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Characteristic Mode Analysis of ESPAR

for Single-RF MIMO Systems

Zixiang Han , Graduate Student Member, IEEE, Yujie Zhang , Graduate Student Member, IEEE,

Shanpu Shen , Member, IEEE, Yue Li , Student Member, IEEE, Chi-Yuk Chiu , Senior Member, IEEE,

and Ross Murch , Fellow, IEEE

Abstract— A systematic method based on the Theory of Char-
acteristic Modes (TCM) for finding orthogonal radiation patterns
of any electronically steerable parasitic array radiator (ESPAR)
is described. This method can be useful for designing single-RF
front-end multiple-input multiple-output (MIMO) systems in
which orthogonal patterns can be utilized as a basis set for
space modulation (SM) or full multiplexed MIMO systems. The
method is based on the N -port formulation of TCM and is
not restricted to antenna type or array configuration. It can also
provide closed formed solutions for the antenna element currents
required to generate the orthogonal patterns. In addition an
approach to finding the required load reactances in ESPAR for
generating the orthogonal patterns is provided and is based on the
quasi-Newton method utilizing a closed form expression for the
initial approximate solution. Approximate estimation of the effec-
tive aerial degrees of freedom of the ESPARs is also discussed.
Two simulation examples of ESPARs, a 4-element linear dipole
array and an 8-element rectangular planar inverted-F antenna
array, using SM as well as full multiplexed MIMO are provided,
demonstrating the effectiveness of the proposed method.

Index Terms— Aerial degrees of freedom, ESPAR, MIMO,
orthogonal pattern, space modulation, theory of characteristic
modes.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) systems play

a critical role in enhancing the spectral efficiency (SE)

of wireless communication systems [1], [2]. However, energy

efficiency (EE) has also become an important parameter and

tradeoffs between SE and EE have become necessary as

communication system complexity increases [3], [4]. One

approach to performing this tradeoff is using hybrid precoding

and a variety of techniques and methods have been proposed
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[5], [6] including the use of highly reconfigurable antennas [7].

Another approach that has been proposed is to use single-

radio-frequency (RF) MIMO communication [8], [9] and the

conventional technique to exploit this architecture is to use

space modulation (SM) [10], [11]. SM offers an increase of

EE but at the expense of SE and the spatial diversity required

for SM is often formed through switching the feeds of spatially

separated antennas.

Electronically Steerable Passive Array Radiator (ESPAR)

antennas have also been utilized to provide single-RF

MIMO systems by switching between radiation patterns

[8], [12]–[14]. Mutual coupling between the single active

element and the parasitic elements in ESPAR is harnessed

to form the required orthogonal patterns through switched

parasitic element loads [15]. ESPAR has been utilized in both

SM and full multiplexed MIMO using modulation schemes

such as ON-OFF keying (OOK), phase shift keying (PSK)

and 16-QAM [16]–[18]. Channel estimation techniques for

ESPAR have also been proposed [19] and investigations

into the effect of quantized or switched loads have been

performed [20]. The use of switched parasitic loading to

create benefits has also been leveraged in other contexts

such as overcoming reductions in capacity resulting from

mutual coupling [21], [22]. ESPAR has also been applied to

frequency-selective channels by using orthogonal frequency

division multiplexing (OFDM), but the number of switched

loads needs to be increased as compared to frequency flat

channel configurations [23]. Utilizing single-carrier broadband

transmission for handling frequency-selective channels, such

as frequency domain equalization (SC-FDE) [24], [25], would

also be possible using ESPAR. The development of ESPAR

has also resulted in antenna designs to support single-RF

MIMO systems [26]–[28].

To analyze the performance of ESPAR single-RF MIMO

systems, the concept of the beamspace domain is often used

[8], [29], [30]. The beamspace domain interprets the formation

of MIMO sub-channels by associating them with a correspond-

ing orthogonal beam or pattern. In essence the orthogonal

beams form independent sub-channels in a similar way to the

spatial separation of antennas that form spatial sub-channels.

When ESPAR is interpreted in the beamspace domain both

SM and full multiplexed single-RF MIMO systems can be

analyzed [31]–[33].
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There are several challenges in creating suitable ESPAR

systems to support full spatial multiplexing single-RF MIMO.

The first of these is their typically narrow bandwidth due to the

mutual coupling needed for an ESPAR. Methods to overcome

this include the careful design of the parasitic elements so that

the mutual coupling is neither too high or low. Alternatives

to overcome the bandwidth issue such as load modulated

arrays (LMA) have also been proposed but still in development

[34], [35]. Furthermore, it is also challenging to maintain good

impedance matching across the different patterns in ESPAR.

This can be overcome by switching tunable matching networks

consisting of switched transmission lines (TLs) [35], [36] or

lumped elements [37]. The main disadvantage of this approach

is increased insertion loss but this can be kept low by using

low loss substrate and PIN diodes to construct tunable TL

networks [36].

A key challenge in designing ESPAR to support single-RF

MIMO is constructing the required orthogonal far-field pat-

terns in ESPAR. This is not straightforward and is dependent

on intuition regarding the specific parasitic antenna configu-

ration [8], [33], [38]. The Gram-Schmidt orthonormalization

(GSO) procedure has been used to overcome this drawback

to find an orthonormal basis set for the patterns [31]. Using

the GSO approach the concept of aerial degrees-of-freedom

(ADoF) has also been introduced. ADoF provides an estimate

of the number of basis functions a given ESPAR can pro-

vide [32]. The GSO approach is useful for certain canonical

antenna element types, such as dipoles, which have analytical

far-field pattern expressions. However, for other antenna types

it can only be applied numerically and does not leverage any of

the underlying electromagnetic properties of ESPAR. For this

reason ESPAR has been mainly restricted to antennas based

on dipole elements limiting its use. In addition the method to

find the optimal load reactances in these methods is usually

performed by exhaustive search [15] which is also not efficient

when the number of parasitic antennas becomes large.

In this article we describe a systematic method for finding

the orthonormal radiation patterns required for ESPAR as well

as the necessary parasitic load reactances to produce those

patterns. The method is based on the Theory of Characteristic

Mode (TCM) [39]–[41]. In particular, an N -port TCM formu-

lation has been proposed in 1973 [42]–[44], which has also

been recently applied to pixel antenna optimization [45]. The

specific contributions of this work are:

1) We apply N -port TCM to obtain orthonormal patterns

for use in an ESPAR antenna with only one feeding element

and N − 1 parasitic elements. The approach is general and is

not restricted to antenna type or array configuration.

2) We provide closed form solutions, using N -port TCM,

for the antenna element currents that produce the required N
orthogonal patterns for rectangular, circular, and linear array

configurations with arbitrary antenna type.

3) We characterize the antenna coupling within ESPAR

through the condition number of a mode matrix. We also

investigate the relationship between the condition number,

element separation, and effective ADoF through numerical

simulations, providing a guide on how to construct efficient

ESPAR with proper element separation.

4) We provide an efficient optimization method based on the

quasi-Newton method for finding the optimal load reactances

to excite the required N orthogonal patterns with only one

feeding element. We also provide a closed form expression

for an initial approximate solution. The proposed optimization

method is more effective than exhaustive search methods used

previously.

5) We simulate, using full electromagnetic simulation soft-

ware, the orthogonal patterns for a 4-element uniform linear

dipole array and an 8-element rectangular planar inverted-F

antenna (PIFA) array using the proposed methods. Simulation

results including SE, EE and symbol error rate (SER) for

SM-MISO and full multiplexed MIMO systems are provided

and demonstrate the feasibility of using TCM to implement

ESPAR for single-RF MIMO.

Organization: Section II introduces N -port TCM. The

analysis for various ESPAR configurations using N -port TCM

is presented in Section III. In addition the mode matrix

condition number is introduced as well as its relation to ADoF.

Section IV describes a method to efficiently determine the

required reactance loads. In Section V, we introduce two exam-

ple ESPAR designs and the associated patterns and loads using

our approach and provide numerical results for EE, SE and

SER to demonstrate the feasibility of the approach. Section

VI concludes the work.

Notation: Bold lower and upper case letters denote vectors

and matrices respectively, and letters not in bold font represent

scalars. Re {a}, Im {a}, and |a| refer to the real part, imag-

inary part, and modulus of a complex scalar a, respectively.

[a]i and kak refer to the ith element and l2−norm of vector

a, respectively. AT , AH ,[A]i, [A]ij , and det(A) refer to the

transpose, conjugate transpose, ith row, (i, j)th element, and

determinant of a matrix A, respectively. R and C denote

real and complex number sets respectively and j =
√
−1

denotes an imaginary number. CN (µ, σ2) denotes complex

Gaussian distribution with mean µ and variance σ2. 0N

denotes an N -dimensional zero column vector and 0M×N

denotes a M ×N zero matrix. UN denotes an N ×N identity

matrix. diag(a1, . . . , aN ) is a diagonal matrix with elements

being a1, . . . , aN while diag(A1, . . . ,AN ) is a block diagonal

matrix with its matrix elements being A1, . . . ,AN .

