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ABSTRACT.    Let M be a compact, orientable, ¿-dimensional real differentia-
able manifold and N an  n-dimensional complex manifold, where  k~>_n.   Given
an immersion l: M —*N,  a point  x € M  is called an  RC-singular point of the
immersion if the tangent space to l(M) at  l(x) contains a complex subspace of
dimension > k — n.   This paper is devoted to the study of the cohomological
properties of the set of RC-singular points of an immersion.

When  k = 2n - 2, the following formula is obtained:

a(M) + "¿   Q(ty"~T~ll*c (N) = 2t*DK,
r=0 r

where   Q(M) is the Euler class of M,   fl(l) is the Euler class of the normal
bundle of the immersion,  c (N) are the Chern classes of JV, and  t DK  is a
cohomology class of degree   2n — 2  in M whose value on the fundamental
class of M gives the algebraic number of RC-singular points of £.   Various
applications are discussed.

For n < k < 2n — 2,  it is shown that, as long as dimensions allow, all
Pontrjagin classes and the Euler class of M  are carried by subsets of the set
of  RC-singularities of an immersion  l: M—>   Cn.

1.   Introduction.  The differential geometry of real submanifolds of differ-

entiable manifolds and complex subvarieties of complex manifolds have been

studied extensively for a long time, but the differential geometry df real

submanifolds of complex manifolds has not been explored to any great extent.

Among the earliest works in this area is a paper of E. Cartan  [2],  where he

studied the pseudoconformal geometry of hypersurfaces in two-dimensional

complex Euclidean space, that is, he studied the invariants of hypersurfaces

when the ambient complex space is subject to holomorphic transformations.   He

also classified the hypersurfaces both locally and globally according to

pseudoconformality.   The main feature of the paper is the method of equivalence
that he developed earlier.
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2 H.-F. LAI lOctobe.

Using calculations with some special Lie groups and Lie algebras,

N. Tanaka  [11] generalized Cartan's results to hypersurfaces in higher   dimen-

sional complex Euclidean spaces.   He attached to each hypersurface a canonical

fibre bundle and connection which  together   characterize the pseudoconformal

equivalence class of the hypersurface, under some nondegeneracy assumptions.

He also studied the group of pseudoconformal transformations of such hyper-

surfaces.   With more refined techniques, namely generalized graded Lie algebras,

he was able  [12] to extract some information on the dimension of the  group of

pseudoconformal transformations of a real submanifold of a complex Euclidean

space, for general codimensions.

The real submanifolds studied by Cartan and Tanaka are those which

satisfy a certain condition of regularity, namely that the maximal complex sub-

space of the  tangent space to the real submanifold has the minimal dimension.

More precisely, if  i: M       —> C"   is an immersion of a ¿-dimensional differentiable

manifold in an «-dimensional complex Euclidean space with n < k,  then

dim i*Tx n ]i^Tx >_k - a
c

for all x e M,  where   T    is the tangent space to  M  at x,  and  /  is the almost

complex structure in  C".   A point x e M is called an  RC-singular point if

dim i^Tx  nJi^Tx > k- n;

otherwise it is called an  RC-regular point.   Then the works of Cartan and

Tanaka are concerned with real submanifolds with no  RC-singular points.

RC-singular points have been studied by analysts under the name of

"nongeneric points" (see for example the papers of Wells in the Bibliography).

The extendibility of holomorphic functions on real submanifolds depends very

much on  RC-regularity.   For example, there is a theorem of Wells  [14]  which

states that a compact manifold of dimension  k immersed without RC-singular

points in a complex Euclidean space of dimension  n < k is extendible to a

manifold of one higher dimension.   Also, at an RC-regular point, the vanishing

or nonvanishing of the Levi form is equivalent to local holomorphicity or local

extendibility of the real submanifold.

The significance of RC-regularity thus deserves its deeper study, and in

this connection Wells  [15]  has derived topological restrictions on a compact

orientable manifold for it to be embeddable without RC-singular points in some

Euclidean space.   Namely, the Euler class and all the Pontrjagin classes must

vanish.   It is therefore natural to expect that these characteristic classes of the

manifold are somehow carried by the set of RC-singular points of a general

immersion.   To show that this is indeed the case is the main purpose of this
paper.
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In  §2 we explain the terminology   "RC-singularity" and the basic notations,

and show that the set of RC-singular points can be smoothed out to form a

submanifold by merely deforming the immersion.

§3 reviews some known facts about products in cell complexes, about

Schubert varieties  in Grassmannian manifolds, and about characteristic classes

of vector bundles.   These are the main tools for the rest of the paper.

In  §4 we find a canonical basis for the cohomology of the Grassmannian

manifold of. oriented 2?/z-planes in  (2m + 2)-dimensional Euclidean space, and the

main theorem of the section, Theorem 4.8, shows how the interaction between

the real and complex structures of a Euclidean space enters into the cohomology

ring structure of the Grassmannian manifold.   Some applications are drawn to

immersions in complex Euclidean spaces.

§5 gives the generalization to immersions of 2??z-dimensional real manifolds

in  (m + l)-dimensional complex manifolds.   The main theorem, Theorem 5.10,

gives a formula relating all the real and complex characteristic classes of the

manifolds in question with the set of RC-singular points of the immersion.

Particular cases of this formula include the duality theorems for Stiefel-Whitney
classes and Chern classes.

For immersions in higher codimensions, we see in  §6 that the Euler class

and dual Pontrjagin classes of a real manifold are always carried by the set of

RC-singular points of an immersion of the manifold into a complex Euclidean

space of the appropriate dimension.   The results are summarized in  §7 by a

statement on the size of the ring of cohomology classes carried by the set of
RC-singular points. .

In the last section, second order RC-singular points are considered and a
simple case is described.

The author wishes to thank Professor S. S. Chern for his continual advice

and encouragement during the whole research.

2.   Generic immersions.   Throughout this paper,  M*  '  will always denote a

compact, orientable,  ¿-dimensional differentiable (C°°)  manifold, and N.   . will
denote an n-dimensional complex manifold.

Let t: AT     —> N,   .  be an immersion of M  in a complex manifold of complex
dimension  n < k.    Then by linear algebra we know that

dim l^Tx{M) n Ji*Tx.(M) > k-n,
c

where   T (M)  is the tangent space to  M  at x, t^ is the induced map of tangent

spaces, and J is the almost complex structure in  N.

Definition 2.1.  A point x e M is called an RC-singular point of the
immersion i  if
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dim i*Tx(M) n Ji*Tx(M) > k - n.
c

Remark on the terminology.   The word "singular" is used here, as usual in

differential geometry, to signify that a certain matrix fails to have maximal rank

at a point, or, equivalently, that a certain real-valued function vanishes at that

point.   In our case, the matrix is the complex Jacobian matrix in local coordinates

(complex-valued function of real variables), and the corresponding real-valued

function is the sum of the squares of the absolute values of the  n x n minors of

the Jacobian matrix.   The prefix  RC  reminds us of the interaction between the

real and complex structures.   An RC-singular point has also been called a

"nongeneric" point by Wells  [14],  but we will reserve the adjective "generic" for

a familiar topological use.

We now specialize to the case where  N - C",  the complex Euclidean space

of dimension n.   Let R,   ,,   I = 2n - k,  be the Grassmannian of oriented ¿-planes

(through the origin) in  R  +   = C".   Let  K.   , denote the subset of R,   , consisting

of the  ¿-planes containing a complex subspace of dimension  k - n + 1   in  C".

Then if /: M —► R,   . is the Gauss map corresponding to an immersion  t: M      —»

C",  the set of RC-singular points of the immersion is just t~  (K,   ,).   We now

show that  K,   ,  is an immersed submanifold of  R,   ,.k, i k,I
Let  C. ,    2   —k-l   ke the Grassmannian of complex  (k - n + l)-planes

(through the origin) in  C".   Over it is a canonical complex  (2n - k - l)-plane

bundle whose fibre over a point  X  is the complex subspace of  C"  normal to the

complex plane X,  relative to a fixed complex Euclidean metric in  C".   The group

of this bundle,   U{2n — k — 1),  as a subgroup of S0(4n - 2k - 2),  acts (nontrans-

itively) on  R2   _k_2   2  -k  on c^e ^e^c' anc^ so triere is an associated bundle

with fibre  R,      .    ,   ,     ,.   Let   G,      ,    ,    ,      ,(C,       ,.    ,      .    ,) be its total¿■n—k—l,  In — k ¿n — k—L,  ¿n — k      k — n + l,  2n — k—l
space.   There is a natural map

^:  G2n-k-7,2n-kS    k-n + 1, 2n-k-V ~*     k,2n-k

which sends a point X in the fibre over X e C, ,    _,      ,    ,   into the orientedk-n + 1, ¿n — k—i ^
¿-plane in  R  " = C"  spanned by  X  and the  (2n - k - 2)-plane defining  X.    It is
easily seen that   \jj is an immersion whose image is   K,    2  _,.   From this we

also know that

dim Kk   2n__k = (2« - k - 2) {In - k) + 2{k - n + l) (2w - k - l)

= ¿(2« - k) - 2(¿ - n + 1).

In general the set of  RC-singular points of an immersion can be very weird,

but it can be shown that every immersion can be arbitrarily approximated by a

generic one, for which the set of  RC-singular points is a submanifold of  M.    First

we recall the use of the adjective "generic" by Thorn:
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Definition 2.2  (Thorn  [13]).  Let  S be a function spaóe which is a Baire

space (that is, every nonempty open set is of the second category).   A property

of functions is called generic if it is owned by all functions belonging to a subset

of 5  whose complement is a nowhere-dense set in S.

