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ABSTRACT

Learnability of languages is a challenging problem
in the domain of formal language identification. It is
known that the efficiency of a learning technique can
be measured by the size of some good samples (rep-
resentative or distinctive samples) formally called a
characteristic set. Our research focuses on the char-
acteristic set of k-acceptable languages. We proposed
a Gold-style learning algorithm called KRPNI which
applied the grammatical inference technique to iden-
tify a language and expressed it by a k-DFA. In this
paper, we study the existence of such characteristic
sets. Our theoretical results show that there exists a
polynomial characteristic set for a k-acceptable lan-
guage. It is found that the size of the characteristic
set depends on the value of k, instead of the size of
an alphabet.
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1. INTRODUCTION

Grammatical inference is considered as a model for
identifying the characteristic of a language or words
in the languages. Typically, the grammatical repre-
sentation mostly refers an abstract machine named a
finite state automaton or a set of grammatical rules
called a grammar.

The study on learnability of classes of formal lan-
guages has received much attention in grammatical
inference research field. When the learnability of
some classes is proved, this confides that there exists
at least one learning algorithm that can return a cor-
rect hypothesis when samples are available enough.
There are a number of researches that take usefulness
of knowing the learnability of some classes. These
works have applied learning algorithms to various
practical problems. For example, RPNI algorithm
was applied to music style recognition, see detail in
[1].

Theoretically, there have been a number of pub-
lished papers providing proofs on learnability of both
trivial and nontrivial classes of languages [2]. Learn-
ability of classes of languages has been considerably
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interested for researchers since Gold’s works was pub-
lished in 1967 [3]. In the seminal work, Gold intro-
duced an explanatory learning model called identi-
fication in the limit and used this model to study
on learnability of nontrivial classes of languages in
Chomsky’s hierarchy. One of the interesting results
was shown that a recursively enumerable language
is learnable from examples that are labelled whether
they are strings of the target language or not. The ex-
amples, which are used in learning context, are called
positive examples if they are in the language and are
called negative examples if they are not so.

The Gold’s learning model only convinces us that
the correct grammatical representation would be
eventually identified, but the issue of complexity of
learning is regardless. To concern this important
issue, Gold [4] further studied the learnability and
proposed another model by additionally concerning
complexity in the process of language learning. This
learning model is called identification in the limit
from polynomial time and data. Two conditions, to
prove that any class is efficiently learnable, are these
followings: a learner must identify a representation
with polynomial time of size of examples and a learner
must correctly identify a representation of the target
language when a characteristic set is given. With the
best knowledge of authors, the informal notion of the
characteristic set was first introduced in his article.
Gold also proved in his work that a class of regular
languages is identifiable in the limit from polynomial
time and data.

A formal notion of a characteristic sets was defined
by Higuera in [5]. In this work, Higuera also gave a
formal definition of identification in the limit from
polynomial time and data. Most of research in gram-
matical inference adopts this formal definition as a
fundamental definition for proving efficient learnabil-
ity. A number of classes of languages have been shown
that they are identifiable in the limit from polynomial
time and data such as the following results: a class of
regular languages by Oncina and Garcia [6], a class
of commutative regular languages by Gomez and Al-
varez [7], a class of one-clock deterministic timed au-
tomata by Verwer et al. [8], a class of deterministic
linear languages by Higuera [9], and a class of strictly
deterministic finite automata [10].

A k-acceptable language is a formal language
which is recognized by a k-edge deterministic finite
automaton (k-DFA) introduced in [11]. The prob-
lem of learnability of these was classes proposed as
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an open problem in the paper. By our previous work
[12], the learning algorithm KRPNI was proposed to
learn k-acceptable language. Therefore, in this pa-
per, we study on existence of characteristic set for
k-acceptable languages. We also prove that the size
of characteristic examples for each k-acceptable lan-
guage depends on the value of k, instead of the size
of alphabet.

