1	Running head:	
2	Ancient tidally modulated shorefa	ce deposits
3		
4	Title:	
5	Characteristics and context of high	n-energy, tidally modulated, barred shoreface deposits:
6	Kimmeridgian–Tithonian sandsto	nes, Weald Basin, southern UK and northern France
7		
8	Authors:	
9	LYNSEY ANGUS ¹ , GARY J. HAMF	SON*, FRANCESCO PALCI ² , ALASTAIR J. FRASER
10		
11	Department of Earth Science and En	ngineering, Imperial College London, South Kensington Campus,
12	London SW7 2AZ, UK.	
13	¹ present address: Total S.A., Avenu	e Larribau, Pau, France.
14	² present address: UK Oil & Gas plc.	., Broadgate Tower, 20 Primrose Street, London EC2A 2EW, UK.
15		
16	*Corresponding author e-mail: g.j.h	ampson@imperial.ac.uk
17		
18	Key words:	
19	tidally modulated shoreface, Kimm	eridgian, Tithonian, Weald Basin
20		
21	Word count (abstract):	388
22	Word count (text):	9579
23	Word count (references):	3331
24	Word count (figure captions):	1825
25	Number of figures:	15
26	Number of tables:	0
27		
• •		

29 ABSTRACT

The influence of tides on the sedimentology of wave-dominated shorefaces has been emphasized in recent studies of modern shorelines and related facies models, but few ancient examples have been reported to date. Herein, we use a case study from the stratigraphic record to develop a revised facies model and predictive spatio-temporal framework for high-energy, tidally modulated, wave-

- 34 dominated, barred shorefaces.
- 35

36 Kimmeridgian–Tithonian shallow-marine sandstones in the Weald Basin (southern England and 37 northern France) occur as a series of laterally extensive tongues that are 5–24 m thick. Each tongue 38 coarsens upward in its lower part and fines upward in its upper part. The lower part of each upward-39 coarsening succession consists of variably stacked, hummocky cross-stratified, very fine- to fine-40 grained sandstone beds and mudstone interbeds that are moderately to intensely bioturbated by a 41 mixed Skolithos and Cruziana ichnofacies. This lower part of the succession is interpreted to record 42 deposition on the subtidal lower shoreface, between effective storm wave base and fairweather wave 43 base. The upper part of each upward-coarsening succession comprises cross-bedded, medium- to 44 coarse-grained sandstones that are pervasively intercalated with mudstone-draped, wave-rippled 45 surfaces (including interference ripples) which mantle the erosional bases of trough cross-sets. 46 Bioturbation is patchy, and constitutes a low-diversity Skolithos ichnofacies. Cross-bedded sandstones 47 are arranged into cosets superimposed on steeply dipping (up to 10°) clinoforms that dip offshore and 48 alongshore, and extend through the succession. These deposits are interpreted to record shallow 49 subtidal and intertidal bars on the upper shoreface, which likely contained laterally migrating rip 50 channels or formed part of a spit. The lower, upward-coarsening part of each sandstone tongue 51 represents an upward-shallowing, regressive shoreface succession in which the internal bedding of 52 upper-shoreface sandstones was modulated by tidal changes in water depth. The upper, upward-53 fining part of each sandstone tongue typically comprises an erosionally based bioclastic lag overlain 54 by subtidal lower-shoreface deposits, and constitutes an upward-deepening succession developed 55 during transgression.

56

57 Regressive-transgressive sandstone tongues fringe the northeastern margin of the basin, which was 58 exposed to an energetic wave climate driven by westerly and southwesterly winds with a fetch of 59 200–600 km. The high tidal range interpreted from the shoreface sandstone tongues is attributed to 60 resonant amplification in a broad (150–200 km), shallow (18–33 m) embayment as the tidal wave 61 propagated from the Tethys Ocean into the adjacent intracratonic Laurasian Seaway, of which the 62 Weald Basin was a part. 63 [end of abstract]

64

65 INTRODUCTION

66

67 Mixed-process regimes, which are characterized by the interaction of wave, tidal, and/or fluvial 68 processes, are emphasized in recently developed interpretive frameworks for shallow-marine strata 69 (e.g., Yoshida et al. 2007; Ainsworth et al. 2008, 2011; Rossi et al. 2017). However, the facies models 70 associated with these mixed-process frameworks have been based on a small number of case studies 71 to date. Furthermore, the predictions arising from these frameworks of stratigraphic and 72 paleogeographic context for mixed-influence shallow-marine deposits also require testing against a 73 wider range of modern and ancient examples. This paper presents a case study that expands on 74 recent facies models of wave-dominated shoreface sandstones in which tides had a significant effect 75 (Dashtgard et al. 2009, 2012; Vakarelov et al. 2012). The studied shallow-marine sandstones are of 76 Kimmeridgian–Tithonian age, and were deposited in the Weald Basin of southern England and 77 northern France. Previous studies have documented possible tide and wave influence in these 78 sandstones, which have been variously interpreted as storm-dominated offshore sand ridges (Sun 79 1992), mixed wave- and tide-dominated estuaries developed in an embayment (Proust et al. 1995), 80 "unusual" fairweather-wave-dominated shorefaces (Wignall et al. 1996), sharp-based "lowstand" 81 shorefaces that are locally cut into by tidal inlets (Mahieux et al. 1998; Proust et al. 2001), storm-82 dominated "lowstand" deposits (Taylor and Sellwood 2002), and storm-dominated shorefaces 83 (Schlirf 2003). In contrast to these previous interpretations, we consider the interpretation of these 84 sandstones as the deposits of tidally modulated shorefaces.

