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Abstract

In this paper the Nijenhuis tensor characteristic distributions on a
non-integrable four-dimensional almost complex manifold is investigated
for integrability, singularities and equivalence.

Introduction

For a non-integrable four-dimensional almost complex manifold we will cano-
nically define a distribution I1? by the Nijenhuis tensor N;. In §1 we complete
the description [K1] of invariants of an almost complex structure in dimension
four, using this distribution. In §2-§3 we describe singularities of II2. We show
they are standard if our field of planes is considered as a distribution, but they
become quite specific if it is considered as a differential system.

In §4-5 we study moduli and hyperbolicity of the germ of a neighborhood of
a pseudoholomorphic curve. §6 is devoted to a geometric meaning of the inte-
grability of the Nijenhuis tensor characteristic distribution II? and its relation
to a question of V. Arnold.

In [HH] Hirzebruch and Hopf proved the following topological result: If
a 4-dimensional manifolds admits a rank 2 distribution, it admits an almost
complex structure as well. Moreover if the manifold admits two almost complex
structures, defining opposite orientations, then it admits a rank 2 distribution.

We associate to a non-integrable almost complex structure a rank 2 distribu-
tion, realizing the above topological correspondence (to one side) canonically on
the differential level. Note that any almost complex structure on a 4-dimensional
manifold can be perturbed to be non-integrable outside a discrete set.

1. Local classification of almost complex struc-
tures in dimension 4

Let (M,J € Aut(TM)) be an almost complex manifold of dimension 4,
J? = —1. Its Nijenhuis tensor is the following (2, 1)-tensor



Integrability of J is expressed via it as Ny = 0 ([NW]).
This tensor satisfies the property N;(J&,n) = Nj(&,Jn) = —JN;(&,7n) and
so can be considered as an antilinear map Ny : A2C? — C2, C? = (T, M*,J).
The image is invariant under .J and if N; # 0 it is a complex line C C C2.
Thus in the domain, where the structure J is non-integrable, a canonical
distribution is defined:

Definition 1. Let us call 1> = Im N; C TM the Nijenhuis tensor characteristic
distribution on a 4-dimensional almost complex manifold (M*,.J).

This distribution II? is in general situation nonintegrable. Therefore it has a
nontrivial derivative IT> = 9112, which is defined as the differential system with
C°°(M)-module of sections P3 = C°°(I13) generated by the self-commutator of
the submodule Py = C*°(I1?) C D(M): P3 = [Pa, Ps]. II? is not a distribution
everywhere and its singularities form a stratified submanifold ¥% of codim = 2.

The distribution II1* on M \ ¥? is generically nonintegrable, so that 9II* =
TM (or [Pa,P3] = D(M)) outside a stratified submanifold ¥3 of codim = 2.

If z ¢ ¥2, then 112 C II2 has a transversal measure. In fact since the J-
antilinear isomorphism Ny (-, &3) : 12 — TI2 is orientation reversing, there exist
vectors &1,& € T12, &5 € I3 \ 112 such that Ny (&1,&3) = &, Ny(€2,&3) = —&o.
These &1, & are defined up to multiplication by a constant, while &3(mod I12) is
defined up to multiplication by +1. Therefore II?/II? is normed. By a similar
reason T, M /I3 is normed outside 7 via the vector &, = J&3.

Note that II2 /TI2 is oriented. Actually [¢1,&2] mod IT2 depends only on the
values of &1,& at the point z. It is a vector fé3modII2 for some f. So if
we require & = J& then &5 can be chosen so that f > 0. This produces a
coorientation on I12 C II2 and then via J a coorientation on II2 C T}, M.

Moreover the requirement f = 1 determines canonically vector field &; (still
however up to +1) and hence & = J&;. Then we set &3 = [§1, &) and & = J&s.
So the pair (£1,&2) is defined canonically up to a sign and the pair (£3,&4) is
absolutely canonical. The following statement generalizes theorem 7 [K1]:

Theorem 1. Let almost complex structure J be of general position. Then at a
generic points x € M* the canonical frame (&1, &2,&3,€4) is defined. It restores
uniquely the almost complex operator J and the tensor N by the tables:

(NG| & [&] & | & |
&1 || &

&1 0 |0 ] & | =&
& || &1 3 0 0| & | &
& || &4 &3 &1 & | 0 0
&1 || —&3 &4 & | & | 0 0

Note that reducing a geometric structure to a frame ({e}-structure) solves
completely the equivalence problem. The idea is as follows. Consider the moduli
of the problem, i.e. functions c;k given by the formula [&;,&,] = >° cz-kﬁi. Denote
by A = {c};} the space of all invariants and by ® : M — A the ”momentum
map” x — {c}; (x)}. Then two equivalent structures have the same images and
the equivalence follows. See [S] for more details.