In the same paper quoted, Thom proves a local lemma which asserts that for

a generic map of R    to  Rm,  the derived map is transversal to any given sub-

manifold of the Euclidean space of the range of the derived map.   Using this

lemma one easily proves the following theorem:

Theorem 2.3.  (i) For a generic immersion (or embedding) of M       in N,   ,

with k>_n,   the set of RC-singular points is either empty or else forms a

submanifold of M  of dimension (2n — k — 2).   (ii) // L   is any immersed subman-

ifold of R,   .   _,    of codimension  <^ k,   then for a generic immersion (or embedd-

ing) of M        in C"  with k >_ n,   the inverse image of L  under the Gauss map of

the immersion is a submanifold of M.

This theorem naturally implies that every immersion can be arbitrarily

approximated by an immersion whose set of  RC-singular points forms a subman-

ifold.

3.   Topological preliminaries.   The cup and cap products in a compact

oriented manifold can be expressed in terms of intersections of homology classes

by means of the Poincare' duality.   A rather complete  account is given in the

thesis of Gysin  [5].   We summarize the necessary facts here.   We will work with

integral coefficients unless otherwise stated.

Let   K be a finite cell complex.   For each dimension  p,  let xp,  i = 1,

• • • , n(p) be the cells of dimension  p.    Each cell x.   can be considered as a

homomorphism on the group of chains by x.(xf) = 8,,  and is therefore a cochain.

Let o\xp., xfff  ) be the incidence coefficient.   Then the boundary and cobound-

ary operators  d, 8 are defined respectively by the equations

n(p-l)

<9*^= y  <Axp., xp-x)xp-\
k-l

Mp)
8xt-l= y   o(xï,x{-l)xp.

¿=1

These give rise to the homology and cohomology  groups of  K.

Now restrict to the case of a compact oriented differentiable manifold  M

of dimension  k.   Suppose that  M  is given a cell decomposition  K which has a

dual cell decomposition  K .   It is known that any simplicial decomposition of

M has a dual cell decomposition arising from a barycentric subdivision.   The
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,*bijection between the cells of  K and   K    induces an isomorphism  D  between the

homology groups  H (K) and the cohomology groups  H       (K*), that is, an

isomorphism between  H (M)  and  H       (M).   This is just the well-known

Poincaré duality.

The intersection of cells is denoted by  /(   ,  ).   It gives rise to a bilinear

pairing

<p:Hk_pMxHk_qm)^Hk_p_9(M),

and we also denote   <f>{a, b) by a o b for homology classes  a, b.   The cup and

cap products are then expressed by

Da U Db = Diao b)    for a, b e H JM),

and

Da D b = a o b     for a, b e H^(M).

Moreover, if (   ,   ) denotes the Kronecker pairing between cohomology classes

and homology classes of the same degree, then

(Da, b) = a ob     for a £ H (M), b e H       (M),
P rZ      p

and

(au/S,   c) =  (a,ß ne)    for a e HP(M), ß eHq(M),c e H      (M).

Throughout this paper we will use  R,   , to denote the Grassmannian mani-

fold of oriented  ¿-planes through the origin of a  (k + /)-dimensional Euclidean

space  R   + ,  and  C,   , to denote the Grassmannian manifold of complex ¿-planes

through the origin of a  (k + /)-dimensional complex Euclidean space  C   + .

D  will denote Poincaré duality in whatever manifold we are dealing with.

A canonical cell decomposition of the Grassmannian manifolds has been

studied in full by Wu  [17J.   Here we summarize the important  facts.   In the

following, all planes are understood to pass through the origin.

To obtain a cell decomposition of R,   ,,  we fix an orthonormal basis

ex, ■ ■ ■ , e,    ,  of  R   + ,  with coordinates  x. (i = 1, ■ ■ ■ , k + I), and consider the

set of all functions  a>: jl, • • • , ¿} —» Z such that  0 < o)(l) < • • •< <u(¿) <  /.

Such a function is called a Schubert symbol.

Let  Rm   be the subspace of  R        spanned by  e., ■ ■ ■ , e   ,  for 1 <^ m < k + I.

Then the set   (/    of oriented ¿-planes  X  of  R        such that
CO *

dim(X nR*'*'')) i      for  i= 1, ...,*.

is a pseudomanifold of dimension  d(a>) = 'S, _.co(i).   Let  X    be the  ¿-plane
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spanned by  e*-  (/' = 1, • ■ ■ , k), where   i   = &>(z) + i,   Let  Xffl (respectively  X~)

be the ¿-plane  Xffl with the orientation of  (e,-, • • ■ , e^-) (respectively the

opposite orientation).   We now consider the sets  N^ (respectively  N~) of oriented

¿-planes of  R        having a nondegenerate orthogonal projection on  X u and

whose orientation projects to that of Xw (respectively X~).   Normal coordinates

a., can be introduced on  N,, and  N~ by the equations
27 CO 0}        ' i

k
x^ =  >   a . X-r    fot i - 1, • • • , /

c.1

where  {/ S = il, ■ • • , c-j(l); (oil) + 2, • • • , co(2) + 1; co(2) + 3, •••;■••, k + l\,
and  11 ! = iùj(l) + 1, • • • , Cú(k) + k\.   We orient  Nffl and  N~ (which are manifolds
diffeomorphic to Euclidean spaces) by the order  (fl, ,,'•■•, a, ,;•••; a,, ,•• -,

a, ,).   Next we write

u+ = N+ nu ,        u~ = N'n u,.

and orient   U^ and   U^  by the order  («n, • • • , «j   «(l )''"'' afe, c^fe))-   In
explicit form, the ¿-planes in  U    and   t/~   are spanned by the row vectors of

the matrix

fll,o<l)    » ° . "

\

o

akl ■■■ ak,^i)    0    afe,^i) + l     '••     °     •■"     "kMk)

■

We orient the manifold  R,   , canonically by that of  Nw ,  where a>,(i) = I for

i = 1, ■ ■ • , k.   Wu has shown that the orientation of  N     (respectively  N~) is

coherent or not with  R,   , according as  ¿(¿/ - d(co)) (respectively  k(kl - d(a>)) +

m + n) is even or odd.

We will make one abbreviation in writing  <u~ instead of  U~ when  a> is

given in an explicit form, thus,   (bl ■ ■ ■ b,)~.   Also, if any number of zeros occur

in the Schubert symbol, we will just omit them and write, for example,   (/)
instead of (0 • • • /).

The sets   U^ and   (7~,  as  a> runs through all Schubert symbols, form an

open cell decomposition of Rk ¡.   Each   Uw and   U~ is accordingly called a

Schubert cell.   The boundary formulas are given by   [3]
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b. i-. . .+b.
d(bv • • •, b^ = £(- 1) ! " "+ ¿[(- l)k-i*1(b1, • • •, b.~ i, • • •, è/

(3.1) (.(-l)*i+1(*1,...,*rl,.--,&fc)?],

S(fej, • • •, bk)i = £(- l)èl+* ' • +&î'[(- 1)*-^, •.., b. + 1, • • •, fcfc)*

+ (_1)¿'¿+I(e1,...,e. + 1,...,^)+].

For any particular cü,   let  ¿Q  be the first jump point and   i    the last (that is,

cü(z0) < <u(z0 + 1), etc.). If co+ + ( - l)fe+^¿0 + 1)+¿o&)-   is an integral cycle, we

denote its homology class by  [a>    + ( - l)  +ax-'0+  >+l0a>~], and sometimes

abbreviate it as   [<u],  for example,   [(22)] = [(22)    + (22)-].   Likewise, if

cu    + ( — 1 )fe+a*z-s''+z-s(y""   is an integral cocycle, we denote its cohomology class

by id)    + ( - 1)  +a>('5,+7s<u-S,  and sometimes abbreviate it as  \<x)\,  for example,

!(22)i = i(22)+ + (22n.
The Schubert cell decomposition of  R,   , has a dual cell decomposition

obtained by defining the Schubert cells relative to the basis  (e,    ,, • • • , e.).

Then a Schubert cell  {b,  • • • b.) in the old definition is dual to a Schubert cell

[l — b,, ■ • ■ , I — b.) in the new definition.   The appropriate signs can be deter-

mined in individual cases.

In the complex case, a cell decomposition can be obtained in a similar way

by means of the Schubert symbols, with one significant difference: that there is

only one open cell, denoted by  o)q ,  corresponding to each Schubert symbol cú.

This cell is oriented by its complex structure.   Each cell is an integral cycle.

We will use co     to denote the closure of o)f ; thus a>     is the set of all complex
¿-planes  X  in  Ck+l such that

dim (X nr(í,+')> i    for i ml, ...,.*.c ~

Homology and cohomology classes are denoted by brackets and braces as in the

real case, for example,   t(l)c], i(l)C!.

There  is a natural oriented ¿-plane bundle over R,   , which is   (/- l)

universal, that is, any real oriented ¿-plane bundle over a CW-complex   K of

dimension <  / — 1   is induced by a map V. K —» R,   , which is unique up to

homotopy.   The image under  t    of the cohomology ring of  R,   , forms a subring

of H (K) which is independent of  t and  / (as long as   / > dim K),  and is called

the characteristic ring of the bundle.   Its elements are called characteristic
classes.

Among the cohomology classes of R,   , are the Euler class

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] REAL MANIFOLDS IMMERSED IN COMPLEX MANIFOLDS

the Pontrjagin classes

for  2r < k,  and the dual Pontrjagin classes   P   = (- l)ri(2r, 2r)i  for  2r <  I.

