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Abstract. When concerned about efficient grammatical inference two issues are relevant: the first one is to
determine the quality of the result, and the second is to try to use polynomial time and space. A typical idea to
deal with the first point is to say that an algorithm performs well if it infersin the limit the correct language. The
second point has led to debate about how to define polynomial time: the main definitions of polynomial inference
have been proposed by Pitt and Angluin. We return in this paper to a definition proposed by Gold that requires
a characteristic set of strings to exist for each grammar, and this set to be polynomial in the size of the grammar
or automaton that is to be learned, where the size of the sample is the sum of the lengths of all strings it includes.
The learning algorithm must also infer correctly as soon as the characteristic set is included in the data. We first
show that this definition corresponds to a notion of teachability as defined by Goldman and Mathias. By adapting
their teacher/learner model to grammatical inference we prove that languages given by context-free grammars,
simple deterministic grammars, linear grammars and nondeterministic finite automata are not identifiable in the
limit from polynomial time and data.

Keywords: exact identification, grammatical inference, polynomial learning

1. Introduction and related work

The problem of describing polynomial paradigms for learning has received much attention
in learning theory community. We focus our attention on those paradigms dealing with
grammatical inference, i.e., the inference, from strings, of grammars or automata. As
most of the literature deals with the inference of deterministic finite automata (DFA), the
following general discussion concentrates on them.

In his seminal paper, Pitt (1989) discusses different possible ideas as to what polynomial
complexity for the problem of exact identification of (DFA) should be. The model he
analyses is Gold’s classical model (1967): a presentation of the language is given, in
which strings appear with a label (+ if it is a positive instance, and− if it is a negative
instance). A presentation is required to be complete, that is each example appears at least
once. In this model an algorithm is said to identify in the limitiff on input of any complete
presentation of a language, the algorithm at some point converges to a correct representation
of the language. Pitt discards the possibility of time being polynomial in the size of the
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representation to be learned, as we have no control over the presentation of the examples,
so the very first example can be too big. He equally refuses polynomial update time (the
complexity takes into account the sizes of the examples that have been seen so far) because
the exhaustive search strategy can perform as follows: “when no time remains, delay the
treatment of some examples for later”. We note that using polynomial update time with
Pitt’s trick, the delaying of the treatment of the examples means that the algorithm has not
inferred correctly; and at some point it has sufficient information to give the correct answer
but does not.

Thus, Pitt proposes another measure of complexity: for an identification algorithm to be
polynomial it must have polynomial update time, and also make a polynomial number of
implicit errors (in the size of the automaton). An implicit error is made when the current
hypothesis does not agree with a new example. This definition alas is shown (by Pitt) to
be very restrictive, in the sense that even DFA do not comply with the conditions, so no
superclasses of regular languages allow polynomial time inference.

A second model of learning has been proposed by Angluin (1987) and exhaustively
studied since. The presentation of the language is not arbitrary, and can be somehow
controlled by asking queries of an oracle. The two most important sorts of queries are the
membership queries and equivalence queries. In a membership query a string is proposed
to the oracle which returns its correct classification. An equivalence query consists in
proposing a representation to the oracle, which either accepts it as a correct representation
of the language to be inferred, or returns a counter-example, that is a string from the
symmetric difference of the proposed language and the target one. This is known as the
MAT model (Minimally Adequate Teacher). With time complexity dependent on the size
of the automaton to be inferred and the length of the longest counter-example returned by
the oracle, Angluin proves that DFA can be identified in polynomial time with membership
queries and equivalence queries (to be exact, the time complexity must hold at any point
of the inference procedure). Angluin also proves that both of these queries are necessary:
neither membership queries alone, nor equivalence queries alone allow for polynomial
inference. Following Angluin’s definitions, further classes of grammars have been proven
to be polynomially learnable with a MAT (Ishizaka, 1989).

