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CHARACTERISTIC CLASSES OF STABLE BUNDLES OF RANK 2

OVER AN ALGEBRAIC CURVE

BY

P. E. NEWSTEAD

ABSTRACT.    Let  X  be a complete nonsingular algebraic curve over  C

and   L   a line bundle of degree   1   over X.   It is well known that the iso-

morphism classes of stable bundles of rank  2  and determinant   L  over X form

a nonsingular projective variety S(X).   The Betti numbers of S(X) are also

known.    In this paper we define certain distinguished cohomology classes of

S(X) and prove that these classes generate the rational cohomology ring.   We

also obtain expressions for the Chern character and Pontrjagin classes of

S(X) in terms of these generators.

Introduction.  Let  X  be a complete nonsingular algebraic curve of genus

g > 2  over the complex numbers and let L be a line bundle of degree 1 over X.    The

isomorphism classes of stable bundles of rank   2 and determinant   L  over X

form a nonsingular projective variety S(X) (see [2], [6]), whose Betti numbers

were calculated in [3].   The main object of this paper is to show that certain

naturally occurring elements generate the rational cohomology ring of S(X)

(Theorem 1).   We shall also obtain expressions for the Chern character and

Pontrjagin classes of S(X) in terms of these generators.

My thanks are due to S. Ramanan for informing me of his work on this topic

in advance of publication (see [5]).    He has obtained generators and relations

for the rational cohomology ring of S(X) in the case  g = 3.   He has also obtained

some information for the spaces of stable bundles of rank  « (in particular a

generalisation of Corollary 1 to Theorem 2) by methods similar to those used in

the proof of Proposition 2.2.

Unless the contrary is indicated, all cohomology groups in this paper will

have integral coefficients.   Also, if  E  is any bundle over   V x W (or  W x V) and

v £ V, we shall denote by  E     the bundle over  W obtained by restricting  E to

\v\ x W (or  W x\v\).

1.   Statement of the main theorem. We recall [1, §l] that there exists an alge-

braic vector bundle   U over S(X) x X with the property that, for all s £ S(X),
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U    is in the isomorphism class   s.   Since   S(X)  is simply-connected [3, Theorem

1, Corollary 2], the Chern classes of  U can be expressed in the form

CjdO = ó + /, c2(U) = x + <A + 0) ®  f,

where  / is the positive generator of  H (X) and

cp, co £ H2(SiX)), X £ HAiSiX)),        if/ £ HHsiX))   ®  hHx).

We choose a basis   a,, ■ ■ ■ , zz,     of H (X) and write
1 2g

iff = if/1  <S> fl'i t, ••? + <A2g  (g  zz2g,

where z/z¿  e //^(X)) (1 < i < 2g).   Finally we write  a = 2co - cp; ß = cp2 - 4X ■

Theorem 1.  H iSiX); Q)  is generated by a, ß, if/     ■ ■ . , if/2  .

Theorem 1 will be proved in §§2 and 3.   In §2 we shall use properties of   U

to obtain results about the  cohomology of 5(X) in low dimensions and to reduce

Theorem 1 to a similar theorem concerning the manifold  S0B    of [3].   This theo-

rem will be proved in § 3 using the methods of [3].

Remark  1.  Almost all the subsidiary results in §§2 and 3 are stated in

terms of integral cohomology; rational coefficients are needed only in Propo-

sition 2.6, the deduction of Theorem 1 from Theorem 1     and the deduction of

Theorem 1     from Proposition 3.4.

Remark 2.   U can be replaced by   U ®  n M, where   M  is any line bundle

over SiX), but this leaves  a, ß and if/ unchanged.   In fact, these are the only

permitted modifications of  U, so a, ß, ip~l, • • ■ , if/2    ate well-determined ele-

ments of  H (5(X)).   It therefore seems reasonable to call them characteristic

classes.   Note also that  End U is independent of the choice of   U and that

(1) c(End U) = 1 - ß + 4if/ + 2a ® /.

