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Abstract
The characteristic approach to numerical relativity is a useful tool in evolving
gravitational systems. In the past this has been implemented using two patches
of stereographic angular coordinates. In other applications, a six-patch angular
coordinate system has proved effective. Here we investigate the use of a six-
patch system in characteristic numerical relativity, by comparing an existing
two-patch implementation (using second-order finite differencing throughout)
with a new six-patch implementation (using either second- or fourth-order
finite differencing for the angular derivatives). We compare these different
codes by monitoring the Einstein constraint equations, numerically evaluated
independently from the evolution. We find that, compared to the (second-order)
two-patch code at equivalent resolutions, the errors of the second-order six-
patch code are smaller by a factor of about 2, and the errors of the fourth-order
six-patch code are smaller by a factor of nearly 50.
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1. Introduction

Based on the Bondi–Sachs metric [1, 2], the characteristic or null-cone approach to numerical
relativity permits a rigorous treatment of far-field gravitational radiation, including an explicit
computation of the news function. This approach has been implemented in the PITT code
[3–8], which is the focus of this work, as well as in a number of other numerical codes [9–15].

The eventual goal of our work is to develop a characteristic code that can reliably
compute gravitational radiation in situations of astrophysical interest, either within a stand-
alone code [7, 16] or within the context of Cauchy-characteristic extraction or matching
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[17]. The PITT code can stably evolve single black hole spacetimes for long times [18] and
accurately compute the emitted gravitational radiation in test cases [3, 5] and in scattering
problems [19]. However, it cannot yet accurately compute the gravitational radiation emitted in
astrophysically interesting scenarios, such as a star in close orbit around a black hole [7, 16].

In this paper, we investigate a strategy for improving the PITT code’s numerical accuracy.
Up till now, the PITT code has used second-order finite differencing, with two stereographic
(angular) coordinate patches, one each covering the northern and southern hemispheres.
Unfortunately, numerical noise from the two-dimensional interpatch interpolation seems to be
a major limitation in the code’s ability to accurately compute gravitational radiation emission.
Here we investigate a modification of the code to use the six-angular-patch scheme and
infrastructure of [20], and a second modification to use fourth-order finite differencing in the
angular directions.3

In comparison to the two-patch stereographic scheme, the six-patch scheme allows the
angular coordinates to be chosen such that the interpatch interpolation is only one dimensional,
leading to an expectation of reduced noise at the patch interfaces. Having the interpatch
interpolation be one dimensional also makes it relatively easy to use higher order interpolation,
as is appropriate to match the higher (fourth) order angular finite differencing. As well, the
six-patch scheme has considerably less distortion of the finite differencing grid near the patch
edges than the stereographic scheme.

There have been a number of other recent uses of multiple-patch finite differencing
schemes (also known as multiple-block or multiple-domain schemes) for evolutions in
numerical relativity. Reference [20] used a six-patch ‘inflated-cube’ scheme, with the BSSN
formulation of the Einstein equations, to evolve excised Kerr black holes. [21] and [22]
considered the axisymmetric evolution of a scalar field on a Schwarzschild background, and
boosted Kerr background, respectively, using overlapping spherical polar and cylindrical
patches. [23] used a pair of overlapping spherical polar inner patches and an outer Cartesian
patch to simulate boosted Kerr black holes. In the schemes described thus far, adjacent
patches overlap and state-vector values are interpolated between the patches as necessary
near the interpatch boundaries. In contrast, [24–27] use a different approach, where adjacent
patches just touch and ingoing/outgoing modes are transferred between the patches at the
interpatch boundary points. Long-term stability and high accuracy in studies of scalar field
tails in Schwarzschild or Kerr spacetime were reported.

In the null-cone formalism, as in the ADM formalism, four of the ten characteristic
Einstein equations are not used in the evolution but constitute constraints. We have constructed
and validated code that evaluates the constraints, so as to have a tool to monitor the reliability
of a computational evolution. As test cases for the code, we use a class of exact solutions to the
linearized Einstein equations [28]. These solutions are written in terms of the Bondi–Sachs
metric and continuously emit gravitational radiation.

The numerical computations presented here were all performed within the Cactus
computational toolkit [29] (http://www.cactuscode.org), using the Carpet driver [30]
(http://www.carpetcode.org) to support the multiple-patch computations. The computer
algebra results were obtained using Maple.

