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Abstract: The paper concerns the characteristic 

parameters of the selected isotropic failure criteria, i.e. 

Mohr–Coulomb, Drucker–Prager, Matsuoka–Nakai and 

Lade–Duncan. The parameters are determined directly 

from the failure criteria and stress measurements or 

by semi-theoretical approach, assuming that the soil 

obeys the associated flow rule and using the plane 

strain condition. In the latter case, the parameters can 

be expressed as functions of the plane strain internal 

friction angle, which is determined from measurements. 

The principal stress tensor components, corresponding to 

the soil peak strength and necessary to obtain the failure 

criteria parameters, are measured in a series of true 

triaxial, plane strain tests, on coarse Skarpa sand samples 

of different initial relative density, subjected to various 

confining pressures. 

Keywords: soil failure criteria; soil peak strength; plane 

strain conditions; true triaxial apparatus; plastic flow 

rule.

1  Introduction

Many different failure criteria, being part of soil 

constitutive models, can be found in the literature. The 

basic one to which all others are usually compared is the 

Mohr–Coulomb condition, due to its simplicity. It proved 

its usefulness in classic triaxial compression, where a 

cylindrical soil sample is subjected to an axisymmetric 

state of stress (σ
1
, σ

2 
= σ

3
, Fig. 1a). However, the problem 

of soil strength is more complex when true triaxial stress 

conditions are considered, and the principal stresses σ
1
, 

σ
2
, σ

3
 have different values (Fig. 1b). 

This paper considers the most frequently used 

isotropic soil failure criteria (yield surfaces): Mohr–

Coulomb, Drucker–Prager, Matsuoka–Nakai and Lade–

Duncan. The detailed descriptions of the selected criteria 

are in Drucker and Prager (1952), Lade and Duncan (1975), 

Matsuoka and Nakai (1974) and Matsuoka and Nakai 

(1985).

The research on soil failure continues, and except 

listed above, there are also other criteria proposed in the 

literature. Georgiadis et al. (2004), Houlsby (1986) or Liu 

et al. (2012) suggest a yield surface which is a combination 

of the criteria mentioned above. Lagioia and Panteghini 

(2014) present a reformulation of the original Matsuoka–

Nakai criterion to overcome the limitations which make 

its use in a stress point algorithm problematic. A novel 

soil strength criterion, where the cube root of principal 

stresses is constant, is proposed by Shao et al. (2017), and 

it shows that the Lade–Duncan criterion is not just an 

empirical one, as previously thought, but has a physical 

background.

Mohr–Coulomb failure condition is built on 

simplifying assumption that soil behaviour is governed by 

the difference between maximum and minimum principal 

stress (σ
1 
- σ

3
) and does not depend on the intermediate 

principal stress (σ
2
). It is clear that such simplification may 

be valid in some special conditions only. The influence of 

the intermediate principal stress σ
2
 on soil shear strength 

is discussed by Bishop (1971), Kulhawy and Mayne (1990) 

or Ochiai and Lade (1983). Barreto and O’Sullivan (2012) 

examined the effect of inter-particle friction (μ) and 

the intermediate stress σ
2
 on the granular material’s 

response, using the discrete element method (DEM). They 

have shown that both parameters significantly affect 

the strength characteristics. DEM is also used by Li et al. 

(2017) to describe the behaviour of soil under complex 

stress state. They observed that the Bishop’s parameter b 

(Eq. (9)) significantly affects the non-coaxial behaviour of 

granular materials.*Corresponding author: Justyna Sławińska-Budzich, Institute of 
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The contribution of the intermediate principal 

stress σ
2
 to the plane strain soil strength is particularly 

studied for practical reasons: to analyse longitudinal 

foundations, slopes, retaining walls and long excavations. 

Besides, many experimental techniques, like full-field 

displacement measurements by digital image correlation 

(DIC), are usually performed on rectangular plane strain 

models. Also ground flow problems, static liquefaction 

and instability are studied in plane strain conditions 

(Wanatowski and Chu, 2007; Wanatowski et al. 2010). 

Experimental investigations of dense granular soils 

have shown that the plane strain shear strength is higher 

than that in the axisymmetric conditions (Alshibli et al., 

2003). In the case of loose soils, there is no such difference; 

see Cornforth (1964), Lee (1970), Rowe (1969) and Schanz 

and Vermeer (1996). 

Soil strength can be defined depending on strain 

conditions (plane or three-dimensional), but also on the 

range of strains (peak or critical strength). In this paper, 

the peak soil strength is considered a measure of soil 

failure state.

1.1  Soil peak strength 

Peak strength is the maximum shear stress (maximum q 

value, Eq. (7)) that the soil can transfer. It is influenced by 

inter-particle friction, grain arrangement, grain crushing 

and soil dilation (Mitchell and Soga, 2005). Fig. 2 shows 

the exemplary results of soil shearing in plane strain 

conditions (details of the experiment are included in 

Tables 2 and 3). Fig. 2a defines the peak strength q
max

 on q - 

e
1
 (axial strain) graph, and Fig. 2b shows the corresponding 

set of principal stress values. The major principal stress σ
1
 

is always the largest, whereas the lateral stress σ
2
 is the 

intermediate one. In the paper, the soil mechanics sign 

convention is used (compression positive). The invariant 

q is defined under full stress conditions, including the 

meaning of σ
2
; see formula (7).