In both of these models the results are mainly negative, i.e., even DFA can’t be inferred in
polynomial time (unless membership and equivalence queries are used). Nevertheless the
needs of applications in several fields (speech, pattern recognition, automatic translation. . .)
have led to the construction of heuristics to solve the learning problems. The natural
question that follows is whether these heuristics are necessary and what can be done in
the (usual) case of learning from given data. When working in this framework an obvious
parameter for the complexity of a learning algorithm is the size of the data, where the size
corresponds to the sum of the lengths of the strings in the learning set. We note that in
the two models above, the justification for not using only the size of the target automaton
as a measure of computational complexity is that we do not have enough control over
the presentation of examples (in the first case) or the oracle (in the second one) to avoid
receiving an unnecessarily long example. This leads to asking if such long examples are
really necessary for the identification process. Moreover, how judicious is it to talk of
polynomial learning if the counter-examples returned by the oracle are of unreasonable



        

P1: EHE/JHR P2: EHE/TKL P3: PMR/TKL QC:

Machine Learning KL424-01-Colin March 26, 1997 13:47

CHARACTERISTIC SETS FOR POLYNOMIAL GRAMMATICAL INFERENCE 127

length with respect to the concept to be learned? By unreasonable we will use the usual
polynomial barrier, and ask the question in another way: suppose the concept to be learned
is of sizen, does the learner require a counter-example of length larger than any fixed
polynomial inn? This question has been raised and discussed in the case of DFA (with
a negative answer) (Angluin, 1987), but not for other classes of grammars. In fact, we
prove in Section 4 that the class of simple deterministic grammars, although polynomially
learnable with a MAT, needs strings of super-polynomaial length as counter-examples.

A theoretical framework to study these issues is provided by Gold: he presented (1978) a
model for identification from given data, where a sample of labelled strings(S+, S−), with
S+ a set of positive instances, andS− a set of negative instances, is presented to the infe-
rence algorithm which must return a representation compatible with(S+, S−). The further
conditions are: for each language there exists a characteristic sample with which the al-
gorithm returns a correct representation, and this must be monotone in the sense that if
correctly labelled examples are added to the characteristic set, then the algorithm infers the
same language. These conditions insure identification, and it is easy to see that a class of
representations is identifiable from given data if and only if it is identifiable in the limit from
a complete presentation of examples. This model can be compared with the one refused by
Pitt (1989): it consists in adding to the polynomial update time condition a second condition:
as soon as all elements in the characteristic set have been presented, the algorithm must infer
correctly; when this condition is met we say that the class isidentifiable in the limit from
polynomial time and data(Gold, 1978). Gold proved that deterministic finite automata are
identifiable in the limit from polynomially time and data. It must be noticed that in the same
paper Gold proved the NP-completeness of the “Minimum Inferred Finite State Automaton”
problem (is there a DFA with less thann states consistent with the data?). This result yields
that it is intractable to find the smallest automaton consistent with the data. The results are
not contradictory because a characteristic set is not just any set, and thus, in this special case,
what is inferred (in polynomial time) is the smallest compatible automaton. Further work in
this model has contributed the following results: alternative algorithms have been proposed
to infer DFA (Oncina & Garc´ıa, 1992), even linear grammars have been proved identifiable
in the limit from polynomial time and data (Takada, 1988; Sempere & Garc´ıa, 1994); these
techniques have been extended to universal linear grammars (Takada, 1994). Following
the same idea, deterministic even linear grammars are polynomially identifiable from posi-
tive examples only (Koshiba et al., 1995). The same holds for total subsequential functions
(Oncina et al., 1993). Algorithms provided in these papers have been implemented to deal
with practical problems in the fields of speech (Garc´ıa et al., 1994), pattern recognition
(Garcı́a & Vidal, 1990) and Automatic Translation (Castellanos et al., 1994). On the other
hand no hardness results have been proven within this model, leaving open the question of
the triviality of the model. This paper deals with proving that this is not so, and that many
classes of grammars can not be identified in the limit from polynomial time and data.

The notion of characteristic sets leads in a natural way to the associated problem of
teaching (Shinohara & Miyano, 1991; Goldman & Kearns, 1995; Jackson & Tomkins, 1992):
a teacher’s goal is to help the learner (or the identification algorithm), by providing a “good”
set of examples. Following the general work on Freivalds et al., on good examples (1989),
different models of teaching have in recent years been proposed (Anthony et al., 1992;
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Wiehagen, 1992; Mathias, 1995). The point of view that best fits to grammatical inference
(from given data) is the one of Goldman & Mathias (1996): they define teachability of a
class as the existence of a characteristic (to a learner) teaching set. Their point of view
follows the trend introduced by Jackson & Tomkins (1992), of considering teacher/learner
couples. We will prove that learnable in Gold’s sense corresponds to teachable in the sense
of Goldman & Mathias.

