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Abstract. When concerned about efficient grammatical inference two issues are relevant: the first one is t
determine the quality of the result, and the second is to try to use polynomial time and space. A typical idea t
deal with the first point is to say that an algorithm performs well if it infierthe limitthe correct language. The
second point has led to debate about how to define polynomial time: the main definitions of polynomial inferenc
have been proposed by Pitt and Angluin. We return in this paper to a definition proposed by Gold that require
a characteristic set of strings to exist for each grammar, and this set to be polynomial in the size of the gramm:
or automaton that is to be learned, where the size of the sample is the sum of the lengths of all strings it include
The learning algorithm must also infer correctly as soon as the characteristic set is included in the data. We fir
show that this definition corresponds to a notion of teachability as defined by Goldman and Mathias. By adaptin
their teacher/learner model to grammatical inference we prove that languages given by context-free grammai
simple deterministic grammars, linear grammars and nondeterministic finite automata are not identifiable in th
limit from polynomial time and data.

Keywords: exact identification, grammatical inference, polynomial learning

1. Introduction and related work

The problem of describing polynomial paradigms for learning has received much attentiol
in learning theory community. We focus our attention on those paradigms dealing witt
grammatical inference, i.e., the inference, from strings, of grammars or automata. A
most of the literature deals with the inference of deterministic finite automata (DFA), the
following general discussion concentrates on them.

In his seminal paper, Pitt (1989) discusses different possible ideas as to what polynomi
complexity for the problem of exact identification of (DFA) should be. The model he
analyses is Gold's classical model (1967): a presentation of the language is given, i
which strings appear with a label(if it is a positive instance, and- if it is a negative
instance). A presentation is required to be complete, that is each example appears at le
once. In this model an algorithm is said to identify in the liiffiton input of any complete
presentation of a language, the algorithm at some point converges to a correct representat
of the language. Pitt discards the possibility of time being polynomial in the size of the
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representation to be learned, as we have no control over the presentation of the exampl
so the very first example can be too big. He equally refuses polynomial update time (thi
complexity takes into account the sizes of the examples that have been seen so far) beca
the exhaustive search strategy can perform as follows: “when no time remains, delay th
treatment of some examples for later”. We note that using polynomial update time with
Pitt’s trick, the delaying of the treatment of the examples means that the algorithm has nc
inferred correctly; and at some point it has sufficient information to give the correct answel
but does not.

Thus, Pitt proposes another measure of complexity: for an identification algorithm to be
polynomial it must have polynomial update time, and also make a polynomial nhumber o
implicit errors (in the size of the automaton). An implicit error is made when the current
hypothesis does not agree with a new example. This definition alas is shown (by Pitt) t
be very restrictive, in the sense that even DFA do not comply with the conditions, so nc
superclasses of regular languages allow polynomial time inference.

A second model of learning has been proposed by Angluin (1987) and exhaustivel
studied since. The presentation of the language is not arbitrary, and can be somehc
controlled by asking queries of an oracle. The two most important sorts of queries are th
membership queries and equivalence queries. In a membership query a string is propos
to the oracle which returns its correct classification. An equivalence query consists i
proposing a representation to the oracle, which either accepts it as a correct representat
of the language to be inferred, or returns a counter-example, that is a string from th
symmetric difference of the proposed language and the target one. This is known as tf
MAT model (Minimally Adequate Teacher). With time complexity dependent on the size
of the automaton to be inferred and the length of the longest counter-example returned t
the oracle, Angluin proves that DFA can be identified in polynomial time with membership
gueries and equivalence queries (to be exact, the time complexity must hold at any poil
of the inference procedure). Angluin also proves that both of these queries are necessa
neither membership queries alone, nor equivalence queries alone allow for polynomic
inference. Following Angluin’s definitions, further classes of grammars have been prover
to be polynomially learnable with a MAT (Ishizaka, 1989).

