
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 12 NO. 2 PAGE 276–299 (2019)

Characteristic Jacobi Operator on Almost
Cosymplectic 3-Manifolds

Jun-ichi Inoguchi∗

(Communicated by Cihan Özgür)

ABSTRACT

The Ricci tensor, ϕ-Ricci tensor and the characteristic Jacobi operator on cosymplectic 3-manifolds
are investigated.
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1. Introduction

The odd-dimensional real space forms provide typical examples of normal almost contact Riemannian
manifolds. The almost contact structures naturally associated to the sphere S2n+1, Euclidean space E2n+1 and
hyperbolic space H2n+1 are classified as follows:

Structure contact metric almost cosymplectice almost Kenmotsu
Normality Sasakian Cosymplectic Kenmotsu

Typical example S2n+1 E2n+1 H2n+1

The Jacobi operator ℓ along the characteristic vector field ξ of an almost contact Riemannian manifold plays
an important role and called the characteristic Jacobi operator.

In the previous paper [14], we studied characteristic flow invariance of the characteristic Jacobi operator ℓ
on contact Riemannian 3-manifolds, i.e., £ξℓ = 0. Here £ξ denotes the Lie differentiation by ξ. We showed that
the characteristic flow invariance of ℓ is weaker than the characteristic flow invariance of the Ricci operator S,
i.e., £ξS = 0.

A more specific subcase "ℓ = 0" is still worth investigating. In fact, as Bang showed that the normal bundle
of a Legendre submanifold in a Sasakian manifold admits a contact Riemannian structure with ℓ = 0 (See [2,
Theorem 9.16]).

Contact Riemannian 3-manifolds with vanishing ℓ were studeid by Gouli-Andreou [28]. Kouforgiorgos and
Tsichlias [37] showed that complete, simply connected, contact Riemannian 3-manifolds with vanishing ℓ
and positive constant |Sξ| are Lie groups. In our previous paper [13], we gave model spaces for the class of
3-dimensional Lie groups equipped with left invariant contact Riemannian structure with vanishing ℓ and
constant |Sξ|.

In this paper we study characteristic Jacobi operator of almost cosymplectic 3-manifolds whose characteristic
Jacobi operator is invariant under the flows generated by ξ.

The present work has two aspects. The first aspect is to give an expository article on 3-dimensional almost
cosymplectic geometry. The second aspect is to classify almost cosymplectic 3-manifolds whose characteristic
Jacobi operator is invariant under the flows generated by ξ under the assumption that ξ is an eigenvector field
of Ricci operator.

Analogues problem for almost Kenmotsu 3-manifolds will be studied in a separate publication.
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Conventions. In this paper we use the following definition for exterior differentiation of differential forms:
Let M be a manifold and η a 1-form on M . Then the exterior derivative dη is defined by

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]), X, Y ∈ X(M).

Here X(M) denotes the Lie algebra of all smooth vector fields on M .
The exterior derivative dΦ of a 2-form Φ is defined by

dΦ = X(Φ(Y, Z) ) + Y (Φ(Z,X) ) + Z(Φ(X,Y ) )− Φ([X,Y ], Z)− Φ([Y, Z], X)− Φ([Z,X], Y ).

On an oriented Riemannian manifold (M, g), dη and dΦ are rewritten as

dη(X,Y ) =
1

2
((∇Xη)Y − (∇Y η)X) , dΦ(X,Y, Z) =

1

3
SX,Y,Z(∇XΦ)(Y, Z)

in terms of Levi-Civita connection ∇. Here SX,Y,Z denotes the cyclic sum.
The codifferential δη and δΦ are given by

δη = −tr(∇η), (δΦ)X = −tr(∇·Φ)(·, X).

2. Preliminaries

2.1.

Let (M, g) be a Riemannian manifold with its Levi-Civita connection ∇. Then the Riemannian curvature R of
M is defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

On a Riemannian manifold (M, g), We define a curvature-like tensor field (X,Y, Z) 7−→ (X ∧ Y )Z on M by

(X ∧ Y )Z = g(Y, Z)X − g(Z,X)Y.

A Riemannian manifold (M, g) is of constant curvature c ∈ R if and only if its Riemannian curvature R satisfies
R(X,Y ) = c(X ∧ Y ) for all X , Y ∈ X(M).

As is well known, Riemannian manifolds with parallel Riemannian curvature are called locally symmetric
spaces. Riemannian manifolds of constant curvature are locally symmetric.

Definition 2.1. A Riemannian manifold (M, g) is said to be pseudo-symmetric if there exists a function L such
that

R(X,Y ) ·R = L(X ∧ Y ) ·R
holds for all X and Y ∈ X(M). In particular, a pseudo-symmetric Riemannian manifold is called a pseudo-
symmetric space of constant type if L is constant.

In particular, pseudo-symmetric Riemannian manifolds of constant type with L = 0 are called semi-symmetric
Riemannian manifolds. Obviously, locally symmetric Riemannian manifolds are pseudo-symmetric.

The Ricci tensor field ρ of (M, g) is a symmetric tensor field defined by

ρ(X,Y ) = tr (Z 7−→ R(Z, Y )X).

The Ricci operator S is a self-adjoint endomorphism field metrically equivalent to ρ, that is

ρ(X,Y ) = g(SX, Y ) = g(X,SY ).

The smooth function s = tr ρ = tr S is called the scalar curvature of (M, g).
A Riemannian manifold (M, g) of dimension dimM ≥ 3 is said to be Einstein if ρ = c g for some constant c.

One can see that on an Einstein manifold, ρ = (s/ dimM)g and s is constant. Riemannian manifolds of constant
curvature are Einstein.

Let (M, g) be a Riemannian manifold. For a nonzero tangent vector v ∈ TxM at a point x, the tidal force operator
Fv associated to v is a linear endomorphism on (Rv)⊥ defined by Fv(w) := −R(w, v)v for w ⊥ v ([49, p. 219]).
One can see that Fv is self-adjoint on (Rv)⊥ and has the trace tr Fv = −ρ(v, v). For a geodesic γ in (M, g), a
vector field X along γ is said to be a Jacobi field along γ if it satisfies the Jacobi equation:

∇γ′∇γ′X = −Fγ′(X).
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2.2.

On a Riemannian 3-manifold (M, g), the Riemannian curvature R is described by the Ricci tensor field ρ and
corresponding Ricci operator S by

R(X,Y )Z = ρ(Y, Z)X − ρ(Z,X)Y + g(Y, Z)SX − g(Z,X)SY − s

2
(X ∧ Y )Z (2.1)

for all vector fields X , Y and Z on M . It should be remarked that for Riemannian 3-manifolds, Einstein property
is equivalent to constancy of sectional curvature.

The pseudo-symmetry is introduced as a generalization of local symmetry. In 3-dimensional Riemannian
geometry, pseudo-symmetry is also a generalization of Einstein condition.

In fact, the following characterization of pseudo-symmetry is deduced.

Proposition 2.1. A Riemannian 3-manifold (M3, g) is a pseudo-symmetric space of constant type with R(X,Y ) ·R =
L(X ∧ Y ) ·R if and only if the principal Ricci curvatures (eigenvalues of the Ricci tensor field ) locally satisfy the
following relations (up to numeration):

ρ1 = ρ2, ρ3 = 2L.

Note that when ρ1 = ρ2 = ρ3, (M3, g) is Einstein, i.e., it is of constant curvature.

2.3.

Let G be a Lie group with a Lie algebra g and a left invariant Riemannian metric 〈·, ·〉. Then the Levi-Civita
connection ∇ of (G, 〈·, ·〉) is described by the Koszul formula:

2〈∇XY, Z〉 = −〈X, [Y, Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉, X, Y, Z ∈ g.

A Lie group G is said to be unimodular if its left invariant Haar measure is right invariant. Milnor gave an
infinitesimal reformulation of unimodularity for 3-dimensional Lie groups [45]. We recall it briefly here.

Let g be a 3-dimensional oriented Lie algebra with an inner product 〈·, ·〉. Denote by × the vector product
operation of the oriented inner product space (g, 〈·, ·〉). The vector product operation is a skew-symmetric
bilinear map × : g× g → g which is uniquely determined by the following conditions:

(i) 〈X,X × Y 〉 = 〈Y,X × Y 〉 = 0,
(ii) |X × Y |2 = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2,

(iii) if X and Y are linearly independent, then det(X,Y,X × Y ) > 0,

for all X,Y ∈ g. On the other hand, the Lie-bracket [·, ·] : g× g → g is a skew-symmetric bilinear map.
Comparing these two operations, we get a linear endomorphism Lg which is uniquely determined by the
formula

[X,Y ] = Lg(X × Y ), X, Y ∈ g.

Now let G be an oriented 3-dimensional Lie group equipped with a left invariant Riemannian metric. Then the
metric induces an inner product on the Lie algebra g. With respect to the orientation on g induced from G, the
endomorphism field Lg is uniquely determined. The unimodularity of G is characterized as follows.

Proposition 2.2. ([45]) Let G be an oriented 3-dimensional Lie group with a left invariant Riemannian metric. Then G
is unimodular if and only if the endomorphism Lg is self-adjoint with respect to the metric.

Let G be a Lie group with Lie algebra g. Denote by ad the adjoint representation of g,

ad : g → End(g); ad(X)Y = [X,Y ].