These are important because the Euler class together with the Pontrjagin classes

or the dual Pontrjagin classes  generate  the cohomology ring of  R,   , mod

torsion up to dimension  I — I.   They are all preserved under the induced homo-

morphisms of inclusion maps  R,   , CR,   ,'   for   I < I .

If  K is a CW-complex and  t: K —» R,   , is a map inducing an oriented ¿-plane

bundle <f over  K,  we have the Euler class, the Pontrjagin classes, and the

dual Pontrjagin classes of rf defined respectively by

o(£) = z*n,
Pr(cf) = t*Pr for  2r < k,

P (£)= t*P for  2r< /.r   ^ r —

If £ is the tangent bundle of the manifold  M      ,  it is known that 0(rf) evaluated

on the fundamental cycle of M gives the Euler characteristic of M.   By

convention, we also write Q(M) = {KUH)), P/M) = Pr(T(M)),  P~r(M) = P~r(T(M)),
where   T(M) is the tangent bundle of M.

There is also a natural oriented /-plane bundle over  R,   ,,  and its Euler

class is called the normal Euler class  fi  of R,   ,.   If  t: M    '—* R  +    is an«.' ^
immersion with Gauss map  t:*M —► R,   ,,  the normal Euler class Ù,(i) of the

immersion is defined as   t 0.   It is clearly equal to the Euler class of the normal

bundle of M  in  R   + .   An important fact which will be used very often in this

paper is the following: If  t  is an embedding of a compact orientable manifold  M

in any Euclidean space, then its normal Euler class is zero.   A simple proof of
this fact can be found in  [4].

In the complex case, we define the Chern classes

(r<k)

and the dual Chern classes

cT=   \(r)C\      (r<l)

of  C,   ,.   Each of these sets of cohomology classes generates the cohomology

ring of  C,   ,.   If  t: K —► C,   ,  is a map inducing a complex ¿-plane bundle  r¡ over

K, we have the Chern classes and dual Chern classes of  17 defined respectively
by
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c (77) = t*c      for  r < k,

c (77) = t*c      for  r < l.

LOctober

Under our normalizations, the highest Chern class  c  (77) of a complex n-plane

bundle is equal to the Euler class of the underlying oriented 2«-plane bundle  r¡,

while the Pontrjagin classes are given by

(- lYPr(fj) =  Ç (- iyC](r,) U c2r_.(r,).

The Whitney duality formulas are

X pT(0)U ( £ Ps^)j   = *    mod c°rsion>
■>o s>0

and

r>0 / \s>0 /

R be the4.   Homology and cohomoloey of R0     ,,.   Let d: R^0,/ ~J 2m, 2 2m,2 2,2m
diffeomorphism which sends an oriented 2ra-plane in  R m+    into its oriented

orthogonal complement, relative to a fixed Euclidean metric in  R m+  .   We study

the induced homomorphism of the cohomology groups.

i*\(rr)+ + (- lYirr)-] = (- !)'('- 1)/2j(2 )+ + (- lY(2 )"j

Propositon 4.1.   We have

for 1 < r <_ 2m,  where  (2 ) stands for the Schubert symbol (2 • • • 2)  in

R,     ,  with  r twos.2m,2

Proof.   (2 )    consists of the 2»z-planes spanned by the row vectors of

1
0     a 11      *12     1

0 0    a rl

0    1

a ,     0rz 1

and oriented by the vectors in their natural order.   The orthogonal complement of

this 2ra-plane is the 2-plane spanned and oriented by the row vectors of
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1972] REAL MANIFOLDS IMMERSED IN COMPLEX MANIFOLDS 11

/0...0    1    0    -a        ...    -ay\

\0 ■ ■ ■ 0    0    1     - a12     •••     -ar2J-

Choose coordinates  x., ••• , X.   +2  and y i, • ■ • ? y2    + 2  |Cor  ^ m+    ^or tlle

definitions of Schubert varieties in  R,     0  and  R~ ,     respectively, such that2m ,2 2,2771 r ' '

y . = X-,       , for   / = 1,  ■ ■ • , 2/72 + 1,'j - ~2m+3-,
+ 1v -(-l)m+1x

^777+2    -   V        U X\X,.2m +2

Note that  [x.) and  (y.) have the same  orientation.   (2 )    is oriented by

(fljj, a12, ... ,afV ar2) and  (rr)~  by  (—a,2« ' ' ' ' _ al 2' ~ örl ' ' ' ' ' _ all^
Thus one sees easily that

d(2r)+=(-l)r(r+1)/2(rr)-.

Hence

d*\M+ + (- lYM") = (- l)r(r + ,)/2 1(2 )" + (- 1)'(2 _)+}

= (_ir(r-l)/2K2)+ + (_in2ri_
T r

Corollary 4.2.   The normal Euler class of R2     2   ¿S  {(2)    -(2)~|.

Proof.  Recall that the normal Euler class of R,     ,   is the Euler class of
2777. , 2

the natural 2-plane bundle over R2     2,  and is therefore represented by

Kll)+- ill)"}  in  R2j2m.

Lemma 4.3.  In  R       ,,  [(2 )] ° [(2, )] = [(2.      r     )] for 1 < r. s
2777,2 2771—T 2777. — 5 2?77—r—S ' —

<2m, r + s <2m.

Proof.  We define  (2-, ), (2 ,        ), (2, ) in terms of coordinate2m — r — sJ        2m — r 2m — s
systems  (x.), (*'.), (x") respectively, related by

7 7 7

' x . f or  j = 1, • • • , r or r + s + 3, • - * , 2m + 2,

x' =  ( x. for  / = r + 1, r + 2,7 7+s '

for y = r + 3, • •• , t + s + 2,
7-2

fot /-I,-..,*+2,
x .        t for   i = s + 3, ■ ■ ■ , r + s + 2,7 —s —2 '

x"
' x. íot j = r + s + 3, ' • ', 2m + 1,

{-l)TSx2m+2      for   7 = 2772 + 2.

These coordinate systems all have the same orientation.   Let  (e .) be the basis
7
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of R2m+2  corresponding to (x).   The central element of (22m_f)* is spanned

and oriented by  iep ■ ■• , ef, Cf+1, '   ' » %,. er+s+3' •••'e2m+2!-   The central

element of (22        )    is spanned and oriented by ie,+1, • • ■ , er+s, ex, ■ ■ ■ , er,

e ,»•••,*.      , ,(-l)"e-      J, which is the same as \e., •••, e      ,r+s+J 2m+1 ' 2m+2 I r+s

e        ,, • • ■ , e,      , S.   Therefore the geometric intersection of  (2,        )    andr+s+i' '     2m+2 » 2m —r
(2-,        )     is  (2„ )  .   The sign of the intersection is easily verified to be2m —s 2m —r —s D '
+ 1.   Similarly for (2,       )_  and (2,        ;   .   Therefore1 2m — r 2m —s

^2m-X + (- ^2m-^2m-r^ ° ^2m-P  + + t- D«—^..H

= ^2m-r-J+^-^2m-r'S^2m-r-s^-

Proposition 4.4.   In  HHR-,     ,), i(2),r = i(2 )} for  1 <  r < 2m.
1 ¿m,¿ T —     —

Proof.   From Lemma 4.3, it follows in particular that  i(2 )i  is dual to
[(2,       )].   Hence¿m—r

D(\(2)\ U |<2,)|) = [(22m_r)] o l(22m_s)] = [(22m_rJi

This means that i(2 )i U i(2s)S = i(2      )} for r + s < 2m.   By induction it follows
that {(2)|r = {(2)|.  'a

'v    r

Let 0, fi  be respectively the Euler class and normal Euler class of R,     -,.r ' ^ 2m,2
It is known that the cohomology ring of  R,     2  is generated by  ÎÎ and a class

v e H m  such that fi + Úm = 2v,  and that a basis of the cohomology groups is

given by  iQr, v  U firj,  r = 0, 1, ■ ■ ■ , m (for example, see  [7]).   We are now going

to identify these generators in terms of Schubert cocycles.

For 0 < r < m,  let  a    be the Schubert symbol (l • • • 12 • • • 2) with  (2m - 2r)
ones and  r twos, of dimension  2m.

Proposition 4.5.  The homology classes z. = [a    + ( - l)ma~] and z? =

[^"„(-l )ra  ] form a basis of H-,   (R,     n), and the cohomology classesr=u r     ' '        ¿m      2m,I aJ

C1=\am + (- Dmam\ and C2 = 12™ 0ar+i form a basis of H2m(R2m ,).

Proof.   Let  br (respectively c ) be the Schubert symbol  (1  • • • 12 • • • 2) with

2m - 2r - 1 (respectively  2m - 2r + 1) ones and  r twos, for 0 <_ r < m - 1

(respectively  1 <^ r < m).   Their dimensions are  2m - 1  and  2m + 1  respectively.