Unlike critical soil strength, peak strength depends 

on the initial density of soil. Most of the research on soil 

peak strength uses Mohr–Coulomb condition and so the 

dependence of peak friction angle on soil density. Been 

and Jefferies (1985, 1986) have shown the relationship 

between the peak friction angle and the soil state 

parameter, defined as the difference in void ratio between 

the initial and steady-state, at the same mean effective 

stress.

Bolton (1986) studied the relationship between the 

mobilized friction angle, critical state friction angle 

and soil relative density in plane strain conditions and 

proposed the equation describing this relationship. 

Chakraborty and Salgado (2010) confirmed Bolton’s 

theory for low confining pressures (triaxial and plane 

strain tests). The effect of confining pressure on peak 

friction angle in the process of grain crushing is shown 

in Yamamuro and Lade (1996): as confining pressure 

increases, the peak friction angle decreases. Sadrekarimi 

and Olson (2011) or Sarkar et al. (2019) show, in turn, 

that there exists no clear relationship between the peak 

friction angle and the effective stress. 

The direct dependence of the friction angle on the 

initial soil porosity was shown already in Lee (1970), where 

analysed the data obtained in drained tests by Bishop 

a)              b) 

Figure 1: Two-dimensional and three-dimensional soil stress states: a) cylindrical sample in axisymmetric stress conditions, σ
2 
 = σ

3 
and b) 

rectangular sample in true triaxial conditions, σ
1 1 óó ≠≠  σ

2  1 óó ≠≠  σ
3
. 
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(1961) and Cornforth (1964). The tests were conducted at 

confining pressure of 275 kPa, both in axisymmetric and 

plane strain conditions. 

Fig. 3 shows their results, completed by the data 

obtained in this study for Skarpa sand at similar confining 

pressures between 278 kPa and 295 kPa (Tables 2 and 4). 

The same tendency: a decrease in the internal friction angle 

with growing sample porosity is observed in true triaxial 

tests on Skarpa sand under plane strain conditions, but 

no quantitative agreement is found, because they are two 

different soils.

1.2  Scope of the paper 

The main purpose of this study is to establish, both 

experimentally and semi-theoretically, the parameters 

characterizing different soil failure criteria, presented in 

Section 2, and their relationship to the internal friction 

angle in a given range of initial soil densities in plane 

strain state. 

The experimental way of finding the parameters 

involves determining the set of principal stress values σ
1
, 

σ
2
 and σ

3
, corresponding to the soil peak strength (Fig. 2). 

The same parameters are calculated semi-theoretically 

a) b) 

Figure 2: The principal stress and axial strain curves for the selected test in plane strain conditions: a) q(e
1
) and b) σ

1
(e

1
), σ

2
(e

1
) and σ

3
(e

1
).

  

Figure 3: Comparison of the results from drained triaxial and plane strain tests on sand [18] and true-triaxial tests on Skarpa sand. 
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using the approach proposed by Vikash and Prashant 

(2010). The associated flow rule and plane strain condition 

are used to express the parameters as functions of the 

plane strain friction angle. The basic difference between 

the experimental and semi-theoretical approach concerns 

the intermediate stress σ
2
. In experiments, its value 

comes from the direct measurements; in calculations, it 

is determined on the base of the accepted assumptions 

and is different for each failure criterion. Validation of 

the Vikash and Prashant approach on the base of stress 

measurements is another purpose of the study. 

2  Characteristics of soil failure 

criteria

The soil failure criteria are usually formulated using stress 

invariants, independent of the choice of the coordinate 

system. In standard triaxial conditions, two invariants of 

the stress tensor are enough to describe the state of stress 

and any load path in the stress space. In the true triaxial 

state, three different principal stresses exist; therefore, 

one more invariant is needed. Often, combinations of the 

basic invariants of the stress tensor are used to formulate 

failure criteria.

Soil failure state is graphically represented, in 3D 

stress space, by the surface which separates the allowable 

stress states from the states of uncontrolled plastic flow 

and is called yield surface. It is accepted in this study that 

the yield surface corresponds to the stress states at which 

a soil reaches its maximum (peak) strength. The failure 

criteria considered in this paper describe the shape of the 

yield surface and differ in cross-section on the deviatoric 

plane, perpendicular to the hydrostatic axis σ
1
 = σ

2 
= σ

3
 

(Fig. 4).

2.1  Basic invariants of the stress tensor

The mean stress p and deviator stress q are most frequently 

employed for axisymmetric stress conditions. In the case 

of the true triaxial state, they are usually completed by 

Lode angle q. In case of dry granular material invariants, 

p, q and q can be expressed using the basic invariants of 

total or deviatoric stress tensor, defined by Eqs. (1)–(5):

a) The basic invariants of the total stress tensor σ:
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b) The basic invariants of the deviatoric stress 

tensor :
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The mean stress p, deviator stress q and Lode angle q are 

defined by Eqs. (6), (7) and (8). 
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Figure 4: Failure surfaces in the deviatoric plane, see Georgiadis 

et al. (2004). In plane strain conditions, Lode angle varies roughly 

from q = 10
 
̊ to q = 20

 ̊
.
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In classical triaxial compression q = 0 ̊, in triaxial extension 

q =60 ̊, generally 0 ̊ < q < 60 ̊.

Lode angle is in some studies replaced by its 

alternative – the Bishop’s parameter b is defined by Eq. (9) 

and related to q by Eq. (10). 
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An analysis of experimental studies shows that values of b 

under plane strain conditions lie within the range of 0.18–

0.35 (assuming that 10 ̊ < q < 20 ̊) (Tatsuoka et al. 1986; 

Wanatowski and Chu 2007).