In both of these models the results are mainly negative, i.e., even DFA can’t be inferred i
polynomial time (unless membership and equivalence queries are used). Nevertheless t
needs of applications in several fields (speech, pattern recognition, automatic transhation
have led to the construction of heuristics to solve the learning problems. The nature
question that follows is whether these heuristics are necessary and what can be done
the (usual) case of learning from given data. When working in this framework an obvious
parameter for the complexity of a learning algorithm is the size of the data, where the siz
corresponds to the sum of the lengths of the strings in the learning set. We note that |
the two models above, the justification for not using only the size of the target automatol
as a measure of computational complexity is that we do not have enough control ove
the presentation of examples (in the first case) or the oracle (in the second one) to avo
receiving an unnecessarily long example. This leads to asking if such long examples a
really necessary for the identification process. Moreover, how judicious is it to talk of
polynomial learning if the counter-examples returned by the oracle are of unreasonabl
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length with respect to the concept to be learned? By unreasonable we will use the usu
polynomial barrier, and ask the question in another way: suppose the concept to be learn
is of sizen, does the learner require a counter-example of length larger than any fixec
polynomial inn? This question has been raised and discussed in the case of DFA (wit
a negative answer) (Angluin, 1987), but not for other classes of grammars. In fact, we
prove in Section 4 that the class of simple deterministic grammars, although polynomially
learnable with a MAT, needs strings of super-polynomaial length as counter-examples.

A theoretical framework to study these issues is provided by Gold: he presented (1978)
model for identification from given data, where a sample of labelled st(iggs S—), with
S+ a set of positive instances, afd- a set of negative instances, is presented to the infe-
rence algorithm which must return a representation compatible(®ith S—). The further
conditions are: for each language there exists a characteristic sample with which the &
gorithm returns a correct representation, and this must be monotone in the sense that
correctly labelled examples are added to the characteristic set, then the algorithm infers tl
same language. These conditions insure identification, and it is easy to see that a class
representations is identifiable from given data if and only if it is identifiable in the limit from
a complete presentation of examples. This model can be compared with the one refused
Pitt (1989): it consists in adding to the polynomial update time condition a second condition
as soon as all elements in the characteristic set have been presented, the algorithm must ir
correctly; when this condition is met we say that the cladddstifiable in the limit from
polynomial time and datéGold, 1978). Gold proved that deterministic finite automata are
identifiable in the limit from polynomially time and data. It must be noticed that in the same
paper Gold proved the NP-completeness of the “Minimum Inferred Finite State Automaton’
problem (is there a DFA with less tharstates consistent with the data?). This result yields
that it is intractable to find the smallest automaton consistent with the data. The results al
not contradictory because a characteristic set is not just any set, and thus, in this special ca
what s inferred (in polynomial time) is the smallest compatible automaton. Further work in
this model has contributed the following results: alternative algorithms have been propose
to infer DFA (Oncina & Gar@, 1992), even linear grammars have been proved identifiable
in the limit from polynomial time and data (Takada, 1988; Sempere & @at§94); these
techniques have been extended to universal linear grammars (Takada, 1994). Followir
the same idea, deterministic even linear grammars are polynomially identifiable from posi
tive examples only (Koshiba et al., 1995). The same holds for total subsequential function
(Oncina et al., 1993). Algorithms provided in these papers have been implemented to de
with practical problems in the fields of speech (Garet al., 1994), pattern recognition
(Garda & Vidal, 1990) and Automatic Translation (Castellanos et al., 1994). On the other
hand no hardness results have been proven within this model, leaving open the question
the triviality of the model. This paper deals with proving that this is not so, and that many
classes of grammars can not be identified in the limit from polynomial time and data.

The notion of characteristic sets leads in a natural way to the associated problem c
teaching (Shinohara & Miyano, 1991; Goldman & Kearns, 1995; Jackson & Tomkins, 1992)
ateacher’s goal is to help the learner (or the identification algorithm), by providing a “good”
set of examples. Following the general work on Freivalds et al., on good examples (1989
different models of teaching have in recent years been proposed (Anthony et al., 199:
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Wiehagen, 1992; Mathias, 1995). The point of view that best fits to grammatical inference
(from given data) is the one of Goldman & Mathias (1996): they define teachability of a
class as the existence of a characteristic (to a learner) teaching set. Their point of vie
follows the trend introduced by Jackson & Tomkins (1992), of considering teacher/learne
couples. We will prove that learnable in Gold’s sense corresponds to teachable in the sen
of Goldman & Mathias.