Then one can see that a map tr ad : g → R;
X 7−→ tr ad(X)

is a Lie algebra homomorphism into the commutative Lie algebra R. The kernel

u = {X ∈ g | tr ad(X) = 0}
of tr ad is an ideal of g which contains the ideal [g, g].

Now we equip a left invariant Riemannian metric 〈·, ·〉 on G. Denote by u⊥ the orthogonal complement of u
in g with respect to 〈·, ·〉. Then the homomorphism theorem implies that dim u⊥ = dim g/u ≤ 1.

The following criterion for unimodularity is known (see [45, p. 317]).

Lemma 2.1. A Lie group G with a left invariant metric is unimodular if and only if u = g.

Based on this criterion, the ideal u is called the unimodular kernel of g. In particular, for a 3-dimensional
non-unimodular Lie group G, its unimodular kernel u is commutative and of 2-dimension.
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3. Almost contact Riemannian manifolds

In this section we recall fundamental ingredients of almost contact Riemannian geometry. In addition we
recall some curvatures of our interest. For general information on almost contact Riemannian geometry, we
refer to [2].

3.1.

An almost contact Riemannian structure of a (2n+ 1)-manifold M is a quartet (ϕ, ξ, η, g) of structure tensor
fields which satisfies:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for all X , Y ∈ X(M).
A (2n+ 1)-manifold M = (M,ϕ, ξ, η, g) equipped with an almost contact Riemannian structure is called an

almost contact Riemannian manifold. The vector field ξ is called the characteristic vector field of M . The 2-form

Φ(X,Y ) = g(X,ϕY )

is called the fundamental 2-form of M .
An almost contact Riemannian manifold M is said to be normal if

[ϕ,ϕ](X,Y ) + 2dη(X,Y )ξ = 0,

for all X , Y ∈ X(M). Here [ϕ,ϕ] is the Nijenhuis torsion of ϕ.

Definition 3.1. Let (M,ϕ, ξ, η, g) be an almost contact Riemannian manifold. A tangent plane Πx at x ∈ M is
said to be holomorphic if it is invariant under ϕx.

It is easy to see that a tangent plane Πx is holomorphic if and only if ξx is orthogonal to Πx. The sectional
curvature Hx := K(Πx) of a holomorphic plane Πx is called the holomorphic sectional curvature of M at x.

Here we recall an auxiliary tensor field h which is very useful for the study of almost contact Riemannian
manifolds. The endomorphism field h is defined by h = £ξϕ. Here £ξ denotes the Lie differentiation by ξ.
Namely

hX =
1

2
(£ξϕ)X =

1

2
{[ξ, ϕX]− ϕ[ξ,X]}.

3.2.

In addition we introduce a self-adjoint endomorphism field ℓ on an almost contact Riemannian manifold M
of dimension 2n+ 1 ≥ 3 by

ℓ(X) = R(X, ξ)ξ, X ∈ X(M).

One can see that ℓ = −Fξ on the distribution defined by η = 0. The self-adjoint operator ℓ is called the
characteristic Jacobi operator of M . Note that our ℓ has opposite sign to the one in [55].

3.3.

Let M be an almost contact Riemannian manifold. We define a tensor field ρ∗ on M by (cf. [50]):

ρ∗(X,Y ) :=
1

2
trR(X,ϕY )ϕ.

One can see that ρ∗(X, ξ) = 0 for all X ∈ X(M). Next we denote by ρϕ the symmetric part of ρ∗, that is,

ρϕ(X,Y ) =
1

2
{ρ∗(X,Y ) + ρ∗(Y,X)}.

We call ρϕ the ϕ-Ricci tensor field of M [12].

Definition 3.2. An almost contact Riemannian manifold M is said to be a weakly ϕ-Einstein manifold if

ρϕ(X,Y ) = λgϕ(X,Y ), X, Y ∈ X(M)
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for some function λ. Here the symmetric tensor field gϕ is defined by

gϕ(X,Y ) = g(ϕX,ϕY ), X, Y ∈ X(M).

When λ is a constant, then M is said to be a ϕ-Einstein manifold. The function sϕ = tr ρϕ is called the ϕ-scalar
curvature of M .

Remark 3.1. An almost contact Riemannian manifold M is said to be weakly ∗-Einstein if

ρ∗(X,Y ) = λg(X,Y ), X, Y ∈ D

for some function λ. The function s∗ = trace ρ∗ is called the ∗-scalar curvature of M . A weakly ∗-Einstein
manifold of constant ∗-scalar curvature is called a ∗-Einstein manifold. Clearly sϕ = s∗.

To close this subsection we recall the following definition (cf. [35]):

Definition 3.3. Let M be an almost contact Riemannian manifold. A tensor field P on M of type (1, r) is said
to be η-parallel if

g((∇XP )(Y1, Y2, · · · , Yr), Z) = 0

for all vector fields X , Y1, Y2 · · · , Yr and Z on M orthogonal to ξ.

The following notion was introduced by the present author (see also [36]).

Definition 3.4 ([31]). Let M be an almost contact Riemannian manifold. A tensor field P on M of type (1, r) is
said to be strongly η-parallel if

g((∇XP )(Y1, Y2, · · · , Yr), Z) = 0

for all vector fields X , Y1, Y2 · · · , Yr on M and a vector field Z orthogonal to ξ.

3.4.

Now we turn our attention to almost cosymplectic manifolds.

Definition 3.5 ([1], [27]). An almost contact Riemannian manifold M is said to be almost cosymplectic if dη = 0
and dΦ = 0. An almost cosymplectic manifold is said to be cosymplectic if it is normal.

Note that the notion of cosymplectic manifold was introduced independently by Ogiue [47] by the name
"cocomplex manifold" (see also Okumura [48]).
Remark 3.2. An almost contact Riemannian manifold M is said to be semi-cosymplectic if δη = 0 and δΦ = 0.

Olszak [50] obtained the following fundamental formula:

(∇Xϕ)Y + (∇ϕXϕ)(ϕY ) = η(Y )∇ϕXξ.

From this formula, one can deduce that

∇ξϕ = 0, ∇ϕXξ = −ϕ∇Xξ, ∇ξξ = 0.

Moreover we have [19, 55]:

∇ξ = hϕ, hϕ = −ϕh, hξ = 0, tr h = 0, div ξ = 0.

The cosymplectic property is characterized as follows:

Proposition 3.1. An almost contact Riemannian manifold M is cosymplectic if and only if ϕ is parallel.

In particular, ξ is parallel on every cosymplectic manifold. The characteristic Jacobi operator ℓ on an almost
cosymplectic manifold M satisfies (see [55, Lemma 3.1]):

∇ξh = −h2ϕ− ϕ ◦ ℓ, ϕℓϕ− ℓ = 2h2.

In addition we have
∇ξh = 0 if and only if ∇ξℓ = 0.

The distribution η = 0 on an almost cosymplectic manifold M is integrable and hence it defines a foliation F
on M . This foliation is called the canonical foliation of M . The almost cosymplectic structure induces an almost
Kähler structure on leaves. An almost cosymplectic manifold M is said to be an almost cosymplectic manifold
with Kähler leaves if leaves of the canonical foliation are Kähler manifolds. Clearly, if M is cosymplectic then all
the leaves are Kähler.
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Theorem 3.1 ([52]). An almost cosymplectic manifold has Kähler leaves if and only if

(∇Xϕ)Y = g(X,hY )− η(Y )hX. (3.1)

Here we recall the following fundametal fact (see, e.g., [4, Theorem 3.11]).

Theorem 3.2. Let M be an almost cosymplectic manifold. Then the following properties are mutually equivalent:

• h = 0.
• The canonical foliation is totally geodesic.
• ∇ξ = 0.
• ξ is a Killing vector field.
• M is locally isomorphic to a direct product of an almost Kähler manifold and the real line.

Remark 3.3 (Compact examples). Conti and Fernández [16] constructed non-compact Einstein almost
cosymplectic manifold that is non-cosymplectic. Li showed that an odd-dimensional closed manifold admits a
cosymplectic structure if and only if it is diffeomorphic to a Kähler mapping torus [39]. Marrero and Padrón-
Fernández [41] gave examples of compact cosymplectic manifolds which are not topologically equivalent to
CPr × T2m+1, where T2m+1 is a torus and m+ r = n. Their examples are compact solvmanifolds. In particular,
they showed that compact flat Riemannian 3-manifolds with non-zero first Betti number admit cosymplectic
structure. The examples with first Betti number 1 are not topologically equivalent to the product manifold
M × S1, where M is a compact surface.

3.5.

A complete cosymplectic manifold M of constant holomorphic sectional curvature c is called a cosymplectic
space form. The Riemannian curvature of a cosymplectic space form has the following explicit representation
[4, 40, 33]:

R(X,Y )Z =
c

4
(X ∧ Y )Z +

c

4
{(ϕX ∧ ϕY )Z + 2Φ(X,Y )ϕZ}+ c

4
{ξ ∧ (X ∧ Y )ξ}Z.

Remark 3.4. The Riemannian curvature of a Sasakian space form is given by

R(X,Y )Z =
c+ 3

4
(X ∧ Y )Z +

c− 1

4
{(ϕX ∧ ϕY )Z + 2Φ(X,Y )ϕZ}+ c− 1

4
{ξ ∧ (X ∧ Y )ξ}Z}.

