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CHARACTERISTIC NUMBERS OF G-MANIFOLDS
AND MULTIPLICATIVE INDUCTION

BY
MICHAEL BDC(') AND TAMMO TOM DIECK

Abstract. We determine those finite groups G for which characteristic
numbers determine G-equivariant bordism in the unoriented and unitary
cases.

It was shown in [6], [7] that suitable global characteristic numbers deter-
mine the bordism classes of unoriented G-manifolds if G s (Z^ and of
unitary G-manifolds if G is cyclic. We show in this paper that there are no
other cases in which characteristic numbers determine bordism classes. The
proof is based on an explicit computation of the equivariant characteristic
numbers of certain manifolds and on the use of a new construction in
bordism theory, which we call multiplicative induction, and which should
have many more applications.

In §1 we review some well-known facts about characteristic numbers and
explain the notation used in §2 to state the main results of this paper. §3
contains calculations. The definition of multiplicative induction and some
applications are given in §4.

1. Characteristic numbers. Let G be a compact Lie group. We denote by
9i%(X, A) (respectively, %%(X, A)) the geometric bordism group of «-dimen-
sional (unitary) singular G-manifolds in (X, A), where X is any G-space and
A is a G-subspace of X. If A" is a point and A is the empty set, we write

9l?(point, 0) = 31? - Vi¿n   and   %£(point, 0) - <?|£ « %".
We suppress the G if G is the trivial group. Similarly, we use N^(X,A),
U°(X,A), Nf, and [/„c to denote the homo topical bordism groups, defined
by means of equivariant Thom spectra [4]. We also use the corresponding
cohomology groups Nß(X, A) and Uq(X, A). The Pontrjagin-Thom
construction induces natural transformations of equivariant homology
theories

i:nï(X,A)-*NnG(X,A)   and   i:^(X,A)-* U? iX,A).
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332 MICHAEL BIX AND TAMMO TOM DIECK

The bundling transformations

a:N2(X,A)^>N"(EG XGX,EG XGA)
and

a: U¿{X,A)-* U" (EG XCX,EG XGA)

are as defined in [4], where EG is a universal free G-space with orbit space
EG IG = BG.

The main ingredient in the definition of equivariant characteristic numbers
is the Boardman map. In the case of unoriented bordism, this is a natural
transformation of multiplicative equivariant cohomology theories

B:N*(EGXGX)^H*(EGXGX)[[ax,a2,...]],
where cohomology is taken with Z2 coefficients and a¡ has degree — /'. The
definition of B and its basic properties can be found in X. Kapitel of [2]. For
the unitary case we consider characteristic numbers lying in equivariant
.rv-theory. The Boardman map

B:UG(X)->KG(X)[[ax,a2,...]],

where we use Z2-graded A^-theory, is a natural transformation of multiplica-
tive cohomology theories and is described in [7].

The characteristic number map for «-dimensional G-equivariant unoriented
bordism, denoted x?, is defined to be the composition

Bed: SR?-* N? « NJ" ->N-{BG)-> H*(BG)[[ax, a2,... ]].
The characteristic number map x? for «-dimensional G-equivariant unitary
bordism is the composition

Bi:%^U„Gz-UG-"-*R(G)[[ax,a2,...]],

where R (G) = KG(point) is the complex representation ring of G.
Remarks. 1. The characteristic numbers of an «-manifold M, lying in

H*(BG) or R (G), are the coefficients in x£[M] of monomials in the a¡s.
2. We call the characteristic numbers defined above "global", because the

definition does not involve the orbit structures of manifolds. One could,
alternatively, define characteristic numbers using the normal bundles to
various fixed point sets, as in the work of M. Rothenberg. Such numbers
would combine the orbit structures with the global characteristic numbers.

3. Of course, one could define characteristic numbers with values in other
equivariant cohomology rings by an analogous procedure.

2. Characteristic numbers and bordism. The notation in this section is as
above. We only consider finite groups G.

Theorem 1. (a) The composition

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



G-manifolds 333

Ba: TV* -* N*(BG)-+ H*(BG)[[ax, a2, . . . ]]
is injective if and only if G = (Z2)*.

(b) The characteristic number map

XG:VlG^H*(BG)[[ax,a2,...]]

is injective if and only if G = (Z2)*.