Alternative models for teacher/learner couples have been presented; one main difference
lies in the fact that in the above model the teacher will provide the examples for a specific
learner, whereas in other models (Goldman & Kearns, 1995, Jackson & Tomkins; 1992) the
teacher must be able to teach any consistent learner, i.e., any learner capable of returning a
hypothesis compatible with the examples.

In the following section we give the main definitions and results we need from formal
languages theory. Section 3 deals with adapting the teacher/learner model for grammatical
inference. The difficulties of this task are shown and the technical results we need are given.
In Section 4 give our main results, i.e., that the following classes of representations do not
admit identification in the limit from polynomial time and data:

• Context-free grammars.
• Linear grammars.
• Simple deterministic grammars.
• Nondeterministic finite automata.

2. Definitions

We only give here the main definitions from formal language theory. For more details and
proofs, the reader can refer to a textbook on the subject, for instance (Harrison, 1978).

An alphabetis a finite, non-empty set of distinct symbols. For a given alphabet6, the
set of all finite strings of symbols from6 is denoted6∗. The empty string is denotedλ.
For a stringw, |w| denotes the length ofw. A languageL over6 is a subset of6∗.

A nondeterministic finite automaton(NFA) over 6 is a 5-tupleN = (Q, 6, δ, I , F)

whereQ is a finite set of states,I and F two subsets ofQ, denoting respectively the set
of initial states and the set of final states ofN; δ is the set of transitions, namely a finite
subset ofQ × 6 → 2Q. We denote byq′ ∈ δ(q, x) a transition labelled byx from q to
q′. A NFA N accepts a stringw iff eitherw = λ and I ∩ F 6= ∅, or w = x1 · · · xj and
there exists a sequence of statesq0, . . . , qj (possibly with repetitions) withq0 ∈ I , ∀i <

j gi +1 ∈ δ(qi , xi +1), andqj ∈F . When the setI contains a unique state andδ is functional,
i.e., ∀q ∈ Q ∀x ∈ 6 |δ(q, x)| ≤ 1, the automaton is a deterministic finite automaton
(DFA). The language recognized by an automaton is the set of all strings accepted by the
automaton. Two automata are equivalentiff they accept the same language. NFA and DFA
have equal power of expression (they both recognize the regular languages). Nevertheless,
for a given NFA, the number of states of an equivalent DFA can be exponentially larger.

A context-free grammar over6 is a 4-tupleG = (6, V, P, S0) whereV is a finite
alphabet (of non-terminal symbols or variables),S0 a special symbol inV called the start
symbol andP a finite subset ofV × (6 ∪ V)∗ called the set of productions (or rules). A
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rule in this set will be denotedS → α and has intended meaning: non-terminal symbolS
rewrites intoα. A derivation is a sequenceS0 → β1 → β2 · · · → βn whereβi +1 is obtained
by substituting some occurrence of a nonterminalT in βi by α where(T → α) ∈ P. The
language generated by a context-free grammarG (denotedL(G)) is the set of all strings in
6∗ that can be obtained by derivation fromS0. A language is context-freeiff there exists
some context-free grammarG = (6, V, P, S0) generating it. Notice that non-terminal
symbols are only used for the generation of strings; they do not appear in the strings of the
language. Two context-free grammars are equivalentiff they generate the same language.

A linear grammarG = (6, V, P, S0) is a context-free grammar where all productions
belong toV ×(6∗∪6∗V6∗). Thus, each rule has at most one non-terminal in its right-hand
part. The following classes shall be used in this paper:

DFA(6): the class of deterministic finite automata over alphabet6.
NFA(6): the class of nondeterministic finite automata over alphabet6.
CFG(6): the class of context-free grammars over alphabet6.
LIN (6): the class of linear grammars over alphabet6.

The size of the alphabet can be considered a constant when working on some representation
classR(6).

When considering these classes the size of a representation (denotedsize(R)) will be
some reasonable quantity: it must be polynomial in the number of bits needed to encode a
representation. The following sizes are typically correct (for a constant alphabet6):

For DFA and NFA the number of states.
For CFGs and Linear Grammars the number of rules multiplied by the length of the
longest rule.