The plan of the paper is as follows. Section 2 summarizes background material that will
be used later. Section 3 describes our implementation of the six-patch angular coordinate
system. Section 4 describes the constraint evaluation. Computational results are presented in
section 5, and are then discussed in the conclusion, section 6.

3 Unfortunately, the code remains globally second order because the time evolution and the radial finite differencing
remain second order—these derivatives are not localized in a single subroutine, so changing them would require a
major rewrite of the code.

http://www.cactuscode.org
http://www.carpetcode.org
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2. Background material

2.1. The Bondi–Sachs metric

The formalism for the numerical evolution of Einstein’s equations, in null-cone coordinates,
is well known [1, 3–6, 31]. For the sake of completeness, we give a summary of those aspects
of the formalism that will be used here. We start with coordinates based upon a family of
outgoing null hypersurfaces. We let u label these hypersurfaces, xA (A = 2, 3), label the null
rays and r be a surface area coordinate. In the resulting xα = (u, r, xA) coordinates, the metric
takes the Bondi–Sachs form [1, 2]

ds2 = −(e2β(1 + Wcr) − r2hABUAUB) du2

− 2e2β du dr − 2r2hABUB du dxA + r2hAB dxA dxB, (1)

where hABhBC = δA
C and det(hAB) = det(qAB), with qAB being a metric representing a unit

2-sphere embedded in flat Euclidean 3-space; Wc is a normalized variable used in the code,
related to the usual Bondi–Sachs variable V by V = r + Wcr

2. As discussed in more detail
below, we represent qAB by means of a complex dyad qA. Then, for an arbitrary Bondi–Sachs
metric, hAB can then be represented by its dyad component

J = hABqAqB/2, (2)

with the spherically symmetric case characterized by J = 0. We also introduce the spin-
weighted field

U = UAqA, (3)

as well as the (complex differential) eth operators � and �̄ [32].
Einstein’s equations Rαβ = 8π

(
Tαβ − 1

2gαβT
)

are classified as hypersurface equations—
R11, q

AR1A, hABRAB—forming a hierarchical set for β,U and Wc; evolution equation
qAqBRAB for J ; and constraints R0α . An evolution problem is normally formulated in
the region of spacetime between a timelike or null worldtube and future null infinity, with
(free) initial data J given on u = 0, and with boundary data for β,U,Wc, J satisfying the
constraints given on the inner worldtube.

2.2. The spin-weighted formalism and the � operator

A complex dyad is written as

qA = (r2 eiφ2 , r3 eiφ3), (4)

where rA, φA are real quantities (but in general they are not vectors). The real and imaginary
parts of qA are unit vectors that are orthogonal to each other, and qA represents the metric.
Thus

qAqA = 0, qAq̄A = 2, qAB = 1
2 (qAq̄B + q̄AqB). (5)

It is straightforward to substitute a 2-metric into equation (5) to find rA and (φ3 −φ2). Thus qA

is not unique, up to a unitary factor: if qA represents a given 2-metric, then so does q ′
A = eiαqA.

Thus, considerations of simplicity are used in deciding the precise form of dyad to represent
a particular 2-metric. For example, the dyads commonly used to represent some unit sphere
metrics, namely spherical polars and stereographic, are

ds2 = dθ2 + sin2 θ2 dφ2 : qA = (1, i sin θ);

ds2 = 4(dq2 + dp2)

(1 + q2 + p2)2
: qA = 2

1 + q2 + p2
(1, i).

(6)
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Having defined a dyad, we may construct complex quantities representing all manner of
tensorial objects, for example X1 = TAqA,X2 = T ABqAq̄B,X3 = T AB

C q̄Aq̄B q̄C . Each object
has no free indices, and has associated with it a spin weight s defined as the number of q factors
less the number of q̄ factors in its definition. For example, s(X1) = 1, s(X2) = 0, s(X3) = −3,
and, in general, s(X) = −s(X̄). We define derivative operators � and �̄ acting on a quantity
V with spin weight s

�V = qA∂AV + s�V, �̄V = q̄A∂AV − s�̄V , (7)

where the spin weights of �V and �̄V are s + 1 and s − 1, respectively, and where

� = − 1
2qAq̄B∇AqB. (8)

In the case of spherical polar coordinates, � = −cot θ , and for stereographic coordinates
� = q + ip.

