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We present a novel way to characterize the structure of complex networks by studying the statisti-
cal properties of the trajectories of random walks over them. We consider time series corresponding
to different properties of the nodes visited by the walkers. We show that the analysis of the fluctu-
ations of these time series allows to define a set of characteristic exponents which capture the local
and global organization of a network. This approach provides a way of solving two classical prob-
lems in network science, namely the systematic classification of networks, and the identification of
the salient properties of growing networks. The results contribute to the construction of a unifying
framework for the investigation of the structure and dynamics of complex systems.

PACS numbers: 89.75.Hc, 05.45.-a, 05.45.Tp

Networks are the fabric of complex systems, and net-
work science has provided a deeper understanding of the
basic mechanisms underlying the functioning and the
evolution of diverse biological, technological and social
systems, from the human brain to the Internet [1–6].
Recently, networks have been successfully employed for
the study of dynamical systems. The basic idea consists
into transforming a time series into a graph, by means
of state-space proximity and recurrence [7–9], transition
probabilities [10, 11] or visibility relationships [12], and
then inferring information about the time series from
the analysis of the corresponding network. These stud-
ies have revealed the existence of intimate connections
between the statistical properties of a time series and
the topology of the network constructed from it [13–16].
However, apart from a few exceptions [11, 17–19], lit-
tle attention has been devoted to the dual problem, i.e.
studying the structure of complex networks by analyzing

time series associated to them.

In this Letter we aim at bridging this gap, by showing
that a standard analysis of the statistical properties of
time series constructed from random walks on graphs al-
lows to characterize the topology of complex networks. In
particular, the study of fluctuations in time series corre-
sponding to different node properties, such as the degree,
the average degree of nearest neighbours and the cluster-
ing coefficient, can reveal the existence of local and global
correlations in the underlying graph. In this way it is pos-
sible to associate to each network a set of characteristic
exponents which describe the scaling of fluctuations of
each node property and capture the intrinsic complex-
ity of a graph in a concise way. We show that these
exponents can be employed to check the stability of the
structure of growing networks and also allow to construct
a taxonomy of networks, thus providing a quantitative,
effective way of discriminating social from biological and
technological systems by looking only at their structural
properties.

I. MODEL

Let G(V,E) be a connected undirected graph consist-
ing of N = |V | nodes and K = |E| edges, and denote
by A = {aij} the adjacency matrix of G, whose entry
aij = 1 if there is an edge between node i and node
j, while aij = 0 otherwise. Let us consider a random
walk on G described by a time-invariant transition ma-
trix Π ≡ {πji}. At each time step, a walker moves
from the current node i to node j with a probability πji.
The probabilities πji satisfy the normalization condition∑

j πji = 1 ∀i.

According to this definition, a walk on G corresponds
to a discrete time-invariant Markov chain defined by the
transition matrix Π on the state space V . Let us now
consider an instance W of the walk defined by Π on G,
and a real-valued property of node i, Hi. If we indi-
cate as (i0, i1, i2, . . .) the sequence of nodes visited by W ,
we can construct the time series (Hi0 ,Hi1 ,Hi2 , . . .). For
instance, if Hi ≡ ki =

∑
j aij , we get the time series

(ki0 , ki1 , ki2 , . . .) of the degrees of the visited nodes.

We denote such time series as T (W,H), because it de-
pends on the node property H, and on the specific or-
der in which the nodes are visited by the walk. How-
ever, if the walk defined by the transition matrix Π on
G is irreducible, then the topology of G completely de-
termines which sequences of values can be produced by
the walk and with which frequency [20]. Hence, any two
time series T ′(W ′,H) and T ′′(W ′′,H) constructed from
two walkers W ′ and W ′′ on G corresponding to the same
walk rule Π and the same node property H will have, for
t → ∞, the same statistical properties, and will carry
the same information about the structure of G. We can
therefore indicate any time series produced by a transi-
tion matrix Π and by node property H as T (Π,H). We
will now show that the analysis of the time series pro-
duced by different node properties H can provide useful
insights on the microscopic structure of a complex net-
work and about its overall organization. We focus on the
case of classical random walks, i.e. we set πji = aij/ki.

http://arxiv.org/abs/1306.3808v2


2

1 2 3 4 5
log(ε)

0

1

2

3

4

5

6

lo
g(

F)

ER
SF
Internet
SCN

1 10
τ

-0.2

0

0.2

0.4

0.6

ac
f(

τ)

0.0001 0.01
f

10
0

10
4

N
(f

)

(a)

(b)

(c)

FIG. 1. (a) Autocorrelation function and (b) power spectrum
of the time series constructed from the degree of nodes visited
by random walks on an Erdös-Renyi random graph (ER), a
scale-free graph with γ = 3.0 (SF), the Internet at the level
of Autonomous Systems (Internet) and the collaboration net-
work of scientists in condensed matter (SCN). Panel (c): the
DFA of the time series reveals two distinct scaling regimes in
the Internet and in SCN, while the fluctuations in ER and SF
networks are compatible with Gaussian noise. The plots in (b)
and (c) have been vertically displaced to improve readability.