II. N -PORT CHARACTERISTIC MODE ANALYSIS

Consider an arbitrary N -port antenna system (N multiple

antennas) with the nth port loaded with a reactance xL
n as

shown in Fig. 1. The nth port is excited by a voltage source

vn and the resultant current through the nth port is denoted

as in. We group vn and in (n = 1, . . . , N ) into vectors as

v = [v1, v2, . . . , vN ] T and i = [i1, i2, . . . , iN ] T and they are

related by

v =
(

Z + XL
)

i (1)

where Z denotes the impedance matrix of the N -port

antenna and XL is a diagonal matrix defined by XL =
diag

(

xL
 , xL

 , · · · , xL
N

)

which represents the load reactance

connected to each port. The antenna impedance matrix Z is

complex symmetric where [Z]ii refers to the self-impedance of
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Fig. 1. N -port antenna system loaded with reactances and voltage sources.

the ith port and [Z]ij = [Z]ji refers to the mutual impedance

between the ith and jth port. We also use R = Re {Z} to

denote the antenna resistance matrix and X = Im {Z} to

denote the antenna reactance matrix so that Z = R+jX. In all

these expressions the dependence of all variables on frequency

is assumed and it is not explicitly shown for brevity.

The N -port characteristic modes can be defined by the

weighted eigenvalue problem [42]

Zin = (1 + jλn)Rin (2)

where in is the eigenvector or modal current and (1 + jλn)
is the eigenvalue for the nth mode. The concept behind (2)

is that at a given frequency, every conducting object (such as

an antenna system) has a particular set of surface currents and

corresponding radiated far-fields associated with it. These are

characteristics of the objects shape and independent of any

specific excitation [40], [46]. If one of the resulting charac-

teristic modal radiated far-fields is used to excite the object,

the scattered radiation will have exactly the same far-field

pattern and its magnitude will be related to the eigenvalue

of that characteristic mode (CM) [40], [45], [46]. Therefore,

TCM offers insights into the natural resonant phenomena of

any antenna system including ESPAR.

Substituting Z = R + jX into (2), we have

Xin = λnRin (3)

which is a real symmetric eigenvalue problem so the eigen-

value λn and the eigenvector in for the nth mode are both real.

Excited by the nth modal current in, the nth modal radiation

pattern en (Ω) is given by

en (Ω) =

N
X

i=1

[in]i e
oc
i (Ω) (4)

where Ω = (θ, φ) denotes the spatial angle in which θ and

φ represent the elevation and azimuth angles in spherical

coordinates, and eoc
i (Ω) denotes the radiation pattern of the

ith antenna port excited by a unit current when all the other

antenna ports are open [42].

A. Orthogonal Modal Current and Pattern

Characteristic modes are orthogonal to each other [42]. In

particular the orthogonality of modal currents can be expressed

as [42]

iTmRin = δmn (5)

where δmn is the Kronecker delta function (0 if m 6= n and

1 if m = n) and the orthogonality of in is weighted by R.

Importantly, the modal radiation patterns are also orthogonal

so that

1

η

"

S∞

eH
m (Ω) en (Ω) ds = δmn (6)

where η is intrinsic impedance of free space and S∞ is the

surface of a sphere enclosing ESPAR in the far-field [44].

The specific antenna geometry or its ground plane dimensions

does not affect the applicability of TCM and the orthogonality

properties of (5) and (6) always hold.

The orthogonal modal radiation pattern en (Ω) found by

characteristic mode analysis provides an efficient approach to

find an orthogonal basis set for the radiation patterns of any

N -port antenna including ESPAR. Specifically, any current

vector i can be written as a linear combination of the modal

currents

i =
N

X

n=1

αnin (7)

where αn is the nth modal weighting coefficients. Accord-

ingly, the radiation pattern excited by the current vector i,

denoted as er (Ω), can be also written as a linear combination

of the modal radiation patterns en (Ω)

er (Ω) =

N
X

n=1

αnen (Ω) . (8)

B. Single Voltage Source Excitation

We can utilize the orthogonal modal radiation patterns (4)

directly for SM or full multiplexed MIMO through (8) without

having to resort to bespoke solutions for each antenna type

and configuration. In particular we only need to excite one

port (with the voltage sources of all other ports set to zero),

and set the load reactances XL of the other ports to produce

the desired modal currents and the corresponding orthogonal

patterns. This configuration forms an ESPAR that can be

utilized in a single-RF MIMO system. More specifically,

with reference to Fig. 1, we designate Port 1 as the feeding

port with voltage source excitation v1 to form the ESPAR

for the remainder of this article. To radiate the required

orthogonal modal patterns we then need to find the required

load reactances (which are denoted as XL
n in the remainder

of this article) that correspond to modal currents in so that
(

Z + XL
n

)−1
v = in in which v = [v1, 0, . . . , 0] T where v1

represents the ESPAR voltage excitation.

The method for determining XL
n is described in Section IV

while the eigenvalue and eigenvector properties for specific

antenna configurations are described next.

III. EIGENVALUE AND EIGENVECTOR PROPERTIES FOR

SPECIFIC ANTENNA ARRAY CONFIGURATIONS

Utilizing the framework in Section II, it is useful to calculate

the properties of the eigenvalues and eigenvectors for specific

antenna array configurations such as rectangular, circular and
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Fig. 2. 4-element rectangular array.

linear arrays. We start by considering 4-element array configu-

rations and then generalize to N -element array configurations.

To deduce the properties of the eigenvalues and eigenvectors

of specific antenna configurations we rewrite (3) as

Min = λnin (9)

where M = R−1X and it is referred to as the mode matrix

in the remainder of this article.

To help put the results into context, consider a basic ref-

erence antenna array configuration, consisting of N identical

uncoupled antennas. For this reference antenna array, R =
rUN , X = xUN , (recall that UN is used to denote an N×N
identity matrix) and the mode matrix is given by M = x/rUN

(where r > 0 and x are arbitrary values). Therefore, the nth

eigenvalue is λn = x/r and the nth eigenvector is the nth

column vector of UN . Because the antennas are uncoupled

it cannot be used for ESPAR but it is a useful reference for

comparison with the coupled geometries described next.

A. Eigenvectors for Specific Antenna Array Configurations

1) Rectangular Array: Consider a 4-element 2 × 2 rectan-

gular array by referring to Fig. 2. Utilizing array symmetry we

write the mode matrix in a special form (see Appendix A. A)

M =









a b c d
b a d c
c d a b
d c b a









(10)

where the elements a, b, c, and d are all real scalars for any

antenna type and array dimension. (in the special case of a

2 × 2 square array (φ = 45◦) we have b = d). Due to the

special matrix form, the four eigenvectors are found to be

constant vectors (see Appendix A. A) given by

i1 =









0.5
0.5
0.5
0.5









, i2 =









0.5
−0.5
−0.5
0.5









, i3 =









0.5
−0.5
0.5
−0.5









, i4 =









0.5
0.5
−0.5
−0.5









,

(11)

where the norm of each eigenvector is normalized to unity

without loss of generality (and is performed in all the examples

that follow). The first entry of each eigenvector corresponds

to the current through Port 1. All entries in (11) have the

same magnitude |[in]i| = 0.5 for n, i = 1, 2, 3, 4, so that each

antenna contributes equally to the modal patterns (4) no matter

the geometry dimensions or antenna type.

We can generalize the form (10) by nesting four identical

p × q arrays into the element positions of the original 2 × 2
array forming a clustered 2p×2q-element array. The elements

a, b, c, and d in (10) are replaced by matrices A, B, C, and

D ∈ Rpq×pq . The eigenvectors of the 2p × 2q-element array

have a special structure (see Appendix A. A) and the 4pq
eigenvectors have the forms

i1,n =









ĩ1,n

ĩ1,n

ĩ1,n

ĩ1,n









, i2,n =









ĩ2,n

−̃i2,n

−̃i2,n

ĩ2,n









,

i3,n =









ĩ3,n

−̃i3,n

ĩ3,n

−̃i3,n









, i4,n =









ĩ4,n

ĩ4,n

−̃i4,n

−̃i4,n









, (12)

for n = 1, 2, . . . , pq and where ĩ1,n, ĩ2,n, ĩ3,n, and ĩ4,n ∈
Rpq×1 are eigenvectors of matrices A + B + C + D, A −
B−C+D, A−B+C−D and A+B−C−D respectively,

but are normalized so that

�

�

�̃
im,n

�

�

�
= 0.5 for m = 1, 2, 3, 4

and n = 1, 2, . . . , pq. For each of the eigenvectors im,n,

m = 1, 2, 3, 4, it consists of four identical sub-eigenvectors

ĩm,n with different signs. Hence, in total 4pq eigenvectors are

formed. It is useful to note that the norm of each of the ĩm,n

are the same so that each p × q sub-array contributes equally

to the modal patterns.

For m × n rectangular arrays where either m or n is odd,

such as 3 × 2 or 3 × 3 configurations, we can treat them as

linear arrays and for example three sub-arrays each with 2 or

3 elements. This extension is briefly described at the end of

Section III. A. 3.

In Section IV we provide results for an 8-element rectan-

gular array ESPAR using PIFAs which is formed by putting

clusters of 1 × 2 identical arrays into an 2 × 2 array forming

a clustered 2 × 4-element array with 8 eigenvectors. The

8 eigenvectors, i1,n, i2,n, i3,n, and i4,n for n = 1 and 2,

provided by (12), will be formed as shown in Section IV.