The remains of this paper are organized as follows.
Section 2 provides related definitions and notations
of language learning. In section 3, we give a learning
algorithm KRPNI for k-acceptable languages. The
characteristic sets for learning k-acceptable languages
are described in section 4. The theoretical results are
also shown in this section. Section 5 dedicates to
discuss the theoretical results and actual languages.
Finally, the last section provides the conclusion and
future works.

2. PRELIMINARIES

In this section we give some basic definitions and
notations concerning languages and their machines,
and also the notion of characteristic set.

2.1 Basic Definitions and Notations

An alphabet Σ is a finite set of symbols called let-
ters. A finite sequence of letters from Σ is called a
string. Let w be a string and the length of strings is
denoted by |w|. The string with length zero is called
the nullstring denoted by λ. The infinite set of all
strings over Σ is denoted by Σ∗. Given a concate-
nated string w = uv, a string u is a prefix of w if
and only if there exists a string v in Σ∗. In this work,
we define an orderalphabetΣ≤ as a poset, where Σ
is an alphabet and ≤ is a partial order over Σ. To
order strings, we use the lexicographic-length order
over Σ∗ defined by ∀u, v ∈ Σ∗, u < v if and only if
|u| < |v| or there exists w, u

′
, v

′ ∈ Σ∗ and two let-

ters x < y ∈ Σ such that u = wxu
′
, v = wyv

′
. A

language L defined over Σ is a subset of Σ∗. The
complement of L is defined by L

′
= Σ∗ − L. Given

u, v ∈ Σ∗, we define the prefix set of a set S ⊆ Σ∗ as
Pref(S) = u ∈ Σ∗ : uv ∈ S. Similarly the prefix set
of L is defined as Pref(L) = {u ∈ Σ∗ : uv ∈ L}.

A deterministic finite automaton (DFA) is a 6-
tuple M = (Σ, Q, q0, FA, FR, δ) where Σ is a finite
alphabet, Q is a finite set of states, q0 is the ini-
tial state, FA, FR ⊆ Q are a set of accepting states
and a set of rejecting states respectively, and δ is
the transition function defined as δ : Q × Σ → Q
such that |δ(q, a)| ≤ 1 for each q ∈ Q and for each
a ∈ Σ. The transition function can be extended to
a mapping δ∗ : Q × Σ∗ → Q in the following induc-
tive way: (i)δ∗(q, λ) = q, for each state q ∈ Q, and
(ii)δ∗(q, wa) = δ (δ∗(q, w), a), for each q ∈ Q, for
each a ∈ Σ, and for each w ∈ Σ∗. A language as-
sociated with the DFA is the set of strings that can

be recognized by a DFA which is called a regular lan-
guage.

Let L be a class of languages and M be a class
of grammatical representations for L. A language
recognized by Mis defined as L(M) = {w ∈ Σ∗ :
δ∗(q0, w)F}. The size of a language L ∈ L is the size
of the smallest M ∈ M of the considered class. It
is defined as |L| = min{∥M∥ : L(M) = L for each
M ∈ M}. The size of an automaton ∥M∥ is defined,
in this article, as a number of states. That is ∥M∥ =
|Q|.

2.2 k-Acceptable languages and k-edge deter-
ministic finite automata

A k-edge deterministic finite automaton (k-DFA)
is a 6-tuple M = (Σ≤, Q, q0, FA, FR, δ) where Σ≤ is
a finite ordered alphabet, Q is a finite set of states,
q0 is the initial state, FA ⊆ Q is a set of accept-
ing states and FR ⊆ Q is a set of accepting states,
δ : Q × Σ≤ × Σ≤ → Q is the transition function
defined as ∀q ∈ Q, |{x, y : δ(q, x, y) ̸= ∅}| ≤ k,
and if δ(q, a1, b1) ̸= δ(q, a2, b2) then {z : a1 ≤ z ≤
b1} ∩ {z : a2 ≤ z ≤ b2} = ∅. For each transi-
tions δ(q, a, b), we define the lower bound and the
upper bound of each transitions as Lb(δ(q, a, b)) = a,
Ub(δ(q, a, b)) = b, respectively. The extended transi-
tion function δ∗ : Q × Σ∗

≤ → Q is defined as δ∗(q, λ)

and δ∗(q, aw) = δ∗(q
′
, w)where x ≤ a ≤ y and

δ(q, x, y) = q
′
such that q, q

′ ∈ Qa, x, y ∈ Σ≤, w ∈
Σ∗

≤. The languages recognized by a k-DFA are called
k − acceptablelanguages.