2.2  Failure criteria

Mohr–Coulomb (M-C) failure surface F
M-C

 for non-

cohesive soil can be described by equation (11):
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where σ
1
 and σ

3
 are the maximum and the minimum 

principal stress and φ
M-C

 is the internal friction angle. On 

the deviatoric plane, the M-C criterion is represented by a 

hexagonal contour (Fig. 4) and φ
M-C

 is constant. F
M-C

 does 

not depend on the intermediate stress σ
2
.

Drucker–Prager (D-P) failure criterion was 

established as a generalization of the Mohr–Coulomb 

condition; see Drucker and Prager (1952), and this criterion 

for non-cohesive soil is described by equation (12):
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where I
1
 and J

2
 are given by Eqs. (1) and (4) and κ

D-P
 is the 

specific soil parameter. On the deviatoric plane, the D-P is 

represented by a circle (Fig. 4). 

Lade–Duncan (L-D) criterion – true triaxial 

experiments (especially in plane strain conditions) 

prove that shear strength for intermediate values of Lode 

angle (0 ̊ < q < 60 ̊) is higher than that resulting from the 

M-C criterion in the classical triaxial test; see Eekelen 

(1980), Lade and Duncan (1973) and Sławińska (2018). 

An empirical criterion which takes into account these 

observations is called Lade–Duncan (L-D) criterion (Eq. 

(13)):
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where κ
L-D

 is the specific soil parameter and I
1
, I

3
 are 

defined by Eqs. (1) and (3).

Matsuoka–Nakai (M-N) criterion is proposed on 

the basis of spatially mobilized plane concept (Matsuoka 

and Nakai, 1974). This criterion, based on theoretical 

considerations, is described by the relation (14):
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where κ
M-N

 is the specific soil parameter and I
1
, I

2
, I

3
 are 

defined by Eqs. (1)–(3).

3  Failure criteria parameters in 

plane strain conditions

Soil parameters φ, κ
D-P

, κ
L-D

 and κ
M-N

, appearing in the 

failure criteria, can be determined directly from Eqs. (11)–

(14) using the principal stress values corresponding to 

the peak soil strength measured experimentally or on the 

semi-theoretical way, where σ
2
 is determined assuming 

the associated flow rule and the plane strain condition 

and only σ
1
max and σ

3
 are measured.

3.1  Determination of failure criteria parame-
ters from direct stress measurements

Transforming equations (11)–(14) gives the expressions 

(15)–(18) which allow to determine the parameters of 

failure criteria using the measured values of σ
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3.2  Determination of failure criteria parame-
ters by flow rule and plane strain condition

The associated flow rule comes from the rigorous 

formulation of the plasticity theory, while the non-

associated one is only semi-theoretically postulated. The 

latter was introduced for soils to reduce the mismatch 

between measured and theoretically predicted volumetric 

strains in element tests. However, the solution of this 

particular problem introduces another problem, namely 

the non-coaxiality of the stress and strain tensors. It 

is difficult to measure experimentally and limits the 

application of the upper-bound theorem, based on the 

assumption of the associated flow rule and frequently 

used in limit analysis solutions of soil mechanics 

boundary value problems (e.g. Deusdado et al., 2016, di 

Santolo et al., 2012).

As a result, both the associated and non-associated 

flow rules are still used to model soil behaviour, depending 

on the nature of the problems studied. 

Liu (2013) shows various results of triaxial 

compression tests on sands and their simulations using 

both the associated and non-associated flow rules. Similar 

simulations for more complex stress paths in the p - q - q  

space can be found in Chan (1988) and Ling and Liu 

(2003). Their research demonstrates that the associated 

flow rule predicts well the results of triaxial compression 

tests for medium and medium-dense soils in the pre-peak 

stage and under drained conditions. The non-associated 

flow rule, on the other hand, gives better results for the 

unstable response of saturated loose sand and under 

undrained condition. According to these findings, it is 

justified to use the associated flow rule to analyse the 

behaviour of medium and medium-dense sand samples 

up to the peak strength, if volume changes are still 

significant and no distinct localization occurs. 

Plastic flow rule can describe soil deformation at 

failure state. Its general formulation, as a non-associated 

flow rule, is given by Eq. (19):  
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where
ije means the strain rate tensor, λ is the scalar 

coefficient and g is the plastic potential. The special case 

of the non-associated is the associated flow rule, where 

the plastic potential g coincides with the yield surface F (g 

= F). In such a case, the plastic potentials for D-P, M-N and 

L-D criteria are given by Eqs. (12)–(14), and it is possible 

to determine parameters κ
D-P

, κ
L-D 

and κ
M-N

 theoretically by 

solving the set of equations (20). The set comes from the 

assumption of soil failure state (F = 0, where F means F
D-P

, 

F
L-D

 or F
M-N

) and the plane strain condition de
2
 = 0, which 

substituted to the flow rule (19) gives 0.=
∂
∂

2

F

σ
 Such way of 

calculating parameters κ
D-P

, κ
L-D

 and κ
M-N

 was proposed by 

Vikash and Prashant (2010).
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In the Appendix, the set (20) is presented in the expanded 

form, specific for each failure condition. The set can be 

completed by Eq. (21), valid in plane strain conditions, to 

express κ
D-P

, κ
L-D

 and κ
M-N

 as functions of the internal friction 

angle φ
ps

.
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To solve (20), first the intermediate principal stress σ
2
 is 

determined as a function of σ
1
 and σ

3
, separately for D-P, 

L-D and M-N yield conditions:
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It can be seen from Eqs. (22)–(24) that each condition 

gives the different expression for the intermediate stress 

σ
2
. Finally, the following expressions for κ

D-P 
, κ

L-D
 and κ

M-N
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are obtained from the set (20), taking into account  Eqs. 

