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Abstract

Amyotrophic lateral sclerosis (ALS) is a terminal progressive adult-onset neurodegeneration of the motor system. Although

originally considered a pure motor degeneration, there is increasing evidence of disease heterogeneity with varying degrees of

extra-motor involvement. How the combined motor and nonmotor degeneration occurs in the context of broader disruption in

neural communication across brain networks has not been well characterized. Here, we have performed high-density crossectional

and longitudinal resting-state electroencephalography (EEG) recordings on 100 ALS patients and 34 matched controls, and have

identified characteristic patterns of altered EEG connectivity that have persisted in longitudinal analyses. These include strongly

increased EEG coherence between parietal–frontal scalp regions (in γ-band) and between bilateral regions over motor areas (in θ-

band). Correlation with structural MRI from the same patients shows that disease-specific structural degeneration in motor areas

and corticospinal tracts parallels a decrease in neural activity over scalp motor areas, while the EEG over the scalp regions associated

with less extensively involved extra-motor regions on MRI exhibit significantly increased neural communication. Our findings

demonstrate that EEG-based connectivity mapping can provide novel insights into progressive network decline in ALS. These data

pave the way for development of validated cost-effective spectral EEG-based biomarkers that parallel changes in structural imaging.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neuro-

degenerative disease characterized primarily by degeneration

of upper and lower motor neurons (Hardiman et al. 2011) with

variable degrees of extra motor involvement. Clinical manifes-

tations of ALS dichotomize into those associated with appar-

ently pure motor system degeneration involving disruption in

motor cortex, corticospinal tracts, and motor networks (Bede

and Hardiman 2014; Schuster et al. 2016); and degeneration of

extra-motor regions, associated with clinical features of cogni-

tive decline, ranging from mild executive impairment through

to behavioral variant frontotemporal dementia (bvFTD) (Byrne

et al. 2013; Elamin et al. 2017).

While there is an urgent need for noninvasive biomarkers that

address disease heterogeneity, the majority of imaging (Bede and

Hardiman 2014) and electrophysiological (de Carvalho et al. 2005)

studies to date have focussed primarily on quantification of the

selective structural degeneration and functional deficiencies of

motor pathways. The increasing involvement of broader motor

and nonmotor regions and networks suggests that a more exten-

sive assessment of large-scale brain connectivity is indicated.

Previous electro-/magneto-encephalography (EEG/MEG)

and functional MRI (fMRI) studies have reported abnormal

functional connectivity patterns in neuropsychiatric diseases

(Langheim et al. 2006; Georgopoulos et al. 2007), Alzheimer’s

disease (Stam et al. 2006; Vecchio et al. 2012), Parkinson’s dis-

ease (Stoffers et al. 2008), and FTD (Pievani et al. 2011). In ALS,

fMRI shows increased functional connectivity in the left motor

cortex of ALS patients (Agosta et al. 2011) and a previous EEG

study has reported increased parietal-to-frontal connectivity

(Blain-Moraes et al. 2013). These changes in connectivity have

been confirmed by our group (Iyer et al. 2015) in a small sample

size (n = 18) of ALS patients. We have shown that graph-theoretic

measures of connectivity (e.g., degree values, clustering coeffi-

cient and assortativity) demonstrate increased connectivity in

the θ (central and frontal) and in α and γ bands (widespread).

Notwithstanding these findings, the nature of ALS-specific

alteration in cortical connectivity (e.g., the brain regions and

frequency bands) has not been fully evaluated in the context of

disease heterogeneity with broader motor and extra-motor

involvement (Hardiman et al. 2011; Al-Chalabi et al. 2016), and

the extent by which connectivity changes persist or evolve as the

disease progresses is not known. Furthermore, the underlying

reasons for disease-specific changes are unclear, and it remains

to be determined whether such alterations in connectivity are

due to local structural degeneration in motor regions, widespread

structural decline, or compensatory neural communication. Reso-

lution of these challenges will provide translational opportunities

in ALS whereby the diagnosis, subphenotyping and targeted ther-

apeutics can be based on the underlying changes in specific neu-

ral networks.

In this study, we have used high-density EEG to investigate the

altered cortical connectivity patterns in a large ALS cohort (com-

prising 100 patients including 78 spinal-onset, 15 bulbar-onset,

and 7 ALS–FTD, including 12 probands carrying the pathogenic

hexanucleotide repeat expansion in C9ORF72) and 8 patients with

bvFTD who had no clinical evidence of motor degeneration.

Overall, 34 healthy age-matched controls were included in the

study for comparative purposes.

We have identified disease-specific patterns that are signifi-

cantly different in resting-state recordings between ALS

patients and controls. These changes persist on repeated longi-

tudinal assessment, and correlate with structural and diffusion

tensor imaging (DTI) MRI measurements from the same

patients. Our findings, that the effects of focal disease-specific

and broader structural degeneration can be reproducibly char-

acterized using spectral EEG, provide an exciting prospect for

the development of novel noninvasive biomarkers in ALS and

related neurodegenerative conditions.

Materials and Methods

Ethical Approval

This study was approved by the ethics committee of Beaumont

Hospital, Dublin, Ireland (REC reference: 13/102) and the Tallaght

Hospital/St. James’s Hospital Joint Research Ethics Committee

(REC) (REC reference: 2014 Chairman’s Action 7, CRFSJ 0046) for

St. James’s Hospital, Dublin, Ireland. The experimental proce-

dure conformed with the Declaration of Helsinki. All partici-

pants, including the patients and healthy controls, provided

written informed consent before taking part in the experiments.

Experimental Design

The study sought to find spectral power and connectivity signa-

tures that distinguish ALS patients from healthy controls, using

EEG recordings from both groups. No randomization or blinding

was applied, as the potential differences between the groups

were not known and could not affect the experiment and data

acquisition. Power analysis was performed post hoc.

Participants

Patient Recruitment

Recruitment was undertaken from ALS patients attending the

National ALS specialty clinic in Beaumont Hospital. Healthy con-

trols were recruited from neurologically normal spouses of ALS

patients, and from neurologically normal age-matched individuals

recruited as part of an existing cohort study of cognition in ALS.

