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In this paper the fractal heat-transfer problem described by the theory of local 
fractional calculus is considered. The non-differentiable-type solution of the 
heat-transfer equation is obtained. The characteristic equation method is pro-
posed as a powerful technology to illustrate the analytical solution of the partial 
differential equation in fractal heat transfer.  
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Introduction 

The differential equations involving the local fractional calculus [1] were utilized to 
investigate the non-differentiable problems, e. g., fractal diffusions [2-7], fractal oscillator [8], 
fractal wave [9], fractal Laplace [10, 11], fractal heat-conduction [12, 13], fractal Fokker-Planck 
[14], fractal Helmholtz [15] equations and others [16, 17]. Let us recall the local fractional deri-
vative (LFD) of the function ( )ζΠ  of order (0 1)θ θ< <  at 0 ,ζ ζ=  defined by [10-18]:  
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The heat-transfer equation involving the LFD in fractal media was written [18]: 
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where κ  is a heat-diffusive coefficient and ω  – a constant related to the density and specific 
heat of fractal materials.  

There are a lot of numerical and analytical methods for the local fractional partial 
differential equations, such as the decomposition method [2, 4, 15], differential transform [3], 
variational iteration method [5, 12, 14], homotopy perturbation method [6], similarity variable 
method [7], Laplace variational iteration method [9], series expansion method [10], function 
decomposition method [11], Fourier transform [13], exp-function method [16], Fourier trans-
form [17], and characteristic equation method (CEM) [19]. The main aim of this paper is to 
present the CEM to solve the heat-transfer equation in fractal media. 

Solve the heat-transfer equation  
in fractal media  

By using the theory of CEM [19], we set the non-differentiable solution of eq. (3): 

 ( , ) ( ) ( )E Eθ θ
θ θϑ τ ρτ σϑΩ =  (4) 

In view of eq. (4), we have: 

 2 0ρ κσ ω+ + =  (5) 

such that  
2( , ) [ ( ) ] ( )θ θ

θ θϑ τ ϖ κσ ω τ σϑΩ = − +E E  (6) 

where κ  is a heat-diffusive coefficient,  
ϖ  – a constant, and the corresponding 
graph is represented in fig. 1. 

By changing the dimension from 
(0 1)θ υ υ= < <  to 1, the conventional heat- 

-transfer equation is written: 
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Then, we obtain: 
2( , ) exp[ ( ) ] exp( )ϑ τ ϖ κσ ω τ σϑΩ = − +  (8) 

where κ  is a heat-diffusive coefficient and 
ϖ  – a constant. 

Equation (8) represents the heat-
transfer equation to account for the radiative 
loss of heat. The corresponding solutions are 
illustrated in fig. 2.  

Conclusion 

The fractal heat-transfer problem in-
volving the LFD has been investigated in 
the work. The non-differentiable solution for 

 
Figure 1. The solution of non-differentiable type 
of eq. (5) when ϖ = 1, κ = 2, ω = 1, and σ = 1 
(for color image see journal web-site) 

 
Figure 2. The differentiable solution for the 
conventional heat-transfer equation when  
ϖ = 1, κ = 2, ω = 1, and σ = 1  
(for color image see journal web-site) 
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the heat-transfer equation in fractal media was obtained by using the CEM. The results for the 
fractal and conventional heat-transfer equations were compared. The obtained result is very 
efficient to show the fractal behaviour of heat transfer.  
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Nomenclature 
θ – fractal order, [–] 
ϑ – space co-ordinate, [m] 

Ω(ϑ, τ) –temperature, [Km–3] 
τ  – time, [s]
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