Theorem 2. (a) The Boardman map

B:UG->R(G)[[ax,a2,...]]

is injective if and only if G is a cyclic group,
(b) The characteristic number map

X°:W>-*R(G)[[ax,a2,...]]

is injective if and only if G is a cyclic group.

Remarks. 1. We are mainly interested in the second parts of the above
theorems. But the algebraic reasons why the results hold are clearer for the
homotopical theories than for the geometric ones.

2. We conjecture that the above theorems are true for compact Lie groups.
The proofs below for Theorems 1(a) and 2(a) are valid for such a general-
ization.

The injectivity statements are already known. If G = (Z2)k, it was shown in
[6] that Ba and x^ in Theorem 1 are injective. If G is a finite cyclic group
(more generally, the product of a torus and a finite cyclic group), it was
proved in [7] that B and x* in Theorem 2 are injective.

Proofs of Theorems 1(a) and 2(a). We begin with Theorem 1(a). If G is
not isomorphic to (Z2)k, G has an irreducible real representation of dimension
greater than one. Let PV be the real projective space associated with such a
G-module V, furnished with the G-action inherited from the linear G-action
on V. Then the G-action on PV has no fixed points. Consider the commuta-
tive diagram

TV*-^->H*(BG)[[ava2,...]],

h h
N*G(PV)  Ba^    >H*(EGxGPV)[[ava2,...]]

where ix and i2 map x to x- 1. The map i2 is injective, because H*(EG
XG PV) is a free H*(BG)-module. Assume that Ba is injective. Then i, is
injective, also. Now localize away from the multiplicatively closed subset SG
which contains   1  and the Euler classes of  G-modules with no trivial
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334 MICHAEL BIX AND TAMMO TOM DIECK

summands. Since localization is an exact functor,
SG-xix:SG-lNG-*ScJxNG(PV)

is injective. But SJ1^ ¥= 0, by an analogue of Theorem 3.1 of [4], while

Sj'Ni (PV) s s-ijrç (PVG) - SJXN$ (0) = 0,
by Satz 1 of [5]. This is a contradiction. Hence Ba cannot be injective if G is
not isomorphic to (Z2)k.

Theorem 2(a) can be proved similarly. If B is injective, then S¿~ XB is, too.
But, by Lemma 1 of [1], SjxR(G)[[ax, a2,... ]] is nonzero if and only if G is
cyclic.

Proof of Theorem 2(b). It remains to show that x* is not injective if G is
not cyclic. As in [11], a set F of subgroups of G is called a family if it includes
all of the subgroups and conjugates of each of its elements. Let EF denote the
terminal object in the G-homotopy category of numerable G-spaces whose
isotropy groups belong to F. Given a pair of families F d F' and a G-
homology theory hG, let

hG[F, F']{X, A) = hG(EF X X, {EF XA)li (EF' X X)).

For a subgroup H of G, let h"(X, A)G'inv denote the "invariant elements",
that is, the cokernel of the map

hG((G/H) X (G/H) X X, (G/H) X (G/H) X A)

-*hG((G/H) X X, (G/H) X A)

defined by (pr, X lx), - (pr2 X 1*)«, where pr,.: (G/H) X (G/H)-* G/H
for /' = 1, 2 are the projections. Now if x* is injective, the rationalization
XG ® Q is injective, because the range of x* is torsion-free. There is a
splitting of tyLG ® Q, described in more general terms in Theorem 1 of [8],
which is given by

%5®Qs0 %"[A11, Prop "I (point, 0)G-inv® Q,
(")

where All is the family of all subgroups of G, Prop the family of proper
subgroups of G, and H ranges over a complete set of conjugacy class
representatives of the subgroups of G. Because the splitting is compatible with
the natural transformations /' ® Q and B ® Q, there is a commutative
diagram

%?®Q-^5-►{/?«(}-£®3-> R(G)[[ai,a2,...]]®Q

©il? [au, Prop]0-"" ®q—* ©s^tyftx)0-"" ®Q-- ©sj'/ii/OIl«,. «2. • • • ]]®Q
(tf) (H) (")
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G-MANIFOLDS 335

where the vertical maps are the splitting maps. The group U"[All, Prop] may
be thought of, as in [9], as S¡¡XU". The maps sx and s2 are isomorphisms. The
elements of %G <8> Q corresponding to summands %£[A11, Prop]c'inv ® Q for
which H is not cyclic are contained in the kernel of x* ® Q.