Inclusion Criteria

The recruited patients, included individuals above 18 years of

age diagnosed with ALS, ALS–FTD, or FTD. In the ALS and ALS–

FTD groups, patients were within the first 18 months since

diagnosis and fulfilled the El Escorial diagnostic criteria for

Possible, Probable, or Definite ALS. In the FTD group, patients

(including behavioral variant, semantic dementia and progres-

sive aphasia) who fulfilled the revised diagnostic criteria for

FTD (Rascovsky et al. 2011) were included.

Exclusion Criteria

Patients diagnosed with primary lateral sclerosis (PLS), progres-

sive muscular atrophy (PMA), flail arm/leg, transient ischemic

attack (TIA), multiple sclerosis (MS), stroke, epilepsy, seizure

disorder, brain tumors, structural brain diseases, other degen-

erative brain diseases, and other comorbidities (e.g., human

immunodeficiency virus) were excluded.

Demographics of Patients and Controls

A total of 100 patients with ALS (f/m: 30/70; age: 60.2 ± 11.1

years in the range 29–82), 8 patients with FTD (f/m: 5/3; age

66.8 ± 8.1 in the range 57–81), and 34 healthy controls (f/m:

19/15; age: 58.1 ± 13.9 in the range 30–78) were recruited (Table 1).

The FTD patients were recruited as part of a parallel study on

FTD and the subsequent data analysis for the FTD group was per-

formed separately from the ALS group.
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Medical Profile

Within the ALS group (excluding ALS–FTD patients), 78 patients

had spinal onset, 15 bulbar onset, and 7 ALS–FTD (4 spinal

onset and 3 bulbar onset), as listed in Table 1. For 93 patients,

the Revised ALS Functional Rating Scale, ALSFRS-R (Cedarbaum

et al. 1999), was carried out ±1 month of EEG data acquisition

(not biased to before or after recording, P > 0.1, Wilcoxon’s Signed

Rank test, n = 100) and ranged from 13 to 48, with a mean (±SD)

of 36.0 ± 7.8 (Table 1). Twelve of 83 patients tested for hexanu-

cleotide repeat expansion in C9ORF72 had positive results

(Table 1). From 93 patients with available family history, 18 had a

known family history of at least one first or second degree rela-

tive with ALS (Byrne et al. 2012). From 95 patients with known

history of taking Riluzole at the time of EEG recording, 12 patients

were off Riluzole and 83 were on Riluzole with 69.0 ± 63.0 days

(median ± IQR) past since starting the medication.

Experiment

Experimental Paradigm

The experimental paradigm was resting-state with the eyes

open, which was undertaken in 3 blocks of 2min for both the

patient and control groups. Subjects sat in a comfortable chair

and were required to fixate at the letter X (6 cm × 8 cm) on an

A4-sized piece of paper, which was located at a distance of about

1m in front of them. They were asked to be relaxed and mini-

mize unnecessary eye movements during the EEG acquisition.

Data Acquisition

EEG recordings were conducted in dedicated laboratories in the

University of Dublin and St. James’s Hospital, Dublin using a

BioSemi ActiveTwo system with 128 active sintered Ag-AgCl elec-

trodes and headcaps (BioSemi B.V., Amsterdam, The Netherlands).

For spectral power, the 18 recordings performed in hospital were

significantly lower (Mann–Whitney U-test, P = 0.0055, AUC = 0.72,

n1 = 18, n2 = 82), therefore, these recordings were excluded from

the comparisons of spectral power. Each subject was fitted with an

appropriately sized EEG cap. The EEG data were filtered online over

the range 0–134Hz, and digitized at 512Hz. Longitudinal study,

included 4 subsequent recording sessions (T2–T5) scheduled every

4 months after the first recording session (T1), in which 57, 36, 25,

and 17 subjects attended, respectively.

Data Analysis

EEG Preprocessing

After the quality checks by visual inspection (EyeBallGUI) (Mohr

et al. 2017), we used an automatic artifact rejection method

(Dukic et al. 2017) based on statistical thresholding (Nolan et al.

2010) and verified the efficacy of the procedure by visuall

inspection in 16 subjects. See the Supplementary Material for

details.

EEG Signal Processing

Bipolar channels (n = 125) were formed by subtracting adjacent

electrodes to estimate the superficial cortical brain activity and

minimize the effects of volume conduction and deeper brain

sources, as well as to reduce the effects of unrejected artifacts

such as EMG (Muthukumaraswamy 2013). The EEG signals were

high-pass filtered with cut-off frequency of 1Hz. To calculate the

spectral power, coherency function and coherence (Halliday

et al. 1995), the signal was epoched into 1 s segments and mul-

tiplied by a Hann window function and then the auto- and

cross-spectra were estimated by taking the median of complex

frequency domain values across all the data epochs (Dukic

et al. 2017). The epoch length did not have a significant effect on

results as the findings with 10 s epochs were the same. The

band-specific real, imaginary and absolute values of the coher-

ency function were estimated in the δ (2–4Hz), θ (5–7Hz), α (αl:

8–10Hz, αh: 11–13Hz), β (βl: 14–20Hz, βh: 21–30Hz), and γ (γl:

31–47Hz, γh: 53–97Hz) frequency bands between all 125 bipolar

channel combinations (performed in sensor space). These fre-

quency bands were selected according to the frequency ranges

that change in motor tasks (Pfurtscheller and Silva 1999;

Nasseroleslami et al. 2011, 2014; Vuckovic et al. 2015), as well

as resting-state studies in ALS (Iyer et al. 2015) and in healthy

subjects (Muthuraman et al. 2015). All the signal analysis was

performed in MATLAB (Mathworks Inc., Natick, MA, USA), using

scripts coded for this study (See the Supplementary Material for

details).