Alternative models for teacher/learner couples have been presented; one main differen
lies in the fact that in the above model the teacher will provide the examples for a specifi
learner, whereas in other models (Goldman & Kearns, 1995, Jackson & Tomkins; 1992) th
teacher must be able to teach any consistent learner, i.e., any learner capable of returnin
hypothesis compatible with the examples.

In the following section we give the main definitions and results we need from formal
languages theory. Section 3 deals with adapting the teacher/learner model for grammatic
inference. The difficulties of this task are shown and the technical results we need are give
In Section 4 give our main results, i.e., that the following classes of representations do nc
admit identification in the limit from polynomial time and data:

Context-free grammars.

Linear grammars.

Simple deterministic grammars.
Nondeterministic finite automata.

2. Definitions

We only give here the main definitions from formal language theory. For more details anc
proofs, the reader can refer to a textbook on the subject, for instance (Harrison, 1978).
An alphabets a finite, non-empty set of distinct symbols. For a given alphahehe
set of all finite strings of symbols frorR is denoted~*. The empty string is denoted
For a stringw, |w| denotes the length af. A languagel. over X is a subset ok*.
A nondeterministic finite automatqiNFA) over X is a 5-tupleN = (Q, Z,6,1, F)
whereQ is a finite set of stated, and F two subsets of), denoting respectively the set
of initial states and the set of final statesMf § is the set of transitions, namely a finite
subset ofQ x ¥ — 2°. We denote by’ € §(q, x) a transition labelled by from q to
g’. ANFA N accepts a string iff eitherw = A andl NF # @, orw = X¢---X; and
there exists a sequence of staggs. . ., g; (possibly with repetitions) witlyy € 1, Vi <
j0i+1 € 8(ai, Xi+1), andg; eF. When the set contains a unique state afids functional,
i.e.,vVq € QVx € T |8(g,X)| < 1, the automaton is a deterministic finite automaton
(DFA). The language recognized by an automaton is the set of all strings accepted by tt
automaton. Two automata are equivaléinthey accept the same language. NFA and DFA
have equal power of expression (they both recognize the regular languages). Neverthele
for a given NFA, the number of states of an equivalent DFA can be exponentially larger.
A context-free grammar ovex is a 4-tupleG = (%, V, P, ) whereV is a finite
alphabet (of non-terminal symbols or variableS) a special symbol itV called the start
symbol andP a finite subset o¥/ x (X U V)* called the set of productions (or rules). A
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rule in this set will be denote8 — « and has intended meaning: non-terminal synfbol
rewrites intax. A derivationis asequen&® — 81 — B2--- — Bnwhereg;, 1 is obtained
by substituting some occurrence of a nontermihah g; by « where(T — «) € P. The
language generated by a context-free gram@élenoted. (G)) is the set of all strings in
>* that can be obtained by derivation frof. A language is context-freif there exists
some context-free gramm& = (X, V, P, §) generating it. Notice that non-terminal
symbols are only used for the generation of strings; they do not appear in the strings of th
language. Two context-free grammars are equivafetihey generate the same language.
A linear grammalG = (%, V, P, &) is a context-free grammar where all productions
belongtoV x (X*UX*V £*). Thus, each rule has at most one non-terminal in its right-hand
part. The following classes shall be used in this paper:

DFA(X): the class of deterministic finite automata over alphabet
NFA(Z): the class of nondeterministic finite automata over alphabet
CFG(X): the class of context-free grammars over alphabet

LIN (2): the class of linear grammars over alphabet

The size of the alphabet can be considered a constant when working on some representat
classR(X).

When considering these classes the size of a representation (deizatel)) will be
some reasonable quantity: it must be polynomial in the number of bits needed to encode
representation. The following sizes are typically correct (for a constant alpRabet

For DFA and NFA the number of states.
For CFGs and Linear Grammars the number of rules multiplied by the length of the
longest rule.