The spin weights of the quantities used in the Bondi–Sachs metric are

s(Wc) = s(β) = 0, s(J ) = 2, s(J̄ ) = −2, s(U) = 1, s(Ū ) = −1. (9)

We will be using spin-weighted spherical harmonics [33, 34] using the formalism
described in [19]. It will prove convenient to use sZ	m rather than the usual sY	m (the
prefix s denotes the spin weight) as basis functions, where

sZ	m = 1√
2

[sY	m + (−1)msY	−m] for m > 0

sZ	m = i√
2

[(−1)msY	m − sY	−m] for m < 0

sZ	0 = sY	0.

(10)

Note that [19] uses the notation sR	m rather than the sZ	m used here; we use a different notation
to avoid any confusion with the Ricci tensor. In the case s = 0, the s will be omitted, i.e.
Z	m = 0Z	m. Note that the effect of the � operator acting on Z	m is

�Z	m =
√

	(	 + 1)1Z	m, �2Z	m =
√

(	 − 1)	(	 + 1)(	 + 2)2Z	m. (11)

2.3. Linearized solutions

A class of solutions, in Bondi–Sachs form, to the linearized Einstein equations in vacuum was
presented in [28], and we use these solutions to test the accuracy of the numerical evolutions
described later. More specifically, the solutions to be used are those given in section 4.3 of
[28] for the case of a dynamic spacetime on a Minkowski background. We write

J =
√

(	 − 1)	(	 + 1)(	 + 2) 2Z	m Re(J	(r) eiνu),

U =
√

	(	 + 1)1Z	m Re(U	(r) eiνu),

β = Z	m Re(β	 eiνu),

Wc = Z	m Re(Wc	(r) eiνu),

(12)

where J	(r), U	(r), β	,Wc	(r) are in general complex, and taking the real part leads to cos(νu)

and sin(νu) terms. The quantities β and Wc are real; while J and U are complex due to the
terms �2Z	m and �Z	m, representing different terms in the angular part of the metric. We
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require a solution that is well behaved at future null infinity, and is well defined for r � 2, at
which surface we set the inner boundary. We find in the case 	 = 2:

β2 = β0,

J2(r) = 24β0 + 3iνC1 − iν3C2

36
+

C1

4r
− C2

12r3
,

U2(r) = −24iνβ0 + 3ν2C1 − ν4C2

36
+

2β0

r
+

C1

2r2
+

iνC2

3r3
+

C2

4r4
,

Wc2(r) = 24iνβ0 − 3ν2C1 + ν4C2

6
+

3iνC1 − 6β0 − iν3C2

3r
− ν2C2

r2
+

iνC2

r3
+

C2

2r4
,

(13)

with the (complex) constants β0, C1 and C2 freely specifiable.
We find in the case 	 = 3:

β2 = β0,

J3(r) = 60β0 + 3iνC1 + ν4C2

180
+

C1

10r
− iνC2

6r3
− C2

4r4
,

U3(r) = −60iνβ0 + 3ν2C1 − iν5C2

180
+

2β0

r
+

C1

2r2
− 2ν2C2

3r3
+

5iνC2

4r4
+

C2

r5
,

Wc3(r) = 60iνβ0 − 3ν2C1 + iν5C2

15
+

iνC1 − 2β0 + ν4C2

3r

− i2ν3C2

r2
− 4iν2C2

r3
+

5νC2

r4
+

3C2

r5
.

(14)

The emitted gravitational radiation, that is the news N, takes a simple form in the linearized
limit when the metric satisfies equation (12):

N = Re

(
eiνu lim

r→∞

(
	(	 + 1)

4
J	 − iν

2
r2J	,r

)
+ eiνuβ	

) √
(	 − 1)	(	 + 1)(	 + 2)2Z	m. (15)

For the cases 	 = 2 and 3,

	 = 2 : N = Re

(
iν3C2√

24
eiνu

)
2Z2m; 	 = 3 : N = Re

(−ν4C2√
30

eiνu

)
2Z3m. (16)

2.4. Six-patch angular coordinates

Given Cartesian coordinates (x, y, z), we define ‘inflated-cube’ angular coordinates on each
2-sphere of constant u and r,

µ ≡ rotation angle about the x axis = arctan(y/z)

ν ≡ rotation angle about the y axis = arctan(x/z)

φ ≡ rotation angle about the z axis = arctan(y/x),

(17)

where all the arctangents are 4-quadrant based on the signs of x, y and z. We then introduce
six coordinate patches covering neighbourhoods of the ±z,±x and ±y axes, with the angular
coordinates xA ≡ (ρ, σ ) in each patch defined as follows (see note4):

(ρ, σ ) ≡



(ν, µ) in ±z patches
(ν, φ) in ±x patches
(µ, φ) in ±y patches.