Notice that with this rule the walkers visit each edge of a
connected graph G with uniform probability, so that the
time series constructed from random walks on G con-
tain information about the distribution and correlations
of the chosen node property H throughout the network.
We consider three possible choices of H, namely the node
degree, Hi ≡ ki, the average degree of first neighbours
of a node, Hi ≡ knni = k−1

i

∑
j aijkj , and the node clus-

tering coefficient, Hi ≡ Ci, where Ci is the number of
closed triads centered on i divided by the total possible
number ki(ki − 1)/2 of such triads. We decided to focus
on these three node properties because broad-tailed de-
gree distributions (P (k) ∼ k−γ , 2 < γ < 3), the presence
of non-trivial degree correlations (knn(i) ∼ kνi ) and the
abundance of triangles (〈Ci〉 ≫ 0) are the basic features
of most complex networks [2–4].

II. RESULTS

In fig. 1(a) and 1(b) we respectively report the auto-
correlation function (ACF) and the power spectrum (PS)
of the degree-based time series (Hi = ki) obtained in an
Erdös-Renyi random graph (ER), a scale-free graph (SF)
constructed by the configuration model [6], and two real-
world complex networks, namely the Internet at the level
of Autonomous Systems (Internet) [21] and the network
of co-authorship in condensed matter (SCN) [22]. As ex-
pected, the ACF of ER and SF decays pretty fast and the
corresponding PS is almost flat, indicating the absence
of degree correlations. Conversely, the degree-based time
series obtained from real-world networks exhibit broad

tails both in the ACF and the in the PS, a clear indi-
cation of the presence of long-range degree correlations.
The peaks at even values of τ in the ACF of Internet
are due to the presence of disassortative degree correla-
tions [23]. An iterative surrogate analysis [24] has also
confirmed that these time series are highly non-linear. A
non-parametric statistical test [25], not depending on de-
lay embedding reconstruction, suggested that such time
series are non-linear or non-stationary with high confi-
dence level.

In the following we report the results of the multi-
fractal Detrended Fluctuation Analysis (DFA) [26], a
standard non-linear analysis technique which allows to
detect the presence of long-range correlations and to
quantify the self-affinity of a time series, even if gen-
erated by a non-stationary process. Given a time se-
ries (Hi0 ,Hi1 ,Hi2 , . . .) we consider ℓ time-windows of
length ε; then, we remove the local linear trend in
each time-window to obtain the detrended time series
(Hi0 ,Hi1 ,Hi2 , . . .) and we compute the local variance
σ2(ℓ, ε) of the detrended fluctuations. We evaluate the
structure function F (ε) by averaging σ2(ℓ, ε) over all
time-windows whose length is equal to ε, and we plot
F (ε) as a function of ε. The procedure can be general-
ized to build a set of structure functions depending on
a parameter q [27–29], but here we focus on q = 2, al-
lowing a physical interpretation of the results in term of
diffusivity.

If the graph G is H-uncorrelated, i.e. if the probability
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FIG. 2. DFA of different node properties. We considered time
series produced by ki , k

nn
i and Ci, and six networks, namely

the US airports network [31], the co-authorship network from
papers published in Physical Review E, the budding yeast
protein interaction network [32], the US power grid [33], a
citation network in high-energy physics [34] and the World
Wide Web [35]. The plots have been vertically displaced to
enhance readability. We observe two scaling regimes, with
the actual values of the two characteristic exponents ν1 and
ν2 varying across different networks. The dashed blue line in
each panel is the DFA of the time series of the correspond-
ing randomized networks (F (ε) ∼ ε1/2), averaged over 1000
realizations.
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FIG. 3. (a) The dendrogram represents the hierarchical clustering of 39 real-world networks obtained by using the characteristic
exponents, ν1 and ν2, of the three time series (respectively based on ki, k

nn
i and Ci). Notice the presence of well-defined, mean-

ingful clusters of networks, namely collaboration and trust networks (green), spatially-embedded networks (blue), information
networks (bright cyan), biological and online social networks (dark cyan), technological infrastructure networks (purple), and
air transportation networks (yellow). (b) For comparison, we show the results of hierarchical clustering based on the mean and
standard deviations of ki, k

nn
i and Ci, in which the clusters always contain networks of different nature.