2.   Preliminary results.

Proposition 2.1.   if/   , ■. ■ , ifi       form a basis of tf3(S(X)).
1 ¿8

Proof.  This is Proposition 1 of [l].

To obtain information about a and /3, we first construct a family of stable

bundles over X.   We consider the nontrivial extensions

(2) 0^/->F-*L^0

over X.   These are classified (up to isomorphism) by the projective  space

P - P(r/ (X; L   )).   Moreover, there exists a bundle   F  over  P x X  such that,

for each  p in  P,  F     is isomorphic to the bundle obtained as the extension (2)

given by  p.   In fact, let  H  be the hyperplane bundle over   P and note that
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H\P x X:   n\(H) g Z7*(L* )) £ tf°(P; AA) ®  HX(X; L* ) 2 End(Hl(X; L* )).

We define  F by means of the extension

~0-+ 77*(AA)-^ F -,zr*(L)-» 0

corresponding to the identity endomorphism of  AA  (X; L   ).   It is easy to check

that  F has the required property.

Proposition 2.2.   For every nontrivial extension   (2),    E  is stable.   Moreover

the induced map k:   P —, S(X)  is a morphism and, if h denotes the positive

generator of H2(P), then k*(a) = h; k*(ß) = h2.

Proof.  If M is a line subbundle of E with deg M > 1, the induced homomor-

phism ZM —> L is an isomorphism and hence (2) splits.   The fact that  k   is a

morphism follows from the universal property of S(X) [6, Chapter II, Theorem 5].

Moreover, for each  p in  P,

<tt x ix)' u)p y fp.

It follows easily [5 , Lemma 2.5] that there exists a line bundle  M  over  P such

that

F=(kx lx)*U ®  Z7*M.

A simple calculation now shows that  k*(a) = h,   k*(ß) = h  .

Proposition 2.3. a. generates  H (S(X)).

Proof. We know [3, Theorem 1, Corollary 2 and Theorem 3] that AA2(5(X)) = Z.

Since by Riemann-Roch dim P = g - 1 > 0, the result follows at once from Propo-

sition 2.2.

We now recall [3 , p. 243] that there is a principal   P(7(2)-fibration

p:   S^^S(X).

This fibration is closely related to  U.   In fact, let x £ X; then we have

Proposition 2.4. TAje P -fibration associated with p is (differentiably) iso-

morphic to P((7)  .

Proof.  We consider the bundle   E ' over SQ8    constructed in [1, pp. 1206—

1207].   We have clearly

(3) P(E')y(Pxlx)*(P(U)).

Note that the action of   PU(2)  on S0g    extends in a natural way to actions on

both sides of (3) and that these actions are compatible with (3).   Moreover

(P(E ' )/P 11(2))    is just the   P^fibration associated with  p.   Hence this fibra-

tion is isomorphic to (P((/))    as required.
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Proposition 2.5.   If g > 3, ß  generates the kernel of the homomorphism

p*:   H4(S(X)) -» hHs^).

Proof.  Note first that the bundle  End U can be induced from the principal

P(/(2)-fibration associated with  P(U) by means of a suitable representation of

PUÍ2).   It follows at once from (1) and Proposition 2.4 that ß £ Ketp*.   Now an inspec-

tion of the spectral sequence of  p shows that  Ketp* = Z.   The result follows

from Proposition 2.2 (note that dim P = g — 1 > 2).

Proposition 2.6.   // g > 3, there is an exact sequence

*

••• -*Hr-HS(08)) Q) --,tfr-4(S(X);Q)^/r(S(X);Q) t* //r(5^);Q)-. ••• .

Moreover the homomorphism

p*:   HT(S(X); Q) - f/'(S<*>; Q)

is an isomorphism for r < 3.

Proof.  The exact sequence is just the Gysin sequence of the fibration p,

which exists since   PU(2) has the same rational cohomology as  S    and takes

the stated form because of Proposition 2.5.   The facts about  p    follow from the

exact sequence and the fact that ß /= 0.