(21)–(24):
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4  True triaxial tests in plane strain 

conditions

The series of tests in true triaxial apparatus in plane strain 

conditions were performed to verify both approaches 

of determining failure criteria parameters. Limiting the 

strains to plane (two-dimensional) case induces some 

partly controlled three-dimensional stress state, where  

σ
2 

comes from the soil reaction and cannot be applied a 

priori, but has to be measured.  The non-zero σ
2
 in plane 

strain condition has always been a problem in interpreting 

the results of standard 2D soil mechanics tests. 

The tests in this study were carried out on Skarpa 

sand samples at different confining pressures and initial 

void ratios. All the tests were performed in dry conditions. 

Basic properties of Skarpa sand are collected in Table 1. 

4.1  Test procedure

The plane strain tests, with deformation fixed in x
2
 

principal stress direction (e
2
 = 0, Fig. 5), were carried out 

in true triaxial apparatus. The Electro-Mechanical True 

Triaxial Apparatus (EMTTA) is manufactured by the British 

company GDS Instruments Ltd. and is shown in Fig. 6. 

Plane strain condition can be imposed on the rectangular 

samples of 150 × 75 × 75 mm dimensions in this type of true 

triaxial apparatus by fixing the position of the side platens 

to prevent their movement (Fig. 7). Depending on the way 

the stresses are exerted on the test specimen, EMTTA is 

mixed type, with flexible membrane (horizontal stress) 

and rigid end platens (axial stress).

Fig. 7a shows the sample ready for the test, with 

the side platens fixed. After installing the sample in the 

testing chamber (measurement cell, Fig. 6), its doors are 

closed and it is filled with water, then the side platens are 

gently pressed against the specimen until the difference 

between horizontal stresses σ
2 

- σ
3
 is about 2–3 kPa, to 

Figure 5: Layout of the soil sample under plane strain conditions in 

EMTTA.

Figure 6: Components of EMTTA, used in the study.

Table 1: Parameters of Skarpa sand.

Specific density [kg/m3]  2650

Mean particle size [mm] D
50

 - 0.42

Uniformity coefficient  [ - ] U = 2.5

Minimum void ratio [ - ] e
min

 = 0.432

Maximum void ratio [ - ] e
max 

= 0.677
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secure the proper contact. To reduce friction between the 

membrane and the side plates, the plates are lubricated 

with a special lubricant.

Specimen base pedestal is connected to the pressure/

volume controller (back pressure controller, Fig. 6), which 

is used to apply and measure the pore water pressure 

and volume changes. Cell pressure is controlled by a 

pneumatic-hydraulic system (a cell pressure controller), 

where required value can be set. In addition, TTA is also 

equipped with a cell pressure transducer (see Fig. 6) 

located inside the chamber.

Vertical actuators shown in Fig. 6 are used to apply 

the major σ
1
 principal stress. The horizontal stress σ

3
 is 

applied through the water pressure in the chamber, and σ
2
 

is recorded by a gauge located on vertical actuators. 

In order to measure the specimen displacements in 

x
3 

direction, two proximity transducers are installed on 

the inner side of both cell doors, exactly at their centre 

(Fig. 7b). When the sample deforms, the changes in a 

distance between the square aluminium plate (Fig. 7a), 

adhered to the sample and the transducers, are recorded, 

giving the local value of the displacement. Based on 

this measurement, e
3
 is calculated. Displacement in x

1
 

direction is measured by LVDT transducers attached to 

each actuator; the vertical strain e
1
 is calculated on its 

base. 

Soil samples are prepared in a membrane-lined split 

mould by air pluviation. This method involves preparing a 

soil sample using a funnel with a nozzle of approximately 

5 mm. The weighed sand is placed in the funnel at the 

selected distance from the centre of the mould. The height 

of the funnel and the mass of sand are determined by ‘trial 

and error’ to obtain the appropriate relative density (Li et 

al., 2018).

Eleven tests were carried out according to the same 

procedure. The tests consisted of two phases:

a) Phase 1 (isotropic compression): the sample is loaded 

isotropically by increasing water pressure in the 

testing chamber (σ
3

c in Table 2). This is not carried 

out under plane strain conditions. The side plates, 

pressed against the sample, move along with it, while 

a constant set value of lateral stress (about 2–3 kPa) is 

maintained.

b) Phase 2 (shear): the sample is vertically loaded with a 

constant vertical displacement rate of 15 mm/hour at 

constant chamber pressure (σ
1
 = σ

3
c = const)  in plane 

strain conditions.

The samples’ porosities were between 0.316 and 0.36 (the 

relative densities ( )cDIexpκ  after isotropic compression between 

0.465 and 0.878), and thus medium-dense, dense and 

very dense samples were tested. The applied confining 

pressures were in a range of 50–400 kPa. 