2) Circular Array With Center Feeding: Conventionally

ESPAR is configured as a circular array with a feeding port in

the center as shown in Fig. 3. In the configuration in Fig. 3,

M can be written as (see Appendix A. B)

M =













a b b b b
c d e f e
c e d e f
c f e d e
c e f e d













(13)

where a, b, c, d, e, and f are real scalars. Five eigenvectors

of M are (see Appendix A. B)

i1 = 1√
1+4α2

1













1
α1

α1

α1

α1













, i2 = 1√
1+4α2

2













1
α2

α2

α2

α2













,
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Fig. 3. 5-element circular array with center feeding.

i3 =













0
0.5
−0.5
0.5
−0.5













, i4 =













0
0

− 1√
2

0
1√
2













, i5 =













0
− 1√

2

0
1√
2

0













, (14)

where α1 and α2 are given by

α1,2 =
(d + 2e + f − a) ±

p

(d + 2e + f − a)2 + 16bc

8b
.

(15)

Zero entries in eigenvectors imply the corresponding ports

should be open (zero current). When a zero entry occurs at

the feeding element (Port 1) such as currents i3, i4, and i5
in (14), it indicates that Port 1 has to be open if we want

to excite the corresponding modal radiation pattern. However,

this contradicts the ESPAR required that we only excite Port

1 in a single source configuration. Therefore, for a single

voltage source excitation this result is not satisfactory as feed

Port 1 cannot be set to zero.

To solve the single port excitation problem we can rotate

the orthogonal pattern basis to achieve a new orthogonal

pattern basis. For example, in this 5-element circular array

configuration, we can utilize a matrix for the 5 modal radi-

ation patterns, E5 =


e1, e2, e3, e4, e5

�

so that E5 satisfies
1
η

!

S∞

EH
5 E5 ds = U5. A unitary matrix T ∈ C5×5 can

then be used to rotate the orthogonal pattern basis where [T]1
should not contain a zero entry to ensure that modal pattern

e1 is mixed with other modal patterns. The new basis obtained

can be written as Ẽ5 = E5T =


ẽ1, ẽ2, ẽ3, ẽ4, ẽ5

�

, which is

also an orthogonal basis since

1

η

"

S∞

ẼH
5 Ẽ5 ds = TH

�

1

η

"

S∞

EH
5 E5 ds

�

T

= THU5T = U5. (16)

The corresponding modal currents can also be found by

utilizing a unitary matrix for the 5 eigenvectors, I5 =


i1, i2, i3, i4, i5
�

, so that after rotation the new currents become

Ĩ5 = I5T. Therefore the first entries of the current vectors are

non-zero because i1 is mixed with i2, i3, i4 and i5. As a result

we can excite the rotated current vectors to generate orthogonal

radiation patterns with a single voltage source at the feeding

element Port 1.

We can also generalize the circular array form to N
elements. We restrict the configuration to odd numbers of

Fig. 4. 4-element linear array.

elements [8], [16] so there is one feeding element in the center

and an even number of parasitic elements are uniformly spaced

around the circle. We divide the parasitic elements into two

identical groups each with N−1
2 elements, e.g. in Fig. 3 we

can choose Ports 2 and 3 as a group and Ports 4 and 5 as

the other group so that two groups are symmetrical about the

feeding element. The mode matrix can then be written as

M =





a b b

c D E

c E D



 (17)

where a is scalar, b ∈ R1×N−1
2 , c ∈

R
N−1

2
×1, D, E ∈ R

N−1

2
×N−1

2 . The N eigen-

vectors can be classified into two forms (see

Appendix A. B)

i1,n =





i1,n

ĩ1,n

ĩ1,n



 , i2,n =





0

ĩ2,n

−̃i2,n



 , (18)

where i1,n is a scalar and ĩ1,n, ĩ2,n ∈ R
N−1

2
×1. ĩ2,n are

eigenvectors of D − E and normalized to

�

�

�̃
i2,n

�

�

�
= 1√

2
for

n = 1, 2, . . . , N−1
2 while i1,n and ĩ1,n are related to a, b,

c, D, E and we have ki1,nk = 1 for n = 1, 2, . . . N+1
2 .

That is N+1
2 eigenvectors take the form of i1,n and the other

N−1
2 eigenvectors have the form i2,n. There is at least one

eigenvector containing a zero at Port 1. We can rotate the

orthogonal pattern basis, as previously described, to solve this

problem.

3) Linear Array: The last considered configuration is a

4-element linear array as Fig. 4 shows.

This structure is not as straightforward as the previous arrays

and the mode matrix can be written as (see Appendix A. C)

M =









a b c d
e f g h
c d a b
g h e f









. (19)

The four eigenvectors can be written generally as (see Appen-

dix A. C)

i1 = 1√
2+2α2

1









1
α1

1
α1









, i2 = 1√
2+2α2

2









1
α2

1
α2









,

i3 = 1√
2+2α2

3









1
α3

−1
−α3









, i4 = 1√
2+2α2

4









1
α4

−1
−α4









, (20)
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where α1, α2, α3, and α4 are given by

α1,2 =
f + h − a − c

2 (b + d)
±

s

(f + h − a − c)
2

4 (b + d)
2 +

e + g

b + d
,

(21)

α3,4 =
f − h − a + c

2 (b − d)
±

s

(f − h − a + c)
2

4 (b − d)
2 +

e − g

b − d
.

(22)

This structure is good since all the elements of all eigenvectors

are non-zero. However if b = d or e = g then x = 0 but this

is an unlikely occurrence.

Generalizing the linear array to an arbitrary number of

elements can be performed separately for odd and even

element numbers. For odd numbers of elements, two identical

subarrays are placed at each side of a center feeding element,

so the analysis is the same as Section III. A. 2. For even

numbers, as in Fig. (4), Port 3 is the opposite element of the

feeding element, Port 1. Then there are two identical groups

of elements at left and right hand sides that can be treated as

two subarrays such that

M =









a b c d

e F g H

c d a b

g H e F









(23)

where a and c are scalars, b, d ∈ R1×( N

2
−1), e, g ∈

R
( N

2
−1)×1, and F, H ∈ R

( N

2
−1)×( N

2
−1). The N eigenvectors

have two common forms (see Appendix A. C) each with N
2

different eigenvectors

i1,n =

�

ĩ1,n

ĩ1,n

�

, i2,n =

�

ĩ2,n

−̃i2,n

�

, (24)

where ĩ1,n, ĩ2,n ∈ R
N

2
×1,

�

�

�̃
i1,n

�

�

�
=

�

�

�̃
i2,n

�

�

�
= 1√

2
for n =

1, 2, . . . , N
2 .

Further generalization of the linear array can be performed

by replacing each element with a sub-array and this can be

used to handle m× n rectangular arrays where either m or n
is odd. For example we can regard a rectangular array as a

linear array consisting of m (or n) sub-arrays each with n
(or m) elements. In particular, for a 3 × 2 array or a 3 × 3
array, we can treat them as linear arrays with three sub-arrays

each with 2 or 3 elements. The analysis is same as the odd

element number version of linear array described above, with

the only difference being element a in (17) becomes a matrix

A since more than one element is in the center sub-array.

In Section IV we provide results for a 4-element linear array

ESPAR using dipole antennas.

B. Eigenvalues

For an uncoupled antenna array with identical antennas all

the eigenvalues are equal. However, for coupled antenna arrays

the eigenvalues will no longer be all equal. To estimate the

antenna coupling within ESPAR, when all antenna elements

are identical and matched, we use the condition number of the

mode matrix M, denoted as κ and given by

κ =

max
n=1,...,N

|λn|

min
n=1,...,N

|λn|
. (25)

The condition number is the ratio between the highest

and lowest absolute values of the eigenvalues of the mode

matrix M [47].

The condition number κ is always greater than or equal

to unity. If κ is unity, there is no coupling as shown in the

reference example of an uncoupled antenna array with identi-

cal antennas. Accordingly, if κ is close to unity, the coupling

becomes negligible. In this situation, changing the load on

one antenna port will not affect the currents on the other

ports, so it is not suitable for ESPAR. Therefore, we need

to set a constraint for the lower bound on κ to ensure enough

coupling for use in ESPAR. We have found through numerical

simulation that the condition number κ should be greater than

10 for effective ESPAR and set the lower bound to κl = 10.

On the other hand, if the condition number κ is extremely high

it implies that M is close to singular [47] which indicates that

some rows of M are close to being linearly dependent. From

the perspective of an antenna array, it implies that the antennas

are highly coupled and are close together. In addition, because

the condition number κ is high, it also implies that any small

changes to the load reactance XL in the ESPAR antenna will

cause large changes to the current and pattern. This makes the

system very sensitive and prone to errors through component

tolerances. Therefore, we need to set a constraint for the upper

bound on κ to avoid the sensitivity issue. We have found

through numerical simulation that κ in practice should be less

than 104 and set the upper bound κu = 104.

The condition numbers for the 4-element rectangular array,

4-element linear array, and 5-element circular array versus

element separation are shown in Fig. 5. The element separation

is defined as R/λ where R is shown in Figs. 2, 3, 4 and

λ is wavelength. From Fig. 5, we find that the condition

number decreases as the element separation increases. When

the element separation is large, the condition number is small.