We end this section with results concerning a specific problem on representations that
used in the sequel, and plays an important role for identification from given data:

The Equivalence problemEQ(R, X): For a clasR(Z), are two given representations
equivalent? (i.e., do they represent the same language?)

The following results are well known:

Theorem 1 (Garey & Johnson 1979, Harrison 1978).
EQ(DFA, ) ¢ P.
EQ(NFA, %) is co-NP-completeeven whenx| = 1.
EQ(CFG, %) is undecidable.
EQ(LIN, X) is undecidable.

3. Teaching and characteristic sets

To take into account the fact that the length of the examples must depend polynomiall
on the size of the concept to be learned we propose the following definition which is
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just a generalisation of Gold's results (1978) and a natural restriction of the definition of
polynomial update time (Pitt, 1989).

Definition 1 A representation clas® is identifiable in the limit from polynomial time
and dataff there exist two polynomialp() andq() and an algorithnf such that:

1) Given any sampleS+, S—), of sizem, A returns a representatidR in R compatible
with (S4, S—) in O(p(m)) time.

2) For each representatidhof sizen, there exists a characteristic samle&t-, C S-) of
size less thag(n) for which, if S+ © CS+, S— © CS—, Areturns a representatidii
equivalent withR.

By this definition algorithmA is a polynomial learner. Notice that Gold proved (1978) that
identification in the limit from given data is equivalent to identification from a complete
sequence (the on line protocol). With this definition Gold’s 1978 result can be restated a
follows:

Gold’s theorem (1978). DFA are identifiable in the limit from polynomial time and data.

In fact his result is even stronger since for any DFA a characteristic set can also be compute
in polynomial time (Oncina & Gare, 1992).

Goldman & Mathias (1996) present a model for teaching and learning that takes intc
accountthe quantity of information a good teacher has to provide to alearner. Afirstprobler
isto avoid collusion. Collusion (or cheating) occurs whenthe teacher can passinformationt
the learner about the representation of the concept and not the conceht ftkelfeaching
session is described as follows, where to avoid collusion, a third element is introducec
namely an adversary who can complicate the learner’s task by introducing extra example

1) The adversary selects a target function and gives it to the teacher.

2) The teacher computes a set of examples sufficient to allow the learner to infer the targ
concept.

3) The adversary adds correctly labelled examples to this set, with the goal of causing tt
learner to fail.

4) On this augmented set the learner computes a function.

Goldman & Mathias prove that this model does not allow collusion (as defined by them),
and define a class of functions as polynomidlkL-teachableff the learner always infers
the intended function and both teacher and learner work in polynomial time. The class i
semi-poly T/L-teachable if the condition that the teachers computation takes polynomial
time is abandoned.

It is obvious that this definition is related to one of the identification in the limit from
polynomial time and data, thus, from Gold’s result it follows that DFA are semi-pdly
teachable. In fact, in this case the characteristic set can be computed in polynomial tin
(Oncina & Garea, 1992) so the stronger result that DFA are polynomi@lli-teachable
also holds.
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It should be stressed that we have chosen here to adapt Goldman & Mathias’ mod
for the case of grammatical inference by taking into account the length of the example
as a parameter. In their original setting this was unnecessary. When concerned with tt
inference of boolean functions all examples have the same size, the number of variable
In the framework of grammatical inference the number of strings is infinite, their length
growing unbounded; thus, when considering the size of the teaching set the number of strin
alone is insufficient. A teacher that needs only a small number of examples, but some ¢
them of excessive length, will not allow for the class to be (semi-) polynomially teachable.

Formally:

Definition 2 A representation clad® is semi-polyT/L teachabléff there exist 3 poly-
nomials p(), q(), r(), a teacherT and a learneL. such that for any adversary ADV the
following teaching session succeeds:

1) ADV selects a target functioh of sizen in R and gives it toT .

2) T computes a set of examples floy with at mostp(n) examples, all of length at most
q(n).

3) ADV adds correctly labelled examples to this set, with the goal of causiodail. Let
m be the size of the completed set.