A canonical k−edgedeterministicfiniteautomaton
of a language L denoted by Mc is a homomorphic
image of every k-DFA recognizing L. Let IL be
indistinguishability relation on Σ∗

≤. We define the
canonical k − edge deterministic finite automata of
L as Mc = (

∑
≤, Qc, q0, FAc, FRc, δc),where Qc =

{[qu]∼L : u ∈
∑∗}, q0 = [qλ]∼L, FAc = {[qu]∼L : u ∈

L}, FRc = {[qu]∼L : u ∈ L}, δc([qu]∼L, a, b) = [quz]∼L

such that a ≤ z ≤ b.

Example
The finite automaton from Fig. 1 recognizes language
((1+2+3)+(4+5)1∗(2+3+4+5))∗. This automaton is
2-DFA because ∀q ∈ Q, |{(x, y) : δ(q, x, y) ̸= ∅}| ≤ 2
and for state q0 : δ(q0, 1, 3) ̸= δ(q0, 4, 5) ̸= ∅ then
{z : 1 ≤ z ≤ 3} ∩ {z : 4 ≤ z ≤ 5} = ∅ for state
q3 : (q3, 1, 1) ̸= (q3, 2, 5) ̸= ∅ then {z : 1 ≤ z ≤
1} ∩ {z : 2 ≤ z ≤ 5} = ∅. Notice that the same
language can also be recognized by a 3-DFA, but not
by a 1-DFA.

2.3 Characteristic sets for language learning

Let L be a target language in a class L. With
context of Gold-style leaning, strings in Σ∗ are sam-
pled as examples for learning. A string w ∈ Σ∗ is
called a positive example if w ∈ L and it is called a
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Fig.1: 2-DFA

negative example if not so. In the process of learn-
ing, the main purpose is to construct an equivalent
grammatical representation by using an input sample
S = (S+, S−) for L, where S+ ⊆ L is a set of posi-
tive examples and S− ⊆ Σ∗ − L is a set of negative
examples. We here modify the set-inclusion operators
for input samples such that they operate on the set
of positive examples and the set of negative examples
separately, i.e., if S = (S+, S−) and S = (S+, S−)
then SS means S+S+ and S−S−. The size of sam-
ple S = (S+, S−) is defined as ||S|| = Σi|wi| such
that wi ∈ S + ∪S − |.

A learning algorithm A is a mapping function de-
fined as A:S→M such that S is a set of all sam-
ples which is used for learning any language L in lan-
guage class L by identifying a grammatical represen-
tation M in corresponding grammatical representa-
tion class M. We say that the algorithm A converges
to M ∈M from S ∈S if and only if A(S) = M such
that L(M) = L. Given a language L, the algorithmA
identifies L if A converges to M ∈M for any S ∈S
and S ⊆ L. An algorithm A is said to efficiently
identify M in the limit if A requires time polynomial
in the size of any input sample S for M , and if A
is given a set covering a characteristic set CS for M
then A converge to M such that the size of CS is
bounded by a polynomial in the size of M .

The formal definition of the characteristic set [5]
is below.
Definition 1 (characteristic set)
A set of positive examples and negative examples is
said to be a characteristic set CS = (CS+, CS-) of
a target language L for a learning algorithm A if CS
satisfies these following conditions:
1. Given an input sample CS, the learning algorithm
A returns a grammatical representation M ∈M such
thatL(M)=L.
2. Given any input sample S⊇CS, the learning algo-
rithm A returns a grammatical representation M M
such that L(M) = L.

