [7].

Lemma 2.1. π∗τ∗π = 1 + I∗ and π∗τ∗p = q∗.

The next lemma follows from the definitions.

Lemma 2.2. (ξ1ξ2
2 +ξ̄1ξ̄2

2)! = (ξ1+ξ̄1)⊗R µ, where ‘( )!’ denotes the Atiyah transfer
for the double covering 1BU(1) × q.

Consider the map f : BN → BZ/2 induced by the projection of N onto the
Weyl group Z/2 and let τ∗1×q be the transfer homomorphism for the above double
covering 1BU(1) × q.

Lemma 2.3. For some elements αi ∈ M̃Sp
∗
(BZ/2) the following formula holds :

τ∗1×q(p1(ξ1ξ2
2 + ξ̄1ξ̄

2
2)) = p1((ξ1 + ξ̄1)⊗

R
µ) +

∑
i>0

f∗(αi)pi2((ξ1 + ξ̄1)⊗
R
µ).

Proof. Taking into account Lemma 2.2 the proof follows from the following formula
[17]: let q be the double covering q : X → B, let η → X be the symplectic line
bundle, η! → B the Atiyah transfer bundle, τq the transfer map of the covering q
and f : X → BZ/2 the classifying map of the real line bundle associated with q.
Then for some elements αi from M̃Sp

∗
(BZ/2) the following formula holds:

τ∗q (p1(η)) = p1(η!) +
∑
i>0

f∗(αi)pi2(η!).

�

Lemma 2.4. Let τ be the transfer of the sphere bundle of a Spin(3)-bundle. Then
φj Im τ∗ = 0, j > 0.
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Proof. Of course it suffices to prove this for the universal Spin(3)-bundle Λ, that
is, φjτ∗π(a) = 0 for all a ∈MSp∗(BU(1)).

Let δπ be the Boardman map [3]. Then as it is known from [2],

τ∗π(a) = δπ(ae(ξ2
2)).

Here e(ξ2
2) is the Euler class of the bundle ξ2

2 which is the bundle of tangents along
the fibers. Then from [13, 8], φje(ξ2

2) = 0. This proves Lemma 2.4. �

Recall from [13, 8, 9] that the bundle Λ is MSp-orientable and the corresponding
Euler class has the form

(2.5) e(Λ) = φ0p1(ζ) +
∑
j>1

φjp
2j
1 (ζ).

The restrictions of π and p to the symplectic projective space HP (n) will be
denoted by the same symbols. Total spaces of these bundles coincide, respectively,
with the complex projective space CP (2n+1) and with the orbit space CP (2n+1)/I
under the free involution I which acts via

[z0, z1, ..., z2n, z2n+1] 7→ [−z̄1, z̄0, ...,−z̄2n+1, z̄2n]

in homogeneous coordinates.

Proposition 2.5. φjτ∗π×1(pi(rξ⊗R ζ)) = 0 for π × 1 = π × 1BSp(1) : BU(1) ×
BSp(1)→ BSp(1)2, j > 0, and i = 1, 2.

Proof. In MSp∗(BU(1) × BSp(1)) = MSp∗(BU(1))[[p1(ζ)]] one has pi(rξ⊗R ζ) =∑
k>0 ω

(i)
k pk1(ζ). Then it follows from Lemma 2.4 that

φjτ
∗(
∑
k>0

ω
(i)
k pk1(ζ)) =

∑
k>0

φjτ
∗(ω(i)

k pk1(ζ)) = 0.

�

3. Proof of Theorem 1.1

The bundle π × 1 : CP (2n+ 1)×HP (n)→ HP (n)×HP (n) coincides with the
sphere bundle of the pullback of Λ→ HP (n) along the projection on the first factor
HP (n) × HP (n) → HP (n). So taking into account the formula (2.5) we have to
prove that

(π × 1HP (n))∗(φjp1(ζ1⊗
C
ζ2
2 )) = 0

in MSp∗(CP (2n+1)×HP (n)). The transfer τ∗ = τ∗1×π of the bundle 1CP (2n+1)×π
is a composite of two transfers, namely

τ∗ = τ∗1 (τ∗2 )

where τ1 is the transfer of the bundle 1CP (2n+1) × q and τ2 is the transfer of
1CP (2n+1)× p, where the bundles p, π and q are the bundles defined above; that is,

1× q : CP (2n+ 1)× CP (2n+ 1)→ CP (2n+ 1)× CP (2n+ 1)/I,

1× p : CP (2n+ 1)× CP (2n+ 1)/I → CP (2n+ 1)×HP (n).