to find the edge (i, j) connecting node i to node j does not
depend on the values Hi and Hj , then the fluctuations
of the corresponding time series T (Π,H) obtained from
a random walk on G will be indistinguishable from an
uncorrelated Gaussian noise, for which we have F (ε) ∼
ε1/2. Conversely, a scaling behaviour F (ε) ∼ εα with
α 6= 1/2 is a clear signal of the existence ofH-correlations
in the original graph G, and the value of α is a proxy for
the magnitude of such correlations.

In fig. 1(c) we report the results of the DFA of Hi ≡ ki
for the same four networks considered in panel (a) and
(b). As expected, degree fluctuations in ER and SF are
compatible with Gaussian noise (F (ε) ∼ ε1/2), since the
node degrees in these networks are uncorrelated. Con-
versely, F (ε) plots corresponding to time series generated
by walkers on the Internet and on the SCN appreciably
deviate from Gaussian noise and are characterized by two
different regimes [23]. In the first regime, corresponding
to small values of ε, both time series are super-diffusive,
i.e. F (ε) ∼ εν1 with ν1 > 1/2 (ν1 ≃ 0.75 for Inter-
net and ν1 ≃ 0.80 for SCN), while for large values of
ε their behaviour is almost Gaussian (F (ε) ∼ εν2 with
ν2 ≃ 0.51 for Internet and ν2 ≃ 0.52 for SCN). In fig. 2
we report the results of the DFA of time series generated
by Hi = ki, Hi = knni and Hi = Ci in six real-world
networks of different nature [30]. The same two-regime
behavior shown in fig. 1 for degree-based time series, is
also found for the time series generated by knni and Ci.
The two scaling regimes are a signature that the networks
look different, with respect to degree, degree correlations
and clustering, when observed at a local or at a global
scale. On the one hand, the super-diffusive behaviour
observed for small values of ε (F (ε) ∼ εν1) indicates that

a walker which explores the network for relatively short
time intervals will observe correlated fluctuations in the
properties of the nodes it visits, a clear signal of the pres-
ence of H-correlations. On the other hand, the almost-
Gaussian behaviour corresponding to large values of ε
(F (ε) ∼ εν2) suggests that at a larger scale (i.e., if the
walk continues for a sufficiently long time), the network
appears uncorrelated. The transition point εc that sepa-
rates the two regimes corresponds to the typical scale of
H–correlations, i.e. the typical walk length above which
local heterogeneities and correlations in the values of H
become less important and all the walks on the network
can be considered a homogeneous representation of the
typical H-fluctuations of the graph. We notice that in
some cases the exponent ν2 can be substantially larger
than 0.5, like in the case of the US power grid [33], for
which we have ν2 > 0.65 for all the three time series.
In this particular case, the super-diffusive behavior for
large values of ε is due to the fact that the network is
embedded in a 2D space and has a strongly self-similar
structure [36].

Although the presence of two scaling regimes seems to
be a ubiquitous feature of different real-world networks,
independently of their origin and nature, fig. 2 indicates
that the actual values of the two exponents ν1 and ν2
may vary a lot for different node properties of the same
network and, more importantly, for the same node prop-
erty across different networks. In the following we show
that these scaling exponents capture some key properties
of a graph and can be employed to construct a taxonomy
of networks [37, 38].

We considered a data set of 39 medium-to-large sized
(N ∼ 104 to N ∼ 106) real-world networks representing



4

different social, biological and technological systems. We
assigned to each graph G a point p(G) ∈ R

6 identified by
the values of the six scaling exponents obtained from the
DFA of time series of degree, clustering coefficient and
average degree of first neighbours. Then, we performed
a hierarchical clustering on the resulting set of points,
subsequently merging together at each step the two clus-
ters whose points were separated by the smallest distance
in R

6. In fig. 3(a) we report the resulting dendrogram,
where the six large clusters identified (highlighted with
different colors) correspond to networks with different
functions. From left to right: the green cluster contains
all the co-authorship ([22, 39]), trust (PGP [40]) and
collaboration networks (IMDb co-starring network [33]);
the blue cluster includes spatial networks (US power
grid [33] and the Pennsylvania road network [35]); the
bright-cyan cluster contains information networks, such
as the WWW [35], citation networks [34], and email
communication networks [35, 41]; the dark-cyan clus-
ter includes online social networks [35, 42, 43] and pro-
teomes [33, 44]; the purple cluster contains technologi-
cal networks, including snapshot of the Internet sampled
at different times by different institutions [21, 45, 46]
and the Gnutella peer-to-peer file-sharing network [47].
Finally, the networks of US airports at two different
times [31] are put together in the yellow cluster. The ac-
curacy of characteristic exponents in classifying networks
of different nature is quite remarkable [30], and becomes
evident by comparing the results of fig. 3(a) with those
of hierarchical clustering based on the mean and stan-
dard deviations of ki, k

nn
i and Ci, reported in fig. 3(b).