The remainder of this paper is chiefly concerned with a proof of the "only
if" part of Theorem 1(b), that is, that x* is not injective when G does not
have the form (Zj)*. In fact, we exhibit explicit bordism classes which lie in
the kernel of x* •

3. Computations of equivariant characteristic numbers. A convenient and
conceptually simple method of calculating characteristic numbers uses
exponential characteristic classes and the map given by evaluation on the
fundamental class. In this section we describe that method.

If n: E -» X is a real G-vector bundle, let r/c denote the bundle

1£C Xc7j:£G XC£-»£G XGX.

If A[[ax, a2,... ]] is a power series ring, define conjugate generators ax,
a2>... by

1 + âxt + â2t2 + ... = (1 + axt + a2t2+ ... )"',

where t is an indeterminate. A» exponential characteristic class for real
G-vector bundles associates to each such bundle £ an element v(Q E H*(EG
XG X)[[ax, a2,... ]] of degree zero (recall that a¡ has degree - i) with con-
stant term 1. The characteristic class must be natural with respect to G-
bundle maps and must satisfy the exponential law ü(£ © tj) = u(£)ü(tj).

Proposition 1. There is exactly one exponential characteristic class v
(respectively, v)for real G-vector bundles which satisfies the condition that

v(y)=l + (wx(-nG))ax + (wx(i}G)fa2

+ ... (¿J(tj) = 1 + (wx(Vg))üx + (wx(vG))252 +...)

for every real G-line bundle tj, where wx denotes the first Stiefel- Whitney class.
In general, ü(|) can be obtained from t>(£) by applying the conjugation
automorphism for a power series ring.

Proof. It suffices to construct v for universal bundles. This can be done by
using the splitting principle, as in VIII.X. Kapitel of [2].

Remark. An analogous proposition is true for complex G-vector bundles,
where now the characteristic classes lie in K^(X)[[ax, a2,... ]], as in formula
(4) on p. 35 of [7].

Now let M be a closed «-dimensional G-manifold. Let xt-»x[A/] be the
77*(/7G)-linear map
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336 MICHAEL BJX AND TAMMO TOM DIECK

H*(EG Xc M) — H*-"(BG)
known variously as the integration along the fibre map, evaluation on the
fundamental class, or the Gysin homomorphism (recall we are using Z2
coefficients for cohomology). Extend this map linearly to power series rings,
still denoting it x\^>x[M]. Let v be the exponential characteristic class
defined in Proposition 1. We use rM to denote the tangent bundle of M, an
«-dimensional real G-vector bundle.

Proposition 2. xt W] = (v(rM))[M\.
Proof. Observing that v(rM)v(vM) = v(V), where vM is the normal bundle

of a G-equivariant embedding of M in a real G-module V, the proof is
formally the same as that of Satz 5.9 of [2].

Now let F be a real G-module and e the trivial real G-line bundle over PV
with trivial G-action on the fibre. Then
(1) TPy © e s V ® T»,

where tj is the Hopf line bundle over PV and V denotes the trivial vector
bundle over PV with fibre V. To compute the characteristic numbers of PV,
we use the following special case of the standard projective bundle theorem.

Proposition 3. H*(EG XG PV) is a free H*(BG)-module on generators 1,
b,b2,..., b"~x, where b = wx(t\G) G H\EG XG PV) and n is the dimension
of V. Furthermore,

b" = t i^iVC))bn-',
i = i

where VG is the real n-plane bundle EG XGV-* BG, the bundle map being
projection on the first factor. The map jci-> ;c[PF] sends 1, b, b2,. . ., b"~z to
zero andb"~x to 1.

Now let £: E -> M be a two-dimensional G-vector bundle with w,(£G) = 0
and w2(|c) = x. As usual, we can write Stiefel-Whitney classes formally as
elementary symmetric polynomials wx = yx + y2 and w2 = yxy2. Then

o(i) = (1 + yxax +y2a2+ ... )(1 + y2ax + y\a2 + ...)

(2) = l+yxy2a2 + y2y2a2+ ...