Using (2.2) one obtains (ξ1 + ξ̄1)⊗C ζ2
2 = (ξ1 + ξ̄1)⊗R(Λ + R), hence

(3.1) p1((ξ1 + ξ̄1)⊗
C
ζ2
2 ) = p1((ξ1 + ξ̄1)⊗

R
Λ) + p1(ξ1 + ξ̄1).
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Applying Lemma 2.2 and Lemma 2.3 one obtains

τ∗1 (p1(ξ1ξ2
2 + ξ̄1ξ̄2

2)) = p1((ξ1 + ξ̄1)⊗
R
µ) +

∑
i>0

f∗(αi)pi2((ξ1 + ξ̄1)⊗
R
µ).

Then by (2.4)

p1((ξ1 + ξ̄1)⊗
R
µ) = (1× p)∗p1((ξ1 + ξ̄1)⊗

R
Λ)− p1((ξ1 + ξ̄1)⊗

R
ν),

hence

(3.2)

τ∗(p1(ξ1ξ2
2 + ξ̄1ξ̄

2
2))

= τ∗2 (p1((ξ1 + ξ̄1)⊗
R
µ))

+ τ∗2 (
∑
i>0

f∗(αi)pi2((ξ1 + ξ̄1)⊗
R
µ))

= τ∗2 ((1× p)∗(p1((ξ1 + ξ̄1)⊗
R

Λ)))− τ∗2 (p1((ξ1 + ξ̄1)⊗
R
ν))

+ τ∗2 (
∑
i>0

f∗(αi)pi2((ξ1 + ξ̄1)⊗
R
µ))

= p1((ξ1 + ξ̄1)⊗
R

Λ)τ∗2 (1)− τ∗2 (p1((ξ1 + ξ̄1)⊗
R
ν))

+ τ∗2 (
∑
i>0

f∗(αi)pi2((ξ1 + ξ̄1)⊗
R
µ)).

Now we have to prove that τ∗2 (1) = 1, the second summand in (3.2) coincides
with x1 = p1(ξ1 + ξ̄1), and the third summand is zero.

Note that the bundle (ξ1+ξ̄1)⊗R ν is the pullback of the bundle ζ ⊗ η → BSp(1)×
BZ/2 along the map (π, f). Thus p1(ζ ⊗ η) is an element from MSp∗(BZ/2)[[p1(ζ)]],
hence

p1(ζ ⊗ η) = p1(ζ) +
∑
i>0

βip
i
1(ζ)

for some elements βi ∈ M̃Sp
∗
(BZ/2). This implies

p1((ξ1 + ξ̄1)⊗
R
ν) = p1(ξ1 + ξ̄1) +

∑
i>0

f∗(βi)pi1(ξ1 + ξ̄1).

Similarly the bundle (ξ1 + ξ̄1)⊗R µ is the pullback of the bundle ζ ⊗ η(2) →
BSp(1)×BO(2), where η(2)→ BO(2) is the universal O(2)-bundle. Hence

p2((ξ1 + ξ̄1)⊗
R
µ) ∈MSp∗(BN)[[p1(ξ1 + ξ̄1)]]

and for the third summand of (3.2) one has∑
i>0

f∗(αi)pi2((ξ1 + ξ̄1)⊗
R
µ) =

∑
i>0

γip
i
1(ξ1 + ξ̄1)

for some γi ∈ M̃Sp
∗
(BN).

So using (3.1) one has

(3.3) τ∗(p1(ξ1ξ2
2 + ξ̄1ξ̄

2
2)) = p1((ξ1 + ξ̄1)⊗

C
ζ2)τ∗2 (1)− x1(τ∗2 (1) + 1) +

n∑
i=0

τ∗2 (δi)xi1

for some δi ∈ M̃Sp
∗
(CP (2n+ 1)/I).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1940 M. BAKURADZE, M. JIBLADZE, AND V. V. VERSHININ

It is known from [18, 19] that up to dimension 32, MSp4n is torsion free. Moti-
vated by this fact let us assume that MSp4m is torsion free when m 6 2n− 1. Then
it follows that MSp4k(HP (n)) is torsion free when k > 1−n. Then since the mini-
mal dimension of the elements δi from (3.3) is 4−4n, it follows from Lemma 2.1 that
the third summand of (3.3) restricts to zero in MSp∗(HP (n)). Also τ∗(p)(1) = 1
and τ∗(π)(1) = 2.

Thus one obtains from (3.3) and then Lemma 2.4

φjp1((ξ1 + ξ̄1)⊗
C
ζ2
2 ) = φjτ

∗(p1(ξ1ξ2
2 + ξ̄1ξ̄2

2)) = 0.

This proves Theorem 1.1a).
For the proof of b) note that it follows from Lemma 2.1 that for the bundle π×1

= π × 1HP (n)) one has

(π × 1)∗τ∗π×1(p1(rξ1 ⊗
R
ζ2)) = (1 + I)∗(p1((ξ1 + ξ̄1)⊗

C
ζ2))

= 2p1((ξ1 + ξ̄1)⊗
C
ζ2) = (π × 1)∗p1((ζ1⊗

R
ζ2)).