We end this section with results concerning a specific problem on representations that is
used in the sequel, and plays an important role for identification from given data:

The Equivalence problemEQ(R, 6): For a classR(6), are two given representations
equivalent? (i.e., do they represent the same language?)

The following results are well known:

Theorem 1 (Garey & Johnson 1979, Harrison 1978).
EQ(DFA, 6) ∈ P.

EQ(NFA, 6) is co-NP-complete, even when|6| = 1.
EQ(CFG, 6) is undecidable.
EQ(LIN , 6) is undecidable.

3. Teaching and characteristic sets

To take into account the fact that the length of the examples must depend polynomially
on the size of the concept to be learned we propose the following definition which is
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just a generalisation of Gold’s results (1978) and a natural restriction of the definition of
polynomial update time (Pitt, 1989).

Definition 1. A representation classR is identifiable in the limit from polynomial time
and dataiff there exist two polynomialsp() andq() and an algorithmA such that:

1) Given any sample (S+, S−), of sizem, A returns a representationR in R compatible
with (S+, S−) in O(p(m)) time.

2) For each representationR of sizen, there exists a characteristic sample (CS+, CS−) of
size less thanq(n) for which, if S+ ⊇ CS+, S− ⊇ CS−, A returns a representationR′

equivalent withR.

By this definition algorithmA is a polynomial learner. Notice that Gold proved (1978) that
identification in the limit from given data is equivalent to identification from a complete
sequence (the on line protocol). With this definition Gold’s 1978 result can be restated as
follows:

Gold’s theorem (1978). DFA are identifiable in the limit from polynomial time and data.

In fact his result is even stronger since for any DFA a characteristic set can also be computed
in polynomial time (Oncina & Garc´ıa, 1992).

Goldman & Mathias (1996) present a model for teaching and learning that takes into
account the quantity of information a good teacher has to provide to a learner. A first problem
is to avoid collusion. Collusion (or cheating) occurs when the teacher can pass information to
the learner about the representation of the concept and not the concept itself1. The teaching
session is described as follows, where to avoid collusion, a third element is introduced,
namely an adversary who can complicate the learner’s task by introducing extra examples:

1) The adversary selects a target function and gives it to the teacher.
2) The teacher computes a set of examples sufficient to allow the learner to infer the target

concept.
3) The adversary adds correctly labelled examples to this set, with the goal of causing the

learner to fail.
4) On this augmented set the learner computes a function.

Goldman & Mathias prove that this model does not allow collusion (as defined by them),
and define a class of functions as polynomiallyT /L-teachableiff the learner always infers
the intended function and both teacher and learner work in polynomial time. The class is
semi-polyT /L-teachable if the condition that the teachers computation takes polynomial
time is abandoned.

It is obvious that this definition is related to one of the identification in the limit from
polynomial time and data, thus, from Gold’s result it follows that DFA are semi-polyT /L-
teachable. In fact, in this case the characteristic set can be computed in polynomial time
(Oncina & Garc´ıa, 1992) so the stronger result that DFA are polynomiallyT /L-teachable
also holds.
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It should be stressed that we have chosen here to adapt Goldman & Mathias’ model
for the case of grammatical inference by taking into account the length of the examples
as a parameter. In their original setting this was unnecessary. When concerned with the
inference of boolean functions all examples have the same size, the number of variables.
In the framework of grammatical inference the number of strings is infinite, their length
growing unbounded; thus, when considering the size of the teaching set the number of strings
alone is insufficient. A teacher that needs only a small number of examples, but some of
them of excessive length, will not allow for the class to be (semi-) polynomially teachable.

Formally:

Definition 2. A representation classR is semi-polyT /L teachableiff there exist 3 poly-
nomials p(), q(), r (), a teacher,T and a learnerL such that for any adversary ADV the
following teaching session succeeds:

1) ADV selects a target functionf of sizen in R and gives it toT .
2) T computes a set of examples forL, with at mostp(n) examples, all of length at most

q(n).
3) ADV adds correctly labelled examples to this set, with the goal of causingL to fail. Let

m be the size of the completed set.
4) On this augmented setL computes the functionf in time less thanr (m).