(18)

4 This definition differs from that of [20] only by the interchange of ρ and σ in ±z patches. The present definition
has the advantage of having a consistent parity, with �ρ × �σ always pointing {outwards, inwards} in {+, −} patches.



S332 C Reisswig et al

Figure 1. These figures show stereographic (left) and six-patch mapping (right) covering S2.
Large distortions in the overlap region of the stereographic mapping may cause inaccuracies.
Furthermore, 2D interpolation is necessary. Six patches on the other hand reduce the distortions
and only 1D interpolation is necessary.

Note that each patch’s xA coordinates are nonsingular throughout a neighbourhood of
the patch, and that the union of all the patches covers S2 without coordinate singularities.
The name ‘inflated cube’ comes from another way to visualize these patches and coordinates:
imagine an xyz cube with xyz grid lines painted on its faces. Now imagine the cube to be
flexible, and inflate it like a balloon, so it becomes spherical in shape. The resulting coordinate
lines will closely resemble those for (µ, ν, φ) coordinates.

We introduce ghost zones in the usual manner along the angular boundaries of each patch,
and we refer to the non-ghost-zone part of each patch’s numerical grid as the ‘nominal’ grid.
We size the patches so they overlap slightly, with each ghost-zone grid point lying in the
nominal grid of some other patch. Figure 1 shows an example of a six-patch system of this
type.

We couple the patches together by interpolating the field variables from neighbouring
patches to each ghost-zone grid point. Note that with the definition (18), the angular coordinate
xA perpendicular to an interpatch boundary is always common to both the adjacent patches.
This means that the interpatch interpolation need only be done in one dimension, parallel to
the interpatch boundary.

Each patch uses its own xA ≡ (ρ, σ ) dyad for the spin-weighted quantities; when
interpolating data from one patch to another we transform the data (after interpolation) as
described in section 3.1.

3. Implementation of six-patch angular coordinates

3.1. Spin-weighted formalism

The unit sphere metric qAB in each patch is written as

ds2 = (1 − sin2 ρ sin2 σ)−2
(

cos2 σ dρ2 + cos2 ρ dσ 2 − 1
2 sin(2ρ) sin(2σ) dρ dσ

)
, (19)

with respect to coordinates (ρ, σ ) with range (−π/4, +π/4) × (−π/4, +π/4). A (simple)
dyad representing equation (19) is

qA =
(

(θc + iθs) cos σ

4θ2
c θ2

s

,
(θc − iθs) cos ρ

4θ2
c θ2

s

)
, qA =

(
2θcθs

θs + iθc

cos σ
, 2θcθs

θs − iθc

cos ρ

)
, (20)

where

θc =
√

1 − sin ρ sin σ

2
, θs =

√
1 + sin ρ sin σ

2
. (21)
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The factor �, defined in equation (8) and needed for the evaluation of �, works out to be

� = cos2 ρ cos2 σ(sin ρ + sin σ) + (cos2 ρ − cos2 σ)(sin σ − sin ρ)

4θc cos σ cos ρ

+ i
cos2 ρ cos2 σ(sin ρ − sin σ) + (cos2 σ − cos2 ρ)(sin ρ + sin σ)

4θs cos σ cos ρ
. (22)

In addition, we need to specify how spin-weighted quantities transform at interpatch
boundaries. Suppose that we have two patches ‘old’ and ‘new’, with quantities in the two
patches being denoted by means of suffixes (O) and (N), respectively. Define the Jacobian JA

B

from the old patch to the new patch

JA
B = ∂xA

(N)

∂xB
(O)

. (23)

Then the dyad qA
(O) has components in the new coordinates

qA
(O)[N] = qB

(O)J
A
B , (24)

where the notation is that the (O) indicates that we are referring to the dyad that generates the
metric in the old patch, and the [N] indicates that the components are given with respect to the
new coordinates. Any two complex dyads are related by means of a rotation exp(iγ ). Writing

qA
(N) = exp(iγ )qA

(O)[N], (25)

and applying equation (5), it follows that

exp(iγ ) = 2

qAB(N)q̄
A
(N)q

B
(O)[N]