2. Singularities of a Nijenhuis tensor character-
istic distribution

A distribution V' = Vj is called completely non-holonomic if one of its
successive derivatives V; = dV;_1 equals the whole tangent bundle T'M and the
minimal such i = r is called the degree of non-holonomy (can vary from point
to point). The growth vector of a distribution at a point € M is the sequence
of the dimensions (rk, V1,...,1ks Vi)

Generically a Nijenhuis tensor characteristic distribution is completely non-
holonomic outside a discrete subset in M. In an open dense set the growth
vector is (2,3,4). Then it is an Engel distribution, which has the following local
normal form ([E]):

I = (&1 = 03,8 = 04 — 2305 — w201); 0; = 0/0x;.

Locally this II? can be realized as a Nijenhuis tensor characteristic distri-
bution ([K2]). In fact, consider two transversal symmetries of the distribution:
n = 01,712 = O — x401. Define the almost complex structure by the formula

J& = @&, I = mo; o # 0. (2)

Then one easily checks that Im N; = II? whenever (9, 0)* + (0y,¢)? # 0.
Moreover the following statement holds:

Proposition 2. Let II be an analytic distribution of rank 2 in R*. Then it can
be locally realized as a Nijenhuis tensor characteristic distribution.

Proof. Let I12 be generated by & = 05 and & = 04 +h101 +ha0s. A pair of
generators can always be chosen in such a form. Consider &; as a vector field in
R3(x1, 22, 24) depending on a parameter z3. It has two independent symmetries
m,ne € D(R3): [ni,&2] = 0. Let’s differentiate these fields by the parameter:
Dsm; = [03,mi] = aln; + bi&s.

Define the almost complex structure by the formula

JE = 0, I = amy + B2y B0 # 0.

The condition Im N; = I1? is equivalent to the following system

©le, o0 = b, a0 — HT‘XQ e, B+ [al(1 + a?) — dia 12‘12 +atap — a2(1+ a?))
Saafzﬂ = /88510[ - aaflﬂ + [a%aﬁ + a’%(l - a2) + a%ﬂz - a%aﬂ]

and the inequality (9,, p—bia—b23)? + (9, 0 — b1 1‘;‘2 +baa)? > 0. The system
is in the Cauchy-Kovalevskaya form and so possesses a local solution. After this

the inequality is arranged to hold. O

Theorem 3. Nijenhuis tensors characteristic distributions in the domain of
non-integrability for J have the same singularities as the usual two-dimensional
distributions in R*.



Proof. Let us at first define the degeneration locus of a distribution. In-
troduce the partial order on the growth vectors: (mgy,...,ms) < (ny,...,n;)
iff s > r and m; < n; forv = 1,...,r. Fix one growth vector I. Then the
degeneration locus ¥; C M is the set of points with the growth vector less or
equal to I. Proposition 2 (it holds formally as well — on the jets of the structure)
and the Thom transversality theorem imply that for a typical J the sets X are
nice subvarieties, stratifying the manifold M. The statement follows. O

The generic degenerations of two-plane fields in R, up to codimension 3,
were classified by Zhitomirskii [Z]. Let us show how generic codimension 2
singularities are realized as a Nijenhuis tensor characteristic distribution.

There are 2 different types of such singularities, defined by the growth vectors
I =(2,2,4) and I, = (2,3,3,4). All other growth vectors are subordinated to
these two and hence the singular set is

Y=%iux} 2?=%;.

Generically the loci X2 are smooth 2-dimensional submanifolds ([Z]), which
intersect non-transversally along a curve ¥1. There is also a curve X3 C X2
separating the locus into the elliptic/hyperbolic parts %2, .