For example, when R > 0.5λ, the condition numbers for

the 4-element arrays are less than 10 (κ < 10) while the

5-element circular array has a slightly larger condition number

(indicating stronger coupling) but is still less than 50 (κ < 50).

On the other hand, when the element separation is small,

the condition number becomes large and the coupling is strong.

For those modes whose absolute value of eigenvalues is larger

than κu min
n=1,...,N

|λn|, it is difficult to excite them due to the

sensitivity to the load values. We also find that the condition

number of the rectangular array is smaller than the linear and

circular array with center feeding when element separation is

small, indicating that elements in the rectangular array should

be closer to maintain coupling for mode excitation in ESPAR.

We also consider the effective ADoF (EADoF) in the

ESPAR with different element separations and condition num-

bers. EADoF has been defined in previous work [32] as a

measure of the effective number of aerial dimensions of the

ESPAR. Using the definition in [32] we plot the estimated
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Fig. 5. Condition number versus element separation for different antenna
array configurations.

Fig. 6. Effective ADoF versus element separation for different array
configurations.

EADoF versus element separation in Fig. 6 for the three

array configurations considered. From Fig. 6, we can find

that EADoF has a close relationship with the element sep-

aration. Therefore, with the results in Fig. 5, we can deduce

that EADoF also has a close relationship with the condition

number. When κ is approximately less than κl = 10 (e.g.

a large separation R > λ), EADoF reduces to 1. This is

because when the separation is large, the antenna coupling

is weak, so that the radiation pattern always remains the same

whatever the load reactances are. As a result, the combination

of modal patterns also remain constant so that the EADoF

becomes unity. When κ is approximately larger than κu = 104

(e.g. a small separation R < 0.1λ), there is at least one EADoF

loss due to the load sensitivity issue in the highly coupled

ESPAR. The EADoF loss can be estimated by counting the

number of eigenvalues whose absolute values are greater than

κu min
n=1,...,N

|λn|. In general, if κl ≤ κ ≤ κu and 0.1λ ≤ R <

0.5λ, then EADoF will be N without any loss in all these

examples.

IV. LOAD REACTANCE OPTIMIZATION

A. Formulation

Given the desired orthogonal modal radiation pattern

en (Ω), we need to find the corresponding load reactances XL
n

with a given single voltage source at the feeding port (Port 1)

to excite the modal current in and subsequently radiate the

desired modal pattern. That is, we aim to find XL
n so that

the radiation pattern produced by XL
n , which is denoted as

er
(

Ω,XL
n

)

and given by

er
(

Ω,XL
n

)

=

N
X

i=1

h

(

Z + XL
n

)−1
v
i

i
eoc

i (Ω) , (26)

is close to en (Ω).
To that end, we consider the correlation coefficient between

en (Ω) and er
(

Ω,XL
n

)

defined as

ρn

(

XL
n

)

=
hen, eri
kenk kerk , (27)

where hen, eri defines an inner product between en (Ω) and

er
(

Ω,XL
n

)

given by

hen, eri =

"

eH
n (Ω) er

(

Ω,XL
n

)

dΩ, (28)

and kenk =
p

hen, eni and kerk =
p

her, eri define the

norm of en (Ω) and er
(

Ω,XL
n

)

in the pattern space. The

correlation coefficient satisfies 0 ≤
�

�ρn

(

XL
n

)�

� ≤ 1 and when
�

�ρn

(

XL
n

)�

� = 0, en (Ω) and er
(

Ω,XL
n

)

are orthogonal. When
�

�ρn

(

XL
n

)�

� is close to unity, en (Ω) is very close or the same

as er
(

Ω,XL
n

)

. Therefore, finding the load reactances XL
n to

produce the orthogonal modal radiation pattern en (Ω) can be

performed by solving the optimization problem

max
XL

n

�

�ρn

(

XL
n

)�

� (29)

which aims to make the patterns en (Ω) and er
(

Ω,XL
n

)

as

close to each other as possible.

B. Optimization

The problem (29) is an unconstrained optimization problem.

Therefore, efficient optimization algorithms, such as quasi-

Newton method [48], can be used to maximize ρn

(

XL
n

)

.

However, considering the expression for ρn

(

XL
n

)

, it is difficult

to determine the convexity of ρn

(

XL
n

)

. Hence, using the

quasi-Newton method could not guarantee convergence to a

global optimal solution. Nevertheless, it guarantees conver-

gence to a stationary point of the problem (29).

To help find an optimal solution that is close to the global

optimum and support convergence it is important to find a

good initial point for the quasi-Newton method. Here we

provide a good initial point with closed form solution, based

on the relationship between voltage and current within ESPAR

systems. In essence we wish to excite the modal current in
(so as to radiate the orthogonal pattern en (Ω)) with a single

voltage source feeding Port 1 (denoted as v = [v1, 0, . . . , 0]
T

where v1 can be an arbitrary non-zero value that is assumed

to be a real number) by tuning the load reactance XL
n .

Therefore, we wish to minimize the difference between v

and
(

Z + jXL
n

)

in (which is the voltage vector excited by the

modal current source in), so that we can select the initial point

XL
n,init as

XL
n,init = argmin

XL
n

�

�(Rin − v) + j
(

X + XL
n

)

in
�

�

= argmin
XL

n

�

�

(

Z + jXL
n

)

in − v
�

� , (30)
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where (Rin − v) is the real part and
(

X + XL
n

)

in is the

imaginary part (in is a real vector). Because the real part is a

constant,
�

�(Rin − v) + j
(

X + XL
n

)

in
�

� takes the minimum

value when the imaginary part is zero. Therefore, XL
n,init has

a closed form solution given by

(

X + XL
n,init

)

in = 0, (31)

which has a unique solution when XL
n,init is restricted to

being diagonal. The unique solution is given by XL
n,init =

diag
(

xL
n,init,, x

L
n,init,, · · · , xL

n,init,N

)

with

xL
n,init,i = − [Xin]i

[in]i
, ∀i. (32)

The initial point found by solving (30) can be also inter-

preted from the perspective of N -port TCM. In N -port TCM,

the complex power delivered to the N -port antenna by the

nth modal current is Pn = iTnZin = 1 + jλn. If λn is zero,

the driving voltage is in phase with the modal current and

the reactive power is zero so that we say this mode is in

resonance [42]. If λn is nonzero, we can load the reactance

XL
n,init satisfying (31) to cancel the reactive power so as to

make the loaded N -port antenna resonant.

For a voltage source at Port 1 with load reactance XL
n,init

from (31), we know the nth mode is resonating. However

some other modes will also make some contributions to er

although they may not be in resonance. We therefore need

to further optimize the loads to maximize the correlation

coefficient between the modal pattern of interest en (Ω) and

the actual radiation pattern er
(

Ω,XL
n

)

. This can be performed

by optimization using (31) as the initial solution.

The proposed algorithm can complete optimization nor-

mally within a few seconds (on a general purpose personal

computer) for all modes. This is more efficient than the

exhaustive search approach adopted in [15], particularly when

the number of antenna ports is large. This is also more

efficient than the random search approach adopted in [32]

which generates large amounts of patterns with random load

reactance and selects best load reactance that maximizes ρn.

The same approach can also be utilized to find linear

combinations of the modal radiation patterns to form more

intricate pattern constellations that are required in full multi-

plexed MIMO. For example if we wish to excite the pattern,

en (Ω)+en+1 (Ω), the current for which resonance is required

is updated to i = in + in+1. Using this approach the required

load reactance for any constellation point can be found.

Once we have obtained the final optimized solution we also

include some post-optimization constraints due to practical

component considerations. In particular we constrain the range

of load reactance values to within −j200 to j200 Ω and the

resolution of the required inductors and capacitors is limited

to 0.1 nH and 0.1 pF. This is performed by taking the final

solution and straightforwardly quantizing it to the resolution

required. In addition if any reactance falls outside the range

−j200 to j200 Ω it is clipped to within the range. We have

found that very few solutions fall outside the range and both

post-optimization constraints have little effect on performance

as shown in the next section.

TABLE I

EIGENVECTORS AND LOADS OF 4-ELEMENT LINEAR DIPOLE

ARRAY AT 2.45GHz

Fig. 7. 4-element linear dipole array.

V. SIMULATION RESULTS

We apply our proposed N -port TCM ESPAR technique to

SM-MISO and full multiplexed MIMO and simulation results

including SE, EE and SER simulation results are provided to

demonstrate its potential. Results are provided for two ESPAR

configurations including a 4-element linear dipole array and

an 8-element rectangular PIFA array each with one feeding

element. The frequency considered is 2.45 GHz where the

wavelength λ is 122 mm. Perfect electric conductors (PEC)

have been assumed in the simulations, however the effect of

using low loss conductors is minimal. Full electromagnetic

simulation (using CST studio suite) is used to obtain the open

circuit radiation patterns eoc
i (Ω) for each element. However

this only needs to be performed once for each element, since

all other patterns can be formed from these using (4) [49].

This reduces the computation complexity of the simulation

enormously as full electromagnetic simulation is not needed

during the optimization, capacity or error performance simu-

lation stages. In all the results provided we also include the

post-optimization practical component constraints highlighted

in the final paragraph of the previous section.