Measures of Spectral Power and Connectivity

The log-scale spectral power, ( + ( ))F flog 1 xx10 , where ( )F fxx

represents the auto-spectrum of the signal ( )x t at frequency, f ,

was calculated for each bipolar channel in each frequency band

as a measure of spectral power. The real and absolute values of

the complex coherency function ( ) = ( ) ( ) ( )C f F f F f F f/xy xy xx yy

(where ( )F fxx and ( )F fyy are the auto-spectra and ( )F fxy the

cross-spectrum of the signals ( )x t and ( )y t pertaining to 2 bipo-

lar EEG channels), were calculated for all channel pairs, in each

frequency band. For each electrode, the median of the real

coherence quantified the oscillation synchrony (real coherence

corresponds to zero-lag no-delay synchrony), and the median

absolute coherence quantified the (average) connectivity of the

node (with arbitrary phase differences); which were calculated

Table 1. Age, gender, diagnosis status and ALSFR-R of the participants

Group n Male Female Age (y)b Dx–EEG T1a (days)b ALSFRS-R

Control 34 15 19 58.1 ± 13.9 –

ALS

All 100 70 30 60.2 ± 11.1 283 ± 357 36.0 ± 7.8 (n=93)

Spinalc 78 57 21 59.8 ± 11.2 292 ± 379 35.8 ± 7.1 (n=72)

Bulbarc 15 9 6 57.1 ± 9.6 234 ± 262 35.4 ± 11.1 (n = 14)

ALS–FTD 7 4 3 71.5 ± 6.9 289 ± 301 38.9 ± 7.1 (n=7)

C9ORF72+ 12 5 7 60.9 ± 8.6 366 ± 313 37.9 ± 8.8 (n=11)

C9ORF72− 71 55 16 61.3 ± 11.5 298 ± 395 35.2 ± 8.0 (n=68)

FTD 8 3 5 66.8 ± 8.1 – –

aDx–EEG T1 is the time interval between diagnosis and the T1 EEG recording.
bNumbers show mean ± standard deviation.
cThe spinal and bulbar groups exclude ALS–FTD patients.
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between each node and all other 124 bipolar channels. The

average connectivity or synchrony at each electrode was repre-

sented by median coherence with all other electrodes, as the

change in the value of the median can indicate the overall shift

of the group of coherence values. As prewhitening the EEG sig-

nals (Georgopoulos et al. 2007) had negligible effect on the

results, it was not used for the final analysis. These spectral

power, synchrony and connectivity measures were analyzed as

groups of multivariate variables. Additionally, to perform univar-

iate statistics, each measure of spectral power and connectivity

was averaged across all bipolar electrodes and additionally

assessed in ALS patients versus controls. (For verification and

validation of these connectivity measures, please see the

Supplementary Material.)

Point-to-Point Analysis of Connectivity

The potential point-to-point pattern of the altered connectivity

was assessed using 2 approaches. First, the changes in the

average connectivity were further inspected by choosing refer-

ence or “seeding points.” Second, we found the discriminant

eigen-connectivities (Leonardi et al. 2013) to extract more

explicitly point-to-point patterns (see Supplementary Material).

Linear Discriminant Analysis

Fisher’s linear discriminant analysis (Fukunaga 1990; Izenman

2008) (LDA) was applied separately on the 4 EEG and 9 MRI

measures to find the most discriminant linear combination of

measures based on the eigenvectors of −S Sw
b1 (Sb and Sw: between-

group and within-group covariance matrices). Additionally, a

regularized (λ = 0.05) LDA was performed on high-dimensional

EEG measures (8 frequency bands × 3 measures [power, con-

nectivity, synchrony] × 125 channels = 3000 variables). For EEG

measures (but not for MRI), the first discriminant component

was the dominant (accounting for more than 90% of discrimi-

natory variance).

Correlates With MRI Scores

Overall, 59 of the spinal- and bulbar-onset ALS patients (includ-

ing 5 C9ORF72+ and 38 C9ORF72− patients) participated in a

parallel MRI study (Schuster et al. 2016), as described in the

Supplementary Material. We sought to include measures that

were maximally different between the controls and patients

(Bede and Hardiman 2014; Bede et al. 2016; Schuster et al. 2016)

and to find potential relations between the alterations in EEG

and affected regions as defined by MRI. We have previously

shown that in spinal onset ALS there is a predominant involve-

ment of posterior internal capsule and medial corona radiata

pathology, and that the main motor-related degeneration is the

selective involvement of corticospinal and corticobulbar fibers

(Schuster et al. 2016). We also included regions (primarily white

matter tracts) that are found to contribute to generation of EEG

oscillations (Pfurtscheller and Silva 1999; Vuckovic et al. 2014;

Xu et al. 2014). Consequently, 9 structural and DTI measures

were chosen for correlation analyses on this basis in advance (a

priori) of the analysis: Grey matter thickness in the left and right

motor areas (separately averaged across precentral gyrus, cen-

tral sulcus, and superior precentral sulcus), average fractional

anisotropy (FA) of the left and right thalamocortical pathways,

average FA of the left and right superior corona radiata, average

FA of the left and right corticospinal tracts in the internal cap-

sules and cerebral peduncles, and average FA of corpus callo-

sum. These regions were defined by atlas-based segmentation,

and were selected due to their known degeneration in ALS

(Schuster et al. 2016), or their potential contribution to oscillatory

EEG signatures—for thalamocortical projections (Pfurtscheller

and Silva 1999). As there was a high level of correlation between

these 9 MRI measures of degeneration, Principal Component

Analysis, PCA (Jolliffe 2002), was used to extract the principal

directions of neurodegeneration, as “degeneration modes.”

Before PCA, the MRI and EEG scores were transformed to stan-

dard normal distributions (see Supplementary Material). The

scores corresponding to each degeneration mode were then cor-

related with measures of spectral power, synchrony and connec-

tivity. As a control, the age-dependent degeneration (found by

the correlation vector of the patients’ age with structural MRI

scores in each mode) was calculated and the percent variance of

each degeneration mode explained by age was found. As limit-

ing the analyses to the C9ORF72− patients showed negligible

confounding effect of the C9ORF72 genotype on imaging mea-

sures (Bede et al. 2013), the MRI–EEG analyses were performed

on the entire cohort of 59 patients.

Statistical Analysis

For statistical analysis, we first used frequentist statistics to

discard the unaffected measures and to find the potentially

interesting effects due to ALS; next, we used Empirical Bayesian

inference (EBI) to more accurately infer the disease-specific

effects in the presence of complex high-dimensional correla-

tions in the data (difficult to address with frequentist methods),

but more importantly to estimate the statistical power and

Bayesian posterior probabilities.

Frequentist Statistics

The between-group comparisons of spectral power and connec-

tivity measures were performed using the P-values of the

Mann–Whitey U-test and the area under the curve (AUC) for

the receiver operating characteristic (ROC) curve (Zhou et al.

2009). The pairwise comparisons (e.g., for longitudinal data)

were performed using Wilcoxon’s Signed Rank test. For com-

parison of several groups (ASL phenotypes), the Kruskal–Wallis

nonparametric 1-way analysis of variance test was employed.