Example 3.1. Let M = (M, ḡ, J) be an almost Kähler manifold. Consider a Riemannian product M = (M ×R, g)
with g = ḡ + dt2. Then we can equip an almost cosymplectic structure on M by

ξ =
d

dt
, η = dt, ϕ

(
X, f

d

dt

)
= (JX, 0), X ∈ X(M).

The almost cosymplectic manifold M is cosymplectic if and only if M is Kähler. In particular when M is
a complex space form, that is, a Kähler manifold of constant holomorphic sectional curvature, then M is
a cosymplectic manifold of constant holomorphic sectional curvature. Now let CPn(c), Cn and CHn(c) be
complex projective n-space of constant holomorphic sectional curvature c > 0, complex Euclidean n-space
and complex hyperbolic n-space of constant holomorphic sectional curvature c < 0, respectively. Then the
cosymplectic manifolds

CPn(c)×R, E
2n+1 = C

n ×R, CHn(c)×R

are cosymplectic space forms.

Here we would like to mention another interpretation of normality of almost contact Riemannian manifolds.
Let (M1, ϕ1, ξ1, η1, g1) and (M2, ϕ2, ξ2, η2, g2) be almost contact Riemannian manifolds. Then we can introduce

an almost Hermitian structure on the product manifold M = M1 ×M2 by [46]:

J(X1, X2) := (ϕ1X1 − η2(X2)ξ1, ϕ2X2 + η1(X1)ξ2).

with g = g1 + g2. Morimoto [46] showed that J is integrable if and only if both M1 and M2 are normal. If both
M1 and M2 are Sasakian, then M is Hermitian. In particular if we choose M1 = S2p+1 and M2 = S2q+1, then
we obtain the Calabi-Eckmann manifold [3]. Since H2(S2p+1 × S2q+1) = 0, Calabi-Eckmann manifolds can not
admit any Kähler metric. Kimura [34] showed that compact complex submanifolds in the product of Sasakian
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manifolds are automatically minimal. In addition, Sierra [58] showed that complex submanifolds are totally
geodesic and locally isometric to a product of Sasakian submanifolds.

On the other hand, if both M1 and M2 are almost cosymplectic, then M is almost Kähler (Capursi [5]). In
particular, M = M1 ×M2 is Kähler if and only if both M1 and M2 are cosymplectic (Goldberg [26]).

Caprusi and Ianuş studied complex hypersurfaces in products of cosymplectic manifolds. See [6, 7, 8].

3.6.

Here we recall the notion of almost cosymplectic (κ, µ, ν)-space.

Definition 3.6. An almost cosymplectic manifold M is said to be a generalized almost cosymplectic (κ, µ, ν)-space
if

R(X,Y )ξ = κ(η(X)Y − η(Y )X) + µ(η(X)hY − η(Y )hX) + ν(η(X)ϕhY − η(Y )ϕhX)

for some smooth functions κ, µ and ν. Generalized almost cosymplectic (κ, µ, 0)-spaces are called generalized
almost cosymplectic (κ, µ)-spaces.

Definition 3.7. Let M be a generalized almost cosymplectic (κ, µ, ν)-space. If both the functions κ and µ are
constants, then M is called an almost cosymplectic (κ, µ, ν)-space. A generalized almost cosymplectic (κ, µ, ν)-
space is said to be proper if |dκ|2 + |dµ|2 + |dν|2 6= 0.

Remark 3.5. Generalized almost cosymplectic (κ, µ, ν)-space in this paper are called almost cosymplectic (κ, µ, ν)-
space in [57]. On the other hand, an almost cosymplectic (κ, µ, ν)-space in the sense of Dacko and Olszak [19]
is a generalized almost cosymplectic (κ, µ, ν)-space in the sense of the present paper satisfying the additional
condition:

dκ ∧ η = 0, dµ ∧ η = 0, and dν ∧ η = 0. (3.2)

Dacko and Olszak [19] showed that if the dimension of a generalized almost cosymplectic (κ, µ, ν)-space is
greater than 3, then κ, µ and ν satisfy this additional condition.

Remark 3.6. There exist almost cosymplectic (κ, µ)-spaces which admit Einstein-Weyl structures. For this topic,
we refer to Chen [10] and Matzeu [42, 43, 44].

4. Almost cosymplectic 3-manifolds

Hereafter we concentrate our attention to almost cosymplectic 3-manifolds.

4.1.

Let M = (M,ϕ, ξ, η, g) be an almost contact Riemannian 3-manifold. Then the covariant derivative of ϕ is
given by the following Olszak formula [51]:

(∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ.

Olszak formula implies that an almost contact Riemannian 3-manifold is normal if and only if ∇ξ commutes
with ϕ.

Moreover the exterior derivatives of η and Φ of an almost contact Riemannian 3-manifold M are given by

dη = −η ∧∇ξη +
1

2
tr(ϕ∇ξ) Φ, dΦ = div ξ η ∧ Φ.

These formulae imply the following fundamental fact.

Proposition 4.1. An almost contact Riemannian 3-manifold M is almost cosymplectic if and only if ∇ξ is self-adjoint
and ξ is divergence free.

Since every almost cosymplectic manifold satisfies the anti-commutativity condition ∇ξ ◦ ϕ = −ϕ ◦ ∇ξ, we
obtain the following characterization.

Proposition 4.2 ([50]). An almost contact Riemannian 3-manifold M is cosymplectic if and only if ξ is parallel.
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Here we should point out that almost cosymplectic 3-manifolds satisfy (3.1). Note that the formula (3.1) can
be obtained by by inserting the formula ∇ξ = hϕ into Olszak formula above.

Cosymplectic 3-manifolds have particular curvature properties.

Proposition 4.3. Let M be a cosymplectic 3-manifold. Then the Ricci operator S of M has the form

S =
s

2
(I− η ⊗ ξ).

The principal Ricci curvatures are s/2, s/2 and 0.
The Ricci operator S commutes with ϕ. The Riemannian curvature R satisfies

R(X,Y )ξ = 0

for any vector fields X and Y . Hence M is a cosymplectic (0, 0)-space. In particular the characteristic Jacobi operator
vanishes.

For a unit vector X in TxM such that η(X) = 0, then the sectional curvatures of planes X ∧ ϕX and X ∧ ξ are given
by

H = K(X ∧ ϕX) =
s

2
, K(X ∧ ξ) = 0.

Remark 4.1. The Riemannian curvature R of a cosymplectic 3-manifold has the form

R(X,Y )Z =
s

2
(X ∧ Y )Z +

s

2
{ξ ∧ (〈(X ∧ Y ) ξ〉)}Z. (4.1)

Unfortunately in our previous papers, there are typographical errors of this formula. The first term s
2 (X ∧ Y )Z

is dropped in [30, Corollary 3.3] and [31, Corollary 6.1].

Note that every cosymplectic 3-manifold is semi-symmetric. The local symmetry and Einstein conditions for
cosymplectic 3-manifolds are described as follows:

Corollary 4.1. The following properties of a cosymplectic 3-manifold M are mutually equivalent.

• M is locally symmetric.
• the scalar curvature s is constant.
• the holomorphic sectional curvature H is constant.
• M is locally isomorphic to a Riemannian product M(c̄)×R, where M(c̄) is a 2-dimensional Riemannian manifold

of constant curvature c̄.

Corollary 4.2. A cosymplectic 3-manifold M is of constant curvature if and only if it is locally isomorphic to Euclidean
3-space E3 = E2 ×R.

4.2.

Let M be an almost cosymplectic 3-manifold. Denote by U the open subset of M consisting of points x such
that h 6= 0 around x. Next let U0 the open subset of M consisting of points x ∈ M such that h = 0 around x.
Since h is smooth, U ∪ U0 is an open dense subset of M . So any property satisfied in U ∪ U0 is also satisfied in
whole M . For any point x ∈ U ∪ U0, there exits a local orthonormal frame field E = {e1, e2 = ϕe2, e3 = ξ} around
x, where e1 is an eigenvector field of h.

Lemma 4.1 (cf. [55], [53]). Let M be an almost cosymplectic 3-manifold. Then there exists a local orthonormal frame
field E = {e1, e2, e3} such that

he1 = λe1, e2 = ϕe1, e3 = ξ

for some locally defined smooth function λ. The Levi-Civita connection ∇ is described as

∇e1e1 =
1

2λ
(e2(λ) + σ(e1)), ∇e1e2 = − 1

2λ
(e2(λ) + σ(e1))e1 + λξ, ∇e1e3 = −λe2,

∇e2e1 = − 1

2λ
(e1(λ) + σ(e2))e2 + λξ, ∇e2e2 =

1

2λ
(e1(λ) + σ(e2))e1, ∇e2e3 = −λe1,

∇e3e1 = ae2, ∇e3e2 = −ae1, ∇e3e3 = 0,
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where σ is the 1-form metrically equivalen to Sξ, that is

σ = g(Sξ, ·) = ρ(ξ, ·).

The commutation relations are

[e1, e2] = − 1

2λ
{(e2(λ) + σ(e1))e1 − (e1(λ) + σ(e2))e2} , [e2, e3] = (a− λ)e1, [e3, e1] = (a+ λ)e2.

The Ricci operator S is given by

Se1 =
( s

2
+ λ2 − 2aλ

)
e1 + ξ(λ)e2 + σ(e1)ξ,

Se2 =ξ(λ)e1 +
( s

2
+ λ2 + 2aλ

)
e2 + σ(e2)ξ,

Se3 =σ(e1)e1 + σ(e2)e2 − 2λ2ξ.