The structure of the 4-element linear dipole array is shown

in Fig. 7. In this example the dipoles have length l = 47 mm

and radius 2 mm and are placed along the x-axis with

separation distance R = 0.1λ. The eigenvectors are listed

in Table I and follow the form derived in (24). From (31)

we obtain the initial point XL
n,init as input for each mode

in our algorithm. The optimal loads at 2.45 GHz for each

mode are also listed in Table I through optimization and their

corresponding four radiation patterns are shown in Fig. 8.

While the feed port also requires a reactive load it should be

noted that additional dynamic matching [34], [36], [37] can
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Fig. 8. Simulated antenna patterns for each orthogonal mode of the 4-element
linear dipole array.

Fig. 9. 8-element rectangular PIFA Array.

be straightforwardly employed to maintain 50 Ω impedance

matching for this port.

The structure of the 8-element rectangular PIFA array is

shown in Fig. 9. Eight PIFA elements are placed in a 2 × 4
array. The length and width of the ground plane is l1 = 48 mm

and l2 = 90 mm, respectively. The distances between two adja-

cent PIFAs are d1 = 0.1λ and d2 = 0.15λ as shown in Fig. 9.

Other parameters are as follows: l3 = 5 mm, l4 = 26 mm,

l5 = 2.4 mm, l6 = 5 mm and h = 7 mm. The eigenvectors for

this configuration are listed in Table II and follow the form

derived in (12). The optimal load combinations are also listed

in Table II. Exciting Port 1, the radiation patterns obtained are

as shown in Fig. 10.

The channel model utilized in the simulations is based

on the beamspace domain interpretation of the conventional

MIMO signal model [3]. Assuming a frequency-flat channel

model, the system model of conventional MIMO with N
transmit antennas and M receive antennas is

y = Hx + n (33)

where H ∈ CM×N is the complex channel matrix, n ∈ CM×1

is the additive Gaussian noise vector, x ∈ CN×1 is the transmit

signal, and y ∈ CM×1 is the received signal. When using

TABLE II

EIGENVECTORS AND LOADS OF 8-ELEMENT RECTANGULAR

PIFA ARRAY AT 2.45GHZ

ESPAR at the transmitter for single-RF MIMO we use transmit

signals that are orthogonal or near orthogonal patterns rather

than by utilizing different antenna elements. The formulation

in (33) is modified using a virtual channel representation

[29], [50] in the beamspace domain. Using the approach

adopted in [50] the three-dimensional (3D) system model is

written as

y = Hx + n = AH
R HvAT x + n

= AH
R HvBTxbs + n = Hbsxbs + n, (34)

where Hv ∈ CK×K is the virtual channel matrix represent-

ing the angular response of the discrete scatters and will

depend on the underlying beamspace channel model [31].

For small angular resolution ∆Ω, entries in Hv refer to

the channel gain from each angle of departure (AoD) to

each angle of arrival (AoA) [50]. The steering matrices

AR = [aR,1, aR,2, . . . ,aR,M ] ∈ C
K×M and AT =

[aT,1, aT,2, . . . ,aT,N ] ∈ CK×N in which aR,m ∈ CK×1

and aT,n ∈ CK×1 sample the patterns of the M receive

and N transmit antennas respectively at K virtual chan-

nel angles in the beamspace domain. Using the N -element

ESPAR as the transmit antenna in the beamspace for-

mulation of MIMO, we have AT x = BTxbs where

BT = [bT,1,bT,2, . . . ,bT,Neff
] ∈ CK×Neff is the matrix
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Fig. 10. Simulated antenna patterns for each orthogonal mode of the
8-element rectangular PIFA array.

consisting of Neff orthogonal basis patterns, x ∈ CN×1 and

xbs ∈ CNeff×1 are symbols in the conventional MIMO and

beamspace domain respectively and Neff is EADoF of the

ESPAR [8], [33]. Then Hbs = AH
R HvBT is the beamspace

channel matrix consisting of channel gains between steering

matrices of the orthogonal transmit patterns and the conven-

tional spatially separated receive antennas. We can therefore

think of each element in xbs as the transmission of an

orthogonal pattern in the beamspace domain instead of the

transmission on a separate antenna as we do for x. Detection

of the transmit signal xbs at the receiver using a maximum-

likelihood (ML) detector can then be written as

x̃bs = argmin
xbs

||y − Hbsxbs||. (35)

In the numerical simulations provided in this work the

angular resolution considered is ∆φ = 5◦ and ∆θ = 5◦ so that

K = 2664 sampling points across the uniformly sampled 3D

spherical space are utilized. Additive Gaussian noise n follows

CN (0, N0UN ) with noise power N0 and the signal-to-noise

(SNR) is SNR = P/N0 = kxbsk2 /N0 = 1/N0 where the

average transmitted power P of the symbol xbs is taken as

unity. Assuming a rich scattering environment, entries in Hv

satisfy [Hv]ij ∼ CN (0, 1) for i, j = 1, 2, . . . , K . Results

follow for applying the two ESPAR configurations described

above for SM-MISO and full multiplexed MIMO.

A. SM-MISO

We provide SE, EE and SER results for SM-MISO system

in order to demonstrate the effectiveness of using TCM to

obtain orthogonal patterns. The ESPAR’s consisting of the

4-element linear dipole array and 8-element rectangular PIFA

array described previously are used at the transmitter. At the

receiver the single receive antenna is taken to be isotropic

so that AR = aR,1 and [aR,1]k = 1√
K

, k = 1, 2, . . . , K .

At the transmitter bT,n refers to each of the Neff = N = 4 or

8 orthogonal ESPAR patterns which is used to transmit one

symbol in turn in SM so that only one element of xbs is unity

and the others are all set to zero.

SM capacity or SE [4] can be written as

CSM =
1

Neff

Neff
X

i=1

�

log2

�

det
�

UM + SNR khik2
��

+

ˆ

y

p (y | hi) log2
p (y | hi)

p (y)
dy

�

, (36)

where Hbs = [h1,h2, . . . ,hN ], hi ∈ C
M×1, p (y | hi) =

1

π(Pkhik2+N0)
exp

�

|y|2
Pkhik2+N0

�

, p (y) = 1
Neff

Neff
P

i=1

p (y | hi).

Following the previous approach in [20], we define EE as

EE =
C

NRFPAC + P0 + PPA
, (37)

where C is the capacity, NRF is 1 for ESPAR and SM-MISO

while NRF is 4 or 8 for conventional MISO, PAC is the

constant RF circuit power consumption per antenna which

is assumed as 33 dBm, P0 is the power consumption for

baseband processing assumed as 40 dBm. PPA is the power

consumption for power amplifier PPA = (1/ε − 1)P/eant

where ε = 0.35 is efficiency of amplifier, P is the total

transmit power, eant = eS11
erad is total efficiency of antenna.

Assuming the antenna material is PEC and the loads are pure

reactance we can assume that there is no power loss in the

antenna so that erad = 1. Assuming the antenna is matched to

have −10dB reflection coefficient that eS11
= 0.9.

The simulated SE and EE of SM-MISO using ESPAR is

shown in Fig. 11. In the results, ESPAR-SM-MISO is used to

denote the ESPAR implementation of the system using either

our 4-element linear dipole array or 8-element rectangular

PIFA array. In addition the terms, ideal TCM patterns, and

actual patterns refer to orthogonal patterns calculated from

TCM and the actual patterns using optimization with practical

component constraints as described in Section IV respectively.

SM-MISO, MISO and SISO are used to indicate conventional

spatial implementations of these systems where the antennas
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Fig. 11. Simulated performance of the ESPAR system in SM-MISO systems.
(a) SE and (b) EE at SNR = 30 dB.

are spatially separated and mutual coupling and channel cor-

relation is taken as negligible. It can be observed that using

actual patterns found by our proposed method, the ESPAR

antenna achieves almost the same SE as SM-MISO. It is

slightly lower than MISO as found in previous work since

(36) takes a different form from MISO capacity [4]. In terms

of EE the same conclusions hold again as for SM-MISO when

compared to ESPAR-SM-MISO.

We also obtain simulated SER performance as a further ver-

ification of performance for SM-MISO as shown in Fig. 12 for

the 4 and 8 transmit antenna configurations. The transmitted

signal utilizes uncoded on-off keying (OOK) modulation with-

out equalization and perfect channel state information (CSI) is

assumed at the receiver. The number of symbol transmissions

used in the simulation is 107. From Fig. 12, it is observed

again that there is very little gap between the ideal and

actual patterns as well as SM-MISO with spatially separated

antennas. This shows again that our proposed algorithm has

good performance in finding the load reactance to excite the

desired modal radiation patterns from TCM. For reference the

union bound of orthogonal modulation has almost the same

SER as the TCM orthogonal patterns when SNR is high.

The advantage of using ESPAR in this application is that

it has much smaller antenna array size using our proposed

ESPAR due to smaller separation between elements (for

example 0.1λ for the linear array) than conventional spatially

separated antennas which would need up to 0.5λ spacing for

a uniform linear or rectangular array.

Fig. 12. Simulated SER performance of the ESPAR system in SM-MISO
systems. (a) 4-element linear dipole array and (b) 8-element rectangular PIFA
array.

B. Full Multiplexed MIMO

We also investigate the performance of ESPAR trans-

mission for MIMO transmission configured to achieve full

multiplexing following previous configurations [15], [31].

