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CHARACTERISTIC NUMBERS FOR
UNORIENTED SINGULAR G-BORDISM

S. S. KHARE AND B. L. SHARMA

ABSTRACT. We develop the notion of characteristic numbers for unoriented
singular G-manifolds in a G-space, G being a finite group, and prove their
invariance with respect to unoriented singular G-bordism.

Thom [5] gave the notion of Stiefel Whitney numbers and Pontrjagin
numbers of a manifold M” and proved its invariance with respect to bordism.
Chung N. Lee and Arthur Wasserman [4] developed these notions for G-
manifolds. In this note we have developed these notions for unoriented
singular principal G-manifolds in a G-space, G being a finite group, and
proved their invariance with regard to unoriented singular G-bordism.

1. Characteristic numbers. Let X be a finite CW-complex with free action of
G, G being a finite group, and X/G be again a finite CW-complex. Let h* be
an equivariant cohomology theory and h, be the associated equivariant
homology theory [1]. Let #* = H* o 4 and h, = H, o A, where A is a
functor from the category of G-spaces and equivariant maps to the category
of topological spaces and continuous maps, H* is the singular cohomology
theory and H is the associated singular homology theory. Let

(o0 B (XGG) @) e (X3 G) — Hy(pt.)

be the Kronecker pairing.
Let us assign to each compact G-manifold W, a class

(W, 0] € h, (W,0W;G)

such that

(a) [ U W, 0% U 9] = [, 0] + [, 805,

(b) 3, [W,0W] = [aW]. s

Suppose [M", f; G] is an element of unoriented bordism group R,(X; G) [3]
and x € h*(B(0,G),;G),B(0,G), being the classifying space for G-vector
bundles of dimension n. Then the x-characteristic number of the map
f: M" > X associated with an element a™ € h™(X;G) is defined to be
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(rygn(x)f*(@™),[M]), where 7),,: M" — B(O,G), is the tangent map.

In particular, let the equivariant cohomology h* be given by h*(X;G)
= H*((E; X X)/G;Z,) and h, be the associated equivariant homology, i.e.
he(X;G) = H,((Eg X X)/G;Z,), where the action of G on E; X X is given
by g(e,x) = (ge,gx), E; being the total space of the universal G-bundle.
Consider the map ¢: X/G — (E; X X)/G given by q([x]) = [a(x), x], where @
is the map given by the following commutative diagram:

a
X - Eg
) )
X/G > BG

The map g is homotopy equivalence. Thus

* ;]
K*(X;G) & H*(X/G;Z,) and h,(X;G) % H,(X/G;Z,).
Therefore h,(M";G) ~ H,(M"/G;Z,) has a topological class, say o, in
dimension n.

2. Invariance of characteristic numbers. Throughout the section we will be
considering equivariant cohomology h* to be

R*(X;G) = H*((E; X X)/G; Z,)
and equivariant homology A, to be

he(X; G) = H,((Eg X X)/G; Z,).

TueoreM 2.1. If [M",f, G] € N,(X; G) is zero then all the x-characteristic
numbers of the map f: M" — X associated with every a™ € h™(X; G ) are zero.

PROOF. Since [M".f:G] € R,(X;G) is zero, 3 an (n + 1)-dimensional
compact principal G-manifold W™ and an equivariant map F: wrtt - x
with aW"™! = M"and F/M" = f. Letw,,, € h. (W™, W™ ;G) be the
topological class of w™! Then 9,(w,,,) = 0, We have the following

commutative diagram:
*

K*(B(0,G),;G) ™M r*M";G)
% %
Tj ’T;,:/nn ’ T !

K*(B(0,G),.,;G) — K W"™';G),

where j: B(O,G), = B(O,G),., is the map classifying p, ® 1, p, = B(O,G),
being the universal G-vector bundle. Also we have

r*(B(0,G),; G) = H*(E; % B(0,G),)/G; Z,)
= H*(BG X BO,;Z,) [6]
= H*(BG:7,) ® H*(BO,;Z,)
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and
h,(B(0,G),;G) = H,(BG;Z,) ® H,(BO,;Z,).