The codimension 2 loci of 112 = (£;, £2) have the following normal forms:

2% \ Z% t &1 =03, =04 — w3240 — 93:2381
1
S5, &L =058 =0,— (gfﬂg + 2373) 02 — w301
Y3 & = 03,60 = 04 — 237402 — 1304

In each of these cases the choice 11 = 01,72 = 02 and formula (2) will lead to
realization IT> = Im N;. The cases of higher degenerations are studied similarly.

3. Singularities of II = Im N; as of a differential
system

As differential systems Nijenhuis tensors characteristic distributions have
singularities different from those of the usual differential systems in R*: The
rank of a Nijenhuis tensor characteristic distribution is even and so is 2 or 0.

Proposition 4. For a generic structure J the set, where Ny = 0 (the rank of
II falls to zero), is a discrete set X0 C M*. For each point of X0 there is a
centered coordinate neighborhood (x1,y1,x2,y2) around it such that the almost
complex structure is given by the formula

1+ a?
L+ 5

JOy, = ; 0y, + (1 + ﬁl)&h, J&,L = Oz, — ai(?yi, 1 =1,2,

where the functions «a;, B; are of the second order of smallness at the origin.



Proof. Singularities of the differential system II = Im N; are given by the
vector equation Nj;(&,7n) = 0 for some J-independent vector fields &, 7, and so
are generically isolated points given by the integrability condition N; = 0.

To get the other claim recall ([K1]) that an almost complex structure can
be approximated by a complex structure to the second order of smallness at the
integrability points. Let (wy, ws) be the corresponding complex coordinates. By
a theorem of Nijenhuis and Woolf [NW] (see also proposition 9 below) there are
two J-holomorphic foliations by disks C'-close to the foliations {w; = const} at
the origin, ¢ = 1,2. Let z; be a complex coordinate on the disk of the first family
passing the origin and zo — on the second. They define the complex coordinate
system (z1, z2) in a neighborhood of the origin with the required properties. O

Remark 1. For dim M > 4 the set, where Nj = 0, is generically empty.

Let oy, 7 be the quadratic parts of a;, 8;. Using the coordinate system from
proposition 4 we calculate: I1? = Im N; = (&1,& = J&1), where linearizations
of the generators at the origin are
’f? = (_% - %)81’1 + (gl;; o %)@ﬂ + (% + ng)am + (% - gif)%
and £9 = Jo&? (Jy is the constant coordinate extension of J from the origin).

Thus we see that the linearization of the considered differential system is
special, not as for the usual differential systems. If we consider linear vector
fields ¢) as linear operators, we represent the 1st order approximation of IT by
a 2-dimensional subspace V2 C gl(4). The condition V2 = (X7, Xo = JX;) for
some J2 = —1 characterizes admissible 2-planes.

The higher order terms in &7, &5 are special as well.

4. Moduli of a PH-curve neighborhood

Let C? be a pseudoholomorphic (PH-)curve, i.e. a surface with J-invariant
tangent bundle. At every point z € C we have two J-invariant planes T,,C? and
12, which generically intersects by zero, except at a finite number of points
¥ C C. The sets ¥) = %2 NC and ) = ¥2 N C are generically finite as well.
The arrangement of all these points

Y=3yuxjus,cc

gives a (finite-dimensional) invariant of C.

For points z € C\ ¥} we define field of directions L' = TCNII?. The integral
curves of this 1-distribution foliate the set C \ ¥} and in general C foliates with
only nondegenerate singular points. Denote the number of elliptic points by
e(L') and the number of hyperbolic points by A(L!). One can prove:

Proposition 5. Under C'-small perturbation of the structure J the foliation L'
has minimal number of singularities: min{e(L), h(L)} = 0, max{e(L),h(L)} =
Ix(C)|. For instance if C = T? we get a foliation without singularities. O



Due to §1 the foliation L' is oriented, cooriented and has parallel and trans-
verse measures outside Y. Thus there exist canonical vector fields v; along L'
and vy = Jv; transverse to it. Consequently the curve C has a lot of dynamical
invariants like winding classes of v; and vs. Moreover decomposing

[v1,v2] = Y101 + Y2v2.

we obtain two invariant (under pseudoholomorphic isomorphisms) functions
Y1,72. These together with the germs of the functions C;k from §1 form moduli
of the C-neighborhoods germ. They solve the equivalence problem for PH-
embeddings C? — M* (of general position).