= 1 + xa\ + x2a\ + ...,
computing modulo 2 and using yx + y2 = 0. We next apply this computation
and Proposition 3 to the case in which

V - V(l) © • • • 0 V(r) © W(l) © • • • © W(s),
where V(i) and W(j) are irreducible real G-modules, each V(i) has
dimension one, and each W(j) has dimension two. Assume wx(V(i)G) = x(i),
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G-MANIFOLDS 337

wx(rV(j)G) = 0, and w2(W(j)G) = y(j). Then using the notation of
Proposition 3 we have

Proposition 4.

v(rPV) = Ú (l + (*(') + b)ax + (x(0 + bfa2 + ... )
i=i

X Ú (l + (yiJ) + b2)a\ + (y(j) + b2fa¡ +...).

Proof. By Proposition 1 and (1),
v(tpv) = v(Tpv)v(e) - v(tpv © £) = v(v ® v)

= v((V(l) © • • • © V(r) © W(l) 0 • • • © W(s)) ® tj)

= v((V(l) ® tj) © • • • © (V(r) ® tj)

© (W(l) ® tj) © • • • © (¡V(s) ® T}))

= Uv(V(i)<S)V)f[v(W(j)®71).
i-l y-l

Since V(i) ® tj is a real G-line bundle, by Proposition 1 we have

viV{i) ® tj) = 1 + (wx(iV{i) ® Tj)G))fll + (wx((V(i) ® Tj)c))2a2 + ...

-1 + W(0o) + MvG)h + ("avow + ̂ .(%))2«2 +.. •
= 1 + (x(i') + %i + (x(/) + bfa2 +_

Similarly, v(W(j) ® tj) can be computed from (2) and the formula for the
Stiefel-Whitney classes of a tensor product.

We apply Proposition 4 to the case in which G as Z4. Let 1 denote the
trivial one-dimensional real representation of Z4, -1 its nontrivial one-
dimensional real representation, and í the two-dimensional real repre-
sentation which comes from the standard representation of Z4 c 5 ' on C.
Let m denote the unique nonzero element of 7/I(J5Z4), so that u2 — 0, and d
the unique nonzero element of H2(BZ4). Let V = l2n+l © i and W = I2" ©
(-1)©/.

By Proposition 3, H*(EZ4 xz PV) is a free H*(B Z4)-module on genera-
tors 1, b,b2,..., b2n+2, where b2n+3 = db2n+1. The relation implies:

(3) b2m = dm-"-xb2n+2,   if m > n + 1,
62m+1 « dm-"b2n+1,   ifm>n.

Similarly, H*(EZ4 XZt PW) has free /7*(5Z4)-generators 1, b,
b2,..., b2n+2, where b2"*3 = u¿¿2" + ¿è2"-»-1 + ub2n+z j^ for w > „ +
1 we have:
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338 MICHAEL BIX AND TAMMO TOM DIECK

b2m = dm-"-xb2n+2   and
*• ' b2m+l = udm~"b2n + dm~"b2',+1 + «i/m"""'Ä2',+2.
Using the above notation and following [1], we have

Proposition 5. xt+JiPV] = X&+ÄPW]-
Proof. Notice that

wi((- OzJ = ". wi('zd m 0' and wa('zJ - <*•
Propositions 1, 2, and 4 imply that x5j+2[^^l *s tne conjugate of the
coefficient of b2n+2 in (XJLoafá2 + ¿y')(2;VJ,ty')2',+ 1- And now using (3)
we find that XiZ+ilPV] aâS nonzero homogeneous components only in even
dimensions. Similarly, xÜÍ+2^^] *s tne conjugate of the coefficient of b2"*2
in

( 2 <**) ( f/i*2 + J)j( J0fl;(¿ + «)y)
Because m2 = 0, in even dimensions this product is

(|o^J    ( StfC* + <0y).
Since 62m = rf"-"-I62»+2, if w > « + l, in both i/*(£Z4 xz<PK) and
H*(EZ4 XZt PW), we see that xè+jlPK] and xSf+J^^I are th<e same in
even dimensions. Thus it only remains to show that 62n+2 has no nonzero
odd-dimensional coefficients in

.In

(|o^) [ï«iib2+¿)y)(Jo*,(*+*y\
But such a term would have to be of the form a'd'(b + u)iJ+xb2k, where
k +j > n + 1. In all such cases 62"+2 has a zero coefficient, since

b2m + l + ub2m = „¿«-«¿2« + ¿m-nyin + l^     jf m >  w>

by (4).
As in [1], Proposition 5 implies

Proposition 6. xi4 " not infective.