While in the former case clusters represent homogeneous
groups of networks, in the latter case each cluster always
contains networks of different nature.

The results shown in fig. 2 and fig. 3 suggest that the
scaling exponents of the time series produced by random
walkers visiting a complex network are indeed a key fea-
ture to characterize the network. Hence, we name them
characteristic exponents of the network (Table I reports
the characteristic exponents of all the complex networks
considered in this study).

It is also interesting to investigate how the character-
istic exponents of growing graphs change over time. In
fig. 4(a) and 4(b) we show the temporal evolution of the
characteristic exponents of ki, k

nn
i and Ci respectively

for the collaboration network of authors in APS Physical
Review E (PRE) and for the Internet. Both networks
have grown by a factor ∼ 9 in the considered time inter-
vals. However, while in PRE the characteristic exponent
ν1 for ki and knni exhibits a clear decrease over time, the
characteristic exponents of the Internet have remained
constant in the considered 10-years interval. The differ-
ent temporal behaviour of the characteristic exponents
is probably due to the peculiar dynamics of edge forma-
tion in the two networks. In fact, in a co-authorship
network a node continues to accumulate edges over time,
even if the majority of these edges correspond to col-
laborations which are not active any more. Evidently,
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FIG. 4. (color online) Characteristic exponents of (a) a co-
authorship network from Physical Review E (PRE) and (b)
the Internet at the level of Autonomous Systems, over a pe-
riod of ten years. In PRE the characteristic exponents for
ki and knn

i decrease over time, while the exponents for Ci

remain constant. In the Internet, all the characteristic expo-
nents are constant. Panel (c) and panel (d) report the detail
of the DFA for degree time series, respectively for PRE and
Internet. The plots have been vertically displaced to enhance
readability, with the topmost curve corresponding to the most
recent network.

the continuous addition of edges drives the network to-
wards a homogenization of degree and clustering corre-
lations. Conversely, the number of neighbours of a node
in the Internet cannot increase indefinitely, due to tech-
nological and economical constraints. In fact, connect-
ing to more peers usually implies handling more Internet
traffic, which in turn requires more bandwidth and new
hardware, and translates into an economical investment.
These constraints are mostly independent from network
size, thus having the same impact on the network growth
at different times. This might explain why the structure
of correlations has remained stable over time.
Finally, we check whether the position εc of the cut-off

of the structure function does depend on the size of the
graph, and to which extent. To this aim, we show in fig. 5
the approximate value of εc for the PRE and Internet net-
works, as a function of time. Notice that as the networks
grow the corresponding values of εc change slightly for all
the time-series, but we observe opposite trends in the two
cases. In particular, εc usually decreases for PRE and in-
creases in Internet. This means that εc is not simply de-
termined by the size of the network (otherwise we should
have observed a similar behaviour in both networks), but
is instead intimately related to the local organization of
the graph.
It is also worth noticing that, despite the presence of

these trends, εc usually remains of the same order while
both networks have grown by an order of magnitude in
the considered time intervals. For instance, in the time-
series of degrees of PRE [see fig. 5(a)] εc remains in the
range [1250 : 1750], while for the time-series of knni it is in
the range [300 : 600]. If we take into account the fact that
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FIG. 5. (color online) The value εc at which the scaling of
the structure function F (ε) changes, respectively for (a) PRE
and (b) Internet, as a function of time. Despite εc can slightly
increase or decrease over time, its value remains of the same
order of magnitude and corresponds, in both cases, to the
visit of just a few hundred nodes.

a random walk on any of the snapshots of the PRE col-
laboration network typically requires O(106) time-steps
in order to visit all the nodes at least once, and that
this network has strong communities and a high value of
clustering coefficient (and both these factors contribute
to keep a walker confined on a small set of nodes), then
we realise that εc ∼ 103 corresponds indeed to the ex-
ploration of a relatively small region of the graph, which
usually includes no more than a few hundred nodes. Sim-
ilarly, in the Internet network [fig. 5(b)] εc is in the in-
terval [350 : 500] for ki and in [450 : 700] for knni and
Ci, which again correspond to visiting a relatively small
portion of the graph. These results suggest that the val-
ues of the cut-off in the scaling of the structure functions
tend to remain practically stable over time, even when
the network undergoes substantial expansion.