We also put  b_x = bm = cQ = c     } =0.   Then, using formula (3-1), we get

da+ = (-l)r + lb+ -b'+(-l)rb+  , - b~  „and
r r r r— I r— l

da~ = - b+ + (- l)r + 1b~ -b+r   , + (- l)rb~ 0<r<m.
r 7 7 7— 1 T        í

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] REAL MANIFOLDS IMMERSED IN COMPLEX MANIFOLDS

Therefore

13

*C + t-ir<;)-«.   3(Z(-1)r<) =o-
\r=0

Consequently a    + ( - l)ma~  and  Sm_0( - l)ra     are cycles.   Likewise

§<.(-irc;-c; + (-irc;+1.+ c;+1,and

8a~ = - c* + (- l)rc~ + cr + 1 + (- lVc-+1,        0 < r < m,

and we conclude that a    + ( - l)ma~  and  2m nfl     are cocycles.   To show that
77! 77! r=ü    77! '

z,, z.  form a basis of 77,   (R,     ,) and  C,, C-,  a basis of H m(R,     ,),  we1 2 2t7I 2t7!,2 ^1       ^2 2771,2
only need to evaluate the determinant of their Kronecker products.

2 1(CVzy)    (¿2'Z1>

<£l»*2>   <^2'Z2>
(- l)m     ¿  (- l)r

7-=0

2 1
1 1

2 1
- 1 0

m even,

772 odd,

= 1.

Then since W2m(R2m 2) and H m(R2m 2^ are ^otil isornorphic to Z  ©  Z and

are dual under the Kronecker pairing, it follows that the elements in question

actually form bases.

Proposition 4.6.  \aQ - aQ \ = - 4j + 2<,2.

Proof.  One could prove by evaluating both sides on the basis of H2   (R2    2i

but here we give a direct verification.   With  b    as in Proposition 4.1,

8b+ = (- l)r+V - a" + <- l)r+V . - a   .,      0 < r < m - 1.
r T r r + 1 r + 1' —     —

Therefore,

771-1

E
r = 0

to- 1

X (- im; = - £ < - £ < - a-0 + (- ira;
r=0 r=l

'

772

- 2Z K + "o + Um - a'o + (~ l)mßm'
r=0
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and so

a l-a-\,-\am+(-ira-J + 2^a^.

Note.  From this proposition-it follows that  £2  is the class  v mentioned

above.

Suppose a complex structure in  R m +    is given.   The complex projective

space  C     ,   is then naturally embedded in R,     -,  as the set of all complexr m, 1 ' 2m, 2 r
m-planes in  Cm+   = R .   Let  k be the 2>rz-dimensional cohomology class in

R2     2  dual (Poincare) to the homology class represented by the embedded

C     ,   in  R,     ,.m , 1 ¿m,¿

Lemma 4.7.  k = \Z    na     = C-,-r=0   r ^>2

Proof.   By Proposition 4.5, one only needs to evaluate  k, 42  on the basis

\z,, zA of H,   (R,     ,) and verify that the values are equal.   Thus we wish toI        2 ¿m      ¿m, ¿ ' *
find the intersections of  C     ,   with the Schubert cells of  Rn     _,.   Choose am , 1 2m ,2
coordinate system iz, , • • • , z     , !  in  Cm+    with basis vectors  \f,,•■■, f     ,1,1 1' 'm+1 ;1 ' m + 1
and a coordinate system  [x, , • • • , x \ of the underlying  R m+  ,  with basis

vectors  \ex, • • • , <?2m + 2^  related by

(4.1) z. = x. + V- l*o       ■*     for  /' = 1, • • • , r?z + 1.7 7 ¿m— 7+3 '

The orientations are clearly the same.

Let A  be the 2?72-cycle in  R~     _,  which is the embedded  C     ,.   It is clear' 2m ,2 m ,1
that  A D a~ = 0 for r = 0, ■ ■ ■ , m.    For a given  r = 0, • • • , m,  suppose an

oriented 2?72-plane  X    belongs to A Ci a  .   Reca-11 that

so from the definition of the Schubert cell,

(4.2) Rr C Xr,

and

(4.3) dim(Xr DR2m-r + 1)> 2m - r,

where  RJ  is spanned by  e .,■■■, e ..   Since  X   £ A,  it follows from (4.2) that

X    contains   e.,■■■, e    and  e,      ,     , ■ • ■ , en      ..   Let  RL be spanned byr 1 r 2772 + 3 — 7' 2t72 + 2 * r /

e2772+3-'' ' ' ' ' e2    +2"   Then it follows from (4.3) by taking the complex
conjugate that

(4.4) dim(X   n R2m"r + 1)> 2m - r.
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Now the dimension theorem for vector spaces yields

dim(xr nR2m"r+1n R|m-r+1) + dim(XrnR2m-r+1 +. Xr n R|m-'+I)

(4.5) =dim(Xrn R2m-r+1) + dim(Xrn R|m"r+I).

Note that  R2«-^1 + R|m-r+I . R2m+2  for  r < m.   Therefore (4.3), (4.4) and

(4.5) together give

dim(X   nR2m-r + 1 nR2m-r + I)>(2772- r) + (2m - r) - 2m = 2tt2 - 2r.

>2m —r + 1   j.-,   r>2m — r + 1The subspace  \^¿m-r + í  n   RzJ"~r + 1  is spanned by  er+J, ••-, e2m_r + J   and is of

dimension  2m — 2r.   Thus we have shown that  X    also contains   e    _,, • • • ,r r + 2'
e, ,,  so  X    is the central element of a  .   Therefore  A C\ a    consists of only2t7! — r + 1' r r -r '
one element, the central element of a  .   We now find the sign of the intersection.

Let  N    be the neighborhood of X    in  R2     2  defined by the coordinates
«f;-. i = 1, ■ • • . 2m and  / = 1, 2,  such that

2t7!

r~ =  7     a . x_,
7       T-*     ''ii'=l

where  {z I = (1, •••, r, r+ 2, •■•, 2m - r + 1, 2m - r + 3, •••, 2wz + 2Î,  and
{/ ! = \r + 1, 2t72 - r + 2\.   Let  N    be oriented by  Ia¡ i' ai2' a2V a2 2' ' ' ' '
fl-,     ,, «,     ,!.   It has been shown by Wu  [17]  that this orientation is the same277! , I ¿m, 2 '

as that in R,     2.   In a neighborhood of X ,  the   2772-planes which are elements

of A  are defined by  z    , = SI" ,b.z^.   Write  b. = b'. + v - 1¿>".   Then' r+1 !=l     !     ! ! ! v !

77!

Vi + V~*2m_r+2 = E {hl + v^P^ + ̂ ~^277!-r+3)-
! = 1

Therefore,

^  =  X       ,    =    >        (¿7 ' X_  —   ¿)"x_ T, .),1 r + 1 ^* l       i 1       277! —!+3
7 + 1

x^ = x_ -, = / , (¿>"x._ + £>.'*,      - o).2 2m —r + 2       t—i       I    , ¡     2t7i —! + 3
z=l

Let v.. be the basis vectors  (in  R m)   corresponding to the coordinates  a..
+

introduced in  /V  .   Then A   is oriented by the vectors

\v.    .  + 72.       „ 17,    , — 17,        , ; y + v y — v-,        ,    ,;1,1 2t7! , 2       1,2 2t7!,1'     2,1 2t7!—1,2       2,2 2m—1,1'

(4-6) ■ • ■ ; v       , + v      ,    -,, v      -, — v      ,    , I,'     m, 1 m + 1,2       m,2 m+1,1

corresponding to the order \b'., b".; b'2, b"; • • •  ; b' , b" \.   On the other hand,

a    is oriented by the vectors

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 H.-F. LAI [October

(4.7)

7- + 1, I'     r + 2, 1' ,  V. - v.2m-r,V  v2m-r + \,\'   u2m-r + l,2>

2772, 1       2m , 2

From (4.6) and (4.7) it follows by straightforward calculations that the index of

intersection  ¡(A, a ) = 1.   Consequently,

<«, K + (- ir«;i) = /(a. «;> + (~ mu, <;) = i = <c2, [*♦ + (- ir«;i>.

Z(-1)r<
r = 0

¿ (- íYKA, a;) -¿(-ír-fc,
,_o

E (- i>r<

Thus  K and  £2  have the same values on a homology basis of  R2     2 (Proposition

4.5), and hence they are equal.

Theorem 4.8.  Let 0, 0  be the Euler class and normal Euler class of

R2m,2' 2nd let K  be the Poincaré dual of the homology class represented by a

natural embedding of C . m R,     ,.   Then \Qf, k u tir\, r = 0,m . I        ^.  2m ,2 , 772,  forms a
basis of H*(R,     ,), and Q, + 0m = 2k.1 2m ,2 '

Proof. By Corollary 4.2 and Proposition 4.4, üm = i(2m)! = Cx- The theorem

now follows from Lemma 4.7 and Proposition 4.6.      D

Applications.
I. Index of RC-singularity. Let t be an immersion of a (2tz - 2)-dimensionàl

compact, orientable manifold M  in  C".   There is then induced a Gauss map

t: M R2m,2; wher 1.   The pullbacks of the natural  2m-plane and
2-plane bundles over  R2     2   by  /  are precisely the tangent and normal bundles

of M  in  C"  respectively, and so    t 0   and    t  Í2    are the Euler class and normal

Euler class of  M  in  C".   If  t  is an embedding, then it is known that    t íí = 0

(see, for example,  [4]).   Therefore, from Theorem 4.8,    t*ù = 2t*K.