3. LEARNING K-ACCEPTABLE LANGUA-
GES

In this section, we show a learning algorithm called
KRPNI proposed in our previous work [12]. The
algorithm is used to learn a target k-acceptable lan-

guage by identifying a k-DFA. The language infor-
mation provided to the algorithm is a set of positive
and negative examples. The algorithm always returns
a k-DFA consistent with given positive and negative
examples. The algorithm is shown in Fig. 2.

For the input set S = (S+, S−), the algorithm
KRPNI initials with constructing a prefix tree au-
tomaton PTA(S) for the input sample S. Pairs of
states will be chosen by lexicographic order. The
process of merging may return a temporary automa-
ton which is nondeterministic. To avoid the nonde-
terministic automaton, the merging needs to be re-
cursively continued by maintaining the tree invariant
property (The property of tree invariant is a suffi-
cient condition for the determinization process to be
finite). Then the obtained automaton will be checked
consistency with the sample. In the best cases, it a
characteristic set of the language includes in the in-
put sample then the learning algorithm returns the
k-DFA which is isomorphic to the target.

The algorithm KRPNI composes of four main
sub-procedures named Choose, Secure, Compatible
and Merge.

- The function Choose returns a smallest state by
considering lexicographic-length order of strings.

- The function Secure returns a k-DFA which a
given state qα and all its previous states of qα
are secure.

- The function Compatible returns a logical value.
The value “True” is returned if a k-DFA is con-
sistent with a given input sample S = (S+, S−)
and vice versa.

- The function Merge returns a k-DFA which the
state qβ have been recursively merged into the
state qω .

Example
We demonstrate the running of the KPRNI algo-

rithm on the task of learning k-DFA illustrated by
Fig. 1. Assume that a sample S = (S+, S−) where
S+ = {3, 12, 42, 422} be a set of positive examples
and let S− = {4, 41} be a set of negative examples
over the ordered alphabet Σ≤ = {1, 2, 3, 4, 5}. The
automaton M=PTA(S) is depicted in Fig. 3a, where
the number of states are equal to the cardinality of
Pref(S).

In the while loop, the algorithm chooses the state
q0 as the smallest state in the first round of iteration.
Then, all children states of q0 are sequentially merged
together in order to make q0 be a secured state. This
step is shown in Fig. 3b. Next the children of q0
are recursively merged into some previous states that
compatibility constraint is true. We show this merg-
ing in Fig. 3c. The algorithm iteratively performs
until all state is considered. Finally the result of 2-
DFA is shown in Fig. 3d.
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Fig.2: KRPNI Algorithm

4. CHARACTERISTIC SETS FOR LEARN-
ING K-ACCEPTABLE LANGUAGES

In this section, we show the existence of a char-
acteristic set CS = (CS+, CS−) of k-acceptable
languages L for KRPNI. The CS ensure the
KRPNI algorithm will return a k-DFA M =
(Σ≤, Q, q0, FA, FR, δ) such that L(M) = L.

To construct a characteristic set, we need to define
the shortprefix of a state q ∈ Q denoted by Short(q),
the set of short prefixes of L denoted by SP (L(M)),
and the kernelset of L denoted by N(L(M)) as fol-
lows:

- Short(q) = min{u ∈ Σ∗ : δ∗(qλ, u) = q},
- SP (L(M))=u ∈ Σ∗ : ∀qQ, u = Short(q),
- N(L(M)) = {λ} ∪ {uz : ∀q ∈ Q,u = Short(q), z =
Lb(δ(q, a, b))}{uz : ∀qQ, u = Short(q), z =
Ub(δ(q, a, b))}.