Summing up, in this work we reported on the discov-
ery of an intimate connection between the structure of
a network, the properties of time-series extracted from
it, and the capability of such time-series to carry useful
information about the overall organization of the net-
work. We have shown that the characteristic exponents
corresponding to degree, node clustering coefficient and
average degree of first neighbours can be used to cluster
networks, and to distinguish social, collaboration, bio-
logical, information, transportation and spatial networks
only by looking at their structure. The procedure de-
scribed in this work is quite general, and can be used
to extract characteristic exponents corresponding to any
desired node or link property, thus allowing for a finer
and more accurate classification of complex networks.

Network ν1 ν2
ki knn

i Ci ki knn
i Ci

ca-DBLP 0.838 1.092 0.769 0.519 0.523 0.516
ca-SCN 0.803 1.044 0.757 0.518 0.554 0.524
ca-Cond 0.726 1.032 0.748 0.509 0.564 0.523
ca-Astro 0.739 1.119 0.810 0.526 0.588 0.527
coll-actors 0.789 1.211 0.763 0.506 0.554 0.516
ca-ASTRO 0.838 1.215 0.780 0.531 0.606 0.506
ca-HepTh 0.811 1.034 0.831 0.535 0.601 0.615
trust-pgp 0.853 1.035 0.901 0.515 0.552 0.547
ca-PRE 0.953 1.188 0.799 0.522 0.556 0.520
ca-HepPh 0.993 1.220 0.860 0.549 0.585 0.554
ca-GrQc 1.006 1.254 0.924 0.610 0.672 0.596
spatial-roads 0.808 0.833 0.839 0.602 0.607 0.740
spatial-USPower 0.863 0.964 0.890 0.656 0.752 0.685
www-Google 0.695 0.874 0.802 0.510 0.512 0.543
www-Stanford 0.760 0.854 0.850 0.542 0.528 0.548
email-urv 0.662 0.876 0.743 0.501 0.526 0.514
email-Enron 0.681 0.813 0.735 0.511 0.516 0.522
cit-HepPh 0.629 0.871 0.696 0.506 0.524 0.518
cit-HepTh 0.593 0.847 0.700 0.515 0.518 0.521
soc-amazon 0.582 0.708 0.865 0.516 0.547 0.525
bio-sac 0.648 0.668 0.858 0.508 0.504 0.531
soc-Slashdot 0.604 0.747 0.757 0.493 0.511 0.512
soc-Epinions 0.596 0.713 0.757 0.514 0.509 0.519
soc-gowalla 0.630 0.688 0.782 0.502 0.523 0.528
soc-Brightkite 0.639 0.801 0.828 0.509 0.536 0.526
bio-yeast 0.663 0.758 0.837 0.504 0.513 0.530
tech-caida07 0.748 0.776 0.636 0.506 0.507 0.506
tech-AS00 0.738 0.770 0.647 0.509 0.505 0.508
tech-AS01 0.752 0.783 0.660 0.509 0.501 0.504
tech-Oregon01 0.748 0.781 0.655 0.503 0.510 0.502
tech-caida06 0.769 0.794 0.640 0.512 0.507 0.507
tech-caida05 0.773 0.794 0.639 0.516 0.501 0.499
tech-caida04 0.772 0.792 0.652 0.507 0.502 0.510
tech-AS99 0.732 0.761 0.638 0.502 0.510 0.517
tech-AS97 0.736 0.752 0.639 0.503 0.509 0.512
tech-AS98 0.732 0.751 0.629 0.510 0.506 0.524
tech-Gnutella 0.640 0.714 0.642 0.501 0.505 0.502
tr-airports01 0.770 0.926 0.516 0.518 0.542 0.518
tr-airports10 0.866 1.001 0.519 0.473 0.494 0.519

TABLE I. The two characteristic exponents ν1 and ν2 of time
series constructed from node degree (ki), average degree of
first neighbours (knn

i ) and node clustering coefficient (Ci) of
real-world complex networks. The color correspond to the
class to which a network belongs, i.e. coauthorship, collabora-
tion and trust networks (green), spatial networks (blue), infor-
mation and citation networks (bright cyan), social networks
and proteomes (dark cyan), technological networks (purple)
and air transportation networks (yellow).
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