This definition is not quite as strong as Definition 1. Indeed the learner has no obligation
when the teacher fails to give him a good teaching set. Equivalence between both def-
initions holds only for classes for which the problem of finding a consistent function is
easy. This is the case for all usual classes of grammars, where constructing a grammar that
generates exactly all positive instances is straightforward. We callconsistency-easya class
for which there exists a polynomial algorithm that given a set of labelled strings, returns a
representation consistent with this set.

Proposition 1. A consistency-easy class is identifiable in the limit from time and data iff
it is semi-poly T/L teachable.

Proof Sketch: If a class is identifiable in the limit from polynomial time and data, then
for any target function (or representation)f , a polynomial characteristic set exists. This set
meets the conditions to be the set of examples proposed by the teacher, and the monotonicity
condition insures that no adversary can cause the learning algorithm to fail. Conversely, as
the class is consistency-easy, a consistent function can always be returned in polynomial
time, and the set of examples forL, with at mostp(n) examples, all of length at mostq(n)

is a polynomial characteristic set. 2

Thus, Goldman & Mathias’ model is well adapted for grammatical inference. A natural
question is to consider other teaching models: an interesting model with implications for
grammatical inference yet to be studied is the interactive model (Mathias, 1995). Another
trend of research considers unspecialized teachers, that should be able to adapt to any learner.
Obviously the class of learners to consider is limited to the consistent learners, those who
always return a solution consistent with the data (as defined for instance in (Goldman &
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Kearns, 1995)). We prove that a finite teaching set does not exist for consistent language
learners, even when the learners are restricted to work in polynomial time (i.e., that given
a wide class of learners, there is no polynomial teaching set from which all learners can
identify correctly the target function). The proof is similar in many ways to the proof of
Lemma 1 in (Goldman & Kearns, 1995); the difference is that the result here applies even
when the learners work in polynomial time.

We first note that any learner fulfilling the conditions of Definition 1 is a consistent
learner: it always returns a solution consistent with the data.

Definition 3. Let R be a class of representations andI be a set of identification algo-
rithms forR. R is polynomially characterisablefor I iff any representationR in R admits a
characteristic set polynomial in size(R), that allows any algorithm inI to identify it.

Proposition 2. Let R be a class of representations containing representations for all
singleton languages (containing just one string) and the empty language. LetI be the set
of all polynomial identification algorithms forR. If I is not empty,R is not polynomially
characterisable forI .

Proof: If I is not empty it contains at least one algorithm identifying in the limit from
polynomial time and data; call itAbasic. Leta be some symbol in the reference alphabet6.
We define a family{Ak} (for all integersk) of learning algorithms as follows:

Algorithm Ak

If {ak} is compatible with the sample then return{ak}.
If not use algorithmAbasic.

It is straightforward to notice that each of these algorithms complies with the conditions of
Definition 1, so they are polynomial algorithms for identification, even if the complexity of
eachAk grows withk.

Suppose now that the target language is the empty set. Then to identify it an arbitrary
learnerAk requiresak as a negative instance. The number of learners is infinite, hence so
is the size of the characteristic set. 2

This proposition applies, for instance, for the regular languages when represented by
DFA, as for any string of lengthk we can construct a DFA withk + 1 states that recognizes
only that string.

But the existence of such a universal teacher is not a necessary condition for identification
in the limit from polynomial time and data to be possible. We now aim to give such a
necessary condition:

Definition 4. A representation classR is polynomially characterisableiff there exists a
polynomial p(), such that for each representationR of sizen, there exists a characteristic
sample (CS+, CS−) of size less thanp(n) such that if another non equivalent represen-
tation R′ is compatible with (CS+, CS−), thenR is incompatible with the characteristic
sample forR′.
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Proposition 3. If R is identifiable in the limit from polynomial time and data, thenR is
polynomially characterisable.

Proof 2: If not there are two non equivalent representationsR1 andR2 with respective char-
acteristic samples (S+1, S−1), (S+2, S−2). By compatibility (S+1 ∪ S+2, S−1 ∪ S−2)
would be accepted byR1 and R2. But any algorithm can only infer one of the represen-
tations. 2

In its negative form Proposition 3 provides us with a tool to prove that certain classes are
not identifiable in the limit from polynomial time and data.