4.2  Measurement results 

Table 2 contains the initial conditions of all tested 

samples: the initial void ratio at the start of Phase 1 (e), 

the void ratio and porosity after isotropic compression, at 

a)       b)      

Figure 7: a) The GDS EMTTA chamber with a sample prepared for the test. The role of the side plates is to prevent soil deformations in the 

x
2
direction, b) proximity transducer on the doors of the measurement cell (test chamber).
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the beginning of Phase 2 (ec, nc) and the applied confining 

pressure (σ
3

c). Also, the relative density I
D
, defined by Eq. 

(28), is given.
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where e
max

 and e
min

 are maximum and minimum void 

ratios determined in the Proctor test. The porosity nc is 

calculated on the base of a void ratio, using Eq. (29):
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Table 2: Initial test conditions.

Test e I
D σc

3 
[kPa] ec I( )cDIexpκ nc

009_17_MC_5 0.585 0.376 391 0.563 0.465 0.36

033_17_MC_14 0.559 0.482 293 0.548 0.527 0.354

012_18_MC_21 0.541 0.555 292 0.532 0.592 0.347

013_18_MC_22 0.519 0.645 146 0.514 0.665 0.339

010_18_MC_19 0.517 0.653 195 0.508 0.690 0.337

001_18_MC_15 0.521 0.637 191 0.499 0.727 0.333

010_15_MC_1 0.496 0.739 278 0.490 0.763 0.329

009_18_MC_18 0.488 0.771 292 0.480 0.804 0.324

008_18_MC_17 0.489 0.767 295 0.476 0.820 0.322

028_17_MC_12 0.467 0.857 52 0.462 0.878 0.316

031_17_MC_13 0.469 0.849 99 0.462 0.878 0.316

Figure 8: Results of the experimental tests listed in Table 1: deviator 

stress as a function of the axial strain q(e
1
).

Figure 9: Results of the experimental tests listed in Table 1: 

maximum principal stress as a function of the axial strain σ
1
(e

1
). 
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The basic results of the eleven tests listed in Table 1 are 

gathered in Figs 8–11. Each of the figures shows the full set 

of curves for all the tests: deviator stress (Fig. 8), maximum 

principal stress (Fig. 9), principal stress in the direction 

of fixed strain (Fig. 10) and volumetric strain (Fig. 11), as 

functions of the axial strain. 

The sets are highly varied because they correspond to 

the samples of different densities (medium to very dense), 

tested at different confining pressures (Table 2). The axial 

strain at which the peak strength occurs is determined for 

each test on the base of Fig. 8, and then, the corresponding 

values of σ
1
max, σ

2
 and σ

3
 are established, like it is 

demonstrated in Fig. 2.
 

Fig. 11 shows that dilative behaviour is observed in 

all the tested samples. The volumetric strain reaches the 

maximum (compression is positive), which is typical 

for dense samples. The maximum value of the deviator 

stress q was observed in test ‘009_17_MC_5’ (Fig. 8). The 

corresponding axial stress equals σ
1
max = 1402 kPa (Fig. 

9). At this range of stress, no grain crushing is possible in 

case of silica sand, so it is accepted that no grain crushing 

occurred in the tests; see Yang et al. (2010). Table 3 

presents the measured values of σ
1
max, σ

2
, σ

3
, defining the 

peak strength of each sample, and p, q, q and b, calculated 

on their base.

Figure 10: Results of the experimental tests listed in Table 1: 

principal stress in the direction of fixed strain (e
2
 = 0) as a function 

of the axial strain σ
2
(e

1
).

Figure 11: Results of the experimental tests listed in Table 1: 

volumetric strain as a function of the axial strain e
v
(e

1
).

Table 3: Characteristics of peak strength state for the tested samples.

Test σ
1

max
 

[kPa]

σ
2 

[kPa]

σ
3

[kPa]

p 

[kPa]

q 

[kPa]

b 

[ - ] 

q 
[  ̊ ]

009_17_MC_5 1402 653 391 815 909 0.26 14.46

033_17_MC_14 1072 479 293 615 705 0.24 13.21

012_18_MC_21 1184 459 292 645 821 0.19 10.14

013_18_MC_22 678 262 146 362 485 0.22 11.97

010_18_MC_19 902 355 195 484 642 0.23 12.46

001_18_MC_15 870 332 191 464 621 0.21 11.35

010_15_MC_1 1291 529 278 699 914 0.25 13.76

009_18_MC_18 1483 528 292 768 1092 0.20 10.78

008_18_MC_17 1396 506 295 732 1012 0.19 10.40

028_17_MC_12 287 109 52 149 212 0.24 13.44

031_17_MC_13 508 191 99 266 372 0.22 12.38
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Figs 8–11 represent the whole course of the 

experimental tests, showing pre- and post-peak behaviour. 

Only the pre-peak part of the tests, defined on the basis 

of Figs 8–11, is analysed in the paper. Before the onset of 

localization, the deviator peak strength (not the critical 

strength) is used. The literature shows that localization 

is observed after the deviator peak strength has been 

reached, e.g. Leśniewska et al (2012) and Desrues and 

Viggiani (2004). 

Fig. 12 shows the relationship between principal stress 

components, corresponding to the peak soil strength q: 

σ
1
max (σ

3
) and σ

2
(σ

3
), which can be estimated with sufficient 

accuracy by straight lines (r = 0.94 and r = 0.9, where r is 

Pearson’s coefficient). Fig. 12 also confirms that in all the 

tests, the measured σ
2
 is always the intermediate principal 

stress. 