The transmitter is again configured as an ESPAR in which

the transmitted symbols are xbs = [xbs,1, xbs,2, . . . , xbs,N ]
T

where the individual entries can be arbitrarily selected to form

any constellation for MIMO transmission but must satisfy

||xbs|| = 1. The radiation pattern er (Ω) =
PN

n=1 xbs,nen (Ω)
is a linear combination of modal radiation patterns. The

reactance loads for this configuration need to be switched for

each constellation point, which can be found by referring to

Section IV. B. The receiver is configured as a conventional

uncoupled MIMO antenna with ARAH
R = UM .

Capacity or SE of full multiplexed MIMO can then be

written as

CBS−MIMO = log2

�

det

�

UM +
SNR

Neff
HbsH

H
bs

��

. (38)

By replacing Neff with N and Hbs with H, then (38) is

also obtained for conventional spatially multiplexed MIMO.

We also follow [20] to calculate EE similarly to (37). The

simulated results for SE and EE are shown in Fig. 13 which

also agree with previous work. In the simulations MIMO

is utilized to denote a conventional MIMO system at both

the receiver and transmitter with negligible mutual coupling
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Fig. 13. Simulated performance of the ESPAR system in full multiplexed
single-RF MIMO systems. (a) SE and (b) EE at SNR = 30 dB.

and channel correlation. It can be observed that using actual

patterns (with practical component constraints) found by our

proposed method, the ESPAR antenna achieves the same or

nearly the same capacity as conventional MIMO. The small

gap between 8×8 MIMO and ESPAR-MIMO (actual patterns)

is caused by small correlations between actual patterns. EE of

ESPAR is again significantly higher than conventional MIMO

due to the reduced number of RF chains as expected.

VI. CONCLUSION

We have proposed a systematic method for finding orthog-

onal radiation patterns of ESPAR antennas based on N -port

TCM. We also provide an efficient optimization method for

finding the necessary load reactances to excite the desired

orthogonal modal patterns. The resultant patterns can be used

to form a pattern basis set for SM and full multiplexed

MIMO. Simulation results of SE and EE for SM-MISO and

full multiplexed MIMO for a 4-element linear array and an

8-element rectangular PIFA array are used to demonstrate the

effectiveness of the approach.

Three limitations of the approach can be identified. The

first is the PEC assumption in the antenna simulations. This

can be overcome by extensions of N -port TCM to realistic

materials [51]. However for low loss materials the effect is

minimal.

The second limitation concerns the space over which the

N -port TCM basis is found. In N -port TCM that space is the

full spherical space of a sphere. In wireless communications

the spherical space of interest is often more toroidal in shape so

that radiation arriving in predominantly horizontal directions

can be modeled. Therefore our results also need to be extended

to subsets of the full spherical space. The fundamental point

however is that over the full sphere only N TCM basis

functions are required to represent all the possible radiation

patterns. Therefore over subsets of this space the number

of TCM basis functions required will be the same or less.

Exploring the implications of this will be investigated in our

future research.

The third limitation is the possible extension of the tech-

nique to massive MIMO. Due to the size of the massive MIMO

array, mutual coupling between the driven element and some

elements will be non-existent. Therefore ESPAR cannot be

directly applied. To overcome this issue we could increase the

number of driven elements by spacing them across the ESPAR

so that every parasitic element would be in the presence of

at least one driven element. Optimization for the loads as

in Section IV. B to find patterns that are highly correlated

with modal radiation patterns could be performed. While the

disadvantage is that there would be multiple driven elements,

in principle these could be obtained from a single-RF system

using splitters or switches. This could also be an interesting

idea to explore and to confirm whether the extension to

massive ESPAR is indeed possible.

APPENDIX A

DERIVATION OF MODE MATRIX

The structure of the mode matrix, M, for various array

configurations is derived.

A. Rectangular Array

The structure of the resistance and reactance matrices for

the 4-element rectangular array is

R,X =









aR,X bR,X cR,X dR,X

bR,X aR,X dR,X cR,X

cR,X dR,X aR,X bR,X

dR,X cR,X bR,X aR,X









, (39)

where the subscripts refer to resistance and reactance respec-

tively. The inverse of R is R−1 = adj(R)
det(R) where adj (R) is the

adjugate matrix of R. It is not difficult to verify that entries

in adj (R) have the same structure as R, so we denote R−1

and M as

R−1 =









aR−1 bR−1 cR−1 dR−1

bR−1 aR−1 dR−1 cR−1

cR−1 dR−1 aR−1 bR−1

dR−1 cR−1 bR−1 aR−1









,

M = R−1X =









a b c d
b a d c
c d a b
d c b a









. (40)

For eigendecomposition we solve det (λU4 − M) = 0 where

the solution for the eigenvalues is λ1 = a + b + c + d, λ2 =
a − b − c + d, λ3 = a − b + c − d, λ4 = a + b − c − d.
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The corresponding eigenvectors with unity norm can then be

obtained and are as shown in (11).

In the general case for a nested array, a, b, c, d in (10)

become matrices A, B, C, D ∈ Rpq×pq such that M ∈
R4pq×4pq . We use the matrix similarity transformation to

obtain the eigenvalues as well as the eigenvectors. Introducing

the invertible matrix P ∈ R4pq×4pq as

P =
1

2









Upq Upq Upq Upq

Upq −Upq −Upq Upq

Upq −Upq Upq −Upq

Upq Upq −Upq −Upq









, (41)

where P−1 = P. From similarity transformation

we obtain the similar matrix M̃ given by M̃ =
P−1MP = diag

(

A + B + C + D,A − B − C + D,
A − B + C − D,A + B − C − D

)

, so eigenvalues of M

are eigenvalues of A + B + C + D, A − B − C + D,

A − B + C − D and A + B − C − D. For each diagonal

block in M̃, we have (A + B + C + D) ĩ1,n = λ1,n ĩ1,n,

(A − B− C + D) ĩ2,n = λ2,n ĩ2,n, (A − B + C − D) ĩ3,n =
λ3,n ĩ3,n, (A + B − C− D) ĩ4,n = λ4,n ĩ4,n where

ĩ1,n, ĩ2,n, ĩ3,n, ĩ4,n ∈ Rpq×1 for n = 1, 2, . . . , pq are

the eigenvectors of A + B + C + D, A − B − C + D,

A − B + C − D and A + B − C − D, respectively. Letting

Îm =


ĩm,1 ĩm,2 . . . ĩm,pq

�

∈ Rpq×pq for m = 1, 2, 3, 4,

and block matrix Q = diag
�

Î1, Î2, Î3, Î4

�

we obtain

M̃Q = diag
�

Î1Λ1, Î2Λ2, Î3Λ3, Î4Λ4

�

= QΛ where

Λm = diag(λm,, λm,, . . . , λm,pq) for m = 1, 2, 3, 4
and Λ = diag (Λ1,Λ2,Λ3,Λ4). Therefore, we have

MPQ = PQΛ so that PQ is the eigenmatrix given by

PQ =
1

2









Î1 Î2 Î3 Î4

Î1 −Î2 −Î3 Î4

Î1 −Î2 Î3 −Î4

Î1 Î2 −Î3 −Î4









. (42)

Each column of PQ is an eigenvector of M, so that all the

eigenvectors of M can be classified into the four forms as

shown in (12).

B. Circular Array With Center Feeding

For the 5-element circular array with center feeding, R and

X are written as

R,X =













aR,X bR,X bR,X bR,X bR,X

bR,X cR,X dR,X eR,X dR,X

bR,X dR,X cR,X dR,X eR,X

bR,X eR,X dR,X cR,X dR,X

bR,X dR,X eR,X dR,X cR,X













, (43)

R−1 has same structure as R, thus the mode matrix M

has the form (13). Solution of the eigenvalues are λ1,2 =
a+d+2e+f±

√
(d+2e+f−a)2+16bc

2 , λ3 = d− 2e + f , λ4 = λ5 =
d − f . The corresponding eigenvectors with unity norm can

then be found as in Section III. A. 2.

In the general N element case, the mode matrix M has the

form (17). We firstly define an invertible matrix P ∈ RN×N

and matrix M1 ∈ R
N+1

2
×N+1

2

P =













1 0T
N−1

2

0T
N−1

2

0N−1
2

1√
2
UN−1

2

1√
2
UN−1

2

0N−1
2

1√
2
UN−1

2
− 1√

2
UN−1

2













,

M1 =

�

a
√

2b√
2c D + E

�

, (44)

where P−1 = P. The similar matrix M̃ is obtained

from the similarity transformation M̃ = P−1MP =
diag (M1,D − E) so that eigenvalues of M are

eigenvalues of M1 and D − E. Therefore we have

M1ī1,n = λ1,n ī1,n, (D − E) ī2,n = λ2,n ī2,n where

ī1,n ∈ R
N+1

2
×1, n = 1, 2, . . . , N+1

2 and ī2,n ∈ R
N−1

2
×1,

n = 1, 2, . . . , N−1
2 are eigenvectors of M1 and D − E.