A set CS = (CS+, CS−) is a characteristic set
of L(M) for the algorithm KPRNI if it satisfies the
following conditions:
- ∀u ∈ N(L(M)), if δ∗(q0, u) ∈ FA then u ∈ CS+
and if δ∗(q0, u) ∈ FR then u ∈ CS−,
- ∀u ∈∈ SP (L(M)), ∀v ∈ N(L(M)), if δ∗(q0, u) ̸=

(a)

(b)

(c)

(d)

Fig.3: Shows some steps of merging states for learn-
ing k-DFA

δ∗(q0, v) then uw ∈ CS+ and vw ∈ CS− or vw ∈
CS+ and uw ∈ CS−, where w is a distinguish-
ing string formally defined as w = min{w ∈ Σ∗ :
(δ∗(qu, w) ∈ FA ∧ δ∗(qv, w) ∈ FR) ∨ (δ∗(qu, w) ∈
FR ∧ δ∗(qv, w) ∈ FA)}.
Example
Construct a characteristic set CS = (CS+, CS−)fork−
DFAM = (Σ≤, Q, q0, F, FR, δ)inF ig.1.
Solution For each q ∈ Q, the short prefixes of state
q0 and state q3 are “λ” and “4”, respectively.

We construct the set of short prefixes of L recognized
by M as

SP (L)(M) = {λ, 4}.

Then, we construct the kernel set of L from
SP (L(M)). So we have

N(L(M)) = {λ, 1, 3, 4, 5, 41, 42, 45}.
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Finally, we have CS(M) = (CS+, CS−) such that

CS+ = {λ, 1, 3, 42, 45} and CS− = {4, 5, 41}.

Let A denote the KRPNI algorithm that returns
k-DFA from a given input set S = (S+, S−) and
CS = (CS+, CS−) be a characteristic set of a tar-
get k-acceptable language L recognized by k-DFA M .
From the definition of the characteristic set (defini-
tion 1), we now must show the following lemmas:

Lemma 1.Given a characteristic set CS =
(CS+, CS−) of a k-acceptable language L, the
KRPNI algorithm returns a k-DFA M such that
L(M)⊆L.

Proof : (By induction) Let L be a target k-
acceptable language on an ordered alphabet Σ≤, and
we denote two k-DFAs instep of proving as follows:
- M = (Σ≤, Q, q0, FA, FR, δ) is a canonical k-DFA for
a target L.
- Mi = (Σ≤, Qi, q0, FAi, FRi, δi) is a k-DFA built from
KRPNI algorithm at ith iteration.

The idea for proving this lemma is to show that
L(A(CS)) ∈ L(M). To do so, we have to show that
the automaton Mi, that we build at any moment, is
a subautomaton of M for a target language L.

We now define a homomorphism f : Qi →
Q as f(q) = δ∗(q0, uq) for each q ∈ Qi, where uq

is a prefix of strings in the given CS such that the
number of transitions in δ∗i(q0, uq) = q is minimum.
So, we will show that Mi is homomorphic to a sub-
automaton of M by showing the following conditions
hold:

(i) if q is in Qi, then f(q) is in Q,
(ii) if q is in FAi, then f(q) is in FA,
(iii) if q is in FRi, then f(q) is in FR,
(iv) for each q ∈ Qi, and for each a ∈ Σ≤ ,

if δi(q, a, b) = p, then f(δi(q, a, b)) = δ(f(q), a, b).

Basis step: [show L(M0)⊆L(M)]
As KRPNI initiates with building a prefix tree ac-
ceptor for CS, we have that M0 = PTA(CS) =
(Σ≤, Q0, q0, FA0, FR0, δ0), where q0 = q,Q0 = {qu :
u ∈ Pref(CS)}, FA0 = qu ∈ Q0 : u ∈ CS+, FR0 =
qu ∈ Q0 : u ∈ CS−, δ0(qu, a, a) = qua such that
u, ua ∈ Pref(CS).

To show (i), we suppose qu ∈ Q0. Since u ∈
Pref(CS) ⊆ Pref(L(M)) and δ∗(q0, u) ∈ Q, so we
have that f(qu) ∈ Q by the defined homomorphism.

To show (ii and iii), we suppose qu ∈ FA0 and then
we have that u ∈ CS+ ⊆L(M). Thus, δ∗(q0, u) ∈
FA implies that f(qu) ∈ FA by definition. Similarly
we suppose qu ∈ FR0 and then we have that u ∈
CS− ⊆ Σ∗

≤ − L(M). Thus, δ∗(q0, u) ∈ FR implies
that f(qu) ∈ FR by definition.