Fig. 13 collects the values of Lode angle calculated 

using Eq. (8) and the data from Table 3, and it suggests 

that there is no statistically significant difference in Lode 

angle due to varying principal stress σ
2
 or confining 

pressure σ
3
. The Lode angle is considered constant at  q = 

12.6 ̊ (calculated as an arithmetic average), but its scatter 

Figure 12: Relations between principal stress components, 

corresponding to peak soil strength: σ
1
max (σ

3
) and σ

2
(σ

3
).

Figure 13: Relation between Lode angle q and intermediate stress σ
2
.

Table 4: Characteristic parameters of Drucker–Prager, Matsuoka–Nakai and Lade–Duncan soil failure criteria, obtained from direct stress 

measurements (A) and the associated flow rule assuming plane strain conditions (B).

Test

A. Direct stress measurements

Eqs. (15)–(18)

B. Flow rule and plane strain condition

Eqs. (25)–(27)

009_17_MC_5 34.3


0.21 11.7 40.9 1181.5 740.4 896.5 0.179 11.7 39.6

033_17_MC_14 34.8


0.22 11.9 41.7 904.8 560.4 682.5 0.181 11.8 40.0

012_18_MC_21 37.2


0.25 12.5 45.7 1007.5 588.0 738 0.190 12.3 42.5

013_18_MC_22 40.2


0.26 13.2 49.4 583.8 314.6 412 0.202 13.1 46.3

010_18_MC_19 40.1


0.26 13.1 49.0 776.3 419.3 548.5 0.201 13.1 46.2

001_18_MC_15 39.8


0.26 13.1 49.0 747.8 407.6 530.5 0.200 13.0 45.7

010_15_MC_1 40.2


0.25 13.1 48.6 1111.5 599.1 784.5 0.202 13.1 46.3

009_18_MC_18 42.1


0.27 13.8 53.4 1287.1 658.1 887.5 0.209 13.7 49.1

008_18_MC_17 40.6


0.27 13.4 50.9 1203.9 641.7 745.5 0.203 13.2 46.9

028_17_MC_12 43.9


0.27 14.3 55.3 251.0 122.1 169.5 0.215 14.3 52.0

031_17_MC_13 42.4


0.27 13.8 52.9 441.3 224.3 303.5 0.209 13.7 46.5
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around this value is considerable, which is probably 

related to the unavoidable problem of forming soil samples 

of repeatable structure. The value of the Lode angle may 

also depend in a more complex way on the initial density 

of the soil sample or confining pressure. This problem is 

open.

The constant and relatively low value of Lode angle 

obtained for all the tests from Table 3 confirms that in 

plane strain conditions, the influence of the intermediate 

stress σ
2 
on the soil peak behaviour is limited and does not 

depend on the confining pressure. The question remains, 

how to estimate the magnitude of this influence.

Values of parameters (φ
ps

), ,  and ,  

obtained from Eqs. (15)–(18) by substituting σ
1
max, σ

2
 and 

σ
3
, which correspond to the peak strength of the tested 

samples, are collected in Table 4, column ‘A’. Values of 

parameters κ
D-P

, κ
L-D 

and κ
M-N

, calculated from Eqs. (25)–

(27) by substituting σ
1
max and σ

3
, are given in Table 4, 

column ‘B’. 

5  Discussion of results

The data included in Table 4 are presented in Figs 

14–17. First, the relationship between the intermediate 

principal stress σ
2
 for Drucker–Prager, Matsuoka–Nakai 

and Lade–Duncan criteria, obtained from Eqs. (22)–(24) 

and measured in the experiments, is analysed, and then 

Vikash and Prashant solution, given by Eqs. (25)–(27), is 

verified experimentally.

5.1  Intermediate stress σ
2

Fig. 14a presents σ
2
D-P, σ

2
M-N and σ

2
L-D as functions of the 

experimental σ
2
, taken from Table 3. A perfect fit between 

the calculated and measured values would mean that they 

lie on the dashed line σ
2
calc = σ

2
exp, shown in the figure. 

A linear relationship between the calculated and 

measured intermediate stress σ
2
 for all three selected 

criteria is found, but only Matsuoka–Nakai is close to 

the perfect fit. The ratio R = σ
2
calc / σ

2
exp plotted in Fig. 14b 

shows three constant trends: 2.15 for Drucker–Prager, 1.52 

for Lade–Duncan and 1.17 for Matsuoka–Nakai condition, 

with perfect fit equal to 1. It means that the Vikash and 

Prashant (2010) approach, highly overestimates the 

influence of the intermediate stress in plane strain 

conditions for Drucker–Prager, gives about 50% 

overestimation for Lade–Duncan and is close to measured 

values for Matsuoka–Nakai criterion.

a)

b)

Figure 14: The intermediate stress σ
2
, obtained for Drucker–Prager 

(D-P), Matsuoka–Nakai (M-N) and Lade–Duncan (L-D) failure criteria, 

assuming plane strain condition and the associated flow rule, as 

function of the measured σ
2
 (Table 3): (a) σ

2
calc (σ

2
exp) and (b) R(σ

2
exp), 

where R = σ
2
calc/ σ

2
exp. 