Example. Let M = T?(p,v) x R?(z,y) be equipped with the structure

2 2
JOr =0y JOp = L0y + B0, + 303
. — 44 2 ! 2
Then ¢ = {z = y = 0} is a PH-torus and the winding number of v; is p.
Similarly one shows the other considered invariants are non-trivial.

5. Hyperbolicity of a PH-curve neighborhood

In this section we consider the case of PH-tori C = T2. We assume for
simplicity that the normal bundle is topologically trivial, though in general case
the result is the same.

Recall that the Kobayashi pseudometric dj; measures the distance between
points via pseudoholomorphic disks ([Ko, KOJ). An almost complex manifold
is called Kobayashi hyperbolic if dy; is a metric. Let ||-|| be a norm on T'M.

Proposition 6. Let O be a small neighborhood of a pseudoholomorphic torus
T? C (M*,J). Then the domain O\ T? is not Kobayashi-hyperbolic.

Moreover for some constant C' > 0 and any R > 0 there ezists a smooth
family of PH-disks f£ : Dr — O, with uniformly bounded norms ||(f2).(2)| <
C and ||(fE).(0)|| = 1, that fills some smaller neighborhood O' C O of T?:

O/ C UOéfOIL%(DR).

Proof. Let us take the universal covering O ~ C x D? of O©. The torus
is covered by the entire line C — T?2. Changing the structure .J at infinity in
© and near the boundary to the integrable one we glue the manifold to the
product S? x S? with the line C being glued to the first factor S?. Then the
introduction of the taming symplectic product-structure w = w; @ wo yields a
foliation of S? x S% by PH-spheres S? in the homology class of the first factor if
we additionally demand that the homology class [S7] of the first sphere-factor
is symplectically indecomposable (for example, if wi(S?) = kw2(S3), k € N).
Here we use the fact that the dimension is 4: due to positivity of intersections
[M1] we actually have a foliation ([M2]).



This foliation of S2 x S2 gives a family of big PH-disks on O parametrized
by the radius R of disk in C out of which the almost complex structure is
changed. The estimates follow from the Brody reparametrization lemma as in
[KO]. Pulling-back we get the required family. O

We now consider filling by pseudoholomorphic cylinders Cp = [~ R; R]xS* C
C\ {0}, which is topologically different from the disk-filling (Fig.1).

Proposition 7. In the statement of proposition 6 we can change disks Dy to
the cylinders Cr and get for every R > 0 a filling family of PH-cylinders fE :
Cr — O with uniformly bounded norms and normalization ||(f1).(0)| = 1:

O/ C UafaR(CR)'

@ q “Pinched”,
sphere |

Figure 1: Filling by PH-cylinders Figure 2: Cutting and Gluing

Proof. Actually take a covering of the neighborhood O which corresponds to
one cycle of the torus. The torus is covered by the entire cylinder Coo — T2. We
can change the almost complex structure J at infinity so that it makes possible
to ”pinch” each end of the cylinder. This means we perturb the structure J so
that it is standard integrable outside some Cr, C Co and the support is also
a big cylinder Cr,. Then we glue the ends to the disks. This operation gives
us a sphere S? instead of the cylinder Co. = R x S'. We can also assume that
neighborhoods of two cylinder ends are pinched (Fig.2).

Thus we have a neighborhood U of the sphere S3. It is foliated by PH-
spheres close to S3. Actually, we can change the structure J near the boundary
of this neighborhood, glue and get the manifold-product M = S2 x S2. As
before it is foliated by PH-spheres. Thus U is foliated by PH-spheres and in the
preimage they give a PH-foliation by cylinders. O

Remark 2. Neighborhoods of PH-spheres C = S? are also non-hyperbolic and
if the normal bundle is topologically trivial can be foliated by close PH-spheres.

For PH-curves of higher genus C = Sg, g > 1, one expects a small neighbor-
hood O to be Kobayashi hyperbolic. If an almost complex structure J is C*°-close
to an integrable one near C this is proved in [KO)].



6. Arnold’s question

In [A2](1993-25) Arnold asks about almost complex version for his Floquet-
type theory of elliptic curves neighborhoods ([A1l]) in the spirit of the Moser’s
KAM-type theorem ([Mo]). Namely he asks if a germ of neighborhood O of a
PH-torus C = T? C (M*,J) is determined by its normal bundle N¢M.