Analysis of correlations was performed using Spearman’s rank

correlation coefficients. The frequency measures were assessed

within the 8 defined frequency bands. To account for multiple

comparisons, rejection of null hypotheses was performed by

adaptive false discovery rate (aFDR) at q = 0.05 (Benjamini and

Hochberg 1995; Benjamini et al. 2006). For each measure and

frequency-band, the FDR was applied on the bipolar channels

being compared (n = 125), that is, across channels but not

across measures or frequency bands. This procedure served as

a screening method for potentially significant differences

between the groups. A similar procedure was used to assess

the significance of individual connections when seeding from

one channel at a specific frequency band at q = 0.10.

To assess the statistical significance of the eigenvectors

from PCA and LDA for EEG and MRI measures, a null and non-

null bootstrapping resampling approach was used to calculate

the standard deviations, P-values and statistical power (see

Supplementary Material).

Empirical Bayesian Inference

EBI (Efron et al. 2001; Efron 2007) is a statistical approach for

inferring statistical significance and finding effects in individual

variables of high-dimensional observations. It uses a test statis-

tic in each variable to quantify the level of effect in/between

the groups. The test statistic values for all variables using the
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original observations, as well as the null-permuted data are

used to estimate the probability density function of the data

and the null, respectively. Subsequently, the prior and posterior

probabilities are estimated from the density functions; which

are used to estimate the FDR and statistical power for each

threshold level of the posterior probabilities. The EBI was

applied on the AUC for the ROC curve (Zhou et al. 2009) as the

test statistic, for statistical analysis of the spectral power and

connectivity measures between ALS and controls. For each

measure, data from the 8 frequency bands and 125 bipolar

channels were analyzed together (1000 variables).

Results

Analysis of differences in neural activity and connectivity

between the ALS cohort and controls in the characteristic EEG

frequency bands showed significant differences after aFDR cor-

rections (Supplementary Figures S2–S4). Additional analyses

based on the statistical power and Bayesian posterior probabili-

ties further confirmed the findings (Supplementary Figures S2

and S3, rows 4).

Decreased Spectral Power

We detected a significant decrease in the low-frequency (θ-band)

spectral power in ALS patients (excluding pure FTD patients)

versus healthy controls (Fig. 1). This decrease of θ-band power in

ALS patients was significant over bilateral motor areas of scalp,

and spread to other scalp locations and the adjacent frequency

bands (δ- and αl-bands) (Supplementary Figure S2).

Increased Average Connectivity

We detected widespread and significant increases in average

connectivity in ALS patients compared with healthy controls

(Fig. 1). The most notable changes were detected over bilateral

motor regions of scalp for θ-band and over parietal and frontal

scalp regions for γ-band (Supplementary Figure S3). This strong

effect also spread to adjacent locations and frequency bands.

Alterations in average synchronous EEG oscillations were

also captured (Supplementary Fig S4). In ALS patients, the

γ-band average synchrony was significantly reduced above

bilateral primary motor areas of scalp (with additional but

lesser involvement of parietal–occipital scalp regions), suggest-

ing that altered neural activity in motor cortical areas was a

function of structural change.

The identified increases in the average connectivity were fur-

ther inspected to determine whether they originated from specific

increases in point-to-point connectivity. For this purpose, overall

connectivity across regions was inspected in the corresponding

frequency bands. The lateral-central C4 and midline-parietal Pz
channels (representing bilateral motor, and parietal scalp regions)

were chosen as reference or “seeding points” (Fig. 2), as these

regions showed significant ALS-specific changes in the average

connectivity. This analysis showed that increased connectivity in

the θ frequency band originated from increased connectivity

between left and right motor areas of scalp (Fig. 2). Similarly,

increased connections in γ frequency band were found within

parietal scalp areas and between parietal–frontal scalp regions.

Analysis of changes in the point-to-point connectivity (with-

out reference to average connectivity) also showed significant dif-

ferences between controls and ALS patient group (Supplementary

Figure S5). The major effects were the increased coherence in

θ-band between the scalp regions over the 2 motor areas, and

pattern of the increased coherence in γ-band between the parietal–

frontal scalp regions. The main eigen-connectivities (Fig. 2, bot-

tom row) show the dominance of these patterns more explicitly.

These 4 spectral power and connectivity measures that

showed significant changes in ALS (θ-band spectral power,

θ-band connectivity, γ-band connectivity, and γ-band syn-

chrony), were used as 4 average (across all electrodes) mea-

sures to further study the changes in the ALS group.

ALS can be Discriminated From Controls Using Spectral

EEG Based Mapping

A comparison between ALS and controls was performed in

individual channels (topographic maps), as well as on average

across all bipolar electrodes in the affected frequency bands

using the linear discrimination combination of 4 spectral power

and connectivity measures (Fig. 3). The findings closely resem-

bled the individual patterns of change in both average quanti-

tative measures and topographic maps, confirming that the

detected changes are not only valid detections, but also key dis-

criminants between ALS and controls.

EEG Differences Between ALS Patients and Controls do

not Discriminate Between ALS Subgroups

Connectivity measures that discriminated between ALS

patients and controls were used to measure differences

between traditionally-defined ALS subgroups (bulbar onset, spi-

nal onset, ALS–FTD, FTD, and the presence or absence of the

C9ORF72 variant) (Fig. 4). While these measures were different

between ALS and controls, there was no difference between ALS

subgroups (Supplementary Figure S6), although increased parie-

tal–frontal connectivity was strongly present in FTD patients

without ALS, and the median γh connectivity measure (Fig. 4)

was significantly higher for FTD compared with the control

group (Mann–Whitney U-test, P = 0.0073, AUC = 0.83, 1−β0.05 =

0.87, n1 = 34, n2 = 8) but was not higher than the ALS group.

Degeneration in Structural MRI Shows Discriminatory

Power Comparable to EEG Features, but With a

Complex Pattern

To validate the findings of altered connectivity as markers of

selective networks disruption, we sought to determine the rela-

tionship of our observed neurophysiologic signatures with ALS-

specific MRI changes in 59 ALS patients who had undergone

contemporaneous scans (Bede et al. 2016; Schuster et al. 2016).