Figure 15: Dependence of the intermediate stress σ
2
 (Tables 3 and 4) 

on the initial relative density of Skarpa sand. 
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Fig. 15 shows the dependence of the intermediate 

stress σ
2
, measured and calculated by Eqs. (25)–(27), on 

the initial relative density of Skarpa sand. There is no 

clear tendency visible because the tests presented in the 

paper were performed at different confining pressures. If 

the ratio of σ
2
 to the confining pressure σ

3
c is examined 

instead (Fig. 16), the linear trends appear both in the 

case of measured and calculated values and again the 

Matsuoka–Nakai criterion is closest to reality.

5.2   Experimental validation of Vikash and 
Prashant approach

Parameters φ
ps

, κ
D-

, κ
L-D

 and κ
M-N

,  obtained by Eqs. (15)–(18), 

requiring knowledge of the full set of principal stresses σ
1
, 

σ
2
 and σ

3
, and by Vikash and Prashant approach, which 

requires measurement of two principal stresses only (σ
1
 

Figure 16: Dependence of the ratio of intermediate stress σ
2 
to confining 

pressure σ
3
 (Table 4) on the initial relative density of Skarpa sand. 

a)        b)

c)         d)

Figure 17: Parameters of Mohr–Coulomb (M-C), Drucker–Prager (D-C), Matsuoka–Nakai (M-N) and Lade–Duncan (L-D) failure criteria 

depending on soil relative density: (a) friction angle ϕ, (b)–(d) comparison of κ
D-P

, κ
L-D

 and κ
M-N

, obtained by Eqs. (16)–(18) (full stress state 

measurement) and Eqs. (25)–(27) (plane strain condition – Vikash and Prashant approach).
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and σ
1
), are shown in Fig. 17, as functions of the relative 

density I
D
, for all the true triaxial tests (Tables 2–4). 

It is possible in Vikash and Prashant approach to 

replace σ
1
 and σ

3
 by the internal friction angle φ

ps
 (Eqs. 

(25)–(27)). The internal friction angle for plane strain 

condition can be obtained directly from the relation (21) 

and play the role of the independent variable that specifies 

κ
D-P

, κ
L-D

 and κ
M-N

. 

Fig. 17(a) shows the relation between the M-C friction 

angle φ
ps

 and the relative density ( )cDIexpκ  of Skarpa sand, 

which is linear within the given density range, thus 

allowing for the equivalent presentation of κ
D-P

, κ
L-D

 and 

κ
M-N

 as functions of φ
ps

 or ( )cDIexpκ  independent variables. ( )cDIexpκ  

was selected for Fig. 17(b)–(d). The figure confirms the 

previous finding that the Vikash and Prashant approach 

gives a very good result for the Matsuoka–Nakai failure 

criterion – the κ
M-N

 values obtained in this case by the two 

approaches almost coincide in Fig. 17c. 

There is no such a good fit in case of Drucker–Prager 

and Lade–Duncan conditions. As Matsuoka–Nakai 

criterion is most commonly used to estimate soil strength 

in complex stress states, this finding can help to determine 

parameters necessary for numerical analysis of plane 

strain problems in a relatively simple way. 

All three failure conditions give linear increase of κ
M-N

, 

κ
D-P

 and κ
M-N

 with soil relative density, regardless of the 

way they are obtained, as expected.

The linear fits for the failure criteria parameter κexp, 

obtained from the direct stress measurement of σ
1
max, σ

2
 

and σ
3
 (Table 3) and expressed as a function of the relative 

soil density (I
D
) or  the plane strain friction angle φ

ps
, are 

given in Tables 5 and 6, respectively. 

Values of Pearson’s correlation coefficient r in Tables 

5 and 6 lay between 0.970 and 0.997, which proves very 

good linear fit in each case. The Statistica software was 

used to determine the fits by the least-squares method. 

5.3  Quality of κ
D-P

, κ
L-D

 and κ
M-N

 approximation

To estimate more quantitatively the difference between 

the two approaches of determining the failure criteria 

parameters, two statistical measures are employed:vκ and 

vσ2
.

vκ is a measure of the average relative difference between 

κflow rule = κ(σ
1
, σ

3
) = κ(φ

ps
)and κexp (Table 4) and is given by 

the formula (30):

( )
σσ

σσσσκ
ϕ−

=
++

=−

σσ
σσσσσσσσσσ

κ
ϕϕ

ϕ
+

−
=

+++++
=−

−
−

=

+
=

n

100%*
n

1i
exp

rule flowexp

∑
=

−

= κ

κκ

vκ ,  

∑
=

−

=
σ

σσ

σ

 (30)

where ‘n’ means number of tests (n = 11). 

Similarly, vσ2
 is the average relative difference between 

the semi-theoretically and experimentally validated σ
2
, 

and it is calculated according to the relationship (31):

( )
σσ

σσσσκ
ϕ−

=
++

=−

σσ
σσσσσσσσσσ

κ
ϕϕ

ϕ
+

−
=

+++++
=−

−
−

=

+
=

∑
=

−

= κ

κκ

κ

n

100%*
n

1i
exp

2

rule flow

2

exp

2

2

∑
=

−

=
σ

σσ

vσ    (31)

Table 5: The linear fits κexp (( )cDIexpκ ) and the corresponding Pearson’s 

correlation coefficients.

Linear fit Pearson’s 

coefficient r

Drucker–Prager  = 0.16( )cDIexpκ  + 0.13 r
D-P

 =  0.94

Lade–Duncan  = 26.33( )cDIexpκ  + 31.64 r
L-D

 = 0.96

Matsuoka–Nakai  = 9.20( )cDIexpκ  + 5.48 r
M-N

 = 0.96

Table 6: The linear fits κexp(φ
ps

)and the corresponding statistics 

Pearson’s correlation coefficients.