In particular, this implies a theorem of Seifert  [9l:   If a compact orientable
2t72 +2 thenmanifold of dimension  2?tz can be embedded in a Euclidean space R

its Euler characteristic is even.   Moreover, here we have an interpretation of

this even number, as follows:

Recall that a point x e M  is called an  RC-singular point of  1  if

dim t^T (M)n JuT (M)>n- 2.C x

In this case, this is equivalent to  l^T (M) being a complex subspace of  C",  or

to  t(x) e C     ,   U C~ , ,  where  C_  ,   consists of the negatively oriented complex
772,1 772, I' m,I ° J *

777-dimensional subspaces of Cm+  .   Let  C~ .   have the opposite orientation to

that induced from  Cm  }   by the correspondence  C     t *-* C^ _ 1   which sends each
plane into the one with the opposite orientation.
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Definition 4.9.  The index of RC-singularity at x e M  is the index of local

intersection of t(M) with  C     , U  C_ .   in R-,     ,.m , 1 m ,1 2m , 2

Theorem 4.10.   For an embedding  t   of a compact orientable manifold M    n~

in C",   the sum of the indices of RC-singularity over the set of RC-singular

points where the tangent spaces have the complex orientation is equal to the

corresponding sum for the opposite orientation, and each is equal to half the

Euler characteristic of M.

Proof.  From Theorem 4.8,    t*Q = 2t*x.     Evaluated on M,    t* Í1 gives the

Euler characteristic, and

(t*x, [Ml) =   (k, i+[M]>,

which is the sum of indices over the set of  RC-singular points where the tangent

spaces have the complex orientation.   For the other sum, let v.  R,     , —» R,     ,r r ' 2m ,2 2m ,2
be the map which reverses orientations of  2?7z-planes.   Then

r*n - - (v-o i)*n = - z(v o t)*K,
- ((v o t)*K, [m]> = - (v*k, ¿Jm]) = ^(c-f v tJm]).

II.   A result of Chern and Spanier.   In the case  ttz = 1,  a result essentially

the same as Theorem 4.8 has been deduced by Bishop [l] from a theorem of

Chern and Spanier [4],  but in a different approach.   It may be worthwhile to know

the relation between the two methods.

Following Chern and  Spanier  [4],  we choose an oriented set of orthonormal

basis vectors  e,, ■ • • , e ,   in R  .   For any oriented 2-plane  X C R  ,   choose an

oriented orthonormal basis  {/j, f A  of X.   Write

fy A/2= Yjalfi Ae;

*l=fl12 + ß34' *2 = fl23 + ai4< *3 = ~ fll 3 + fl24'

Vi  =ö12 -fl34' ^2 = fl23 _fl14' y3 =-fl13 -fl24-

Then it is shown that R2 2  is diffeomorphic to S^ x S2, where 5,, S2 are the

unit spheres in the x-space and y-space respectively.   Orient S., S2  by the

induced orientations from  (xj , x2, xj  and (yx, y2, y.)  respectively.   Then it is

easily checked that our orientation of R2 2  is' the same as the product orientation

of Sj x S2.   Let A  be the embedded image of  C.   .   in  R- .  relative to a complex

structure on  R    with the same orientation.   Bishop showed that A = (1, 0, 0) x

S2.   The orientations are, however, opposite.   Thus, if we abbreviate  (1, 0, 0) x

S2  into S2 and Sj x (1, 0, 0) into S^,  we have, from Lemma 4.7,
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2 ^2'

where  D  is the Poincaré duality in  R9  ,.   It can be shown that, in the notations

of Proposition 4.5,

dCx=zv     dC2 = z.

and that z.  °z    =2,  z    o z, = — 1, z    ° z    = 0.   From these and the conditions

S,  o $   = i    c   05   _ 0 in S,  x S,,  it follows that1211 1 2

1  -      ^1        Z2' 2 ~ Z2"

Consequently,    5,  = DS. = - C,  + <£?' ^2 = ^2 = ~ '=2' ^1   + ^ 2 = ~ *= 1  = ~ ^'
S. — S, = — Cx + 2<^2 = fi    (using Proposition 4.6).   Thus the theorem of Chern

and Spanier becomes

t*(M) = y2XM(-sl+s2).

The intersection  í^M) o A = lÁXhÁ ~ ^1 + ^2^ ° ^ "" ^2^ = ^^M'  as *n Theorem 4.9.
III. Gaussian curvature of hypersurfaces in   R m+  .

Lemma 4.11.   Let  1  be an immersion of M(2m)  in R2m+I C R2m + 2,  and let

a complex structure and a complex Euclidean metric be introduced in R m + .

Then at any  RC-singular point of the immersion, the index of RC-singularity is

equal to the sign of the Gaussian curvature (that is, the product of the principal

curvatures) of the hypersurface at the same point, provided that the latter is

nonzero.

Proof.   Let \el, •••, e        J  be an oriented orthonormal basis in  R m +  ,

and  ixj, •••, x2      .} the corresponding coordinate system.   Let  R m+    be

spanned by the first  2t7z + 1  basis vectors.   Let the complex structure in

R m+    be defined by  e, . = v — 1 e 2 -1   ^or 7 = 1> ' • • » ra + !•   In a neighborhood
of an  RC-singular point  p e M  at which the tangent plane is spanned and oriented

by (e, , • • • , e?2   ),  the hypersurface can be expressed in the form x2      ,  =

f(x., • • •, x2   ),  and it is well known that the Gaussian curvature at p is

K(p) = det(/..(/>)),  where the subscripts denote partial derivatives with respect

to x.,  and  i, j = 1, • • • , 2m.

Choose the oriented basis (e,     .je., •••,«,   ; e,     A for defining the■2m+l'      1' 2m'     2m+2 °
Schubert varieties in  R2     ,.   A neighborhood  N    of (1 • • • l)    (2tt7 factors)  in

R,     ,  is defined by coordinates  a..,  i = 1, • • • , 2ttz and   i = 1, 2,  as in the2m ,2 ' ij » ' '
proof of Lemma 4.7.   Let  f.. be basis vectors corresponding to the coordinates

a.,  of R m.   Then  t(M) in a neighborhood of tip)  is spanned and oriented by

(2Z."l f., v.., • • • , £."! /. ,   v..).   From this it follows that, at the point  p,
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/ 2m 2m

/u*M, C      . ) = sgn det      >    f ..v., , ■ ■ ■ ,  >   f.  -,   72..,v*   '      m,l 6 VZ-('il   il' '^-'i,2m   il'
i = l = 1

vlx +v22, v12 -v2l, ■

77-, .      .   +  77-, -,,17-, ,      ,   —   77.2m—1,1 2m,2       2m —1,2 2m, I

sgn

(ll ... /2m, 1       0 •■• 0

'I, 2m

1       0

0    -1

/ 2m,2m     0 0

1
0   1

0     1     0
-1     0     1

= sgn det(/.;.) = sgn K(p).

Similar arguments hold for an  RC-singular point where the tangent plane is

oppositely oriented.

Theorem 4.12.  Let 1  be an embedding of a compact orientable  2m-dimen-

sional manifold in R m+  .    Let y be the Euler characteristic of M.    Then for

any  2m-plane  X  in R m +    there are at least   \y\   points on  M where the tangent

plane is parallel to X and where the Gaussian curvature is >^ 0  or <C 0 accord-

ing as  y >_ 0  or < 0.

Proof.  Given  X,  we can choose an orthonormal basis  \ex,

R2m + l
2m + l

such that  X  is parallel to the coordinate plane spanned by  e,,

of

'2m-
Extend  R m+    to  R m+    by adding a vector e2      ?,  and introduce a complex

structure in R m+    by  e2 . = V - le2 ._,   for 7 = 1, • • • , m + 1.   Then by Theorem

4.10, there are at least  \x\   RC-singular points at which the index of  RC-singu-

larity has the same sign as   y.   At such a point the Gaussian curvature is either

zero or has the same sign as   y,   by Lemma 4.11.   The theorem therefore follows.

Remark.  In the case where the Gaussian curvature is nowhere zero, Theorem

4.12 also follows from Morse theory, because then the critical points of the

height function (corresponding to the tangent plane being parallel to  X) are non-
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degenerate, and the parity of the index is determined by the sign of the Gaussian

curvature.   Then since the sum of the indices is the Euler characteristic of M,

the theorem follows.   Our proof here takes care of the degenerate critical points.

IV.   A note on hulls of holomorphy. Using the observation of Bishop that a

generic embedding of the  2-sphere in C    has at least two RC-singular points

where the Hessian is nondegenerate of "elliptic type" (which also follows from

Theorem 4.10), Hunt  [6]  showed that there is a dense set of embeddings of the

2-sphere in  C    such that the hull of holomorphy of the embedded sphere contains

a  3-dimensionaI manifold.   Using Theorem 4.10 and an extension theorem of

Hunt, similar results might be proved for embeddings of compact orientable

manifolds  M with positive Euler characteristic in  R m+  ,  but such inves-

tigations are rendered pointless by the following theorem of Wells [l6]: Any

compact submanifold of real codimension 2 in a Stein manifold of dimension

> 2 has envelope of holomorphy containing a submanifold of one higher dimension.

5.   The characteristic formula for ^2n~2^ © £' <2> = j¡        Let f © rf  = 77
be a decomposition of a complex  72-plane bundle  77 over M  into an oriented

(2t2 - 2)-plane bundle £ and an oriented  2-plane bundle £' .   Let  G,   Arf) be the
total space of the bundle with fibre  R,   7   associated to  77,  where   k = 2n - 2.

Let  K     be the subset of G,   Arf) consisting of the complex  (72 - l)-planes of

the fibres of 77.   If 77 is the universal bundle over the complex Grassmannian

Cn      where q  is large, we also write  Gk 2(Cn    ) for  Gfe ,(77) and   KQ  for  K   .
We now study the fibre bundle

77: G,   AC      ) -» C      •k,  2        72,   q 72,   q

Proposition 5.1.   There exists a homomorphism of graded groups  0: f7*(R,   A

-> H*(Gka(Cn q)) such that 6>(Or) = 6(Q,Y for 0 < r < n - 1,  6(k) = DKQ, and
£0*ö= identity, for any inclusion  iQ  of R,       as a fibre in  G,   AC      ).