Finally, we note that these results enable us to deduce Theorem 1 from

Theorem 1  .   For r < 3g — 3, HTiS ß ; Q)  is contained in the subring of

H iSq   ; Q) generated by classes of dimensions 2 and 3.

In fact, since  S(X) is a projective variety of dimension  3g — 3, it is suffi-

cient to prove that, for  r < 3g - 3, Wr(S(X); Q) is contained in the subring of

H iSiX); Q) generated by a, ß, if/l, ■ ■ ■ , tf/    .   For g = 2, this follows at once

from Propositions 2.1 and 2.3; while, for g > 3, it follows from Theorem 1     and

Propositions 2.1, 2.3 and 2.6.

We shall state and prove a more precise version of Theorem 1    in the next

section.

3. Cohomology of S ß . In this section we shall be using the methods of

[3] and we shall adopt the notation of [3] with one exception: Hi) will con-

tinue to denote cohomology with integral coefficients. We recall in particular

[3, pp. 242-243] that 5(/(2)2g has submanifolds with boundary S^'  and

N 8     such that

cigJ'u Nis)'= 5t/(2)2sj

(4)

moreover there is a diffeomorphism

s\s>'n N<8)'= ds[e>' =dN^';
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w = w   :   S(08) x-D3 c(g)

Note that the restriction to w  to  Sjf' x S2  is a diffeomorphism onto  t9/V(g)  ; w

denote by w '  the composite of this map with the inclusion of  dN s    in  ZV g   .

(1)
Next let z  be a point of  SQ     ; we define, for g > 1

h:   /V(g)'-^ S(8+l)  by  Mx) = (w(z, - f^x)"1), x),

7   -   N(g)'^ ,,<* + »>'by   ¿   (x) = (x, I, I),

Ls-   Jo
S(0g) ̂ S<g + 1) by  U*) = (x, /, A),

j.   S2 -> S[,g) x S2  by y(x) = ((z, /,..., A), x).

We have the diagrar

S¿ -   S{g)xS: -.   N(g)'

(5)

r(g + D
0

- zV

N

(g + 1)'

r(8 + D*0

A c(g + 2)-»-   ^0

The left-hand square of (5) is clearly commutative; so also is the right-hand

square, since  /     Ax, I, I) = / (x).   The middle square is not commutative, but it
g (V ill'

is homotopy commutative.   In fact, since   z'.,  maps  c9/V 8     into dN 8+      , we have

a map

(w ' )~ li.,w W x 52 S(08 + l) xS2

and it is sufficient to prove that this map is homotopic to   z^ x 1.   But this was

proved in [3, pp. 254—255] in the case  g = 1  and the same proof works for all g.

Proposition 3.1.  The maps w'j, h and iN   induce isomorphisms on H ; if

g> 2, so also does  i<¡.

Proof.   We consider first the -Mayer-Vietoris sequence corresponding to (4).

In particular we have a homomorphism

(6) H2(N(8)')

induced on the first factor by  w ' and on the second by w; in fact, by 13, Lemma

2], (6) is an isomorphism.   Moreover, since  w extends to a diffeomorphism of

H2(5(0g)  ) -* AA2(5f0«; x S2)

S(08'    with S]8' x A9   , the image of  H2(S\8'  ) under (6) is just the kernel of  /   .

Hence  (w j)    is an isomorphism as required.  The result for h follows easily

from what we have just proved and the Mayer-Vietoris sequence of [3, §6].