The focus was on 9 regions of interests (including both grey

and white matter) that show maximal degeneration and/or

contribute to EEG oscillations which were selected from MRI

data. The AUC values for these MRI measures (Fig. 5, top) were

comparable to the EEG measures (Fig. 3, top) in terms of discrim-

inatory power. The maximally discriminant MRI (Cortico-Spinal

Tract’s FA) and EEG (γ-band median connectivity) measures had

similar AUC of 0.73, while the average of the AUC values for the

4 EEG measures (0.69) was higher than the ones for 9 MRI mea-

sures (0.66). See Table S1.

Linear discriminant components are shown in Figure 5.

While all of the MRI measures decreased in ALS, the discrimi-

nant components were not symmetric. We found that the dis-

criminant vectors did not resemble the average changes in MRI

individual measures (Fig. 5, top). Rather, the average changes in

MRI measures were due to the combined effect of several sub-

components (in contrast to the EEG where the main discriminant
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component resembled the average changes in individual mea-

sures). These data suggest that the relationship between MRI

changes and EEG changes in ALS is complex (a multiparameter

relationship/correlation that cannot be explained by a simple

one-to-one relationship). Because it was not possible to infer the

overall differences by inspection, we used a combination of PCA

and several low and high-dimensional correlations to further

study the complex relationship between MRI and EEG findings.

Changes in EEG Power and Coherence Correlate With

Changes in Structural MRI Measures

As there was a high level of correlation between the MRI indi-

ces, PCA was used to extract the principal modes of

neurodegeneration. The scores corresponding to each degener-

ation mode were correlated with measures of spectral power,

synchrony and connectivity using the spectral EEG datasets,

while recognizing that the MRI degeneration modes were com-

binations of changes in both grey and white matter.

The PCA-extracted modes of degeneration included 3 princi-

pal components that accounted for 57.3%, 20.4%, and 8.4% of

normalized variance. The first 3 degeneration modes accounted

for variances larger than (or comparable to) those of age and

the direction of their eigenvectors were statistically consistent

(Fig. 6). The first of these, involved widespread general degener-

ation in all regions of interest (consistency: P = 0.0001, β0.05 =

1e-6), which resembled the variability modes in healthy con-

trols and age-related degeneration, albeit accounting for more

Figure 1. In ALS patients, spectral EEG power is significantly decreased in θ-band over the bilateral motor regions of scalp, while the median coherence is significantly

increased in θ-band over motor areas and in γ-band over parietal and frontal scalp regions. The spectral power and median coherence are shown in 2 representative

electrodes C4lp (right motor region) and Pz (parietal region) over scalp as a function of frequency. The spatial spread of the altered features is shown topographically

in the θ- and γh- frequency bands. Significant difference between the healthy controls (n = 34) and ALS patients (n = 100) was assessed in the 8 defined frequency

bands using Man–Whitney U-test and adaptive false discovery rate (FDR), as elaborated on in supplementary Figures S2 and S3. Notice the extension of changes to

adjacent frequency bands (from γ to βh). AUC: area under the receiver operating characteristic (ROC) curve.
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than 4 times the variance than was explained by age. This

mode was correlated with median coherence in θ-band (and in

γ-band), as well as the spectral power in θ-band. The overall

correlation of the scores of this mode with the EEG scores along

the individual EEG–MRI correlation vector was r = 0.28 ± 0.096

(P = 0.043, β0.05 = 0.25). The second degeneration mode was

formed primarily by the differential degeneration of corticosp-

inal tracts and motor cortex, thus representing a motor-related

disease-specific degeneration (consistency: P = 0.00033, β0.05 =

0.00033). This emphasized the differential degeneration of

white and grey matters in motor cortical regions and tracts.

Importantly, this mode was strongly correlated with θ-band

spectral power (and γ-band synchrony). The overall correlation

with EEG scores along the individual EEG–MRI correlation vec-

tor was r = 0.42 ± 0.1 (P = 0.0094, β0.05 = 0.041). The third degen-

eration mode did not show any notable correlations with the

EEG measures. The topographic maps of these correlations

were similar to the topographic maps of the significant changes

in ALS versus controls. (See the Supplementary Material—

Figures S7 and S8—for the detailed topographic maps of EEG

correlations with MRI scores and the corresponding statistical

inference.)

Taken together, these data showed increased connectivity

and reduced synchrony and spectral power measures in ALS

patients which correlated to the MRI scores of structural neuro-

degeneration in the regions extensively or moderately affected

in ALS (see the correlation data in Fig. 7, top). The scalp regions

with increased EEG connectivity extended beyond the regions

over motor areas affected in ALS, which is an indication of both

direct and indirect effects of neurodegeneration on spectral

EEG measures.

Longitudinal Study of EEG Measures Shows Progressive

Increase in Connectivity

We examined the longitudinal changes in spectral EEG at 4 sub-

sequent recording sessions (T2–T5) scheduled every 4 months

after the initial recording session (T1) for each patient.

Significant progressive changes were noted in connectivity,

when the average quantitative measures were examined as

Figure 2. The dominant changes in EEG connectivity include increased θ-band

intercortical and γ-band frontoparietal coherence over scalp. The average val-

ues in controls and ALS groups, as well as between-group (ALS-Control) differ-

ences in coherence is shown with reference to (i.e., taken as connectivity seeds)

the areas with dominant change in median connectivity: Left: Change in θ-band

median coherence over scalp motor areas (see Supplementray Figure S3)

expanded by seeding from right M1 (location C3). Notice the higher connectivity

between ○ (right) and the left motor areas over scalp. Right: Changes in γ-band

median absolute coherence in parietal and frontal scalp areas (see

Supplementary Figure S3), expanded by seeding from parietal area (location Pz).

Notice the higher connectivity between ○ and both parietal and frontal scalp

areas. Only the statistically significant connections (adaptive FDR, q = 0.1) are

shown. AUC: area under the receiver operating characteristic (ROC) curve.

Bottom row: Point-to-point connectivity patterns from discriminant eigen-

connectivity analysis (see Supplementary Material), confirming the increase in

θ-band intercortical and γ-band frontoparietal coherence.