Linear fit Pearson’s coefficient r

Drucker–

Prager

 = 0.006353 φ
ps 

+ 

0.001497

r
D-P

 =  0.970

Lade–

Duncan

 = 1.5 φ
ps 

- 10.613 r
L-D

 = 0.993

Matsuoka–

Nakai

 = 0.2605 φ
ps 

+ 2.767 r
M-N

 = 0.997

Table 7: Average relative difference of parameters κ and 

intermediate principal stress σ
2
, determined by the two approaches: 

full set of principal stresses and Vikash and Prashant proposal, for 

Drucker–Prager, Lade–Duncan and Matsuoka–Nakai failure criteria.

vκ
vσ2

Drucker–Prager PD =−
κv = 21.21%

PD

2
=−

σv =119.0%

Lade–Duncan
DL =−

κv  = 5.99%
DL

2
=−

σv =55.5%

Matsuoka–Nakai NM =−
κv = 0.66% NM

2
=−

σv = 19.4%
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Table 7 shows the summary of the calculations carried out 

for each of the criteria.

The smallest average differences are for Matsuoka–

Nakai criterion ( NM =−
κv = 0.66%, NM

2
=−

σv = 19.4%) and the 

biggest in the case of Drucker–Prager ( PD

2
=−

σv = 21.21%, 
PD

2
=−

σv = 119.0%). The relatively big average relative 

difference of the intermediate stress σ2 has little influence 

on the corresponding difference of κ
M-N

, being less than 

1%. 

6  Summary and conclusions

 – A series of shear tests on Skarpa sand was carried out 

in true triaxial apparatus in plane strain conditions. 

Experiments covered a wide range of initial soil 

densities and confining pressures, with the initial 

relative density index ( )cDIexpκ  0.465,0.87∈cDI 0.465, 087880.465,0.87∈  and the 

confining pressure σ
3

c 52c

3 ∈ó 52 kPa, 391 kPakPa ∈ . The linear 

dependence of the friction angle psϕ
ps

 on the initial ( )cDIexpκ  

is confirmed. 

 – The semi-theoretical approach proposed by Vikash 

and Prashant (2010) is compared with the results of 

the calculations based on the measurements of the 

full set of principal stresses. Both approaches differ 

in the way of obtaining the value of intermediate 

stress σ2, which can be measured independently or 

calculated on the base of σ1 and σ3 measurement, 

assuming associative flow rule.

 – The most important conclusion for soil testing in plane 

strain conditions is that using Matsuoka–Nakai failure 

condition, the associated flow rule takes properly into 

account the effect of non-zero intermediate stress σ2, 

without a need to measure it.

 – Linear fits to describe the relationship between κexp  

and φ
ps

 for each failure criterion have been obtained. 

The values of Pearson’s coefficient r lay between 0.970 

and 0.997, which proves a very good linear fit in each 

case. The best linear fit characterizes Matsuoka–

Nakai criterion and r
M-N

 = 0.993. It has been shown 

that relation ( )cDIexpκ  is also linear (the Pearson’s 

coefficient r lay between 0.94 and 0.96).

 – The constant and relatively low value of Lode angle 

obtained for all the TTA tests confirms that in plane 

strain conditions, the influence of the intermediate 

stress σ
2 
on the soil peak behaviour is limited and does 

not depend significantly on the confining pressure. 

The trend for Lode angle is constant (q = 12.16 ̊) with 

some statistical scatter. This value is consistent with 

Tatsuoka et al. (1986) and Wanatowski and Chu 

(2007).

Data Availability Statement: All data, models and 

code generated or used during the study appear in the 

published article.
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Appendix 

Let’s consider the system of equations in general form:
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In particular, system (A1) in the case of Drucker–Prager 

condition will take the form:
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and by solving this system of equations, we get:
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Assuming that:
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we get the form: 
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The system (A1) in the case of Lade–Duncan condition 

will take the form:
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and by solving this system of equations, we get:
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assuming (A5), we have:
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The system (A1) in the case of Matsuoka–Nakai condition 

will take the form:
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where

  

( ) ( )













=
−−++

=∂
∂

−
∂
∂

=
∂

∂
=

=−= −

σσσσσσσσσσ
σ

ε

κ

σσσ +
=

( )
σσ

σσσσκ ++
=−

κ
ϕ−

=−














=
+

=
∂
∂

−







∂
∂

+
∂
∂

=
∂

∂
=

=−=

ε

κ

σσσ
σ

( ) ( )( )( ) 32132131323121 σσσσσσσσσσσσσσA ++++++=  

( )( ) σσσσσσσσσσσ ++++=

(A12)

     

( ) ( )













=
−−++

=∂
∂

−
∂
∂

=
∂

∂
=

=−= −

σσσσσσσσσσ
σ

ε

κ

σσσ +
=

( )
σσ

σσσσκ ++
=−

κ
ϕ−

=−














=
+

=
∂
∂

−







∂
∂

+
∂
∂

=
∂

∂
=

=−=

ε

κ

σσσ
σ

( ) ( )( )( ) σσσσσσσσσσσσσσ ++++++=

( )( ) 31323121321 σσσσσσσσσσσB ++++=             (A13)

and by solving (A11), we get:
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Assuming (A5), we have:
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