Finally, for  iN  and   i<-, the result follows from the homotopy commutativity of

(5).
Now let  X   be a generator of  AA  (N       ); we denote also by  A.   the generators

of  H2(N(g)' ) and   H2(S{Qg)) (g > 2)  induced from this generator by the isomor-

phisms of Proposition 3.1.   We denote by  ftj, • • • , p2     the elements of

AA3(zV(g)') and   Ar'3(S(0g))  induced by the inclusions of these spaces in  SU(2)2g

from the obvious generators of  AA  (5(7(2) g).
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We need also one further observation.   Note that we have a natural inclusion

N(g)' x N(lY c 5u(2)2g x sut2)2 m 5zj(2)2g+2    A simple argument (similar to that

at the top of p. 256 of [3]) shows that we can deform this map into a map

we need to observe that the deformation used to define   / can be performed so that

at every stage the images of the subspaces  N 8    x {(/, /)i and  [(/, •••,/)! x N
(   ±1)'

are contained in  AP8 +

Proposition 3.2. (i) l*(Xp) = Xp  ®  l + pA*'"1 ®  A;

(ii>/Vf) = f*< ®   1    ^<2g),    = 1 ®  p{_2g    (i= 2g+ 1, 2g+ 2);

(iii) h*(px) = h*(p2) = 0;    h*(p.) = /x¿_ 2    (3 < i <2g+ 2).

Proof. All parts of the proposition follow easily from the definitions.   For

(i), we need the observation after the definition of  /; also the fact that the homeo-

morphism p:   5(i(2)28+2 -, S(/(2)2e+2 defined by

PÍA,, ■ ■ ■ , A.,    ,) = (A,     „zl,    n, A,, ■ ■ ■ , A, )r      1 2g + 2' 2g + l'      2g+2'      1 2g

restricts to a homeomorphism of N B+ and therefore induces an automorphism

of H (N g+ ), which must be multiplication by + 1. This is the source of the

sign ambiguity in (1).

Proposition 3.3.  The elements

il) ^PNl---Nr        (P>0,  1 <?1 <...<zjr<2g,  f. +r<g)

are linearly independent in H (/V 8   ).

Proof.  For g = 1, this follows at once from [3, §5].   Now let g > 2 and

suppose the proposition is true for   N 8       .   Suppose we have some linear com-

bination 1 of the elements (7) in H (N(g   ) such that 2=0.   We look at the

component of /*(£) in H*iN(g~iy)   ®  f/2(N(1)').   Using Proposition 3.2 and the

induction hypothesis, we see that the only terms in 2 which can have nonzero

coefficients are of one of the following two types:

(a) those for which p = 0,

(b) those involving p2      .   or p2   ■

By composing / with powers of the map p used in the proof of Proposition 3.2,

we see that (b) can be replaced by

(b)'those involving at least one of P2i_x  and p2i for all  i,   1  < i < g.

Now in view of the restriction on p and r in (7), terms satisfying (b)   necessarily

satisfy (a).   Hence  2 is a linear combination of the pq    • • • pq   with r < g and

the result follows from [3, Lemma 2].

Proposition 3.4.   The elements
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(8) ***-_•■••*€, (P>0.  1 < ?!<•••<?, <2g,  P + z-< g -1)

are linearly independent in H (S3 ),

Proof.  This is obvious for g = 1.   For g > 2, let  S be a linear combination

of the elements (8) such that  S = 0.   Using the maps  p'h and Propositions 3.2

and 3.3, we see that the only terms which can have nonzero coefficients in X are

those of the form (b) .   But in view of the restriction  p + r < g — 1  there are no

such terms.

Theorem 1    now follows at once from Proposition 3.4 and Theorem 2 of [3]

and this completes the proof of Theorem 1.

4.   Chern and Pontrjagin classes of S(X).  Let  T denote the tangent bundle

of S(X) and   V  the subbundle of   End U consisting of the endomorphisms of trace

zero.   We have obviously

(9) End V = A ©   V.

Lemma.   Let 77 denote the projection of S(X) x X  on the first factor.   Then

(i)  Ri7r(V) = 0 for i/ 1,

(ii)  R 7r(V) is the sheaf of sections of T.

Proof,  (i) follows from the fact that every stable bundle is simple [2 ,

Corollary to Proposition 4.3], while (ii) is a simple consequence of (i) and the

general theory of deformations (see [5, Lemma 2.6]).