The characteristic Jacobi operator ℓ is given by

ℓe1 = −(λ2 + 2aλ)e1 + ξ(λ)e2, ℓe2 = ξ(λ)e1 − (λ2 − 2aλ)e2.

The covariant derivative ∇ξh is given by

∇ξh =

(
ξ(λ)

λ
+ 2aϕ

)
h.

By using the fundamental formulas

K12 = K(e1 ∧ e2) =ρ11 + ρ22 −
s

2
,

K23 = K(e2 ∧ e3) =ρ22 + ρ23 −
s

2
,

K13 = K(e1 ∧ e3) =ρ11 + ρ33 −
s

2
,

we obtain the following formulas for sectional curvatures of M :

H = K12 =
s

2
+ 2λ2, K23 = −λ(λ− 2a), K13 = −λ(λ+ 2a).

Example 4.1 ([56]). On the Cartesian 3-space R3(x, y, z), we define a Riemannian metric g by

g = dx2 + dy2 − 2yf1(z)

f3(z)
dxdz − 2xf2(z)

f3(z)
dydz + f̄(z)dz2,

where f1, f2 and f3 are arbitrary smooth functions of z satisfying f3 6= 0 and f1 + f2 6= 0 on M . In addition we
define a function f̄ by

f̄(z) =
y2f1(z)

2 + x2f2(z)
2 + 1

f3(z)2
.

One can take an local orthonormal frame field with respect to g:

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = yf1(z)

∂

∂x
+ xf2(z)

∂

∂y
+ f3(z)

∂

∂z
.

We define an almost cosymplectic structure on R3(x, y, z) by ξ = e3, η = g(ξ, ·) and

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

Then the endomorphism field h is computed as

he1 = λe1, he2 = −λe2, hξ = 0

with λ = −(f1 + f2)/2. One can check that this almost cosymplectic 3-manifold is a generalized almost
cosymplectic (κ, µ, ν)-space with non-constant κ, µ and ν.

κ = −1

4
(f1 + f2)

2, µ = −(f1 − f2), ν =
f3(f

′
1 + f ′

2)

f1 + f2
.

Here the prime denotes the differentiation by z.
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Remark 4.2. Erken and Murathan [24] investigated 3-dimensional almost cosymplectic (κ, µ, ν)-spaces
satisfying ∇ξh = 2ahϕ for some function a and the gradient vector field grad λ of λ has constant nonzero length.
Murathan and his collaborators have given some examples of 3-dimensional almost cosymplectic (κ, µ, ν)-
spaces with non-constant κ, µ and ν [53].

Let M be a generalized almost cosymplectic (κ, µ, ν)-space. Take a positive constant a and a smooth function
f such that f 6= 0 on M and satisfies df ∧ η = 0. Then we consider a pseudo-conformal deformation

ϕ̃ := ϕ, ξ̃ :=
1

f
ξ, η̃ := fη, g̃ := a2g + (f2 − a2)η ⊗ η

of the almost contact Riemannian structure. Then M equipped with the deformed structure is a generalized
almost cosymplectic (κ̃, µ̃, ν̃)-space with

κ̃ =
1

f2
κ, µ̃ =

1

f
µ, ν̃ =

1

f2
(νf − ξ(f)).

In particular, if we choose a = 1 and f =
√
−κ then (M, ϕ̃, ξ̃, η̃, g̃) is a generalized almost cosymplectic

(−1, µ̃, 0)-space (see [19]). Dacko and Olszak showed that every generalized almost cosymplectic (κ, µ, ν)-space
satisfying (3.2) is pseudo-conformally deformed to a generalized almost cosymplectic(−1, µ, 0)-space. For more
informations on almost cosymplectic (−1, µ, 0)-spaces, we refer to [20].

Remark 4.3. On an almost cosymplectic (κ, µ)-space with constant κ and µ, we have

K(X ∧ ξ) = κ+ λµ, K(X ∧ ϕX) = −κ, K(ϕX ∧ ξ) = κ− λµ,

where X is an eigenvector field of h corresponding to the eigenvalue λ, see [23, 4].

5. Homogeneous almost cosymplectic 3-manifolds

5.1.

Before investigating the characteristic flow invariance of characteristic Jacobi operators on general almost
cosymplectic 3-manifolds, we study homogeneous almost cosymplectic 3-manifolds as the model cases.
It should be emphasised that there exist 3-dimensional Lie groups equipped with left invariant almost
cosymplectic structure which are not globally Riemannian products (see also [50]).

Definition 5.1 (cf. [55]). An almost contact Riemannian manifold M = (M,ϕ, ξ, η, g) is said to be a homogeneous
almost contact Riemannian manifold if there exists a Lie group G of isometries which acts transitively on M such
that every element f of G preserves η, that is

f∗η = η.

Perrone obtained the following classification.

Theorem 5.1 ([55]). Let M be a simply connected homogeneous cosymplectic 3-manifold, then M is either

• M is one of the product Riemannian symmetric spaces

S
2(c̄)×R, H

2(c̄)×R,

where S2(c̄) and H2(c̄) are sphere of curvature c̄ > 0 and hyperbolic plane of curvature c̄ < 0 or
• M itself is a Lie group G equipped with left invariant almost cosymplectic structure.

5.2. Unimodular Lie groups

Let G be a 3-dimensional unimodular Lie group with a left invariant metric 〈·, ·〉. Then there exists an
orthonormal basis {e1, e2, e3} of the Lie algebra g such that

[e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2, c1, c2, c3 ∈ R. (5.1)

Three-dimensional unimodular Lie groups are classified by Milnor as follows:
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Signature of (c1, c2, c3) Simply connected Lie group Property
(+,+,+) SU2 compact and simple

(−,−,+) or (−,+,+) S̃L2R non-compact and simple
(+,+, 0) Ẽ2 solvable
(−,+, 0) E1,1 solvable
(0,+, 0) Heisenberg group nilpotent
(0, 0, 0) (R3,+) Abelian

To describe the Levi-Civita connection ∇ of G, we introduce the following constants:

µi =
1

2
(c1 + c2 + c3)− ci.

Proposition 5.1. The Levi-Civita connection is given by

∇e1e1 = 0, ∇e1e2 = µ1e3, ∇e1e3 = −µ1e2
∇e2e1 = −µ2e3, ∇e2e2 = 0, ∇e2e3 = µ2e1
∇e3e1 = µ3e2, ∇e3e2 = −µ3e1 ∇e3e3 = 0.

The Riemannian curvature R is given by

R(e1, e2)e1 = (µ1µ2 − c3µ3)e2, R(e1, e2)e2 = −(µ1µ2 − c3µ3)e1,

R(e2, e3)e2 = (µ2µ3 − c1µ1)e3, R(e2, e3)e3 = −(µ2µ3 − c1µ1)e2,

R(e1, e3)e1 = (µ3µ1 − c2µ2)e3, R(e1, e3)e3 = −(µ3µ1 − c2µ2)e1.

The basis {e1, e2, e3} diagonalizes the Ricci operator S. The principal Ricci curvatures are given by

ρ1 = 2µ2µ3, ρ2 = 2µ1µ3, ρ3 = 2µ1µ2.

5.3.

According to a result due to Perrone, simply connected 3-dimensional unimodular Lie groups equipped with
left invariant almost cosymplectic structure are classified by Perrone invariant p = ||£ξh|| − 2||h||2 as follows:

Theorem 5.2. Let (G,ϕ, ξ, η, g) be a simply connected 3-dimensional Lie group equipped with left invariant almost
cosymplectic structure. If G is unimodular, then G is one of the following Lie groups;

1. If G is cosympletic then p = 0 and G = Ẽ2 with flat metric or abelian group R3 equipped with Euclidean metric.

2. If G is non-cosympletic, then

(a) G = Ẽ2 if p > 0.

(b) G = Heisenberg group if p = 0.

(c) G = E1,1 if p < 0.

The Lie algebra g of G is generated by an orthonormal basis {e1, e2, e3} as in (5.1) with c3 = 0. The left invariant
cosymplectic structure is determined by

ξ = e3, ϕe1 = e2, ϕe2 = −e1, ϕξ = 0.

Remark 5.1. Fino and Vezzoni [25] showed that Lie groups of arbitrary odd dimension which admit left
invariant cosymplectic structure are flat and solvable.

Hereafter we denote by G(c1, c2) the 3-dimensional unimodular Lie group (whose Lie algebra is determined
by (5.1) with c3 = 0) equipped with a left invariant almost cosymplectic structure. The global orthonormal
frame field {e1, e2, e3} on G(c1, c2) is an example of the frame field given in Lemma 4.1 with a = µ3 = (c1 + c2)/2.
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Proposition 5.2. The endomorphism field h of a unimodular Lie group G equipped with a left invariant homogeneous
almost cosymplectic structure is given by

he1 = −1

2
(c1 − c2)e1, he2 =

1

2
(c1 − c2)e2.

The sectional curvature of G are given by

H = K12 =
1

4
(c1 − c2)

2, K13 =
1

4
(c1 − c2)(c1 + 3c2), K23 = −1

4
(c1 − c2)(3c1 + c2).

The principal Ricci curvatures are

ρ1 =
1

2
(c21 − c22), ρ2 = −1

2
(c21 − c22), ρ3 = −1

2
(c1 − c2)

2.