, (26)

and then a spin-weighted quantity V with spin weight s transforms between the two patches
as

V(N) = exp(isγ )V(O). (27)

There are many different cases for the transformation between the patches, and we give the
transformation and Jacobian explicitly in only one case, when the interpatch boundary is at

ρ(O) = π

4
, ρ(N) = −π

4
, σ(O) = σ(N). (28)

Then the coordinate transformation is

ρ(N) = arctan

(
− 1

tan ρ(O)

)
, σ(N) = arctan

(
tan σ(O)

tan ρ(O)

)
, (29)

and the Jacobian evaluates to

∂ρ(N)

∂ρ(O)

= 1,
∂ρ(N)

∂σ(O)

= 0, (30)

∂σ(N)

∂ρ(O)

= − cos σ sin σ

cos2 σ sin2 ρ + cos2 ρ sin2 σ
,

∂σ(N)

∂σ(O)

= cos ρ sin ρ

cos2 σ sin2 ρ + cos2 ρ sin2 σ
. (31)
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3.2. Computational implementation

The existing stereographic code has been extended to the six-patch coordinate system. Since
the formulation of the equations in terms of spin-weighted quantities is independent of
angular coordinate bases but dyad dependent, it is necessary to reimplement only those objects
that depend on the six-patch dyad. We have therefore provided a numerical implementation
of the new �-operators in the code. In addition, we have adapted the spin-transformation
coefficients to the six patches. In order to test the six-patch code against the linearized
solutions, the spin-weighted spherical harmonics sZ	m needed to be implemented for the
six-patch coordinates and dyad.

The �-operators are implemented via subroutines D1(s, e) and D2(s, e1, e2), which
calculate � or �̄ and the second derivative as the combinations ��, ��̄, �̄� and �̄�̄. The
parameter s specifies the spin s of the quantity to which the operator is applied, and
e1, e2 ∈ {−1, 1} denote � and �̄.

The derivative operators ∂2
ρ, ∂2

σ , ∂ρ∂σ , ∂ρ and ∂σ have been approximated by second- and
fourth-order accurate centred finite difference stencils [35]. The six-patch code uses either
cubic or quintic Lagrange polynomial interpolation between the patches, correspondingly.
After the interpolation, we apply the transformation law (27) to transform quantities of spin
weight s 	= 0 to the current patch’s coordinates and dyad.

It turns out that we need a total number of 12 different spin-transformation coefficients,
since we have a P±-symmetry between the total number of 24 ghost zones across all P+i and
P−i , i = x, y, z patches. These coefficients are calculated and stored for repeated use in an
initial routine. After each radial step during the integration of the characteristic equations,
the ghost zones are synchronized by the multipatch infrastructure, and afterwards, the code
multiplies the appropriate spin-transformation coefficients with the synchronized values of the
ghost zones.

We have carried out checks of the angular grid including the D1- and D2-operators and the
spin-transformation coefficients, and we have found out that the code converges with second-
and fourth-order accuracy, respectively.

The spin-weighted spherical harmonics have been implemented by using the spherical
harmonics in terms of the stereographic coordinate ζ = p + iq and by applying the pseudo-
numerical operators D1 and D2 in order to obtain sZ	m for |s| > 0. (By ‘pseudo-numerical’,
we mean that we apply the fourth-order D1 and D2 operators with a very small delta spacing
such that we reach machine precision, since we know the Z	m everywhere and are not bound
to the numerical grid.) In order to use the stereographic routines for the Z	m, we have
transformed the stereographic coordinate ζ to the six-patch coordinates and depending on the
hemisphere, we use the stereographic routines for north or south patch, respectively.

Furthermore, we have implemented an algorithm for calculating the linearized news
function (equation (15)), in the form

N = lim
r→∞

(
	(	 + 1)

4
J − 1

2
r2J,ur + �2β

)
. (32)

4. The constraint equations

If the boundary data satisfy the constraints R0α = 0 (here we restrict attention to the vacuum
case), and provided the hypersurface and evolution equations are satisfied, the Bianchi
identities guarantee that the constraints are satisfied throughout the domain [1, 2]. Thus
from an analytic viewpoint, evaluation of the constraints is redundant, but in a numerical



Characteristic evolutions in numerical relativity using six angular patches S335

simulation their evaluation may provide useful information concerning the reliability of the
computation.