Theorem 2.   The Chern character ch T  is given by the formulae

ch0 T = 3« - 3

(2zz)!ch2nr=   2(g-l)/3" (zz >1)

(2n- l)!ch2n_j   77=   2ßn~2[aß - 4(n ~ l)y]       (n > 1)

where y is defined by ifj   = y  ® f.

Proof. We apply the Grothendieck-Riemann-Roch Theorem to  n and   V.

Using the lemma, we get ch T = - ff^ch V - r (X)) (here  r(X) denotes the total

Todd class of X).   The result now follows by a formal computation from (1),

(9) and the fact that r(X) = 1 - (g - 1)/.

Corollary 1.     c {(T) = 2a.

Proof.  Obvious.

Corollary 2 .   The total rational Pontrjagin class p(T)  is given by p(T) =

(1 +/3)2g-2.

Proof.  We deduce at once from the theorem that, for  n > 1,
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(2n)!ch2n(T ©  r*) = 4(g-l)jß".

A formal computation now shows that  ciT  ©   T ) = (1 - ß) 8~     and the result

follows at once.

Remark .  Those two corollaries enable us (at least theoretically.) to express

the Todd class of  T in terms of a and  ß.   At the moment this is of limited

usefulness since we do not know the relations in H*(S(X); Q) (see §5).

To obtain explicit formulae for the Chern classes of  T  seems to be more

difficult.   A formal computation, whose details we shall omit, does however lead

to the following recurrence relation:

(" + 1)C« + 1 - 2aC72 - 2(" - sWc„- 1  + 2^aß + 4/)cn-2 + <»"- 2« - l)r32c„_3 = 0.

5.   Relations.   Theorem 1, though interesting, is of rather limited value in the

absence of information about the relations among the classes  a, ß,  if/., • ■ ■ ,

ifi2   .   For many purposes, it would be sufficient to know the relations which

involve only  a, ß and  y, or even just a and  ß.

Some information can be obtained by the methods of this paper.   In fact,

Proposition 3.4 allows us to write down an additive basis for each HT(SiX); Q).

It follows in particular that there are no nontrivial relations in dimension < 2g,

and (up to a scalar multiple) precisely one in dimension  2g.   It is possible to

obtain all the relations in the cohomology ring of Sß    by a more careful argu-

ment on the same lines as that of §3-   Unfortunately this does not tell us a great

deal about S(X).

Another method of obtaining information about relations is by using a re-

finement of the construction of §2.    The nontrivial extensions

O^M-^E—> L <g>  M*  —>0,

where   M is a line bundle of degree  0 over X, can be made into a family whose

base   P  is a bundle over the Jacobian of  X with fibre   P8~   .   By using the

known structure of the cohomology ring of  P, we can obtain information about

that of  S(X).

These two approaches are sufficient to enable us to obtain the relation in

dimension 2g for g < 7 but seem to be insufficient for larger values of g.   For

g = 2  and  g = 3, the complete structure of the cohomology ring is known ([4],

[5]), while for  g = 4  the second method outlined above allows us to obtain the

relations involving  a, ß and  y.   One or two interesting features emerge from

these calculations.   Thus, for  g < 4, we have

(a) ß8 = 0; hence (by Corollary 2 to Theorem 2) p (T) = 0 for r > g; also

all Pontrjagin numbers of S(X) ate zero.
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(b) cr(T) = 0 for  r>2g- 1.

(c) x(S(X), T) = - (3g - 3).

It seems reasonable, though perhaps optimistic, to conjecture that (a), (b) and

(c) hold for all values of g.   Another conjecture, related to (c), is

(d) dim H1(S(X); T) = 3g - 3.

This would mean that the number of moduli of the variety  S(X) is the same as

that of the curve  X.   In this context, it may be noted that the complex structure of

S(X) determines that of X [l, p. 1201].

It is hoped to investigate some of these problems more fully in a future paper.
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