Then by (2.5) any element from ker(1×π)∗ is divisible by e(Λ). On the other hand
by hypothesis MSp4k(HP (n)) is torsion free for k > 1−n. Hence one concludes that
restriction of the homomorphism (π × 1)∗ to MSp∗(HP (n)2) is a monomorphism,
thus in MSp4(HP (n)2) one has

p1(ζ1⊗
R
ζ2) = τ∗π×1(p1(rξ1 ⊗

R
ζ2)).

Now since Proposition 2.5 says that the right-hand side is zero after multiplication
by φj , this completes the proof of Theorem 1.1.

4. Proof of Corollary 1.2

Let h : π∗(MSp) → H∗(MSp) = Z[q1, q2, ...] be the Hurevicz homomorphism.
Since π4n(MSp) is torsion free for small n (see [16, 18, 19]), the Hurevicz homo-
morphism is a monomorphism in these dimensions. So in low dimensions 4n the
Hurevicz homomorhism determines all relations. Our aim here is to express the
coefficients aklm from the Introduction through the generators x-es.

Values of the Hurevicz homomorphism on these aklm are calculated in [10]. In
low dimensions one has

h(a100) = h(a010) = h(a001) = 4,

h(a200) = h(a020) = h(a002) = 0,

h(a110) = h(a101) = h(a011) = 24q1,

h(a111) = 360q2,

h(a210) = ... = h(a012) = 60q2 − 24q2
1,

h(a300) = ... = h(a003) = 0,

h(a220) = ... = h(a022) = 280q3 − 120q1q2 + 24q3
1,

h(a310) = ... = h(a013) = 112q3 − 96q1q2 + 48q3
1 ,

h(a211) = ... = h(a112) = 1680q3 − 360q1q2,

h(a122) = ... = h(a122) = 75600q4 − 3360q1q3 + 360q2
1q2,

h(a410) = ... = h(a140) = 180q4 − 360q1q3 + 420q2
1q2 − 120q2

2 − 120q4
1.
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Further, the Hurevicz images of generators ofMSp are calculated in [16]. Namely,
h(MSp4k) ⊂ H4k(MSp) has the following generators:

k = 1 : 24q1,

k = 2 : 20q2 − 8q2
1 , 144q2

1,

k = 3 : 56q3 − 72q1q2 + 24q3
1, 120q1q2 − 48q3

1 , 3456q3
1,

k = 4 : 12q4 − 24q1q3 − 8q2
2 + 28q2

1q2 − 8q4
1 , 50q2

2 + 168q1q3 − 256q2
1q2 + 80q4

1,

100q2
2 − 80q2

1q2 + 16q4
1, 2880q2

1q2 − 1152q4
1, 20736q4

1.

Thus one concludes that the elements a011, a111, a022, a122, a112, a120, a140 are
generators as in the Introduction.

Remark 1. In terms of 2xi, the generators of MSp4n from [16], one has modulo
2MSp∗: 2x1 = a011, 2x2 = a012, 2x3 = a022, x4 = a014, x2

1 = a111, etc.

Remark 2. Alternatively, images of the elements aijk in complex cobordism MU∗
can be calculated in terms of two-valued formal groups:

µ∗(p1(ζ1⊗
C
ζ2⊗
C
ζ3)) = Θ1(x1, Y

+) + Θ1(x1, Y
−),

where Y + + Y − = Θ1(x2, x3), Y +Y − = Θ2(x2, x3); Θ1 and Θ2 are the coefficients
of the two-valued formal group [5] and µ∗ is the obvious map from the symplectic
cobordism theory to the complex cobordism theory.

Let us now consider Corollary 1.2. From Theorem 1.1a), inMSp∗(HP (4)×HP (4)
one has a relation of the form

φj(a011x
2
2 + a111x1x

2
2 + a022x

4
2 + a211x

2
1x

2
2 + a122x1x

4
2 + ...)

= (φ0x1 +
∑

16i6n
φix

2i
1 )b(x1, x2)

for some element b(x1, x2) ∈ MSp∗(HP (n)2). Then by the equality of the coeffi-
cients at the monomials x1x

2
2, x2

1x
2
2 and x1x

4
2 one obtains assertions b) and c) of

Corollary 1.2.
Similarly from Proposition 2.5 one has

φj(a110x
2
2 + a120x1x

2
2 + a220x

2
1x

2
2 + a140x1x

4
2 + ...) = 0,

and hence assertion a) of Corollary 1.2 is valid.

Proposition 4.1. In dimension 32 there is an element y2
4 such that φ2y

2
4 does not

belong to the ideal generated by φ0 and φ1. Moreover φ2iy
2
4 does not belong to the

ideal generated by φ0, φ1, ... , φ2i−1 , i > 1.

Proof. It follows from the calculations of the symplectic cobordism ring made in
[18, 19]. �
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