Hellerstein et al. (1995) use a similar technique in the context of polynomial-query
learnability. A class has thepolynomial resilience propertywhen a concept in this class
cannot be separated from other concepts through a polynomial number of polynomial strings
(thus forbidding the use of interesting queries). As in Proposition 3 above, their definition
leads to complexity-theoretical results.

4. Nonpolynomially identifiable grammars

In this section we turn to general classes of grammars and prove that they are not poly-
nomially characterisable (and hence, by Proposition 3, not identifiable in the limit from
polynomial time and data).

Theorem 2. For any alphabet6 of size at least 2, the following classes are not polyno-
mially characterisable:

CFG(6), the class of context-free grammars
LIN (6), the class of linear grammars.

Proof: If equivalence is undecidable for a classR, then for everyp() and everyn (suf-
ficiently large) we can find two representationsR1 and R2 with size bounded byn, rep-
resenting different languages, and inseparable by any string of length smaller thanp(n).
If not, testing all strings up to that size would be a computable equivalence test of both
representations. ThusR is not polynomially characterisable. This, by Theorem 1, applies
to classes of grammarsCFG(6) andLIN (6). 2

Because of the undecidability of the equivalence problem (Theorem 1), this result can
be extended to the above classes in any computable normal form (Chomsky normal form,
Greibach normal form. . .)(Harrison, 1978):

Corollary 1. For any alphabet6 of size at least 2, the following classes are not polyno-
mially characterisable:

NCFG(6), the class of context-free grammars in some computable normal form.
NLIN (6), the class of linear grammars in some computable normal form.

Even when the equivalence problem is decidable, if the separating strings are too long,
then inference cannot be obtained through characteristic samples of polynomial length.
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The class of simple deterministic grammars has been proven polynomially inferable (with
queries) by Ishizaka (1989). A context-free grammar is simple deterministic (in 2-normal
form) if the rules are of the following form:

S → α with α ∈ 6 ∪ 6V ∪ 6V2,

and if∀x ∈ 6 [ A → xα] ∈ P and [A → xβ] ∈ P ⇒ α = β.

As simple deterministic grammars generalize regular grammars, the consistency problem
can be solved in polynomial time.

Theorem 3. For any alphabet6, the class of simple deterministic grammars over6 is
not polynomially characterisable.

Proof: Take the following (indexed) simple deterministic grammar:

Gk = < {a}, {Si : i ∈ {0..k}}, P, S0 >

and P = { Si → aSi +1Si +1∀ i < k

Sn → a }

The size of each grammarGk is obviously polynomial ink. Yet, each grammarGk generates
only one string (of exponential length):a2k+1−1.

Thus,L(Gk) cannot be separated from the empty language by any subset of strings of
polynomial length. And as above, the result follows. 2

This result does not constitute a contradiction with Goldman & Mathias’ theorem that
“any class learnable in deterministic polynomial time using example-based queries is semi-
polyT /L teachable” (Goldman & Mathias, Theorem 2, 1996). Indeed we have the following
apparently contradictory facts:

• Ishizaka has proven that simple deterministic grammars could be inferred in polynomial
time with equivalence and membership queries (Ishizaka, 1989).

• From Goldman & Mathias’ result it follows that simple deterministic grammars are semi-
poly T/L teachable.

• From Proposition 1 it follows that for simple deterministic grammars, “semi-polyT /L
teachable” is equivalent to “identifiable in the limit from polynomially time and data”,
as simple deterministic grammars are consistency-easy.

• Theorem 3 states that simple deterministic grammars are not polynomially characteris-
able, hence not identifiable in the limit from polynomial time and data.

The contradiction depends on the role of the length of examples and counter-examples:

• For Ishizaka, the oracle is independent, so the length of counter-examples is a para-
meter.

• Goldman & Mathias only consider boolean functions. The length is a constant.
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We believe this length must depend polynomially of the size of the target grammar.
These considerations explain that Goldman & Mathias’ theorem is no longer true for

the definition of teachability we have adapted to the case of grammatical inference. A
second corollary of Theorem 3 is that to infer a simple deterministic grammar with a
MAT the length of the counter-examples to be expected can be boundeda priori by no
polynomial.