Figure 3. The linear discriminant analysis (LDA) direction for spectral EEG

power and connectivity measures is similar to the differences of individual

measures between ALS and controls, both for topographic maps and individual

measures. The 4 EEG measures include the θ-band spectral power (θ Pow), θ-

band median coherence (θ Coh), γh-band median coherence (γ Coh), and γh-

band median real coherence (γ rCoh), all averaged across all electrodes, as in

Figure 3. Bar plots (right): The individual measures are compared on top, while

the eigenvector of LDA is shown on the bottom. AUC: area under the receiver

operating characteristic (ROC) curve. The P-value and β0.05 correspond to the

shape (and not the presence of) of the LDA eigenvector. Topographic maps

(left): comparison of individual electrodes for each measure between controls

and ALS patients is shown on top, while the first eigenvector (LDA C1) of high-

dimensional regularized LDA (125 channels × 3 measures × 8 frequency bands =

3000) is shown on the bottom (only 4 × 125 = 500 relevant variables of the vec-

tors are shown in the topographic map). See text for methods and statistics.

Error bars: standard deviations.
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univariate measures (Fig. 7). These changes were all consistent

in direction as the disease progressed, showing an accentua-

tion of the signatures. However, when the multivariate topo-

graphic maps were tested for significant changes (corrected for

multiple testing), only the θ- and γ-band coherences exhibited a

significant increase in specific scalp locations (Supplementary

Figure S9).

Gender, Age, and Medication Effects on EEG Measures

To ensure that the observed effects were not affected by other

confounding factors (e.g., the effect of medications including

the antiglutamate drug Riluzole) and to evaluate the effect of

age, gender, and clinical disability, additional confirmatory

tests were performed.

Figure 4. The spectral EEG power and connectivity measures are different between ALS and controls, but not between ALS subgroups. (A, D, G, J) Comparison between

healthy controls and all ALS patients. (B, E, H, K) Comparison between ALS subgroups. “Con”, “Spn”, “Bul”, “Cog”, “C9+”, and “C9-” stand for Control, Spinal, Bulbar,

ALF-FTD, C9ORF72-positive, and C9ORF72-negative subgroups, respectively. (C, F, I, L) Receiver operating characteristic (ROC) curve, comparing the discriminatory

power, the optimal level of sensitivity-specificity (red dot), as well as the area under the curve (AUC), achieved for linear discrimination of controls and ALS patients

using each measure. For each measure and frequency band, the average of all bipolar electrodes is used. See text for methods and statistics.
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There was no effect of age or gender in the controls for EEG

spectral power or connectivity measures. Neither was there

any effect of age, gender, or disease-duration in the ALS

patients for any of the EEG measures.

More importantly, none of the major EEG indices (as shown

in Fig. 4) was different between patients on Riluzole and those

not on Riluzole ALS therapy (P > 0.10, Mann–Whitney U-test,

n1 = 83, n2 = 12). Spearman’s rank correlation did not show any

significant relationship (P > 0.1, n = 83) between the EEG mea-

sures and the time duration that patients had been on Riluzole

at the time of EEG recordings. Similar analysis found no corre-

lations of the EEG measures with time-since-diagnosis or the

clinical disability scale (ALSFRS-R scores, sub-scores, nor fine/

gross motor factor-scores) (Cedarbaum et al. 1999). Therefore,

the identified EEG signatures were not directly related to motor

disability, but rather reflected key patterns of disease-specific

network alterations.

Finally, potential changes in the peak frequency, a com-

monly inspected spectral measure, were analyzed. There were

no significant shifts in the peak frequency for spectral power or

median coherence in any of the 125 EEG channels (Mann–

Whitney U-test, n1 = 34, n2 = 100, ncomparisons = 125, qFDR = 0.1).

Discussion

Our data demonstrate that high-density spectral EEG mapping is

a potentially robust tool in the assessment of selective changes in

neural connectivity in ALS. Notably, spectral power (decrease

in θ-band over motor scalp areas), oscillation synchrony (decrease

in median real coherence in γ-band) and functional connectivity

(higher median coherence in θ-band between bilateral scalp

regions over motor areas, and in γ-bands between parietal and

frontal scalp regions) are reliable characteristic discriminating fac-

tors between ALS patients and healthy controls. Furthermore,

changes in spectral power and EEG coherence correlate with

structural changes in key brain regions (Fig. 6). Our findings there-

fore point to a novel, network-wise characterization of neurode-

generation in ALS, which is based on altered connectivity

patterns with a specific signature of increased θ-band coherence

between the motor regions of scalp and increased γ-band parie-

tal–frontal coherence.

These changes are unlikely to originate from artifacts, as the

location of electrodes that show maximal connectivity increase

are not the expected locations for eye-movement (frontal elec-

trodes) or EMG (peripheral electrodes) artifacts. This was addi-

tionally confirmed using ICA preprocessing for further artifact

removal (see Supplementary Material). Moreover, the seeding

patterns (Figs 2 and S5) show that the patterns of increased con-

nectivity are maximal over 2 scalp regions (parietal and frontal;

left and right) and not only in a single large region. Additionally,

the increased connectivity due to an increased activity in a focal

source (a single neural brain source or an artefactual compo-

nent), would simultaneously lead to increased spectral power,

while we observed unchanged or decreased spectral power in

ALS. Furthermore, the phase values for a notable number of

coherence values are distant from 0 or ±π (values expected due

to point-spread or single artefactual components). Finally, the

attempt to map the changes in cross-spectra to focal sources

failed, as it led to distributed sources across the brain regions

(Supplementary Material). Taken together, the observed

increased connectivity is not likely to be due to artifacts or a sin-

gle deep source. (See also Supplementary Material for the

extended methods and results on the verification of the connec-

tivity measures.)

Inference From High-Dimensional Data

Previously, high-dimensional analyses of connectivity pat-

terns have been challenging due to multiple comparison prob-

lem and lack of reproducibility, especially for fMRI studies

Figure 5. The Linear Discriminant Analysis (LDA) directions for MRI measures are

more complex than the differences of individual measures between ALS and con-

trols. The 9 MRI measures include Grey Matter Thickness (Destrieux et al. 2010) in

left and right motor cortices (GM-Motor-L and GM-Motor-L), Fractional Anisotropy

(Oishi et al. 2008) in left and right Thalamocortical pathways/loops (FA-TC-L and

FA-TC-R), Superior Corona Radiata (FA-SCR-L and FA-SCR-R), Corticospinal Tracts

(FA-CST-R and FA-CST-R), as well as Corpus Callosum (FA-CC). See Schuster et al.