In particular, G(c1, c2) is scalar flat if and only if c1 = c2.

This proposition implies the following classification of 3-dimensional pseudo-symmetric almost
cosymplectic unimodular Lie groups (cf. [11, Proposition 11]):

Corollary 5.1 ([11]). Let G be a 3-dimensional unimodular Lie group equipped with a left invariant almost cosymplectic

structure. Then G is pseudo-symmetric if and only if it is locally isomorphic to E3, Ẽ2, E1,1 or the Heisenberg group.

More precisely one can check that

• ρ1 = ρ2 if and only if c2 = c1 or c1 = −c2.
• ρ2 = ρ2 if and only if c2 = 0 or c1 = c2.
• ρ1 = ρ3 if and only if c1 = 0 or c1 = c2.

Note that pseudo-symmetry is a Riemannian notion, namely it only depends on Riemannian metric.
The pseudo-symmetry of 3-dimensional Lie groups equipped with left invariant Riemannian metric was
determined in [29].

Corollary 5.2. Every almost cosymplectic unimodular Lie group G(c1, c2) is an almost cosymplectic (κ, µ)-space with

κ = −1

4
(c1 − c2)

2, µ = −(c1 + c2).

The Perrone invariant of G(c1, c2) is computed as

p = −c1 − c2
2

(√
c21 + c22 + c1 − c2

)
.

Direct computation shows that

(£ξS)e1 = c2(ρ1 − ρ2)e2, (£ξS)e2 = c1(ρ1 − ρ2)e1.

Thus we obtain (see also Theorem 6.4).

Proposition 5.3. A 3-dimensional unimodular Lie group G(c1, c2) equipped with a left invariant cosymplectic structure
satisfies £ξS = 0 if and only if c2 = ±c1. Thus the possible Lie algebras are e2, e1,1 or R3.

Proposition 5.4. The ϕ-Ricci tensor field of a unimodular Lie group G(c1, c2) is given by

ρϕ11 = ρϕ22 = H, ρϕij = 0 for other i, j.

Hence G(c1, c2) is ϕ-Einstein.
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5.4.

The characteristic Jacobi operator ℓ of a unimodular Lie group G is computed as

ℓ(e1) = ℓ1e1, ℓ(e2) = ℓ2e2,

where
ℓ1 =

1

4
(c1 − c2)(c1 + 3c2) = K13, ℓ2 = −1

4
(c1 − c2)(3c1 + c2) = K23.

In particular, we have

ℓ1 + ℓ2 = −1

2
(c1 − c2)

2, ℓ1 − ℓ2 = (c1 − c2)(c1 + c2).

ℓ = 0 if and only if c1 = c2.

Proposition 5.5. A 3-dimensional unimodular Lie group G(c1, c2) has vanishing characteristic Jacobi operator if and

only if G(c1, c2) is locally isometric to Ẽ2 equipped with flat metric or Euclidean 3-space E3.

Proposition 5.6. A 3-dimensional unimodular Lie group G(c1, c2) equipped with a left invariant almost cosymplectic
structure satisfies ℓ = 0 if and only if G(c1, c2) is cosymplectic.

Direct computation shows the following fact.

Proposition 5.7. Let G(c1, c2) be a unimodular Lie group equipped with a left invariant almost cosymplectic structure.
Then G(c1, c2) has η-parallel characteristic Jacobi operator for every c1 and c2.

The Lie derivative £ξℓ is computed as

(£ξℓ)e1 = c2(ℓ1 − ℓ2)e2, (£ξℓ)e2 = c1(ℓ1 − ℓ2)e2.

From this we obtain

Proposition 5.8. On the unimodular Lie group G(c1, c2), £ξℓ = 0 holds when and only when c2 = ±c1. The possible
Lie algebras are e2, e1,1 or R3.

Corollary 5.3. On the unimodular Lie group G(c1, c2), the property £ξℓ = 0 holds when and only when £ξS = 0 holds.

Here we give explicit expressions of these unimodular Lie groups.

Example 5.1 (Euclidean motion group). Let us denote by Ẽ2 the universal covering of the Euclidean motion
group E2. Then Ẽ2 is realised as R3(x, y, z) with multiplication

(x1, y1, z1) · (x2, y2, z2) = (x1 + (cos z1)x2 − (sin z1)y2, y1 + (sin z1)x2 + (cos z1)y2, z1 + z2).

For any positive real numbers a, b, c ∈ R satisfying a ≥ b, we take a global frame field

e1 =
1

a

(
cos z

∂

∂x
+ sin z

∂

∂y

)
, e2 =

1

b

(
− sin z

∂

∂x
+ cos z

∂

∂y

)
, e3 =

1

c

∂

∂z
.

Then {e1, e2, e3} satisfies

[e1, e2] = 0, [e2, e3] =
bc

a
e1, [e3, e1] =

b

ca
e2.

The left invariant Riemannian metric g determined by the condition {e1, e2, e3} is orthonormal with respect
to it is

g = a2ω1 ⊗ ω1 + b2ω2 ⊗ ω2 + c2ω3 ⊗ ω3,

where
ω1 = cos z dx+ sin z dy, ω2 = − sin z dx+ cos z dy, ω3 = dz.

Let us introduce a left invariant almost contact structure by

η = cω3 = c dz, ξ = e3, ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

Then the resulting homogeneous almost contact Riemannian 3-manifold (Ẽ2, ϕ, ξ, η, g) is almost cosymplectic.
The almost cosymplectic 3-manifold (Ẽ2, ϕ, ξ, η, g) is cosymplectic when and only when a = b. In such a case g
is flat and has the form

g = a2(dx2 + dy2) + c2 dz2.

One can check that Ẽ2 is pseudo-symmetric when and only when a = b.
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Remark 5.2. According to Patrangenaru [54], the moduli space of all left invariant Riemannian metrics on Ẽ2 is
parametrized as {(a, b) ∈ R2 | a > b > 0} ∪ {(1, 1)}. Every element (a, b) corresponds to the metric

a2ω1 ⊗ ω1 + b2ω2 ⊗ ω2 +
1

a2b2
ω3 ⊗ ω3.

Example 5.2 (The Mikowski motion group). The identity component of the isometry group of Minkowski
plane E1,1 = (R2(x1, x2), dx1dx2) is denoted by E1,1 and called the Minkowski motion group. The Minkowski
motion group E1,1 is realized as R3(x, y, z) with multiplication

(x1, y1, z1) · (x2, y2, z2) = (x1 + ez1x2, y1 + e−z1y2, z1 + z2).

For any positive numbers a, b, c, we set

e1 = a

(
ez

∂

∂x
− e−z ∂

∂y

)
, e2 = b

(
ez

∂

∂x
+ e−z ∂

∂y

)
, e3 = c

∂

∂z
.

Then we have
[e1, e2] = 0, [e2, e3] = c1e1, [e3, e1] = c2e2

with

c1 = −bc

a
< 0, c2 =

ca

b
> 0.

We equip a left invariant metric ga,b,c so that {e1, e2, e3} is orthonormal with respect to it. Then

ga,b,c =
a2 + b2

4a2b2
(e−2zdx2 + e2zdy2) +

dz2

c2
.

In particular,
g 1√

2
,
1√
2
,1
= e−2zdx2 + e2zdy2 + dz2

is the metric of the model space Sol3 of solvegeometry in the sense of Thurston.
One can check that (E1,1, ga,b,c) is pseudo-symmetric if and only if a = b. When a = b, the principal Ricci

curvatures are

ρ1 = ρ2 = 0, ρ3 = −4c2

2
.

Let us introduce an almost contact structure by ξ = e3, η = ga,b,c(e3, ·) and

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0,

then the Minkowski motion group equipped with this almost cosymplectic structure satisfies:

λ =
c(a2 + b2)

ab
6= 0, κ = − (a2 + b2)2c2

4a2b2
, µ =

(a2 − b2)c

ab
.

H =
(a2 + b2)c2

4a2b2
, K13 =

(a2 + b2)(3a2 − b2)c2

4a2b2
, K23 =

(a2 + b2)(a2 − 3b2)c2

4a2b2
.

The Perrone invariant is computed as

p =
c2(a2 + b2)

2a2b2

(√
a4 + b4 − (a2 + b2)

)
< 0.

The characteristic Jacobi operator is invariant under characteristic flow when and only when a = b. In
particular, Sol3 equipped with compatible left invariant almost cosymplectic structure satisfies £ξℓ = 0 but
not ℓ = 0.

Remark 5.3. If we choose ξ = e1 [resp. ξ = e2], and set ϕe2 = e3, ϕe3 = −e2 [resp. ϕe3 = e1, ϕe1 = −e3], then the
structure is semi-cosymplectic.
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Remark 5.4. The moduli space of all left invariant Riemannian metrics on E1,1 is parametrized as {(A,B) ∈
R2 |A > 0 > B ≥ −A } (see [54]). Every element (A,B) corresponds to the metric

A−B

2

(
e−2zdx2 + e2zdy2

)
− (A+B)dxdy − 1

AB
dz2.

The metric ga,b,c is obtained as this metric under the choice

A = −B = A = −B =
a2 + b2

4a2b2
.

Thus the parameter c is normalised as

c = −AB =
(a2 + b2)2

4a2b2
.

Example 5.3 (The Heisenberg group). The 3-dimensional Heisenberg group is R3(x, y, z) together with the
group structure:

(x1, y1, z1) · (x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2 + (x1y2 − x2y1)/2 ).