We have written the code that uses the Bondi–Sachs metric variables and derivatives to
evaluate R00, R01 and qAR0A. The expressions for these quantities are very long and are
not reproduced here; instead, they are available online as a multimedia supplement to this
paper (available at stacks.iop.org/CQG/24/S327). The Fortran code for the expressions was
generated directly from the computer algebra (Maple) output.

5. Testing the code

In this section we first specify the linearized solutions against which the code will be tested,
as well as the various parameters that describe a numerical solution and its output. Then
we present the results of testing the comparative performance of the second-order six patch,
fourth-order six patch and stereographic codes.

We refer to the linearized solutions summarized in section 2.3. In all cases we take
ν = 1 and m = 0. We present results for the cases 	 = 2 and 	 = 3 with

C1 = 3 × 10−6, C2 = 10−6, β0 = i × 10−6 (	 = 2) (33)

C1 = 3 × 10−6, C2 = i × 10−6, β0 = i × 10−6 (	 = 3) (34)

in equation (13) in the case 	 = 2, and in equation (14) in the case 	 = 3.
All the numerical simulations use a compactified radial coordinate x = r/(rwt + r) with

rwt = 9. Data are prescribed at time u = 0 as well as at the inner boundary r = 2 (which is
equivalent to x = 0.1888). The stereographic grids (with ghost zones excluded) are

coarse: nx = nq = np = 41, fine: nx = nq = np = 81, (35)

and there is no overlap between the two patches, i.e. we set the code parameter qsize = 1
which means that on the nominal grid, the holomorphic coordinate function ζ = q + ip takes
values in q, p ∈ [−1, 1]. The six-patch grids are such that, over the whole sphere, the total
number of angular cells is equivalent. We take

coarse: nx = 41, nσ = nρ = 24, fine: nx = 81, nσ = nρ = 47. (36)

Six-patch results are reported for both second-order and fourth-order differencing of the
angular derivatives. In all cases, the fine grid has �u = 0.0125 and the coarse grid has
�u = 0.025. Runs are performed for two complete periods, i.e. starting at u = 0 and ending
at u = 4π . Results are reported for the errors of the quantities shown using the L2 (root-
mean-square) norm, evaluated at the time shown, averaged over all non-ghost grid-points over
the whole sphere and between the inner boundary and future null infinity. The norm of the
error in the news is averaged over the whole sphere at future null infinity.

Given a quantity �, the error ε and the associated convergence factor C are defined as

ε = ‖�numeric − �analytic‖, C = εcoarse

εfine
. (37)

Thus [36], C = 2 corresponds to first-order, and C = 4 to second-order convergence. As
discussed in the introduction, we expect the code to exhibit second-order convergence (C = 4)

in the limit of infinite resolution, even when using fourth-order accurate angular derivatives.
Figure 2 shows the error norms ε(t) for the metric quantity J , and for the Bondi news

N, plotted against time in the case 	 = 2. Each panel of the figure plots ε(t) for the three
schemes stereographic, six-patch second order, and six-patch fourth order; and in each case,
we plot 4 · ε(t)/4 at fine resolution (points), and ε(t) at coarse resolution (solid line), so that

http://stacks.iop.org/CQG/24/S327
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Table 1. This table shows the error norm ε for the low resolution runs, and the convergence factor
C, both averaged over space and time, for each version of the code and for each of five diagnostic
quantities: the metric variable J , the news function N, and the constraints R00, R01 and R0A.