(2016) and the original references (Oishi et al. 2008; Destrieux et al. 2010) for the

details. Bar plots (right): The individual measures are compared on top, while the

eigenvectors of LDA are shown in the middle. AUC: area under the receiver operat-

ing characteristic (ROC) curve. The P-value and β0.05 correspond to the shape of the

LDA eigenvectors. MRI maps (left): Comparison of individual measures between

controls and ALS patients is shown on top, while the first and second eigenvectors

(LDA C1 and C2) of LDA are shown in the middle. AUC: area under the receiver

operating characteristic (ROC) curve. See text for methods and statistics. A/P/L/R:

anterior/posterior/left/right. Error bars: standard deviations.
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Figure 6. The MRI degeneration mode pertaining to motor-specific decline in ALS is significantly correlated with the decreased spectral power and oscillation syn-

chrony, while the general uniform degeneration mode is additionally correlated with the increased coherence. The top row shows the ALS-specific changes in MRI

(left) and EEG (right), side by side (see Figs 4 and 5). Rows 2–4 show the first 3 modes of degeneration in structural MRI found by PCA (left), as well as their correlations

with EEG measures (right). The percent of the variance explained by each mode, the parts explained by age, or along the structural covariance modes in healthy con-

trols, as well as the angle of mode’s direction with age or normal covariance are shown with black, grey, and green pie plots and vectors. The P-value and β0.05 above

the bar plots correspond to the shape of the eigenvectors or degeneration vectors. The error bars and “±” show standard deviations calculated from non-null boot-

strapping. “+”: Significance at P < 0.05, “*”: aFDR significance at q = 0.05. The r, P-value, and β0.05 to the right of correlation vectors correspond to the correlation of the

overall EEG measures along the correlation vector direction with MRI.
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(Eklund et al. 2016). Our study implemented several approaches

to avoid false discoveries. These included a large sample size

and the use of a frequentist method (adaptive false discovery

rate, aFDR) to limit the false discoveries. We also used EBI to val-

idate the achieved false discovery rate and importantly estimate

the Bayesian posterior probability. We estimated statistical

power for low-dimensional and high-dimensional data to vali-

date the reproducibility of findings and relied on inference from

average values rather than hand-picked measures. The longitu-

dinal follow-up data show similar patterns of changes in the

course of the disease and act as retests.

Potential Mechanisms of Changes in EEG

The distinct correlations between MRI metrics and EEG mea-

sures indicate the involvement of corresponding structural

regions which provides the anatomical substrate of the EEG

alterations detected. Specifically, the decreased spectral power

in θ-band (and adjacent frequency bands) and the altered

γ-band synchrony in bilateral motor regions of scalp are paral-

leled by structural degeneration in motor cortex and corticosp-

inal tracts in ALS. This interpretation is supported by our data:

firstly, both the power and synchrony changes are concentrated

above motor regions (about C3 and C4 locations) where the

disease-specific degeneration is maximal; secondly, the second

degeneration mode represents ALS-specific degeneration (includ-

ing the differential white-grey-matter degeneration) with strong

correlation with θ-band spectral power. Finally, although the

changes in the spectral power were not as strong as changes in

coherences, the spectral power showed a stronger correlation

with motor-related disease-specific degeneration.

Segregation of variability in our MRI data into degeneration

modes also yielded a widespread pattern of degeneration

(resembling the normal covariance in controls) that included

areas known to be severely affected in ALS (grey matter motor

regions and corticospinal tracts); moderately affected in ALS

(superior corona radiata and corpus callosum) and areas that

are clinically less apparent (Thalamocortical pathways). EEG

correlates of this degeneration mode are a decline in spectral

power, with a concomitant increase in functional communica-

tion (θ-band intercortical coherence and γ-band parietal–frontal

coherence over scalp). These changes can be interpreted based

on the existing knowledge on the neuropathology of the condi-

tion. In typical ALS, progression is thought to involve initial pri-

mary degeneration within the motor system (especially the

upper and lower motor neurons) (de Carvalho and Swash 2016;

Huynh et al. 2016), with spread to other regions as the disease

progresses (Bede et al. 2016; Burke et al. 2017). Therefore, the

spectral power decrease in θ-band which is maximal above the

motor regions of scalp and maximally correlated with motor-

related degeneration modes, mainly reflects the primary motor

aspect of the disease. On the other hand, the connectivity

increases (especially the γ-band increase between parietal and

frontal scalp regions; also strongly present in FTD) that shows

considerable longitudinal progression, reflect mostly the spread

of the disease to other regions. Further validation of this expla-

nation is warranted in future studies.

In a situation where the baseline neural activity and com-

munication is constant, degeneration in white matter is

expected to attenuate communication and connectivity. The

observation of increased coherence is therefore likely to

reflect extra compensatory activity within and outside areas

Figure 7. Top: The MRI and EEG scores show the correlation of the degeneration

modes 1 (general uniform degeneration) and 2 (motor-specific decline) with the

altered EEG measures. The scores and the linear regression lines correspond to

the rows 2 and 3 in Figure 6. Bottom: The Longitudinal spectral EEG power and

connectivity measures continue to change in a 16-month follow-up, in the

same direction as ALS versus healthy controls. The bar plots show the pairwise

differences of the 4 EEG measures (used in Figs 3, 4 and 6) in follow-up sessions

T2, T3, T4, and T5 against the first recording T1. The numbers above the box-

plots show the aFDR-corrected significant P-values of the Wilcoxon’s Signed

Rank test. The arrows on the right show the direction of change of the mea-

sures in ALS (T1) versus healthy controls (Fig. 4).
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associated with white matter degeneration. This change may

be a signature of network over-activity and a reflection of the

disease severity. Our data therefore indicate that coherence,

which quantifies neural communication in the brain, can also

indirectly reflect structural degeneration, and can be potentially

harnessed to characterize progressive neurodegeneration.

Future studies using computational neural modeling would be

of utility in assessing this perspective, as invasive neurophysio-

logical recordings in human disease would be precluded by eth-

ical considerations.