Letting Î1 =
h

ī1,1 ī1,2 . . . ī1, N+1

2

i

∈ R
N+1

2
×N+1

2 ,

Î2 =
h

ī2,1 ī2,2 . . . ī2, N−1
2

i

∈ R
N−1

2
×N−1

2 such

that Q = diag
�

Î1, Î2

�

we obtain M̃Q =

diag
�

Î1Λ1, Î2Λ2

�

= QΛ where we define

Λ1 = diag
�

λ,, λ,, . . . , λ, N+



�

∈ R
N+


×N+

 ,

Λ2 = diag
�

λ,, λ,, . . . , λ, N−



�

∈ R
N−1

2
×N−1

2 , and

Λ = diag (Λ1,Λ2). So we have MPQ = PQΛ so that

PQ is an eigenmatrix where each column is an eigenvector.

By partitioning Î1 as
h

Î1

i

1
∈ R1×N+1

2 which is the first

row of Î1 and
h

Î1

i

2,3,..., N−1
2

∈ R
N−1

2
×N+1

2 which is the

remaining rows of Î1, we can rewrite PQ as

PQ =















h

Î1

i

1
0T

N−1

2

1√
2

h

Î1

i

2,3,..., N−1
2

1√
2
Î2

1√
2

h

Î1

i

2,3,..., N−1

2

− 1√
2
Î2















. (45)

Therefore, the eigenvectors of M can be classified as the forms

provided in (18).

C. Linear Array

Finally, in the 4-element linear array, R and X are written

as

R,X =









aR,X bR,X cR,X dR,X

bR,X eR,X dR,X fR,X

cR,X dR,X aR,X bR,X

dR,X fR,X bR,X eR,X









, (46)

so that the mode matrix M has the form (19).

Using det (λU4 − M) = 0, the eigenvalues are

λ1,2 =
(f+h+a+c)±

√
(f+h−a−c)2+4(b+d)(e+g)

2 , λ3,4 =
(f−h+a−c)±

√
(f−h−a+c)2+4(b−d)(e−g)

2 . The corresponding

eigenvectors with unity norm can be obtained as shown in

Section III. A. 3.
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The mode matrix M for the generalized configuration in

Section III. A. 3 is provided in (23). We can simplify M as

M =

�

M1 M2

M2 M1

�

, M1 =

�

a b

e F

�

, M2 =

�

c d

g H

�

, (47)

where M1,2 ∈ R
N

2
×N

2 . We define again an invertible matrix

P ∈ RN×N written as

P =
1√
2

"

UN

2
UN

2

UN

2
−UN

2

#

, (48)

where it can be shown straightforwardly that P−1 = P.

The similar matrix M̃ can be found as M̃ = P−1MP =
diag (M1 + M2,M1 − M2) . Therefore, eigenvalues of M

are eigenvalues of M1 + M2 and M1 − M2. The following

equations can then be obtained (M1 + M2) ĩ1,n = λ1,n ĩ1,n,

(M1 − M2) ĩ2,n = λ2,n ĩ2,n where ĩ1,n and ĩ2,n ∈ R
N

2
×1

for n = 1, 2, . . . , N
2 are eigenvectors of M1 + M2 and

M1 − M2, respectively. Letting Î1 =
h

ĩ1,1 ĩ1,2 . . . ĩ1, N

2

i

∈
R

N

2
×N

2 , Î2 =
h

ĩ2,1 ĩ2,2 . . . ĩ2, N

2

i

∈ R
N

2
×N

2 , and Q =

diag
�

Î1, Î2

�

we obtain M̃Q = diag
�

Î1Λ1, Î2Λ2

�

= QΛ

where we define that Λ1 = diag
�

λ,, λ,, . . . , λ, N



�

,

Λ2 = diag
�

λ,, λ,, . . . , λ, N



�

∈ R
N

2
×N

2 , and Λ =

diag (Λ1,Λ2). So we have MPQ = PQΛ such that PQ

is an eigenmatrix where each column is an eigenvector and it

is given by

PQ =
1√
2

�

Î1 Î2

Î1 −Î2

�

. (49)

Therefore, the eigenvectors of M can be classified into the

forms provided in (24).

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.

Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.
[2] R. D. Murch and K. B. Letaief, “Antenna systems for broadband wireless

access,” IEEE Commun. Mag., vol. 40, no. 4, pp. 76–83, Apr. 2002.
[3] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spa-

tial modulation for generalized MIMO: Challenges, opportunities, and
implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.

[4] A. Stavridis, S. Sinanovic, M. Di Renzo, and H. Haas, “Energy eval-
uation of spatial modulation at a multi-antenna base station,” in Proc.

IEEE 78th Veh. Technol. Conf. (VTC Fall), Sep. 2013, pp. 1–5.
[5] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,

“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE

Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[6] S. Han, C.-L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems

with hybrid analog and digital beamforming for millimeter wave 5G,”
IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, Jan. 2015.

[7] Y. Li et al., “Analog precoding using highly reconfigurable antennas,”
IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 648–652, May 2020.

[8] A. Kalis, A. Kanatas, and C. Papadias, “A novel approach to MIMO
transmission using a single RF front end,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 6, pp. 972–980, Aug. 2008.

[9] A. Mohammadi and F. M. Ghannouchi, “Single RF front-end MIMO
transceivers,” in RF Transceiver Design for MIMO Wireless Communi-

cation. Berlin, Germany: Springer, 2012, pp. 265–288.
[10] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial

modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241,
Jul. 2008.

[11] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation:
Optimal detection and performance analysis,” IEEE Commun. Lett.,
vol. 12, no. 8, pp. 545–547, Aug. 2008.

[12] T. Ohira and K. Gyoda, “Electronically steerable passive array radiator
antennas for low-cost analog adaptive beamforming,” in Proc. IEEE Int.

Conf. Phased Array Syst. Technol., May 2000, pp. 101–104.
[13] R. Ramirez-Gutierrez, L. Zhang, J. Elmirghani, and A. F. Almutairi,

“Antenna beam pattern modulation for MIMO channels,” in Proc. 8th

Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Aug. 2012,
pp. 591–595.

[14] H. Kawakami and T. Ohira, “Electrically steerable passive array radiator
(ESPAR) antennas,” IEEE Antennas Propag. Mag., vol. 47, no. 2,
pp. 43–50, Apr. 2005.

[15] O. Alrabadi, C. Papadias, A. Kalis, and R. Prasad, “A universal encoding
scheme for MIMO transmission using a single active element for PSK
modulation schemes,” IEEE Trans. Wireless Commun., vol. 8, no. 10,
pp. 5133–5142, Oct. 2009.

[16] J. Lee, Y. Lee, K. Lee, and T. Joong Kim, “λ/64-spaced compact ESPAR
antenna via analog RF switches for a single RF chain MIMO system,”
ETRI J., vol. 41, no. 4, pp. 536–548, Aug. 2019.

[17] K. Kumar Kishor and S. V. Hum, “A pattern reconfigurable chassis-
mode MIMO antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 6,
pp. 3290–3298, Jun. 2014.

[18] B. Han, V. I. Barousis, C. B. Papadias, A. Kalis, and R. Prasad, “MIMO
over ESPAR with 16-QAM modulation,” IEEE Wireless Commun. Lett.,
vol. 2, no. 6, pp. 687–690, Dec. 2013.

[19] D. J. Reinoso Chisaguano, Y. Hou, T. Higashino, and M. Okada, “Low-
complexity channel estimation and detection for MIMO-OFDM receiver
with ESPAR antenna,” IEEE Trans. Veh. Technol., vol. 65, no. 10,
pp. 8297–8308, Oct. 2016.

[20] A. Li, C. Masouros, and C. B. Papadias, “MIMO transmission for single-
fed ESPAR with quantized loads,” IEEE Trans. Commun., vol. 65, no. 7,
pp. 2863–2876, Jul. 2017.

[21] A. Li, C. Masouros, and M. Sellathurai, “Analog–digital beamforming in
the MU-MISO downlink by use of tunable antenna loads,” IEEE Trans.

Veh. Technol., vol. 67, no. 4, pp. 3114–3129, Apr. 2018.
[22] A. Li and C. Masouros, “Exploiting constructive mutual coupling in

P2P MIMO by analog-digital phase alignment,” IEEE Trans. Wireless

Commun., vol. 16, no. 3, pp. 1948–1962, Mar. 2017.
[23] J. Lee, J. Y. Lee, and Y. H. Lee, “Spatial multiplexing of OFDM

signals with QPSK modulation over ESPAR,” IEEE Trans. Veh. Technol.,
vol. 66, no. 6, pp. 4914–4923, Jun. 2017.

[24] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless
systems,” IEEE Commun. Mag., vol. 40, no. 4, pp. 58–66, Apr. 2002.

[25] H. Myung, J. Lim, and D. Goodman, “Single carrier FDMA for
uplink wireless transmission,” IEEE Veh. Technol. Mag., vol. 1, no. 3,
pp. 30–38, Sep. 2006.

[26] O. N. Alrabadi, J. Perruisseau-Carrier, and A. Kalis, “MIMO transmis-
sion using a single RF source: Theory and antenna design,” IEEE Trans.

Antennas Propag., vol. 60, no. 2, pp. 654–664, Feb. 2012.
[27] M. Yousefbeiki and J. Perruisseau-Carrier, “Towards compact and

frequency-tunable antenna solutions for MIMO transmission with a
single RF chain,” IEEE Trans. Antennas Propag., vol. 62, no. 3,
pp. 1065–1073, Mar. 2014.