To complete proving in basis step, we will show
(iv) hold. Forq, p ∈ Q0 such that δ0(q, a, b) = p, we

let up = uqz : a ≤ z ≤ b. From the manner of choos-
ing up in PTA(CS), when uq is a prefix of string in CS
such that the number of transition in δ∗0(q0, uq) = q
is minimum, then δ∗(q0, up) = p is minimum as well.
Since CS ⊆L(M), so we have that f(p) = δ∗(q0, up).

R.H.S. = δ(f(q), a, b)
= δ(δ∗(q0, uq), a, b) ; by definition
= δ∗(q0, uqz) ; a ≤ z ≤ b
= δ∗(q0, up) ; uqz = up

= f(p) ; by definition
= f(δ0(q, a, b)) ; δ0(q, a, b) = p
= L.H.S

Therefore, we have f(δ0(q, a, b)) = δ(f(q), a, b).

The above proving (i), (ii), (iii) and (iv) imply
that M0 is homomorphic to a subautomaton of the
canonical k-DFA M. Thus, L(M0) L(M) is true.

Inductive step: [show if L(Mt)⊆L(M) then
L(Mt+1)⊆ L(M)]

In this step of proving, we suppose this lemma
holds for Mt and we show that it also holds for Mt+1.
FromKRPNI algorithm,Mt+1 is derived from merg-
ing states in Mt. Thus, we distinguish possible state
merging into three cases.

Case 1: [M(t+1) = Merge(Mt, qω, qβ) such that
δt(qu, a1, b1) = qβ and δt(qu, a2, b2) = qβ ]. From
merging with this case, we have Q(t+1) = Qt{qβ} ⊆
Qt, FA(t+1) = FA(t) − {qβ} ⊆ FA(t) , FR(t + 1) =
FR(t)-{qβ} ⊆ FR(t), and δ(t+1) = δt−({(qu, a, b, qβ)}∪
{(qβ , a, b, qv) : qv ∈ Qt}) ⊆ δt. By supposition, it is
obvious that the conditions (i), (ii), (iii) and (iv)
holds for M(t+1).

Case 2: [M(t+1) = Merge(Mt, qω, qβ) such that
δt(qu, a1, b1) = qω and δt(qv, a2, b2) = qβ , qu ̸=
qv]. From merging with this case, we have
Q(t+1) = Qt − {qβ} ⊆ Qt, FA(t+1) = FA(t) −
{qβ}FA(t), FR(t+1) = FR(t) − {qβ} ⊆ FR(t), and
δ(t+1) = δt − ({(qv, a, b, qβ)} ∪ {(qβ , a, b, qv) : qv ∈
Qt}) ∪ {(qv, a, b, qω)} ⊆ δt. Thus, it is obvious that
the conditions (i), (ii), (iii) and (iv) holds for M(t+1)

by supposition for Mt.

Case 3: [M(t+1) = Mt because Merge(Mt, qω, qβ)
fails]. From merging with this case, we have Q(t+1) =
Qt, FA(t+1) = FA(t), FR(t+1) = FR(t) , and δ(t+1) =
δt. Thus, it is obvious that the conditions (i), (ii),
(iii) and (iv) holds for M(t+1) by supposition for Mt.
With three cases of the merging, we have that the
statement is true. Thus, it follows that this lemma is
true.

Lemma 2. Given a characteristic set CS =
(CS+, CS−) of a k-acceptable language L, the
KRPNI algorithm returns a k-DFA Mn such that L
⊆ L(Mn).

Proof : To prove this lemma, we will show that
L(M) L(A(CS)). We letMn = (Σ≤, Qn, q0, FAn, FRn,
δn) be k-DFA returned from KRPNI, i.e. A(CS) =
Mn . That means we must show that M is a subau-
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tomaton of Mn.