Thus the map j* is a surjection. Therefore for every x € h*(B(0,G),; G), 3y
€ h*(B(0,G),,; G)such that j*(y) = x. Therefore

() ¥ @), 0,0 = <y * (D) f* (@), 0,0 = < rpyma (V)i* F*(@™), 0,)
= (an (D) F* (@), iy 34 (0,4,)> = 0.

This completes the proof of the theorem.
Consider now the map p: R, (X;G) = h, (X; G) defined as w(M",f; G])
= ¢, f,(3,), where fis the map given by the following commutative diagram:

M L x
\ \
MG L x/G

9, € H(M"/G;Z,) being the fundamental class and let f: N, (X/G)
— H,(X/G;Z,) be the map defined by mE(N",g]) = g,(3,), where g,
€ H,(N";Z,) is the fundamental class. Suppose ¢, : N, (X; G) > RN, (X/G)
is the isomorphism [3] defined as ¢,((M".f; G]) = [M"/G,f]. Then
= ¢, i$, and, therefore, p is an epimorphism, since fi is so [2]. For every
a € h,(X;G), we select [M",f; G] € N, (X; G) such that p(M",f; G]) = a.
We define the R-module structure on h, (X; G ) by

[V™a = yM" %X V"™ f'; G],
for every [V™] € R, where the action of G on M" X V™ is defined as
g(x,y) = (gx,y) and f': M" X V™ — X is defined as f'(x,y) = f(x). Thus
he(X;G) ® N is a N-module. Let {C,.;} be the additive base of h, (X; G). Let
[M".f; G] € Ny (X; G) with (M, f;G]) = C,;- We define h: h (X;G)
®N > N(X;G) by i(C,; ® 1) = [M".f;G].

THEOREM 2.2. The map h: hy (X; G) ® N — N, (X; G), defined as above is an
isomorphism.

ProOOF. We have the following commutative diagram:

GG en Mow (x;6)
le'®ly Lo,
H(X/GL)en L n,(x/c)

where h: H, (X/G;Z,) ® R —> N, (X/G) is defined as WC,,® 1) = [M"/G;
Sl where C,; = g, (C,;). We already know that 4 is an isomorphism [2] and,
therefore, so is A.

Lcense or bREARAYE theorem ivgs. the.conversepfTheorem 2.1 given as below.
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THEOREM 2.3. If all the characteristic numbers of an element [M",f; G|
€ N, (X; G) are zero, then [M",f; G] = 0.

Proor. Let w(M",f,G])=C, € h(X;G) and ¢;'(C,)=C,
€ H,(X/G;Z,). Therefore f, (5,) = C,. Suppose {C,,};, is an additive base
of h,(X;G) and C™ € h"(X;G) is the cohomology class dual to C,, in the
sense <f"’j,fn‘i> = §;, where q*—'(Cn‘,.) = C,; and g*(Cc™) = 5""._ Let
C, = Zies +C,;, S being a finite subset of 1. Then if C" = ¥, *C™, by
hypothesis the x-characteristic number of [M",f; G] associated with C”"

€ h"(X; G) is zero, that means taking x to be unit class of 4*(B(0,G),; G),

<f*(Cn)’ [M]> =0, or <f*(Cn),q*[6”]> = 0,

or

Ug*) (@) heaulo, ) =0, or g*) ' (C")aufylo, ) = 0,
by the following commutative diagram

h,(M";G) é' h,(X;G)

gy ] lg,!
H(M"/G;Z,) % H (X/G;Z,)

Therefore {(¢*) ' (C"), 4x(C,)> = 0, which implies that (C",C,) =0,
showing that C, = 0. Also it is easy to see that h(C, ® 1) = [M",f; G]. Since
h is an isomorphism and C, = 0, [M",f; G] = 0, which completes the proof
of the theorem.

Theorems 2.1 and 2.3 give the invariance of characteristic numbers with
regard to unoriented singular principal G-bordism.
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