� = 2 test data
Quantity Stereographic Six-patch, second order Six-patch, fourth order

C(J ) 3.8456 3.8286 3.9112
ε(J ) 3.3039 × 10−9 1.5491 × 10−9 6.9157 × 10−11

C(N) 3.3119 3.9642 3.5528
ε(N) 2.2785 × 10−8 1.0913 × 10−8 8.4414 × 10−10

C(R00) 1.2487 1.5000 2.0319
ε(R00) 3.1942 × 10−9 2.8779 × 10−9 5.7668 × 10−10

C(R01) 3.5560 3.5936 3.1296
ε(R01) 3.9214 × 10−11 1.6988 × 10−11 2.7331 × 10−12

C(R0A) 3.4285 1.7558 2.0043
ε(R0A) 5.2549 × 10−9 6.6397 × 10−9 2.1543 × 10−9

� = 3 test data
C(J ) 3.9783 3.9106 4.0777
ε(J ) 4.6461 × 10−9 3.2784 × 10−9 1.3677 × 10−10

C(N) 2.1201 3.9134 3.6262
ε(N) 4.9174 × 10−8 2.8182 × 10−8 1.7996 × 10−9

C(R00) 1.2743 1.7963 2.0330
ε(R00) 7.2594 × 10−9 4.5824 × 10−9 1.1744 × 10−9

C(R01) 3.5144 3.5383 3.3824
ε(R01) 1.3262 × 10−10 7.5501 × 10−11 6.0924 × 10−12

C(R0A) 3.4326 1.9510 2.0156
ε(R0A) 9.0299 × 10−9 1.0076 × 10−8 2.9654 × 10−9

for second-order convergence the points and solid line coincide. Table 1 gives the error norm
ε (coarse resolution) and the convergence rate C, in both cases averaged over the whole run,
for the quantities indicated.

It is clear that all schemes give (approximate) second-order convergence of the metric
quantity J . However, the news and the constraints (all of which contain second derivatives
of metric quantities) exhibited, in some cases, degradation of the order of convergence.
Referring to the plot of the news N in figure 2, we see that the six-patch schemes were
approximately second-order convergent throughout the run, but that the stereographic scheme
exhibited convergence degradation that is periodic in time (Although not shown in the figure,
the convergence rate is at all times better than first order). The analytic solution has period
2π , and it is interesting that degradation peaks when the analytic solution is zero. We should
also mention that this type of behaviour has shown up in previous performed runs of the
stereographic code and may be related to high-frequency error modes coming from angular
patch interfaces or corners.

The convergence rates of the constraints appear problematic. However, the fact that the
convergence rates of R0A (stereographic case) and of R01 (all cases) are nearly second order
is important. This implies that the problem is not due either to (a) a simple mis-coding of
the finite difference representation of derivatives, or to (b) the expressions generated by the
computer algebra. This issue will require further investigation in order to be able to use
constraint violation as a reliable indicator of code accuracy.

The comparative behaviour of the error norm is particularly interesting. On average, the
error norm of second-order six patch was smaller than that of stereographic by a factor of
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Figure 2. This figure shows an example of the convergence and accuracy of the various versions
of the code. Part (a) shows results for the metric variable J , while part (b) shows results for the
news function N; the same key applies to both parts. In all cases, the solid line shows the coarse
resolution results, while the points show the fine resolution results multiplied by 4.

order 2 (although there were cases in which the error was slightly larger). However, the
fourth-order six-patch scheme exhibited a dramatic reduction in the error norm, by a factor of
up to 47 compared to that of the stereographic case.

Although we used the full nonlinear version of the code, we were not able to test nonlinear
effects because the analytic solution against which we measure the error is valid only in a
linearized regime. Even so, it is expected that the improvement in accuracy associated with
the six-patch fourth-order scheme, carries over to the nonlinear regime.

The PITT null code in the stereographic version is also capable of evolving non-vacuum
spacetimes. Here, we have implemented and tested the six-patch code only for the case of
vacuum. Since the ghost-zone scheme used in the six-patch system is known to be able
to handle hydrodynamical shocks [37], we expect no problems in extending this method to
non-vacuum spacetimes.

6. Conclusion

We have implemented a version of the characteristic numerical relativity code that
coordinatises the sphere by means of six angular patches. Further, the six-patch code has been
implemented for both second-order and fourth-order accurate finite differencing of angular
derivatives. We compared the errors and rates of convergence in the various versions of the
code, using exact solutions of the linearized Einstein equations as a testbed. This was done
for the cases 	 = 2 and 	 = 3, and with several different indicators. In general, the error norm
of second-order six patch was smaller than that of stereographic; and the error norm of the
fourth-order six-patch scheme was much smaller, by a factor of up to 47, compared to that of
the stereographic case.

Thus, we expect the six-patch characteristic code, in particular the version that uses
fourth-order accurate angular finite differencing, to give significantly better performance than
the stereographic version.
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