4) On this augmented setcomputes the functior in time less tham (m).

This definition is not quite as strong as Definition 1. Indeed the learner has no obligatior
when the teacher fails to give him a good teaching set. Equivalence between both de
initions holds only for classes for which the problem of finding a consistent function is
easy. This is the case for all usual classes of grammars, where constructing a grammar tl
generates exactly all positive instances is straightforward. Weaadlistency-easyclass

for which there exists a polynomial algorithm that given a set of labelled strings, returns ¢
representation consistent with this set.

Proposition 1. A consistency-easy class is identifiable in the limit from time and data iff
it is semi-poly T/L teachable.

Proof Sketch: If a class is identifiable in the limit from polynomial time and data, then
for any target function (or representatioh)a polynomial characteristic set exists. This set
meets the conditions to be the set of examples proposed by the teacher, and the monotonic
condition insures that no adversary can cause the learning algorithm to fail. Conversely, ¢
the class is consistency-easy, a consistent function can always be returned in polynomi
time, and the set of examples for with at mostp(n) examples, all of length at mogtn)

is a polynomial characteristic set. ]

Thus, Goldman & Mathias’ model is well adapted for grammatical inference. A natural
guestion is to consider other teaching models: an interesting model with implications fo
grammatical inference yet to be studied is the interactive model (Mathias, 1995). Anothe
trend of research considers unspecialized teachers, that should be able to adapt to any lear
Obviously the class of learners to consider is limited to the consistent learners, those wt
always return a solution consistent with the data (as defined for instance in (Goldman ¢
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Kearns, 1995)). We prove that a finite teaching set does not exist for consistent languag
learners, even when the learners are restricted to work in polynomial time (i.e., that givel
a wide class of learners, there is no polynomial teaching set from which all learners ca
identify correctly the target function). The proof is similar in many ways to the proof of
Lemma 1 in (Goldman & Kearns, 1995); the difference is that the result here applies eve
when the learners work in polynomial time.

We first note that any learner fulfilling the conditions of Definition 1 is a consistent
learner: it always returns a solution consistent with the data.

Definition 3 Let R be a class of representations dnbe a set of identification algo-
rithms forR. R is polynomially characterisabléor | iff any representatioRin R admits a
characteristic set polynomial in si#), that allows any algorithm ihto identify it.

Proposition 2. Let R be a class of representations containing representations for all
singleton languages (containing just one string) and the empty languagé.bedthe set

of all polynomial identification algorithms fdR. If | is not emptyR is not polynomially
characterisable fot.

Proof: If | is not empty it contains at least one algorithm identifying in the limit from
polynomial time and data; call Rpasic. Leta be some symbol in the reference alphabet
We define a family{ A} (for all integersk) of learning algorithms as follows:

Algorithm Ay

If {ak} is compatible with the sample then retyaf}.
If not use algorithmApasic

It is straightforward to notice that each of these algorithms complies with the conditions of
Definition 1, so they are polynomial algorithms for identification, even if the complexity of
eachAy grows withk.

Suppose now that the target language is the empty set. Then to identify it an arbitrar
learnerA, requiresa® as a negative instance. The number of learners is infinite, hence sc
is the size of the characteristic set. m]

This proposition applies, for instance, for the regular languages when represented &
DFA, as for any string of lengtk we can construct a DFA witki+ 1 states that recognizes
only that string.

But the existence of such a universal teacher is not a necessary condition for identificatic
in the limit from polynomial time and data to be possible. We now aim to give such a
necessary condition:

Definition 4 A representation clasR is polynomially characterisabié there exists a
polynomial p(), such that for each representatiBrof sizen, there exists a characteristic
sample C S+, CS-) of size less thamp(n) such that if another non equivalent represen-
tation R’ is compatible with C S+, CS-), thenR is incompatible with the characteristic
sample forR'.
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Proposition 3. If Ris identifiable in the limit from polynomial time and data, thens
polynomially characterisable.