Proof. The fixed point set of PV is RP2". The fixed point set of PW is the
disjoint union of a point and RP2"-1. Since, if n > 1, these two fixed point
sets represent different bordism classes in the unoriented bordism ring 9?,,
PV and PW cannot represent the same equivariant bordism class in Stif*. But
their Z4-characteristic numbers are the same, by Proposition 5.

Proposition 7. If G is not a 2-group, xG is not infective.
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Proof. Let 77 be a 2-Sylow subgroup of G. Since \NG(H) : 77| = 1 (mod
2), 9?o is a Z2-vector space having at least two generators, a point with trivial
G-action and G/H with the G-action defined by left multiplication (Propo-
sition 13.1 of [11]). But if M is any zero-dimensional G-manifold,

XoC[M] E (H*(BG)[[ax, a2,... ]])°« Z,

is nonzero if and only if M consists of an odd number of points. Since
| G : 771 = 1 (mod 2), the two generators of 9?q described above are both
mapped into 1 by Xo-

It follows from Proposition 7 that in order to prove Theorem 1(b) we need
only consider 2-groups. We start with the examples used to prove Proposition
6 and construct new manifolds by a method which we call "multiplicative
induction".

4. Multiplicative induction. Let G be a finite group and denote by G the
category whose objects are G-homeomorphism classes of left G-spaces and
whose morphisms are continuous G-maps. If 77 is a subgroup of G, the
restriction functor rß: G -» 77 forgets the actions of the elements of G which
are not in 77. The functor rß has a left adjoint which maps an 77-space X to
G XHX with G-action given by gx(g2,x) = (gxg2, x). This left adjoint is
additive, but is not, in general, multiplicative. A right adjoint mß to rß can be
defined on objects of 77 by mß(X) = HomH(G, X), where we consider G an
77-space via left multiplication. The G-action on mß(X) is given by (g, •
/Xgj) = f(g2gx). An 77-map/: X-+ Y induces a G-map

mg(f):m§(X)-+mg(Y)
by composition. The usual relationship between adjoint functors is, in our
particular case, that

Homç(*, mß(Y)) a Hom^rß (X), Y)

for any G-space X and 77-space Y. We call the functor mß "multiplicative
induction" because

mg(XxX X2) ~ mß(Xx)X mß(X2)

for any //-spaces Xx and X2. Observe, also, that mß(X) is homeomorphic to
the set of all continuous maps/: G//7-» G XHX such that ir, <>/= 1G/H,
where irx: G XHX-*G/H is the projection on the first factor and the
function space is given the compact-open topology. And now that space is, in
turn, homeomorphic to the product of \G : H\ copies of X.

If M is an «-dimensional smooth //-manifold, then mß(M) is, in a natural
way, a smooth G-manifold of dimension n|G : 771. It is surprising that the
functor mß is compatible with the bordism relation. That is, let/: M -» X be
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340 MICHAEL BIX AND TAMMO TOM DIECK

a singular //-manifold in X. Then mfj(f): mfj(M) -+ mjj(X) is a singular
G-manifold in mfj(X).

Proposition 8. The function f h» mfi(f) induces a well-defined map

mg:W{X)->X%:m(mg{X))
which takes products to products but is, in general, not additive.

Proof. A proof can be found in [10]. The idea is to apply a suitable
Pontrjagin-Thom construction, as in [12], to convert the bordism relation into
a homotopy relation, and then to use the fact that the image under mfi of an
//-homotopy is a G-homotopy.

Remarks. 1. It is, in general, extremely difficult to compute the effect of
mß on characteristic numbers. One approach would be to elaborate on the
work of Evans.

2. The Steenrod power operation is a special case of multiplicative
induction. For its effect on characteristic numbers, see 16.5 of [3].

3. Since mff, is not, in general, additive, a more general construction would
start with nonhomogeneous bordism elements, that is, sums of manifolds of
different dimensions.