For any nonzero real numbers a, b and c, we set

e1 = b

(
2
∂

∂y
+ x

∂

∂z

)
, e2 = 2c

∂

∂z
, e3 = a

(
2
∂

∂x
− y

∂

∂z

)
.

Then {e1, e2, e3} is a left invariant frame field satisfying the commutation relations:

[e1, e2] = 0, [e2, e3] = 0, [e3, e1] = c2e2, c2 =
ab

c
6= 0.

The left invariant Riemannian metric g = ga,b,c determined by the condition {e1, e2, e3} is orthonormal with
respect to it is

g =
dx2

4a2
+

dy2

4b2
+

1

4c2

(
dz +

1

2
(ydx− xdy)

)2

.

One can see that the Heisenberg group equipped with this metric is pseudo-symmetric with principal Ricci
curvatures ρ1 = ρ3 = −ρ2 = −ab2/(2c2). In particular the Heisenberg group equipped with the metric g 1

2 ,
1
2 ,

1
2

is

the model space Nil3 of the nilgeometry in the sense of Thurston.
We introduce a left invariant almost cosymplectic structure by ξ = e3, η = g(ξ, ·) and

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

Then the Heisenberg group equipped with this left invariant almost cosymplectic structure satisfy

he1 =
ab

2c
e1, he2 = −ab

2c
e2, κ = −a2b2

4c2
, µ = −ab

c
, p = 0, H = K12 =

a2b2

4c2
> 0,

ℓ1 = K13 = −3a2b2

4c2
< 0, ℓ2 = K23 =

a2b2

4c2
> 0.

Remark 5.5. Every left invariant Riemannian metrics on the Heisenberg group is isometric to one of the
following one-parameter family of metrics (cf. [54]):

dx2 + dy2 + t2
(
dz +

1

2
(ydx− xdy)

)2

, t > 0.

Remark 5.6. Dacko [18] showed that almost cosymplectic (κ, 0)-space (of arbitrary odd dimension) with κ < 0
are realised as solvable Lie groups with left invariant almost cosymplectic structures. In addition those space
has pseudo-parallel Ricci operator. Here we recall Dacko’s construction developed in [17]. Let G′ be a Lie group
equipped with a left invariant almost Kähler structure. Then there exists a semi-direct product R⋉G′ equipped
with a left invariant almost cosymplectic structure.
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Remark 5.7 (Compact examples). Léon [38] constructed 3-dimensional compact almost cosymplectic
solvmanifolds in the following method. Let us consider the solvable Lie group

G =








ekz 0 x
0 e−kz y
0 0 1




∣∣∣∣ x, y, z ∈ R





such that ek + e−k ∈ Z \ {2}. One can take a right invariant vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 =

∂

∂z
− k

(
x
∂

∂x
− y

∂

∂y

)
.

The dual 1-forms are given by

ω1 = dx− kxdz, ω2 = dy + kydz, ω3 = dz.

We equip a right invariant Riemannian metric g by g = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3. In addition we introduce
a right invariant almost cosymplectic structure by η = ω3, ξ = e3 and

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

Then there exits a discrete subgroup Γ of G so that the quotient space Γ\G is a compact manifolds with induced
non-cosymplectic right invariant almost cosympletic structure.

5.5. Non-unimodular Lie groups

Now let us consider 3-dimensional non-unimodular Lie groups equipped with left invariant almost
cosymplectic structure. Here we recall Perrone’s construction [55].

Let G be a (simply connected) 3-dimensional non-unimodular Lie group equipped with a left invariant
almost cosymplectic structure. Then one can easily check that ξ ∈ u. We take an orthonormal basis {e2, e3 = ξ}
of u. Then e1 = −ϕe2 ∈ u⊥ and hence ad(e1) preserves u. Express ad(e1) as

[e1, e2] = a11e2 + a21e3, [e1, e3] = a12e2 + a22e3

over u. The closing condition dη = 0 implies that a21 = 0. Next, ∇ξξ = 0 implies that a22 = 0. Moreover one
can deduce that [e2, e3] = 0 from the Jacobi identity. Note that 3-dimensional non-unimodular Lie algebras are
classified by Milnor invariant D = det ad(e1).

Theorem 5.3 ([55]). Let G be a 3-dimensional non-unimodular Lie group equipped with a left invariant almost
cosymplectic structure. Then the Lie algebra g = g(γ, δ) satisfies the commutation relations

[e1, e2] = δe2, [e2, e3] = 0, [e3, e1] = −γe2,

with e3 = ξ, e1 = −ϕe2 ∈ u⊥ and δ 6= 0. In particular Milnor invariant of g(γ, δ) is 0.

The Lie algebra g = g(γ, δ) is given explicitly by

g(γ, δ) =








(1 + δ)x γx y
0 x z
0 0 x




∣∣∣∣ x, y, z ∈ R





with basis

e1 =




1 + δ γ 0
0 1 0
0 0 1


 , e2 =




0 0 1
0 0 0
0 0 0


 , e3 =




0 0 0
0 0 1
0 0 0


 .

The corresponding simply connected Lie group G(γ, δ) = exp g(γ, δ) is given by

G(γ, δ) =






 e(1+δ)x γ

δ
ex(eδx − 1)

ex((δy+γz)(eδx−1)−γδxz)
δ2x

0 ex zex

0 0 ex




∣∣∣∣ x, y, z ∈ R



 .
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The left invariant metric is expressed as ω1 ⊗ ω1 + ω2 ⊗ ω2 + η ⊗ η, where

ω1 = dx, ω2 = dy +
e−δx + δx− 1

δ2x2
{(γy + δz)dx− x(γdz + δdy)} , η = dz.

The left invariant vector fields obtained from e1, e2 and e3 by left translation are

e1 =
∂

∂x
− eδx(e−δx + δx− 1)(δy + γz)

δx(eδx − 1)

∂

∂y
, e2 =

δxeδx

eδx − 1

∂

∂y
, e3 =

∂

∂z
− γ

δ

(
1 +

x

1− e−δx

) ∂

∂y
.

The Levi-Civita connection of G is given by the following table:

Proposition 5.9. ([55])
∇e1e1 = 0, ∇e1e2 = −γ

2 e3, ∇e1e3 = γ
2 e2

∇e2e1 = −δe2 − γ
2 e3, ∇e2e2 = δe1, ∇e2e3 = γ

2 e1
∇e3e1 = −γ

2 e2, ∇e3e2 = γ
2 e1 ∇e3e3 = 0.

The global orthonormal frame filed {e1, e2, e3} is an example of orthonormal frame field given in Lemma 4.1
with a = λ = −γ/2.

From this table, we obtain

he1 = −1

2
γe1, he2 =

1

2
γe2.

Thus G(γ, δ) is cosymplectic if and only if γ = 0.
The Riemannian curvature R is given by

R(e1, e2)e1 =

(
δ2 − γ2

4

)
e2 + γδe3, R(e1, e2)e2 = −

(
δ2 − γ2

4

)
e1,

R(e1, e3)e1 = γδe2 +
3γ2

4
e3, R(e1, e3)e3 = −3γ2

4
e1,

R(e2, e3)e2 = −γ2

4
e3, R(e2, e3)e3 =

γ2

4
e2, R(e1, e2)e3 = −γδe1.

Hence

H = K12 = −δ2 +
γ2

4
, K13 = −3γ2

4
, K23 =

γ2

4
.

Thus the characteristic Jacobi operator is given by

ℓ(e1) = K13e1, ℓ(e2) = K23e2.

Proposition 5.10. The almost cosymplectic non-unimodular Lie group G(γ, δ) satisfies ℓ = 0 if and only if γ = 0. In
this case, the structure is cosymplectic.

Thus the vanishing of ℓ is a too strong restriction for G(γ, δ).
The covariant derivatives of ℓ are computed as

(∇e1ℓ)e1 =0, (∇e1ℓ)e2 = −γ

2
K23e3 = −γ3

8
e3,

(∇e2ℓ)e1 =− δ(K13 −K23)e2 −
γ

2
K13e3 = γ2δe2 +

3γ3

8
e3,

(∇e2ℓ)e2 =− δ(K13 −K23)e1 = γ2δe1.

Proposition 5.11. The characteristic Jacobi operator of the almost cosymplectic non-unimodular Lie group G(γ, δ) is
η-parallel when and only when γ = 0. In such a case ℓ = 0.

Thus unfortunately η-parallelism of ℓ is still a strong restriction for G(γ, δ).
Next we compute the Lie derivative £ξℓ. We obtain

(£ξℓ)e1 = −γ(K13 −K23)e2 = γ3e2, (£ξℓ)e2 = 0.

Proposition 5.12. The almost cosymplectic non-unimodular Lie group G(γ, δ) satisfies £ξℓ = 0 if and only if γ = 0
(cosymplectic).
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Se1 = −
(
δ2 +

γ2

2

)
e1, Se2 = −

(
δ2 − γ2

2

)
e2 − γδξ, Sξ = −γδe2 −

γ2

2
ξ

The principal Ricci curvatures of S are computed as

−γ2

2
− δ2, −γ2

2
− δ2, −γ2

2
.

This shows that this space is pseudo-symmetric.
By using this table, the ϕ-Ricci tensor field is computed as

ρϕ11 = ρϕ22 = H =
γ2

4
− δ2, ρϕ32 = −1

2
γδ.