Proof2: Ifnotthere are two non equivalent representati@nandR, with respective char-
acteristic samples3i-1, S—1), (S+2, S—»2). By compatibility (S+1U S+, S—1U S—»)
would be accepted bR, and R,. But any algorithm can only infer one of the represen-
tations. |

In its negative form Proposition 3 provides us with a tool to prove that certain classes ar
not identifiable in the limit from polynomial time and data.

Hellerstein et al. (1995) use a similar technique in the context of polynomial-query
learnability. A class has theolynomial resilience propertwhen a concept in this class
cannot be separated from other concepts through a polynomial number of polynomial string
(thus forbidding the use of interesting queries). As in Proposition 3 above, their definitior
leads to complexity-theoretical results.

4. Nonpolynomially identifiable grammars

In this section we turn to general classes of grammars and prove that they are not pol
nomially characterisable (and hence, by Proposition 3, not identifiable in the limit from
polynomial time and data).

Theorem 2. For any alphabet of size at least 2, the following classes are not polyno-
mially characterisable:

CFG(ZX), the class of context-free grammars

LIN (2), the class of linear grammars.

Proof: If equivalence is undecidable for a cldRsthen for everyp() and everyn (suf-
ficiently large) we can find two representatioRs and R, with size bounded by, rep-
resenting different languages, and inseparable by any string of length smallgu(tijan

If not, testing all strings up to that size would be a computable equivalence test of bott
representations. Thigis not polynomially characterisable. This, by Theorem 1, applies
to classes of gramma@&FG(X) andLIN (X). a

Because of the undecidability of the equivalence problem (Theorem 1), this result ca
be extended to the above classes in any computable normal form (Chomsky normal forr
Greibach normal form .)(Harrison, 1978):

Corollary 1. For any alphabef of size at least 2, the following classes are not polyno-
mially characterisable:
NCFG(X), the class of context-free grammars in some computable normal form.
NLIN (%), the class of linear grammars in some computable normal form.

Even when the equivalence problem is decidable, if the separating strings are too lon
then inference cannot be obtained through characteristic samples of polynomial lengtl
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The class of simple deterministic grammars has been proven polynomially inferable (witt
queries) by Ishizaka (1989). A context-free grammar is simple deterministic (in 2-normal
form) if the rules are of the following form:

S— awithe € TUZV UZVZ,
andifyx €e X [A— xa] € Pand[A— xBl € P= a = 8.

As simple deterministic grammars generalize regular grammars, the consistency proble
can be solved in polynomial time.

Theorem 3. For any alphabetz, the class of simple deterministic grammars o¥eis
not polynomially characterisable.

Proof: Take the following (indexed) simple deterministic grammar:

Gk =<{@a,L{S:ie{0kl},P, S >
and P = { S > aS;1541Vi <k
S—a }

The size of each gramm@i is obviously Eolynomial ik. Yet, each grammdby generates
only one string (of exponential lengthd?*" 2.
Thus, L (Gk) cannot be separated from the empty language by any subset of strings ©

polynomial length. And as above, the result follows. |

This result does not constitute a contradiction with Goldman & Mathias’ theorem that
“any class learnable in deterministic polynomial time using example-based queries is sem
poly T/L teachable” (Goldman & Mathias, Theorem 2, 1996). Indeed we have the following
apparently contradictory facts:

o Ishizaka has proven that simple deterministic grammars could be inferred in polynomia
time with equivalence and membership queries (Ishizaka, 1989).

e From Goldman & Mathias’ result it follows that simple deterministic grammars are semi-
poly T/L teachable.

e From Proposition 1 it follows that for simple deterministic grammars, “semi-paly
teachable” is equivalent to “identifiable in the limit from polynomially time and data”,
as simple deterministic grammars are consistency-easy.

e Theorem 3 states that simple deterministic grammars are not polynomially characteris
able, hence not identifiable in the limit from polynomial time and data.

The contradiction depends on the role of the length of examples and counter-example:
e For Ishizaka, the oracle is independent, so the length of counter-examples is a par

meter.
e Goldman & Mathias only consider boolean functions. The length is a constant.
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We believe this length must depend polynomially of the size of the target grammar.