Proof.  We have the following maps:

Gk. 2(C72,„) -► Rk, 2?+2

¿2

Cn,q R2,2</+fe

where  p,   maps any  ¿-plane   X  contained in a complex  72-plane  Y in  Cn+q  into

the same plane in the underlying  R2n + 2ci  [n  C"+q, and  p"2  maps  X  into its

orthogonal complement in  T,  considered as a  2-plane in  R2n + 2<?,   Define
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d(fr) = erp * ({(ir)l),        fr=(-l)'(r-1)/2  for 0<r< 77-1,

0U) = DK0.

Then

t*«Ô') = V*?*(Krr)J)
= j(2 )1 by Proposition 4.1,

= fîr by Proposition 4.4,

and   i06(k) =  iQDKn = k,   as is easily seen.   Now we define

8{k U HO = 6{k) U Ö(n0    for  0 < r < n - 1.

By Theorem 4.8 this defines  6 on  f/AR,   2),  and since  tQ  commutes with cup

products, we also have   in 6 = identity.

Corollary 5.2.   There is an isomorphism of graded groups

^"¿Gk,2K,q»^H*®k,2^®"*(Cn.J

defined by <&(z) = 2a¿a ® trJSih*) ft z), 7^¿ere  Í¿J  z's a ¿jasz's o/ W*(Rfe 2)
«tzû? \h    \  is the dual basis of 77  (R,   ,).a ' k , 2

Proof.   Proposition 5.1 asserts that the bundle  77 has a cohomological

extension of the fibre.   We know that  7/  (R,   2)  is free, so by the Leray-Hirsch

theorem  [10] we have the isomorphism $.      ü

By Corollary 5.2, we see that to find a basis of  HAG,   AC      )), we need

only find, for each Schubert cycle  Za (corresponding to the Schubert symbol co)

of C        of degree  (rz-l-r),  0 < r < « - 1,  a  ¿-cycle   Y{co) of G,   AC      )
n,G[ ^^ it, ¿      ri, q

such that nA6(Úr) O [y(«)]) = [gjc].   These  [v(w)], together with  iQ*zy   and

i    z„   will then form a basis of 77, (G,   9(C      )).
Take a Schubert cycle  Z,, of  C of degree  (n - 1 - r),  0 < r < 72 - 1.* <^ n, c[ —

We will find a cycle   Y(a>) in the form of a product bundle over Za with dimen-

sion 2r in the fibre.   Note that the symbol a> = (0 • ■ • 0 * • • • *) contains at

least  (r + 1) zeros,  and contains at least  (r + 2)  zeros if a> ¿ (0 • • ■ 01 • • - l).

This means that each complex «-plane in Zffl contains a fixed set of orthonormal

complex vectors  \j- 1 e^, ■ ■ ■ , \]~ le.,  and even contains  y - 1 e    .   if

(o fí (0 • • - 01 ••■ 1),  when a complex Euclidean metric is given on  Cn+q.   Take

any complex «-plane T in Z œ.   If a> ¿ (0 • • • 01 • • • 1), take the ¿-planes in T

containing the  (2n - 2 - r)-dimensional linear subspace normal to   y- le.,

• • -, v - le    2 in  r with respect to the real inner product induced on  Y from

Cn+q.   This is equivalent to taking a Schubert cycle  (2 ■ • • 2) (r factors) in the
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fibre over T.   Let  V(új) be the union of these as  T runs through  Z   .   If a) =

(0 . . . 01 • • • l) with r ones, we take y - 1 ßj, • .., y — le    ., e1  and define
Y((o) similarly.   Clearly   Y(co) is a product bundle over    Z    with fibre  R   2,

and can be taken as a cycle in  G,   AC      ).   Let ÍY.,  Y A be the basis of
r\j fe, *■        72, q L 2

Hk(Rk 2) dual to iii"      , k\  and let   Y (0) = Iq^V-,   ;'= 1, 2,  for an inclusion  iQ
of R^, 2  as a fibre in  G^/C^^).

Lemma 5.3.   Lei  f?  be as in Proposition 5.1.   T/7e72

<2[<uc]     i/.s-r,
77JÖ(Q5) O [y(<y)]) =   j

/o i/   s¿r

for deg o> = « - r - 1,  0 <_ r < « — 1.

Proof.   Let  i: Y((ú) —» G,   -,(C      ) be the inclusion map, and let  tt   = 77 o i.k, 2      n, q * *
Then

77*(éKfn n [y(co)]) = fr+(fl(ñs) n 2*yM)

= 77^(z'*fXfis) n Y(œ)) = <(i*?$ (ej(ss)\) n Y(oj))

7T*(nS  X   1   PI  Y(ú>))

2[coC]     if s = r,

0 if   s Â r.

Lemma 5.4. As in Lemma 5.3, we have

ir^öU) n [y(cü)]) = [K0] o [y(cö)]

{_ir-r-l      i/ö.Q^^l),
71 — 7— 1

0 2/   ÛJ  ¿ (1    • • •   1).

Proof.   For <a ?¿ (1 • • • 1), clearly  KQ C\ Y(ú)) = 0.   Now consider cd =
(1 • • • l) with  (n - r - l) ones.   Take a Euclidean inner product in  Cn+q  and

an orthonormal basis  ¡e,, ■ • • , e       }.   For any complex  72-plane  I' e Z  ,  let

g     be the complex orthogonal projection of  e    2  on  T.   Then   Y(co) can be

deformed into the subbundle   Y (a>) of G,   AC      ) defined by using iV_ lßi>g t_fe, 2      n,q_ J o      •> i-

■ ■ ■ , V - ler+1, ex + g\  instead of iy - lex, ■ ■ ■ , V~lt?r + 1, ejS.   Then
/Cq O y (of) is a singleton set consisting of the complex (72 - l)-plane

perpendicular to  e.   in the complex  72-plane spanned by  e.,-■-, e    2, ■ • • ,

e     ,.   One can check the sign of the intersection and verify it to be  ( - l)"~r~   .

Proposition 5.5.   Under the isomorphism

^■"¿Gk,2^n,q»^"^Rk,2)®H*(Cniq)
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of Corollary 5.2,  we have, for any Schubert symbol cú  of Cn      of degree

a -T- 1, Q< r<n- 1,

( [(2 )] ® [coc] + (- l)n-r-l[Y2\ 91    if to = (1 ... 1),
<S>[Y(o)] = {

{[(2r)] 0 [coc] «/ »y a . • • i),

<D[y.(0)] = [y.] ® 1     for y = 1, 2.

Proof.  Note that {nr, nr U k\, r - 0, • • -, 72 - 1,  forms a basis of H*(Rk 2),

and the dual basis consists of V1VO- )] for 0 <_ r < n - 1,  together with   Yj,  Y2

and homology classes of higher dimensions which we are not interested in.

Therefore,

B-2
<D[Y(co)] = Y Vi [(2 J] 0 77+(0(ns) n [y(û,)])

+ [yt] ® ^(oOF"1) n [y(<u)]) + [y2] ® ^(öU) n [Y(w)]).

The first formula then follows from Lemma 5.3 and Lemma 5.4.   The second

formula is similarly proved.

Corollary 5.6.   The homology classes  [y(o>)],   1 < deg ta <_ n — 1,   together

with  [Yj(0)] and [Y2(0)], form a linear basis of Hk(Gk 2(Cn    )) ® R.

Let nn = p*A(l ••• 1)! e 77* (G,   ,(C      )) be the Euler class of the naturalu       L fe fe ,1      n, <?
¿-plane bundle over  G,   AC      ).   We continue to assume   k = 2n - 2.* fe , z      n, q

Lemma 5.7.

<n0, [y.(o)]> = (2k - S"-*, [yy]>   /or 7 = 1,2,

(n0, [y(tu)]>=0 i/deg<u >o.

Proof.  The first formula follows from Theorem 4.8 and the observation that

t*n0 = n e Hk(Rk 2).   For deg íú > 0 and

CO ¿   (1_-^J;K
77-1

all the  ¿-planes in   Y((o) contain the vector  e2,  that is, the  ¿-plane bundle

restricted over  Y(a>) has a nonzero section, and so   (ilQ, [Y(<u)] ) = 0.   For

&>= (1 •••!),

Y(w)  consisxs of two disjoint components, and the  ¿-plane bundles over them are

oppositely oriented, so that the values of n„   on them cancel with each other.
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Lemma 5.8.   For deg a¡ > O,

LOctober

(d(ttr)r, n*(cn_r_A, [y(oj)]) =
2(- iy»-'-1   if co = (i •■• i)

72-r-l

0 otherwise,

uhere  c , = ( - lY^-^d ■ ■ ■   l)c\ e H2{n-r~l)(C      ).
Ti — 7— i n, Q

Proof:  The left-hand side equals  n*(c' _ _j H 77^(6(0,") C\ [Y(cú)\)). Apply
Lemma 5.3.

Proposition 5.9.  M Hk(Gk 2(Cn    )),

72-1 ^

7 = 0

Proof.  We need only evaluate both sides on the homology basis of Corollary

5.6 and verify that they are equal.   The necessary formulas are contained in

Proposition 5.1 and Lemmas 5.4, 5.7 and 5.8.