To use mß for our purposes, we study its effect on the Pontrjagin-Thom
construction and the bundling map. Using a construction similar to mfj for
//-spaces with base points, we construct induction maps for N%(X) and
N*(EH XHX).

Let X0 be a pointed //-space. Define an H-mapp: X = G XH X0-+ G/H
byp(8,x) = g//. Let

a£0//3

where A denotes the smash product, using the base point which p~\d)
inherits from X0. Define a G-action on n£(X) by g'P~x(d) = p~x(gd).
Recall that mß(X) is naturally G-homeomorphic to a similarly defined
object, naeC/^p_1(a). Clearly nß extends to a functor from pointed H-
spaces to pointed G-spaces and is compatible with equivariant pointed
homotopies and smash products. That is, nfj(XA Y) s nfi(X)Anjj(Y).
Letting M (£) denote the Thom space of the vector bundle |, there is a natural
isomorphism between nj}(M(¡¡,)) and M(mfi(l¡)).

Recall that the group Ñ^(X) is defined (at least for compact X) as a direct
limit of pointed //-homotopy sets [VeA X, M(i"H+^)fH, where Ve is the
one-point compactification of the G-module V of dimension | V\ and i-f) is the
universal Ä>dimensional //-vector bundle. Applying the functor nfj, we get
maps
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r.
i:

[V< AX,M{ik)]°H->[nß(V< AX),nß{M{ik))\

^[{mß(V))\nß(X),M{mß{ik))l

^[(mßiV))eAn§{X),M(^^)]0G,

the last map being induced by the classifying map for mß(^). Passing to the
limit, we obtain the multiplicative induction map for homotopical bordism,

nß:N"H(X)->N$G^{nß(X)).

If A!- is a free G-space, there is a natural isomorphism NG(X) s N"(X/G).
Using this, the bundling map a: NG(X)-^ N"(EG XG X) is induced by the
projection EG X X -* X. The multiplicative induction nß for N*(EG XGX)
is defined in these terms to be the composition

Nk(EH XX)-> tf*lC://l (mß (EH X X))

*NgGI,\(mgiEH)XmgiX))

-*Nk}G:"\(EGXmß(X)),

where the last map is induced by the map EG -> mß(rß(EG)) which corre-
sponds to the identity map of rß(EG) under the adjunction map mentioned
above (we may take EH to be rß(EG)). Now one only needs to apply the
definitions to prove

Proposition 9. The following diagrams are commutative:

*%■

91

mH

k\G:H\

-/vfss/V^

lH

-►/v"k\G:H\ ç*lfck\G:H\

NkH(X)

'H

NcG-m(mcH(X))-

>Nk(EHxHX)

lH

»N^^XEGxcmfcX))

Corollary. // Mx and M2 are H-manifolds with the same H-equivariant
characteristic numbers, then mß(Mx) and mß(M2) are G-manifolds with the
same G-equivariant characteristic numbers.
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We can now prove Theorem 1(b), using the examples and notation of
Proposition 5. Let G be a 2-group which is not of the form (Z2)fc. Then G has
at least one subgroup H such that H s Z4. We fix one such H and consider
the multiplicative induction mß.

Proposition 10. For each positive integer n, the G-manifolds mfj(PV) and
mß(PW) represent different bordism classes in yiG2n+2)\G:H\.

Proof. It suffices to show that the //-fixed point sets of mß(PV) and
mß(PW) represent different bordism classes in 9?*. Let G/H = íl¡M(i) be
the decomposition of the //-space G/H into its orbits. Then M(i) s
H/H(i), where //(/) s {1}, Z^ or Z4. If M is any //-manifold,

imGM)"~ HomG(G//7, mg(M)) = Hom„(G///, M)

=*IlHom„(M(/), M) ez]lMHii\
i i

Now suppose that //(/') = {1} for b values of /, = Z2 for c values, and s Z4
for d values. Then

(mG(PV))"^ (RP2n+2)*(RP2n)C(RP2n)''

and

imG(PW))"^ (RP2n+2)6(RP2")c(point)''.

And these manifolds are not bordant if d > 0 and « > 0.
Proposition 10 and the corollary to Proposition 9 complete the proof of

Theorem 1(b).
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