Hence G(γ, δ) is ϕ-Einstein if and only if γ = 0.
The Lie group G(0, δ) is characterized as follows.

Proposition 5.13. Let G = G(γ, δ) be a simply connected non-unimodular Lie group corresponding to g(γ, δ) equipped
with a left invariant almost cosymplectic structure. Then the following three conditions are mutually equivalent:

• G satisfies γ = 0.
• G is cosymplectic.
• ℓ is η-parallel.
• ℓ is parallel.
• ℓ = 0.
• G(γ, δ) is ϕ-Einstein.

The fundamental 2-form Φ of an almost cosymplectic manifold M defines a magnetic field (called the contact
magnetic field) on M . In our previous paper [22], trajectories of contact magnetic fields on cosymplectic
manifolds are investigated. In addition, we studied trajectories of magnetic fields on Ẽ2 derived from the left
invariant contact metric structure in [32]. Here we propose the following problem:

Problem 1. Investigate trajectories of contact magnetic fields on homogeneous almost cosymplectic 3-manifolds.

6. Ricci curvatures of almost cosymplectic 3-manifolds

Now we start our investigation on Ricci tensor field and related tensor fields on almost cosymplectic 3-
manifolds.

Locally symmetric almost cosymplectic 3-manifolds are classified as follows:

Theorem 6.1 ([55]). Let M be a locally symmetric almost cosymplectic 3-manifold, then M is cosymplectic and locally
isomorphic to S2(c̄)×R, H2(c̄)×R or E3 = E2 ×R.

Note that this result is rephrased as

Corollary 6.1. Let M be an almost cosymplectic 3-manifold. If the Ricci operator S of M is parallel, then M is
cosymplectic and locally isomorphic to S2(c̄)×R, H2(c̄)×R or E3 = E2 ×R.

This results says that local symmetry (equivalently the parallelism of S) is a very strong assumption for
almost cosymplectic 3-manifolds. We are interested in more mild conditions for S.

One of the relaxation of local symmetry (parallelism of S) is the η-parallelism of S. In our previous paper
[31], the present author investigated η-parallelism of S of cosymplectic 3-manifolds.

Theorem 6.2 ([31]). Let M be a cosymplectic 3-manifold. Then the following properties are mutually equivalent:

• The scalar curvature is constant.
• The holomorphic sectional curvature is constant.
• The Ricci operator is η-parallel.
• The Ricci operator is strongly η-parallel.
• M is locally symmetric.
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Up to now, classification of almost cosymplectic 3-manifolds with η-parallel Ricci operator is still open. It is
known that every cosymplectic 3-manifold satisfies the commutativity condition [ϕ, S] = 0.

From Lemma 4.1 one can deduce that

Sϕe1 = ϕSe1 ⇐⇒ Sϕe2 = ϕSe2 ⇐⇒ ξ(λ) = 0 and a = 0,

Sϕe3 = ϕSe3 ⇐⇒ σ(e1) = σ(e2) = 0.

Thus we obtain

Lemma 6.1 ([11]). An almost cosymplectic 3-manifold M satisfies Sϕ = ϕS if and only if M is cosymplectic or M is
non-cosympletic and satisfies

ξ(λ) = 0, a = 0, σ(e1) = σ(e2) = 0. (6.1)

By using the 2nd Bianchi identity, Cho obtained the following useful result.

Lemma 6.2 ([11]). On an almost cosymplectic 3-manifold satisfying Sϕ = ϕS, the eigenvalues of the endomorphism
field h are constant.

As a result, almost cosymplectic 3-manifolds satisfying Sϕ = ϕS are classified as follows:

Theorem 6.3 ([11]). Let M be an almost cosymplectic 3-manifold. Then M satisfies Sϕ = ϕS if and only if M is either
cosymplectic or locally isomorphic to the Minkowski motion group E1,1 equipped with a left invariant almost cosymplectic
structure described in Example 5.2.

From Proposition 5.1, one can see that unimodular Lie group G(c1, c2) satisfies Sϕ = ϕS if and only if c2 = c1
or c2 = −c1. The possible Lie algebras for the former case are e2 and R3. The latter case, the Lie algebra is e1,1.

Motivated by the fact that every cosymplectic 3-manifold satisfies £ξS = 0, Cho proved the following
theorem.

Theorem 6.4 ([11]). Let M be an almost cosymplectic 3-manifold. Then M satisfies £ξS = 0 if and only if M is either
cosymplectic or locally isomorphic to the Minkowski motion group E1,1 equipped with a left invariant almost cosymplectic
structure described in Example 5.2.

Generally speaking, the condition £ξℓ = 0 is weaker that £ξS = 0. In Section 8 we shall study this property
for almost cosymplectic 3-manifolds under the assumption that ξ is an eigenvector field of S.

Remark 6.1. Cho and Kimura investigated almost Kenmotsu 3-manifolds satisfying £ξS = 0 [15].

7. Generalized almost cosymplectic (κ, µ, ν)-spaces

In this section we study pseudo-symmetry of ϕ-Ricci tensor field of 3-dimensional generalized almost
cosymplectic (κ, µ, ν)-spaces.

In the case of contact Riemannian 3-manifolds, generalized (κ, µ, ν)-property is characterized by the
harmonicity of the characteristic vector field. On the other hand, for almost cosymplectic 3-manifolds,
generalized (κ, µ, ν)-property is characterized by minimality of ξ.

7.1.

Let (M, g) be a Riemannian manifold with unit tangent sphere bundle UM . We equip the Sasaki-lift metric
gs on UM . Denote by X1(M) the space of all smooth unit vector fields on M . Every unit vector field V ∈ X1(M)
is regarded as an immersion of M into UM .

A unit vector field V ∈ X1(M) is said to be minimal if it is a critical point of the volume functional on X1(M).
It is known that V is a minimal unit vector field if and only if it is a minimal immersion with respect to the
pull-backed metric V ∗gs (see [21]).

The minimality of ξ is characterized in terms of Ricci opeartor as follows.

Theorem 7.1 ([56],[27]). On an almost cosymplectic 3-manifold M , ξ is a minimal unit vector field if and only if ξ is an
eigenvector field of S.
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The minimality of unit vector fields is closely related to "harmonicities" of unit vector fields.
A unit vector field V ∈ X1(M) is said to be a harmonic unit vector field if it is a critical point of the energy

functional restricted to X1(M). On the other hand, V is a harmonic map if it is a critical point of the energy
functional on the space C∞(M,UM) of smooth maps from M into UM .

Perrone clarified relations between harmonicity and minimality of unit vector fields ([55, Theorem 4.3], [56,
Theorem 4.2]):

Theorem 7.2. Let M be an almost cosymplectic 3-manifold. Then ξ is a minimal unit vector field if and only if it is a
harmonic unit vector field.

The characteristic vector field ξ is a harmonic map if and only if it is a harmonic unit vector field and ξ(tr(h2)) = 0.

The class of almost cosymplectic 3-manifolds with minimal characteristic vector field is characterized in
terms of Riemannian curvature as follows:

Theorem 7.3 ([56]). Let M be an almost cosymplectic 3-manifold. If M is a generalized (κ, µ, ν)-space, then ξ is a
minimal unit vector field. Conversely if ξ is a minimal unit vector field, then M satisfies the generalized (κ, µ, ν) on an
open dense subset. In such a case we have

Sξ = −(tr h2)ξ, κ = −1

2
(tr h2).

Moreover tr (h2) satisfies d(tr (h2)) ∧ η = 0, that is, X(tr (h2)) = 0 for any vector filed X orthogonal to ξ. The Ricci
operator has the form

S = α I + βη ⊗ ξ + µh+ νϕh, α =
1

2
(s + tr(h2)), β = −1

2
(s + 3tr(h2)).

Let us take a local orthonormal field {e1, e2, e3} on a 3-dimensional generalized almost cosymplectic (κ, µ, ν)-
space as in Lemma 4.1, then we have

Sξ = −2λ2ξ, κ = −λ2, µ = −2a, λν = ξ(λ).

The Ricci operator has the form

Se1 =(α+ λµ)e1 + λνe2 =
1

2
(s + 2λ2 − 4aλ)e1 + ξ(λ)e2,

Se2 =λνe1 + (α− λµ)e2 = ξ(λ)e1 +
1

2
(s + 2λ2 + 4aλ)e2,

Se3 =(α+ β)e3 = −2λ2e3,

Remark 7.1. Carriazo and Martín-Molina [9] obtained the following curvature formula for 3-dimensional
generalized almost cosymplectic (κ, µ, ν)-space satisfying (3.2):

R(X,Y )Z = H(X ∧ Y )Z + (H − κ){ξ ∧ (X ∧ Y )ξ}Z
+ µ{(hX ∧ Y )Z + (X ∧ hY )Z}+ ν{(ϕhX ∧ Y )Z + (X ∧ ϕhY )}

for all X , Y and Z ∈ X(M). When M is a cosymplectic 3-manifold, then κ = 0 and hence H = s/2, we retrieve
the formula (4.1).

7.2.

As we have mentioned in Section 2, pseudo-symmetry is one of the generalisations of local symmetry. Since
every cosymplectic 3-manifold is pseudo-symmetric, we restrict our attention to non-cosymplectic case.