Theorem 5.10.   Let £ © <f'  =77 be a decomposition of a complex n-plane

bundle  77 ojyer M  z'nro «72 oriented (2n - 2)-plane bundle <f and a  2-plane bundle

C~' .    Let t: M —»G,   2(rj) be the section corresponding to the decomposition.   Then

72—1

ii(£) + £ íí(cf)r Ucn_r_Aji) = 2t*DKr
7 = 0

Proof.  We have the commutative diagram

'fe, 2W .  GL. AC      )
-*        fe,  2X    72, q'

M M 2, 2q+k

where   t'   induces  77,  and  tQ = t     oí.   Clearly  t    (K   ) = KQ,  and <f, cf'   are

induced by  Zq  from the natural  ¿-plane and  2-plane bundles over G,   AC      ).

Therefore

í*n0 = o(í),
t*d(ür)   = t*p*(€r{(rr)\)    (see Proposition 5.1)

= Qvf f,

'S^C72-r-l   =/'*C72-7-l   =C77-r-l(r?)'

*SD0IC0-i*D,K,,
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where   DQ, D_   are the Poincare dualities in  G,   2(C      ) and  G,   2(r¡) respectively.

The theorem then follows from Proposition 5.9.

Applications.
I.   Duality theorems for Stiefel-Whitney classes and Chern classes. If we

reduce the coefficients  mod 2,   Theorem 5.10 becomes

7Z-1

n(^)+ ^ n(^0r Ucn_r_j(r/) =0    mod 2,
7 = 0

or

^„-2^  E   ^'>r ^2„-27-2^ = °-

7 = 0

This is a particular case of the Whitney duality theorem for <f © f =7/ with

Wj(£' ) = 0 (orientability).
Suppose  ¿j, £'   aie complex vector bundles and we replace  ¿j by - £ and

£'   by - <f'   in Theorem 5.10, then the Euler classes change sign, and   t DK    = 0.

Therefore

- n(£) + ¿(- iran* U cn_r_x(r,) = 0,

!-l

s-i^^Z^^i^')^^-,-,^)'
r = 0

which is a particular case of the duality theorem for Chern classes.

Remark.  If ¿; © £   = r] is a decomposition of a complex  «-plane bundle into

two complex bundles, where £'   is a complex line bundle, the duality theorem

for Chern classes implies that n(f) - l^i - l)Til(g' )r U c^^fy) = 0,
whereas if ¿;     is just an orientable  2-plane bundle, the duality theorem for

Stiefel-Whitney classes implies that n(f) - S'lpi - l)rn(£' Y U C_j(rç) is
an even class.   Theorem 5.10 describes this even class explicitly in terms of

the real-complex interaction.

II.   Index of RC-singularity.  We can define the index of RC-singularity at

an   RC-singular point of an immersion  1: M    n~2>—> TV    >,  or, more generally,

of an oriented  (2« - 2)-plane subbundle of a complex  «-plane bundle over a

compact orientable manifold of dimension  (2« — 2),  in the same way as we did in

§4.   As examples of applications of Theorem 5.10, we prove the following two
theorems:

Theorem 5.11.  Suppose that a compact (« - \¡-dimensional complex manifold
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M   immersed in an n-dimensional complex manifold N is slightly deformed so

that the RC-singular points are all isolated.   Then the sum of the indices of

RC-singularity is equal to cn_x(N) + fi    U cn_3(/\0 + • • •  evaluated on M,  where

ÎÎ  denotes the Euler class of the normal bundle.

Proof.   Let  rf, tf'   be the tangent and normal bundles of  M  in   N.   The duality

theorem for Chern classes yields

r-0

whereas   Theorem 5.10 gives

r = 0

Addition gives   t*DK^ = cfi_l(N) + 02 U cf¡_i(N) + • •• .

Theorem 5.12.  If an oriented 2m-plane bundle over S.m,  m>\ (the sphere

of dimension  2m),  can be embedded in a trivial (2m + 2)-plane bundle, then its

Euler class is even, and can be interpreted as twice the sum of indices of

RC-singularity over the set of RC-singular points where the tangent planes are

complex oriented, when a suitable complex structure is introduced on the trivial

bundle.

Proof.  With suitable deformation we can assume that the  RC-singular points

are all isolated.   Then    (t   DK, S m)  gives the sum of indices of RC-singularity

in the statement of the theorem.   Because  S m  has no cohomology classes of

dimension   2, we see that Theorem 5.10 becomes  fi = 2 t   DK.   The theorem follows.

6. Immersions of general codimensions. We have seen in Theorem 2.3 that,

for a generic immersion of M in C", the dimension of the set of RC-singular

points is equal to

k -  2(k - 72 + 1) = 272 -  k -  2.

For   k = 2n - 2,  this implies that the   RC-singular points are isolated, and we

have the results of  §§4 and 5.   For higher codimensions, this dimension will be

positive, and we expect to find subsets of the set of  RC-singular points which

carry some nonzero cohomology classes of M.   We will in fact show that, under

some dimensional restrictions, all the dual Pontrjagin classes and the Euler

class of M  are carried by certain subsets of the set of RC-singular points.   First

we need to find a basis for the rational homology groups of R,   , »   in the-

appropriate dimensions.   Let  Q. be the field of rational numbers.
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Lemma 6.1. (i) For 4r < min (¿, ¿' ), W4r(Rfe k' ; 0) has as basis the homology
classes represented by the Schubert symbols each of whose nonzero entries is

even and occurs an even number of times.   For 4r = k < k' ,  there is one more

basis member [(1 • • ■ 1)   - (1  • ■ • l)—J;  for 4r = ¿' < ¿,  there is one more basis

member   [(4r)   - (4r)"*];   and for 4r = ¿ = ¿' ,  all these classes together form a

basis.

Proof.   Pontrjagin has already computed a free basis of  Hq\Rk k¡ ) for

q < ¿'  (Theorem 1 of [8]).   For the case  Ar < min (¿, ¿' ) this implies that

77    (R,   ,' ; Q) has as basis the cohomology classes  {(«,, • • • , a.)   +

(a., ■ • • , a, )~ I, where each nonzero entry is even and occurs an even number of

times.   The corresponding homology classes are [(«j, • ■ • , a A)   + («j, • • • , a,)~\,

and their Kronecker products are either  2  or 0 depending on whether the Schubert

symbols are the same or not.   Therefore, by the Kronecker pairing these homology

classes form a basis of 77, (R,   .< ; Q).

For the case  4r = ¿ < k  ,  there is just one more basis element for

Hk{Rk k> ; Q) than 77*(Rfe   ,  k< ;Q), namely the class j(l • ■ • l)i.   On the other
hand, the relation between   77    (R,  fe' ) and   77   (R,   , '   x) has been studied by
Lashof and Smale  (Theorem 4.2 of  [7]),  and taking rational coefficients we see

that   77* (Rk k') is generated by   77* (Rfe .'    j) and the class  í(¿' )!.   Therefore
similar arguments as before can be applied.      D

We now construct the cycles   L (¿, ¿) which will carry the dual Pontrjagin

classes of R,   , .   Fix a complex structure in  R       compatible with the orientation.

There is a natural complex  (¿ - l)-plane bundle over  C.  , _.,  and the total

space of the associated bundle with fibre  R, _, ,   is denoted by G,_2 l(C,   li)-

There is a natural map

^Gk-2,k{Cl,k-l)-*Rk,k

which sends a  (¿ - 2)-plane   Y  in the fibre over  X £ Cj  ,    ,   into the oriented

¿-plane X + Y in R    .   Let  Kk k  be the subset of R^ ,   consisting of the
¿-planes which contain nontrivial complex subspaces.   If t: M —»R,   ,   is the

Gauss map of an immersion of M  into  C   ,  it is clear that  t~   (K,   ,) is the set

of RC-singular points.   We note that i/V  is an immersion of  G,_2 AC.  t_,)

into  R,   ,   whose image is precisely  K,   ,.

Definition 6.2.  Let  L (k, k),  4 <_ 4r < ¿,  be the image under i/> of the
subbundle of G^_2 t(Cj k_x) over the Schubert cycle   (¿ - 2r)C   of the base,

and let the orientation be  ( - l)  (        '      times that induced from the bundle
structure.

Proposition 6.3.  In W4r(R^ k), D[Lr(k, ¿)] = Pernod torsion.
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This proposition, as well as Propositions 6.5 and 6.9, can be proved by

finding the intersections of the cycle under study with the representative cycles

of a homology basis (defined with respect to some suitable coordinate system)

as indicated by Lemma 6.1.   The method is similar to that of Lemma 4.7,

although the details are quite different, and by no means trivial.   They will be

omitted from this paper, and reference is made to the Ph.D. dissertation of the

author at the University of California, Berkeley, 1971.

For the case  k - n + I,  we have a bundle  G. _. i_ ?(^2 fe- 3^ —* ̂ 2 fe- 3
with fibre  R,     .  ,    ,  and a natural immersionfe — 4,fe- 2

<A: Gfe_4,fe-2(C2,fe-3)->Rfe, fe-2

whose image is   K,   ,_2,  the set of ¿-planes in  C   _    = R     -     which contain a

two-dimensional complex subspace.

Definition 6.4.  Let  L (k, k - 2), 4 < Ar <^ k, be the image under ifr of the
subbundle of G.    4 t_2^2 k-?) over the Schubert cycle  (¿ - 2r - 1, k — 3)
of the base, and let the orientation be   ( - 1)  "     times that induced from thi

bundle structure.