These considerations explain that Goldman & Mathias’ theorem is no longer true for
the definition of teachability we have adapted to the case of grammatical inference. £
second corollary of Theorem 3 is that to infer a simple deterministic grammar with a
MAT the length of the counter-examples to be expected can be boungedri by no
polynomial.

Learning NFA is difficult, even with a MAT (see e.g. (Yokomori, 1993), or (Angluin &
Kharitonov, 1995)), this remains true for our criterion:

Theorem 4. If P = NP for any non empty alphab#t, the classNFA(X) is not polyno-
mially characterisable

Proof: Inthe case where the input alphabet has only one letter, the equivalence problem
co-NP-complete (Garey & Johnson, 1979). Thus there is no polyngrighat given two
NFA of size smaller tham can solve the equivalence problem by testing chains of length
less tharp(n): otherwise the number of such chains is precig#ly), and the equivalence
problem would be inP. Hence the result. In the appendix we give a construction of
this fact. a

Corollary 2. The following classes are not identifiable in the limit from polynomial time
and data:

CFG(2), the class of context-free grammars ovgrwhen|Z| > 1

LING (X), the class of linear grammars over, when|Z| > 1

SDGE(Y), the class of simple deterministic grammars o¥erwhen|X| > 0

NFA(X), the class of nondeterministic finite automata o¥erwhen|X| > 0

The results follow by applying Proposition 2 to the above results. The fourth result depend
on the assumptioP # NP.

5. Conclusion

The framework of identification in the limit from polynomial time and data has so far
provided the grammatical inference community with many positive results. This framework
is implicitly defined in Gold’s 1978 article, linked with Pitt's propositions (1989) and
corresponds to Goldman & Mathias’ teaching model (1996) when the length of the example
is taken as a variable. We have proven that a number of important classes are not identifiat
in the limit from polynomial time and data. Nevertheless as this setting does not guarante
polynomial induction, work remains to be done: in the positive cd3E8.(. .) how simple

can the characteristic set be? As different algorithms will admit different characteristic sets
does this give us a quality measure of an inference algorithm (the smaller the characterist
set the better). These issues are important ones: grammatical inference algorithms are u
today in different fields, and theoretical results comparing existing algorithms and justifying
new ones can be of considerable help.
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Figure 1
Appendix

The proof of Theorem 4 is non-constructive and actually finding non deterministic au-
tomata for which the equivalence problem requires looking at non polynomial chains is no
straightforward. We give the following procedure:

Construct two automata:
AutomatonA recognises*.

AutomatonB is formed by one starting statg, and for every prime numbeg; in a finite
set PRIME (included in the set of all primes) statgs. .., g, . The transitions are:

e Vp € PRQ, € 8(qp, @), _ _
o VP € PRY, e {L ..., p —1q},; €5(q}.a)
e Vpi € PRq € 5(q;. a)

All states are final except ea«:ﬂ;i . The automatorB for the set PRIME= {2, 3,5} is
drawn in Fig. 1. Initial state igp, all states are final exceps, g2 andg?.

The language recognised Byfor a given set PRIME ia* —(a')* with | = [ 15 eprive Pi-

The smallest string separating this language fedris a'.

Thus, the number of statessp, . prime Pi-

And the smallest separating word is of len§th, . pryve Pi-

Now for each integem there exists (Heath-Brown & lwaniec, 1979) a prime in the
interval [m, m + m*/29. We can thus deduce th&§ > 1,3p € PRIMEN [2}, 2i+Y],
and by choosing for each of these intervals one prime we have forjeasket PRIME|)
containingj primes each included in a different interval [2' 1] (Vi < j).
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AutomatonB has set of state®. If we denote by mih(j) the length of the smallest
string in the symmetric difference & and A, we have

j 1l 1 j . .
Q<> 2+ <22 minl(j) = ]2 =212
i=1 i=1

It follows that for anyk we can findj such thai Q| < minl(j).
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Notes

1. For more about collusion, see (Mathias, 1995).
2. This proof uses a similar technigue to the proof of Theorem 1 in (Goldman & Mathias, 1996), where unions of
teaching sets are considered to prove that their method is not collusion.
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