Learning NFA is difficult, even with a MAT (see e.g. (Yokomori, 1993), or (Angluin &
Kharitonov, 1995)), this remains true for our criterion:

Theorem 4. If P 6= NP for any non empty alphabet6, the classNFA(Σ) is not polyno-
mially characterisable:

Proof: In the case where the input alphabet has only one letter, the equivalence problem is
co-NP-complete (Garey & Johnson, 1979). Thus there is no polynomialp() that given two
NFA of size smaller thann can solve the equivalence problem by testing chains of length
less thanp(n): otherwise the number of such chains is preciselyp(n), and the equivalence
problem would be inP. Hence the result. In the appendix we give a construction of
this fact. 2

Corollary 2. The following classes are not identifiable in the limit from polynomial time
and data:
CFG(6), the class of context-free grammars over6, when|6| > 1
LING(6), the class of linear grammars over6, when|6| > 1
SDG(6), the class of simple deterministic grammars over6, when|6| > 0
NFA(6), the class of nondeterministic finite automata over6, when|6| > 0

The results follow by applying Proposition 2 to the above results. The fourth result depends
on the assumptionP 6= NP.

5. Conclusion

The framework of identification in the limit from polynomial time and data has so far
provided the grammatical inference community with many positive results. This framework
is implicitly defined in Gold’s 1978 article, linked with Pitt’s propositions (1989) and
corresponds to Goldman & Mathias’ teaching model (1996) when the length of the examples
is taken as a variable. We have proven that a number of important classes are not identifiable
in the limit from polynomial time and data. Nevertheless as this setting does not guarantee
polynomial induction, work remains to be done: in the positive cases (DFA. . .) how simple
can the characteristic set be? As different algorithms will admit different characteristic sets,
does this give us a quality measure of an inference algorithm (the smaller the characteristic
set the better). These issues are important ones: grammatical inference algorithms are used
today in different fields, and theoretical results comparing existing algorithms and justifying
new ones can be of considerable help.
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Figure 1.

Appendix

The proof of Theorem 4 is non-constructive and actually finding non deterministic au-
tomata for which the equivalence problem requires looking at non polynomial chains is not
straightforward. We give the following procedure:

Construct two automata:
AutomatonA recognisesa∗.

AutomatonB is formed by one starting stateq0, and for every prime numberpi in a finite
set PRIME (included in the set of all primes) statesqi

1, . . . , qi
pi

. The transitions are:

• ∀pi ∈ PR qi
1, ∈ δ(q0, a),

• ∀pi ∈ PR∀ j ∈ {1, . . . , pi − 1}qi
j +1 ∈ δ

(
qi

j , a
)

• ∀pi ∈ PR qi
1 ∈ δ

(
qi

pi
, a

)
All states are final except eachqi

pi . The automatonB for the set PRIME= {2, 3, 5} is
drawn in Fig. 1. Initial state isq0, all states are final exceptq1

2, q2
3 andq3

5.
The language recognised byB for a given set PRIME isa∗−(al )+ with l = ∏

pi ∈PRIME pi .

The smallest string separating this language froma∗ is al .
Thus, the number of states is

∑
Pi ∈ PRIME pi .

And the smallest separating word is of length
∏

pi ∈ PRIME pi .

Now for each integerm there exists (Heath-Brown & Iwaniec, 1979) a prime in the
interval [m, m + m11/20]. We can thus deduce that∀ j ≥ 1, ∃p ∈ PRIME ∩ [2 j , 2 j +1[,
and by choosing for each of these intervals one prime we have for eachj a set PRIME( j )
containing j primes each included in a different interval [2i , 2i +1[ (∀i < j ).
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AutomatonB has set of statesQ. If we denote by minl ( j ) the length of the smallest
string in the symmetric difference ofB andA, we have

|Q| ≤
j∑

i =1

2i +1 ≤ 2 j +2. min l ( j ) ≥
j∏

i =1

2i ≥ 2 j 2/2.

It follows that for anyk we can findj such that|Q|k < min l ( j ).
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Notes

1. For more about collusion, see (Mathias, 1995).
2. This proof uses a similar technique to the proof of Theorem 1 in (Goldman & Mathias, 1996), where unions of

teaching sets are considered to prove that their method is not collusion.
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