The following result is a direct consequence of the definition:

Proposition 8. If F : M* — C? is a (local) PH-surjection and the structure
J is non-integrable, then the Nijenhuis tensor characteristic distribution II? is
integrable and is tangent to the fibers of F'. O

Thus there is a functional obstruction to the equivalence of the C-germ in
M* and of the C-germ in the normal bundle (we do not discuss here the normal
bundle: If dim M = 4, the almost complex structure on NeM can be obtained
via linearization along a family of transversal PH-disks; For the general case see
[K3]). Integrability and transversality of II* to the torus C is a necessary, but
by no means sufficient condition for the existence of an equivalence: There are
other functional moduli.

In search of a proper generalization of the Arnold’s result we notice that
a neighborhood of an elliptic curve in a complex surface is foliated by half-
infinite cylinders: They are given as |z| = const in the representation of the
neighborhood as C?(z,w)/(z,w) ~ (z + 2m,w) ~ (2 + v, \w), where v € C\ R
and A € C\ {0} (see [Al] for the representation). The hypothesis is then that
for a non-integrable perturbation .J of the complex structure Jy, most of the
cylinders persist (as in the Moser’s theory).

Let us sketch how to prove existence of one such a half-cylinder. In propo-
sition 7 we have constructed a pre-compact family of finite cylinders f£ for
different R. If it winds up to the curve C (as in the holomorphic normal form
with |A] # 1), then one can extract a subsequence foik with Ry — oo converging
to a pseudoholomorphic curve due to the standard technique ([G, MS]). This is
the required half-cylinder.

There are no tools however to complete this construction to a PH-foliation
(also a filling is problematic — a remark of V. Bangert). Note though that even
if we construct a foliation, it is not necessary so nice as its holomorphic original.
To explain this let us notice the following fact, which is a corollary of a theorem
by Nijenhuis and Woolf [NW]:

Proposition 9. Small neighborhood O of a PH-curve C C M* can be foliated
by transversal PH-disks D?. O

Now consider a neighborhood of a PH-curve C with topologically trivial nor-
mal bundle and suppose we have a foliating family f, : B — O with unbounded
or compact leaves in it. Let Dy, ¢ € C, be the family of normal disks from
proposition 9. Then every path v(¢) on C with v(0) = ¢g, ¥(1) = ¢1 gives a
mapping ®, : D, — D, of shift along the leaves of f,. For a loop v we have an
automorphism of D,. Since f, is a foliation there is no local holonomy: ®. = id
for contractible loops . Thus we can consider the map 7 (C) — Aut(D,).



Definition 2. We call ®,, € Aut(D,,) the monodromy map along vy € m1(C) and
@, : Dy, — D,, the transport map.

For example there is no monodromy for the sphere C = S? and each choice
of local coordinates in a normal disk D, gives coordinates for the others D,,.

Let now C = T?(2m,v) and we have a foliating family f, of half-infinite
cylinders. Since every leaf B is a cylinder, there is no monodromy along one
generating cycle. Normalize it to be the cycle ¢ — ¢ + 27. Denote by ®, the
monodromy along the other cycle ¢ — ¢ + v.

Unlike the complex case, the almost complex monodromy can be non-holo-
morphic mapping of the fibers: It is possible to construct examples of PH-
foliations with any prescribed monodromy ®,.

Moreover even if the monodromy is complex, the transport maps @, :
(Do, J) — (Dg,,J) can be non-complex. In fact there are functional ob-
structions for the transports to be complex:

Theorem 10. Let C be a PH-curve in a 4-dimensional manifold (M, J) and let
fo : B — O be alocal PH-foliating family in some neighborhood O of C. Then if
all transport maps @, are holomorphic, then the Nijenhuis tensor characteristic
distribution I12 is integrable and is tangent to the leaves of fa.

Actually this is because the foliation provides a local bundle 7 : O — D,
and so proposition 8 apply. Again the integrability is not a sufficient condition:
There are other moduli.

So we see that existence of foliating PH-family with complex transports (as
in the original holomorphic case) is generically obstructed, and the obstructions
are of the same nature as for the existence of equivalence between a germ of a
neighborhood of a PH-curve C and its normal bundle (though in the first case
the Nijenhuis tensor characteristic distribution is tangent to the curve C, while
in the second one it is transversal).
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