[28] S. Zhang, I. Syrytsin, and G. F. Pedersen, “Compact beam-steerable
antenna array with two passive parasitic elements for 5G mobile
terminals at 28 GHz,” IEEE Trans. Antennas Propag., vol. 66, no. 10,
pp. 5193–5203, Oct. 2018.

[29] A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE

Trans. Signal Process., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.
[30] J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for

millimeter-wave communications: System architecture, modeling, analy-
sis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7,
pp. 3814–3827, Jul. 2013.

[31] V. I. Barousis, A. G. Kanatas, and A. Kalis, “Beamspace-domain
analysis of single-RF front-end MIMO systems,” IEEE Trans. Veh.

Technol., vol. 60, no. 3, pp. 1195–1199, Mar. 2011.
[32] V. Barousis and A. G. Kanatas, “Aerial degrees of freedom of parasitic

arrays for single RF front-end MIMO transceivers,” Prog. Electromagn.

Res. B, vol. 35, pp. 287–306, 2011.
[33] P. N. Vasileiou, K. Maliatsos, E. D. Thomatos, and A. G. Kanatas,

“Reconfigurable orthonormal basis patterns using ESPAR antennas,”
IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 448–451, 2013.

[34] M. A. Sedaghat, V. I. Barousis, R. R. Müller, and C. B. Papadias, “Load
modulated arrays: A low-complexity antenna,” IEEE Commun. Mag.,
vol. 54, no. 3, pp. 46–52, Mar. 2016.

[35] M. A. Sedaghat, R. R. Mueller, G. Fischer, and A. Ali, “Discrete
load-modulated single-RF MIMO transmitters,” in Proc. 20th Int. ITG

Workshop Smart Antennas. Frankfurt, Germany: VDE, 2016, pp. 1–7.



2367

[36] H. T. Jeong, J. E. Kim, I. S. Chang, and C. D. Kim, “Tunable
impedance transformer using a transmission line with variable charac-
teristic impedance,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 8,
pp. 2587–2593, Aug. 2005.

[37] C. Sánchez-Pérez, J. de Mingo, P. L. Carro, and P. García-Dúcar,
“Design and applications of a 300–800 MHz tunable matching network,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 4, pp. 531–540,
Dec. 2013.

[38] V. I. Barousis, C. B. Papadias, and R. R. Muller, “A new signal model
for MIMO communication with compact parasitic arrays,” in Proc. 6th

Int. Symp. Commun., Control Signal Process. (ISCCSP), May 2014,
pp. 109–113.

[39] R. J. Garbacz, “Modal expansions for resonance scattering phenomena,”
Proc. IEEE, vol. 53, no. 8, pp. 856–864, Aug. 1965.

[40] R. Garbacz and R. Turpin, “A generalized expansion for radiated and
scattered fields,” IEEE Trans. Antennas Propag., vol. AP-19, no. 3,
pp. 348–358, May 1971.

[41] R. Harrington and J. Mautz, “Theory of characteristic modes for
conducting bodies,” IEEE Trans. Antennas Propag., vol. AP-19, no. 5,
pp. 622–628, Sep. 1971.

[42] J. Mautz and R. Harrington, “Modal analysis of loaded N-port scatter-
ers,” IEEE Trans. Antennas Propag., vol. AP-21, no. 2, pp. 188–199,
Mar. 1973.

[43] Y. Chen and C.-F. Wang, “Synthesis of reactively controlled antenna
arrays using characteristic modes and DE algorithm,” IEEE Antennas

Wireless Propag. Lett., vol. 11, pp. 385–388, 2012.
[44] Y. Chen and C.-F. Wang, Characteristic Modes: Theory and Applications

in Antenna Engineering. Hoboken, NJ, USA: Wiley, 2015.
[45] F. Jiang, C.-Y. Chiu, S. Shen, Q. S. Cheng, and R. Murch, “Pixel antenna

optimization using N -Port characteristic mode analysis,” IEEE Trans.

Antennas Propag., vol. 68, no. 5, pp. 3336–3347, May 2020.
[46] C. Y. Chiu, S. Shen, B. K. Lau, and R. Murch, “The design of a trimodal

broadside antenna element for compact massive MIMO arrays: Utilizing
the theory of characteristic modes,” IEEE Antennas Propag. Mag., early
access, Dec. 31, 2019, doi: 10.1109/MAP.2019.2958515.

[47] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, vol. 71.
Philadelphia, PA, USA: SIAM, 2000.

[48] P. E. Gill and W. Murray, “Quasi-Newton methods for unconstrained
optimization,” IMA J. Appl. Math., vol. 9, no. 1, pp. 91–108, Feb. 1972.

[49] P. Lotfi, S. Soltani, and R. D. Murch, “Printed endfire beam-
steerable pixel antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 8,
pp. 3913–3923, Aug. 2017.

[50] K. Maliatsos and A. G. Kanatas, “Modifications of the IST-WINNER
channel model for beamspace processing and parasitic arrays,” in Proc.

7th Eur. Conf. Antennas Propag., 2013, pp. 989–993.
[51] Z. T. Miers and B. K. Lau, “Computational analysis and verifications of

characteristic modes in real materials,” IEEE Trans. Antennas Propag.,
vol. 64, no. 7, pp. 2595–2607, Jul. 2016.

Zixiang Han (Graduate Student Member, IEEE)
received the bachelor’s degree in electronic science
and technology from the Nanjing University, Nan-
jing, China, in 2018. He is currently pursuing the
Ph.D. degree with the Department of Electronic
and Computer Engineering from The Hong Kong
University of Science and Technology, Hong Kong.
His current research interests include the theory of
characteristic mode, MIMO systems, and MIMO
antenna design.

Yujie Zhang (Graduate Student Member, IEEE)
received the bachelor’s degree in optoelectronic
information science and engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2017. He is currently pursuing the
Ph.D. degree with the Department of Electronic and
Computer Engineering, The Hong Kong University
of Science and Technology, Hong Kong. His current
research interests include the antenna design on the
Internet-of-Things applications, RF energy harvest-
ing, wireless power transmission, MIMO antenna
design, and 5G.

Shanpu Shen (Member, IEEE) received the bach-
elor’s degree in communication engineering from
the Nanjing University of Science and Technology,
Nanjing, China, in 2013, and the Ph.D. degree
in electronic and computer engineering from The
Hong Kong University of Science and Technology
(HKUST), Hong Kong, in 2017.

He was a Visiting Ph.D. Student with the
Microsystems Technology Laboratories, Massa-
chusetts Institute of Technology, Cambridge, MA,
USA, in 2016. He was a Post-Doctoral Fellow with

HKUST from 2017 to 2018. He was a Post-Doctoral Research Associate with
the Communications and Signal Processing Group, Imperial College London,
London, U.K., from 2018 to 2020. He is currently a Research Assistant
Professor with HKUST. His current research interests include RF energy
harvesting, wireless power transfer, Internet-of-Things, MIMO systems, and
antenna design and optimization.

Yue Li (Student Member, IEEE) received the B.S.
degree in information science and electronic engi-
neering from Zhejiang University, Hangzhou, China,
in 2015, and the Ph.D. degree in electronic and com-
puter engineering from The Hong Kong University
of Science and Technology, Hong Kong, in 2019.
His current research interests include smart water
systems, Internet of Things, and wireless communi-
cation.

Chi-Yuk Chiu (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees and the Ph.D. degree in
electronic engineering from the City University of
Hong Kong, in 2001, 2001, and 2005, respectively.
He joined as a Research Assistant Professor the
Department of Electronic and Computer Engineering
(ECE), The Hong Kong University of Science and
Technology (HKUST) in 2005. He was a Senior
Antenna Engineer with Sony Mobile Communica-
tions, Beijing, in 2011. He joined as a Research
Assistant Professor with the Department of ECE,

HKUST, in 2015. He has authored or coauthored 84 articles and two book
chapters. He holds several patents related to antenna technology. His main
research interests include the design and analysis of small antennas, MIMO
antennas, applications of characteristic modes, and energy harvesting. He is
also a member of the IEEE Antennas and Propagation Society Education
Committee.

Ross Murch (Fellow, IEEE) received the bache-
lor’s and Ph.D. degrees in electrical and electronic
engineering from the University of Canterbury, New
Zealand.

He is currently the Chair Professor with the
Department of Electronic and Computer Engineer-
ing, The Hong Kong University of Science and
Technology (HKUST), where he is also a Senior
Fellow with the Institute of Advanced Study. His
research contributions include more than 300 publi-
cations, and 20 patents. He has successfully super-

vised 50 research graduate students. His current research interests include
the Internet-of-Things, RF imaging, ambient RF systems, multiport antenna
systems, and reconfigurable intelligent surfaces, with an emphasis on his
combination of knowledge from both wireless communication systems and
electromagnetic areas.

Dr. Murch was the Department Head with HKUST from 2009 to 2015.
He is a fellow of IET and HKIE. He has served the IEEE in various positions,
including the IEEE area editor, the technical program chair, a distinguished
lecturer, and a fellow of the evaluation committee. He enjoys teaching and
has received two teaching awards. He has received several awards, including
the Computer Simulation Technology University Publication Award.

http://dx.doi.org/10.1109/MAP.2019.2958515