Proposition 6.5.  In tf4r(Rfc k_2), 4 < 4r <^ k, we have
_

DÍL (k, k — 2] = P     mod torsion.
T T

As consequences of Propositions 6.3 and 6.5, we have

Theorem 6.6.   Let  t  be the Gauss map of an immersion of M        in C",

where  k = n  or n + 1.   Then

t*D[L ] = P(M)    mod torsion

for 4 < 4r < k,  where  L   = L (k, k) if k = 72  and L   = L (k, k - 2)  if k = n + 1.

Corollary 6.7.  // M        c«72 be immersed in C     or C without RC-singular

points, then all Pontrjagin classes of M  except  PQ  are zero mod torsion.

The first part of Corollary 6.7 has been proved by Wells   [15].   Theorem 6.6
therefore generalizes Wells's result.

We now show how the Euler class of M is carried by the set of RC-singular

points. Let ¿ be even and n <^ k <2n - 2. For convenience, let p = 2t2 - ¿ - 2

and  q = k - 72 + 1.   Then, as before, we have a bundle  G„ ..   -,(C    .,   ,)  over1 ' P,P+2^    q,p + l
C    .    ,   with fibre  R.   .,   ,,  and a natural immersion<?,Í>+1 P.P+2'

^'-  Gp,P + 2^Cq,p+l)-*Kk, 2„-k

whose image is   K,   2   _fe,  the set of  ¿-planes in  C" = R       which contain a
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(k — n + l)-dimensional complex subspace.   We fix an oriented orthonormal basis

/,,•••, f2     of R *  and a complex basis  gx, • ■ ■ , g     of  C"  such that

yf^ïgj = yf-^fj = /2„ + l-y    for / = 1, ■ ■ ■ , «.

Take Schubert chains of  C .   relative to \g\.   No complex  ¡?-plane  X e

(a., ■ ■ ■ , a )S"  with a. > 0 contains g.,  and so its normal plane  X    is not

contained in the linear space  R"~     spanned by  f2, • • ■ , /,   .   Consequently

dim (X    O R^"-   ) = 2p + 1.   The Grassmannian of oriented  p-planes in

X1 nR2"-1   is the Schubert cycle  [(p + 1, • • • , p + 1)+ - (p + 1, • • • , p + l)_]
in X  ,   and is naturally oriented independently of the orientation of X   OR^""*

chosen to define it.

Definition 6.8.  Let   L(¿, 2« - ¿) be the image under iff oí the subset of

Gp p+2(C?,/j + l ) consisting of (i) all  /7-planes in X1 PlR2""1  for  X £
(flj, ■ • • , a  y~ C C    .   j   with  flj > 0,  and (ii) the whole fibres over each
X e (0, • • ■ , a  )c C C    „   , .   In the interior of the subset defined by  (i), let the

orientation be  ( - l)     "  times that induced from the orientation of the Schubert

cycle  [(p + 1, • • -, p+ 1)].
We note that the dimension of the part (i) is

p(p + 1) + 2q(p + 1) = ¿(2« - k - 1),

while the dimension of the part (ii)  is at most

p(p + 2) + dim Ck_n       j = ¿(2« - k - 1) - (2b - A) < ¿(2« - k - 1) - 2.

Consequently, the part  (ii) does not affect the dimension, and  L  is a pseudo-

manifold representing a cycle in  R,   2   _, .

Proposition 6.9.   Í«  77  (Rfe 2   _l),  we have,  mod torsion,

n + (n with e = ± i if k = «,

n if k > n.

Theorem 6.10.   For any immersion of M        into Cn with Gauss map t,

t*D[L(k, 2« - ¿)] =
(Cl(M) + fß(()    with e = ± 1   if k = n,

(n(M) if k>n.

In particular, for an embedding of M        z'«r:o C",  n <^k < 2n - 2,

t*D[L(k, 2« - ¿)] = n(M).

Proof.   The first statement follows from Proposition 6.9, and the second

follows from the fact that the normal Euler class of an embedding of a compact

orientable manifold in Euclidean space is zero.
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Again this generalizes a result of Wells   [15],  which asserts that if M(

can be embedded in  C"  (k > 72) without  RC-singular points, then the Euler

characteristic of M  must be zero.   (We note that for  k odd the conclusion is

automatic by Poincare duality.)

7.   The  RC-ring of an embedding.  In this section all homology and cohomology

are  taken with coeffients in a field of characteristic zero.   We will express the

results of  §§4 and 6 in a neater form.

Lemma 7.1.   Let  1: M       —» C"  be an embedding.    Then the induced
cohomology homomorphism of the Gauss map t: M —► R,   2      ,   has image equal

to the characteristic ring of M.

Proof.   Lashof and Smale  [7]  have shown that for r < k,  Hr(R,   2   _,) is

generated as a ring by  0  and the Pontrjagin classes.   Now  H (Rk 2n — k) is

generated as a vector space by O and H (R,   x 2  _k), and to the latter the

same theorem applies.   Therefore for r <^ k, HT(Rk,2n—k) ls generated as a ring

by O, Ú, and the Pontrjagin classes.   Now t* maps  0  into zero.   So the image

of i* is generated by the Euler class and all the Pontrjagin classes of M,  and

is therefore equal to the characteristic ring of M.

Definition 7.2.   The  RC-ring  of an embedding  AT     —» C"  with Gauss map
t: M —> R,   2      ,   is the image under  /* of the set of all cohomology classes of

R,   -   _l  whose dual homology classes have representative cycles which are

contained in   K,  ,      . .fe,2n — fe

Proposition 7.3.   The  RC-ring of an embedding  l: M      —► C"   is a proper

ideal of the characteristic ring of M.

Proof.   By Lemma 7.1 the  RC-ring is a subset of the characteristic ring,

and is clearly proper.   That it is an ideal follows by transforming cup products

of cohomology classes into intersections of representative cycles by Poincare

duality.
Geometrically, the  RC-ring of an embedding is the ring of cohomology

classes whose dual homology classes have representative cycles contained in

the set of  RC-singularities of the embedding, provided that the embedding is

generic enough.   It would therefore be of interest to find the size of the  RC-ring.

Theorems 4.8, 6.6, and 6.10 can now be summarized in the following form:

Theorem 7.4.   The  RC-r772g of an embedding M      ~* C"  with  k = 72, 72 + 1
or 2n — 2  is equal to the maximal ideal of the characteristic ring of M (that is,

the set of all the nonunits of the characteristic ring).

There arises naturally the question whether the  RC-ring can be equal to the
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maximal ideal of the characteristic ring if  « + 1 < ¿ < 2« - 2.   The answer is

negative,  for dimension reasons.   In   §2 we have shown that

dim Kk, 2n-k - dim Kk, 2»-k = 2(¿ - « + 1).

If 4 <_ ¿ < 2« - 2,  then the first Pontrjagin class  P .  occurs in the characteristic

ring, but if also « + 1 < ¿,  then the   RC-ring does not have any  4-dimensional

component, and so cannot be the maximal ideal of the characteristic ring.

However, it can be shown that the  RC-ring contains all the Pontrjagin classes

Pr with  2(k - n + 1) < At < k.
In the special case of ¿ = « + 2 >_ 8,  it can be shown that the   8-dimensional

component is generated by  P,  ,   and that  P2  does not occur in the  RC-ring.

Higher dimensional components become more and more involved.

8.   Second order singularities.   So far we have considered only  RC-singular

points of the first order, that is, at which the tangent space contains a complex

subspace of dimension one higher than the minimal.    It is natural to consider the

RC-singular points at which the tangent space contains higher dimensional
complex subspaces.

Definition 8.1.  A point x e M  is called an  RC-singular point of second
order oí the immersion   1: M^' —» C"  (¿ >_ «) if

dim t.T (M) n Ji^T (M) > k - n + 2.
Q        *      X '    *      X —

Clearly the set of   RC-singular points of second order is a subset of, and

generically of lower dimensien than, the set of RC-singular points.   Let

k 2n-k  ke tne subset of Rk 2„-k consisting of the  ¿-planes in   C"  containing
a  (k — n + 2)-dimensional complex subspace.   Again  there  is  a  bundle

G2n-k-4,2n-k(Ck-n+2,2n-k-2}  ~* Ck-n+2,2n-k-2   with fibre   R2«-7i-4,277-Te-
and an immersion of   G2n-k-4,2n-k{Ck-n+2,2n-k-2)   in   R¿,27!-fe   which exhibits
^k 2n-k  as an immersecl submanifold of  R^ 2n-k-   ^s an example of the general
situation, we have the following proposition.

Proposition 8.2.   /« t78(R,   , ) with k > 8k,k —   '

(2)
k, kD[K^2),] = P2     mod torsion.

Proof.  Note that

dim K[2)k = ¿(¿ - 4) + 4(¿ - 2) = ¿2

so that Dirigí] is of dimension  8.   We know that H8(Rk fe; Q) has a free basis
consisting of  [{AA)] and   [(2222)],  together with  [(8)] and  [(l • • • l)]  if ¿ = 8.
We can find the intersections of  K^\ with these cycles and verify that
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D[Ki2\] = !(44)i + K2222)! = p2 + p2

PjPj     mod torsion,        by duality

= P2.

Theorem 8.3.  Let t: M^ —» R,   .   be the Gauss map of an immersion
M(fe)_, C*,  ¿>  8.    Then

t*D[K[2\] = PX(M)2     mod torsion.

In particular, we have

Corollary 8.4.   // P ,(M)    is not torsion, than any immersion of AT  ' 272 C  ,

k >_ 8,  has points where the tangent plane contains a complex subspace of

complex dimension  2.
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