Prove (i): [If q is in Q, then f(q) is in Qn] We
suppose that q ∈ Q. If q ∈ FA then clearly uq ∈
CS+ by definition of the characteristic sample. It
follows that uq L(Mn). Hence, δ∗(q0, uq) ∈ Qn. It
follows that f(q) ∈ Qn because of f(q) = δ∗(q0, u)
by definition. If q ∈ FR then clearly uq ∈ CS− by
definition of the characteristic sample. It follows that
uq Σ∗ L(Mn). Hence,δ

∗(q0, uq) ∈ Qn. If follows that
f(q) ∈ Qn because of f(q) = δ∗(q0, u) by definition.
Therefore, if q is in Q, then f(q) is in Qn.

Prove (ii): [If q is in FA, then f(q) is in FAn]
We suppose q is in FA. It follows that uq ∈ CS+ by
definition of the characteristic sample. Then, we have
δ∗(q0, uq) ∈ FAn by manner of KRPNI. It follows
that f(q)FAn. Therefore, if q is in FA, then f(q) is
in FAn.

Prove (iii): [If q is in FR, then f(q) is in FRn]
We suppose q is in FR. It follows that uq ∈ CS−
by definition of the characteristic sample. Then, we
have δ∗(q0, uq) ∈ FRn by manner of KRPNI. It
follows that f(q) ∈ FRn. Therefore, if q is in FR, then
f(q) is in FRn. Prove (iv): [For every q, p ∈ Q, and
every a ∈ Σ≤ such that δ(q, a, b) = p, f(δ(q, a, b)) =
δn(f(q), a, b))]

R.H.S. = δn(f(q), a, b))
= δn(δ

∗
n(q0, uq), a, b)) ; by definition

= δ∗n(q0, uqz); a ≤ z ≤ b by definition
= δ∗n(q0, up);uqz = up

= f(p) ; by definition
= f(δ(q, a, b)); δ(q, a, b) = p
= L.H.S.

As (i), (ii), (iii), and (iv) hold, so this lemma is
true.

Lemma 3. If given any input sample S including the
characteristic set CS = (CS+, CS-) of a k-acceptable
language L, then KRPNI algorithm returns a k-DFA
M such that L(M) = L.

Proof: It is obvious that the proof is obtained from
Lemma 1 and Lemma 2.

Theorem 1. There exists a characteristic set CS =
(CS+, CS−) of k-acceptable languages for KRPNI
algorithm.

Proof: By Lemma 1, Lemma 2 and Lemma 3, we
conclude by using definition 1 that there exists a char-
acteristic set of k-acceptable language for KRPNI
algorithm.

Theorem 2. The size of characteristic sets for k-
acceptable languages is O(n3k) where n is size of k-
DFA recognizing the language.

Proof : By constructing of the characteristic set, the
size of short prefix set |SP (L(M))— is as many as
the number of states of the canonical k-DFA M =
(Σ≤, Q, q0, FA, FR, δ). Suppose |Q| = n, so we have
that |SP (L(M))| = n. It clear that the number of
strings in N(L(M)) is n ·2k+1. Therefore the number
of strings in CS = (CS+, CS−) is |CS + | < 2n2 · k

and |CS − | < 2n2 · k. In the worst case, the maxi-
mum length of strings in SP (L(M)) is equal to n and
N(L(M)) is equal to n+1. For the maximum length
of a distinguishing string w is equal n. By consider-
ing the size of the strings in CS, we have that the
possible length of strings in CS is less than 2n + 1.
Thus, it show that ||CS|| ∈ O(n3k).

5. DISCUSSION

The theoretical results can be implied for any for-
mal languages defined over ordered alphabet. The
family of music languages is classified in this con-
text because their alphabets are naturally ordered in
some modes. To successfully learn these languages,
the number of learning examples needed does not de-
pend on the size of alphabet. But it depends on the
size of value of k. However, the issue of identifying
the value of k for each language is a challenge research
topic in application to actual languages.

6. CONCLUSION AND FUTURE WORK

In this paper we prove that there exists a charac-
teristic set for k-acceptable language. We also demon-
strate that the size of the characteristic set does not
depend on the size of the alphabet, but depends on
the value of k. For future work, it remains to study on
learnability of this class from only positive examples.
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