The underlying mechanisms for ALS are not yet fully under-

stood and are most likely heterogeneous, (Al-Chalabi and

Hardiman 2013). One possibility is that early neurodegeneration

of interneurons interrupts the balance between excitatory and

inhibitory network activity (Turner and Kiernan 2012). Another

possibility is that pathological changes in excito-inhibitory net-

works are driven by a combination of “dying-forward” and

“dying-back” of individual groups of neurons, and that neuro-

nal death occurs as a function of excessive excitotoxicity

(Kiernan et al. 2011). There is preliminary evidence for both

possibilities, and while the structural neurodegeneration is

reflected in the MRI measures and the unbalanced excito-

inhibitory network activity reflected in EEG measures, the cau-

sality between the changes in the EEG and MRI measures

remains to be determined.

In this study, we used the real part of the coherence mea-

sure to index frequency-specific synchronous oscillations (i.e.,

oscillations with zero lag), as has been previously described for

the time domain using prewhitened cross-correlations in MEG

(Langheim et al. 2006; Georgopoulos et al. 2007). These synchro-

nous oscillations were interpreted as originating from struc-

tural neural pathways such as thalamocortical pathways

(loops) that lead to simultaneous zero-lag propagation of oscil-

latory brain activity (Langheim et al. 2006). Consequently, the

observed patterns of synchrony alteration (Fig. 3), is an indica-

tion of structural separation and isolation of motor cortex from

more frontal and parietal regions in the brain. This measure

was specifically included as the zero-lag synchronous neural

oscillations and has been shown previously to discriminate

between healthy individuals and neuropsychiatric patients

(Georgopoulos et al. 2007). The utility of this measure was

afforded by the bipolar spatial filters applied that attenuate the

field-spread effects of deeper sources, hence, allowing the bona

fide 0-lag synchrony be aggregated between superficial sources.

The correlation with motor-specific degeneration in MRI and

concentration over bilateral M1 areas support the validity of

this measure.

Utility of EEG for Studying and Diagnosing

Neurodegeneration

The observed EEG signatures provide additional and important

insights into ALS pathogenesis, which are beyond the scope of

current structural MRI and clinical evaluation. Despite the tra-

ditional view that ALS is a focal structural degeneration of

motor neurons, these data point to major changes that occur at

the network level (found by EEG measures of neural activity

and connectivity) which correlate in a complex manner with

structural degeneration. Furthermore, these changes are

related (though through a complex mechanism with direct and

indirect effects) to the structural degeneration. The absence of

a correlation with clinical phenotypes, while not intuitive, sug-

gests that the patterned changes that we observed in both

crossectional and longitudinal datasets are consistent markers

of the disease process, regardless of the clinical disability pro-

file. This is an important observation, indicating that spectral

EEG has potential for development as a novel biomarker of net-

work degeneration. The correlation with MRI findings, and the

progression of observed changes over time support the poten-

tial clinical utility of spectral EEG as a disease biomarker, and

refinement of these combined measures could form a new

basis for novel definition of disease classification (Al-Chalabi

et al. 2016). Moreover, this spectral and connectivity-based

characterization is also applicable in cognate neurodegenera-

tive diseases, particularly FTD. The increased Frontal-Parietal

connectivity changes identified in ALS are also strongly present

in the FTD cohort, supporting the notion that it is a neural sig-

nature indicative of frontal dysfunction in FTD. Overall, the

connectivity-based characterization informs of the altered

functions of the network and paves the way for future

network-based characterization and mapping of the neurode-

generative diseases.

While the primary goal of this study was to elucidate

disease-specific changes and their underlying mechanisms,

these measures also have potential as future targets for diagno-

sis and prognosis of specific aspects of the disease. Our data

provide a robust proof of concept for the use of spectral EEG for

patient stratification based on network-based pathology in the

neurodegenerative disorders. Such an approach has significant

advantages over other imaging and diagnostic modalities (e.g.,

MRI). Given the relative differences between EEG and MRI in

terms of cost and accessibility, it is noteworthy that the dis-

criminatory power of EEG coherence measures (based on AUC

values) was actually comparable or higher than individual MRI

measures (see Table S1). EEG closely reflects the real-time neu-

ral activity with excellent temporal resolution, is widely acces-

sible, portable and inexpensive. Spectral EEG recordings can be

performed comfortably in extended ranges of patients with

neurological impairments within existing clinical settings. The

potential diagnostic utility can be further enhanced using pre-

viously reported pattern analysis techniques (Georgopoulos

et al. 2007; Herman et al. 2008) and/or neuroelectric source

imaging (Muthuraman et al. 2014; Lei et al. 2015). Future studies

using task-based paradigms, including motor (Fisher et al. 2012)

and cognitive tasks (Iyer et al. 2017), carry additional potential

in deconstructing sensory or motor aspects of neuropathology,

including those that are specifically captured by these resting-

state measures.

Limitations

The identified changes in spectral power and connectivity

have been assessed in the sensor space corresponding to

scalp locations that provide relatively low spatial resolution.

Using source analysis (Ramírez et al. 2010; Khan et al. 2015;

Muthuraman et al. 2015) to identify the corresponding brain

regions that give rise to the reported findings has the poten-

tial to further enhance our understanding of the underlying

disease pathophysiology in future studies. While challenging

and requiring special considerations due to the potential con-

founding factors of neurodegeneration and the resulting

structural changes in the brain, the potential benefits would

be considerable.

Additionally, investigation of the effects of mimic disease

conditions and other neurological diseases (other than the

ALS–FTD range) on the identified EEG signatures will be

required to establish the specificity of this technology for

adjunct diagnostic purposes.
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Conclusions

This is the first study of its kind to demonstrate the validity of

spectral EEG as a measure of structural degeneration in ALS.

Correlations between EEG measures and contemporaneous

changes in structural MRI indicate that changes in neural activ-

ity in motor areas mirror focal disease-specific structural

changes in ALS. Moreover, the increased connectivity (coher-

ences) reflects network over-activity in affected motor regions

(intercortical θ-band) and less degenerated regions such as

parietal and frontal areas (γ-band), and likely represents an

indirect potentially compensatory effect of degeneration.

Our data confirm that spectral EEG is a novel and potentially

sensitive methodology by which the neurodegeneration in ALS

and related conditions can be characterized in terms of specific

disruptions in neural communication. This technology can be

harnessed as an inexpensive and clinically useful disease bio-

marker in assessing the efficacy of targeted drug therapies for

neurodegeneration.
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Supplementary data is available at Cerebral Cortex online.
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