Now we study pseudo-symmetry of 3-dimensional generalized almost cosymplectic (κ, µ, ν)-spaces.
Let M be a non-cosymplectic 3-dimensional almost cosymplectic (κ, µ, ν)-space whose characteristic vector

field ξ is minimal. Then by using Theorem 7.3, the characteristic polynomial Ψ(t) = det(tI− S) for S is computed
as

Ψ(t) = (t− (α+ β))F (t),

where
F (t) = t2 − 2αt+ α2 − λ2(µ2 + ν2).

We investigate principal Ricci curvatures.
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• Case 1: α+ β is a solution to F (t) = 0: Direct computation shows that F (α+ β) = 0 if and only if
β2 = (µ2 + ν2). In this case we have F (t) = t2 − 2αt+ α2 − β2. Thus the principal Ricci curvatures are
α+ β, α+ β and α− β. Note that

α+ β = 2κ, α− β = s− 4κ = H.

• Case 2: F (t) = 0 has double roots: The discriminant D of F (t) = 0 is D = 4λ2(µ2 + ν2). Hence F (t) = 0 has
double roots if and only if µ = ν = 0 since we assume that M is non-cosymplectic. Hence M is an almost
cosymplectic generalized (κ, 0)-space. Moreover we have a = 0 and ξ(κ) = 0. Thus M satifies Sϕ = ϕS.
From Lemma 6.2, κ is constant. As we have seen before M is locally isomorphic to Minkowski motion
group E1,1. The principal Ricci curvatures are

ρ1 = ρ2 = α = 0, ρ3 = α+ β = 2κ = −c21.

Theorem 7.4. Let M be a non-cosymplectic 3-dimensional generalized almost cosymplectic (κ, µ, ν)-space. Then M is
pseudo-symmetric if and only if µ2 + ν2 = (s + 3 tr(h2))2/4 or µ = ν = 0. In the latter case, M is a (generalized) almost
cosymplectic (κ, 0)-space and locally isomorphic to E1,1 equipped with a left invariant almost cosymplectic structure
described in Example 5.2.

7.3.

Next we assume that M is a pseudo-symmetric space of constant type.
In Case 1 of section 7.2, principal Ricci curvatures are 2κ, 2κ and 2H . Hence M is of constant type if and only

if M has constant holomorphic sectional curvature H = α− β = s− 4κ.
In Case 2 of section 7.2, E1,1 is a pseudo-symmetric space of constant type.

Corollary 7.1. A 3-dimensional almost cosymplectic (κ, µ, ν)-space which is a pseudo-symmetric space of constant type
is either (1) a cosymplectic 3-manifold, or (2) an almost cosymplectic (κ, µ, ν)-space satisfying µ2 + ν2 = (s + 3tr(h2))2

with constant holomorphic sectional curvature or locally isomorphic to the Minkowski motion group E1,1 equipped with
a left invariant almost cosymplectic structure described in Example 5.2.

Problem 2. Classify 3-dimensional almost cosymplectic (κ, µ, ν)-space satisfying µ2 + ν2 = (s + 3tr(h2))2 with
constant holomorphic sectional curvature.

7.4.

Next let us consider Ricci ∗-tensor field of 3-dimensional generalized almost cosymplectic (κ, µ, ν)-spaces.
Take a local orthonormal frame field E = {e1, e2, e3} as before. Then we have

R(ei, ϕei)ξ = 0, i = 1, 2, 3.

Thus, for any tangent vector field Y , we have

ρ∗(ξ, Y ) =
1

2

2∑

i=1

g(R(ξ, ϕY )ϕei), ei) = g(R(ϕe1, e1)ξ, ϕY ) = 0.

Proposition 7.1. Let M be a 3-dimensional generalized almost cosymplectic (κ, µ, ν)-space. Then ρ∗(ξ, ·) = 0. Hence M
is weakly ∗-Einstein.

Corollary 7.2. Let M be a 3-dimensional generalized almost cosymplectic (κ, µ, ν)-space. If its ∗-scalar curvature is
constant, then M is ϕ-Einstein.

Note that on almost contact Riemannian 3-manifolds, the ∗-scalar curvature coincides with the holomorphic
sectional curvature (see [12]).

8. Characteristic flow invariant characteristic Jacobi operator

8.1.

In our previous paper [14] we have investigated contact Riemannian 3-manifolds satisfying £ξℓ = 0 under
the assumption that ξ is an eigenvector field of S. In this section we study almost cosymplectic 3-manifolds
satisfying £ξℓ = 0 under the assumption that ξ is an eigenvector of S.
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Let M be an almost cosymplectic 3-manifold whose characteristic vector field is an eigenvector field of
S. Then as we have seen before, M is locally a generalized almost cosymplectic (κ, µ, ν)-space. In this case
Sξ = 2κξ.

In case M = U0, then Sξ = 2κξ and £ξℓ = 0 holds on whole M , since M is cosymplectic. Thus hereafter we
assume that U is non-empty and take a local orthonormal frame field E = (e1, e2, e3) as in Theorem 7.3.

The characteristic Jacobi operator ℓ is computed as

ℓ(X) = R(X, ξ)ξ = (κI + µh+ νϕh)(X − η(X)ξ) = κ(X − η(X)ξ) + µhX + νϕhX.

Hence we get
ℓ(e1) = (κ+ λµ)e1 + λνe2, ℓ(e2) = λνe1 + (κ− λµ)e2.

Let us compute £ξℓ. First we observe that

[ξ, e1] =
(
λ− µ

2

)
e2, [ξ, e2] = −

(
λ+

µ

2

)
e1.

We put ℓ(e1) = ℓ11e1 + ℓ21e2 and ℓ(e2) = ℓ12e1 + ℓ22e2. Then

(£ξℓ)e1 =[ξ, ℓ(e1)]− ℓ[ξ, e1] = [ξ, ℓ11e1 + ℓ21e2]− ℓ[ξ, e1]

=ξ(ℓ11)e1 + ξ(ℓ21)e2 + ℓ11[ξ, e1] + ℓ21[ξ, e2]− (λ+ α)ℓ(e2)

=
(
ξ(ℓ11)− 2λ2ν

)
e1 +

{
ξ(ℓ21) + 2λµ

(
λ− µ

2

)}
e2

=
(
ξ(κ+ λµ)− 2λ2ν

)
e1 +

{
ξ(λν) + 2λµ

(
λ− µ

2

)}
e2,

Since λ 6= 0 on U , (£ξℓ)e1 = 0 holds if and only if

ξ(κ+ λµ)− 2λ2ν = 0, ξ(λν) + 2λµ
(
λ− µ

2

)
= 0.

In a similar way we have (£ξℓ)e2 = 0 if and only if

ξ(κ− λµ)− λµν = 0, ξ(λν)− 2λµ
(
λ+

µ

2

)
= 0.

Thus £ξℓ = 0 holds if and only if µ = −2a = 0. In this case ξ(λ) = 0 and hence ν = 0. Hence M is a generalized
almost cosymplectic (κ, 0)-space. In this case ρ11 = ρ22, so M is pseudo-symmetric. Moreover the orthonormal
frame field {e1, e2, e3} satisfies

ρ31 = 2bλ− e2(λ) = ρ32 = 2cλ− e1(λ) = 0,

we get Sϕ = ϕS.
The condition Sϕ = ϕS implies that κ is constant by Lemma 6.2 and hence M is locally isomorphic to E1,1.

Thus we arrive at our result.

Theorem 8.1. Let M be an almost cosymplectic 3-manifold. Assume that ξ is an eigenvector field of S. Then M satisfies
£ξℓ = 0 if and only if M is cosymplectic or a homogeneous almost cosymplectic 3-manifold, locally isomorphic to E1,1.

Up to now it is not clear that whether we can remove the assumption that ξ is an eigenvector field of S in the
above theorem or not.

Obviously the conditions ℓ = 0 is a special case of £ξℓ = 0. One can deduce that almost cosymplectic 3-
manifolds with vanishing ℓ are cosymplectic from Lemma 4.1.

Thus the Minkowski motion group E1,1 equipped with a left invariant almost cosymplectic structure
provides an examples of almost cosymplectic 3-manifolds satisfying £ξℓ = 0 but ℓ 6= 0.

Remark 8.1. In [14, pp. 671], we have computed the Lie derivative £ξℓ on a 3-dimensional non-Sasakian contact
generalized (κ, µ, ν)-space M . Unfortunately the formula £ξℓ given in [14, pp. 671] has typographical errors. In
this opportunity we would like to give the correct formula of £ξℓ.

Take a local orthonormal frame field E = {e1, e2, e2 = ξ} as in [14, Lemma 3.1], then we have

(£ξℓ)e1 =[ξ, ℓ(e1)]− ℓ[ξ, e1] = −2{ξ(λ)(1 + λ+ 2α) + λξ(α)}e1 + {ξ(ξ(λ))− 4αλ(1 + λ+ α)}e2,
(£ξℓ)e2 =[ξ, ℓ(e2)]− ℓ[ξ, e2] = {ξ(ξ(λ))− 4αλ(1− λ+ α)}e1 + 2{ξ(λ)(1− λ+ 2α) + λξ(α)}e2.

Since we assumed that M is non-Sasakian, i.e., λ > 0, M satisfies £ξℓ = 0 if and only if ξ(λ) = 0 and α = 0. From
this conclusion we obtain [14, Lemma 4.4] and hence we obtain the main result [14, Theorem 4.7].
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