85

86 Regressive wave-dominated shoreface-shelf deposits exhibit a characteristic upward-coarsening 87 vertical succession in which sedimentary structures record a progressive upward change from 88 intermittent storm-wave activity to the continuous action of shoaling and then breaking fairweather 89 waves (e.g., Clifton 1976, 2006). Each such regressive succession contains a set of seaward-dipping 90 clinoforms (e.g., Hampson et al. 2008). Differences between regressive wave-dominated shoreface 91 successions have generally been attributed to variability in grain size, wave energy, and shoreface 92 morphology, related to the presence or absence of longshore bars (e.g., Figure 7.11 in Elliott 1986; 93 Clifton 2006). The effects of tides in regressive wave-dominated shoreface successions can either be 94 direct, in the form of structures generated by strong tidal currents ("tide-influenced shorefaces" sensu 95 Dashtgard et al. 2012), or indirect, reflecting lateral migration of wave-generated facies belts along the 96 shoreface-shelf profile in response to changing water depth during a tidal cycle ("tidally modulated

97 shorefaces" sensu Dashtgard et al. 2012). The strong tidal currents and relatively weak storm-wave 98 energy that lead to development of tide-influenced shorefaces are inferred to require bathymetric 99 constriction of the tidal wave in a sheltered setting, such as straits (e.g., modern Juan de Fuca Strait, 100 Canada; Frey and Dashtgard 2011; Dashtgard et al. 2012). Tidally modulated shorefaces are inferred 101 to be developed in settings with a large tidal range (e.g., modern Waterside Beach, Bay of Fundy, 102 Canada; Dashtgard et al. 2009, 2012 and modern Berck Plage, northern France; Vaucher et al. 2018). 103 To date, only three ancient examples of regressive wave-dominated shoreface sandstones that were 104 affected by tides have been documented, in the Ordovician Fezouata and Zini formations, peri-105 Gondwanaland shelf, Morocco (Vaucher et al. 2017), Jurassic Plover Formation, Bonaparte Basin, 106 offshore Australia (Ainsworth et al. 2008), and the Cretaceous Bearpaw to Horseshoe Canyon 107 Formation, Alberta Basin, Canada (Vakarelov et al. 2012). Tidal influence is more much widely 108 interpreted in transgressive barrier-island systems that are fronted by wave-dominated shoreface-109 shelf deposits, although shoreface deposits are only rarely preserved in such systems (e.g., 110 Nummedal and Swift 1987; Cattaneo and Steel 2003; Sixsmith et al. 2008). 111 112 In this paper, we document the sedimentologic character of Kimmeridgian–Tithonian sandstones in 113 the Weald Basin of southern England and northern France, using a combination of outcrop and core 114 data. The aims of the paper are threefold: (1) to describe the facies characteristics of these shallow-115 marine sandstones, which exhibit both wave and tide influence, (2) to present a model for deposition 116 of the sandstones in a series of high-energy, tidally modulated, barred shorefaces, and (3) to evaluate 117 the stratigraphic and paleogeographic controls on the development and distribution of these 118 shorefaces. 119 120 **GEOLOGIC SETTING** 121 122 The studied shallow-marine sandstones occur in Kimmeridgian–Tithonian strata of the northeastern 123 Weald Basin (Fig. 1). The Weald Basin is an intracratonic, extensional basin of Permian to Cretaceous 124 age that is bounded by west-east-trending zones of normal faults (Chadwick 1986; Hansen et al. 2002; 125 Mansy et al. 2003). The basin was inverted and uplifted during the Cenozoic, resulting in erosional 126 exhumation of Jurassic and Cretaceous strata in its center (Chadwick 1986; Hansen et al. 2002; Mansy 127 et al. 2003; Andrews 2014) (Fig. 2). 128 129 At the present day, strata of Kimmeridgian–Tithonian age lie in the subsurface of southern England

130 and crop out in the Boulonnais region of northern France (Fig. 2). In southern England, these strata

131 have mostly been assigned to the Kimmeridge Clay Formation (e.g., Andrews 2014), although strata 132 of early Kimmeridgian age, which contain several of the older sandstone units studied herein, have 133 historically been assigned to the upper part of the Corallian Group (e.g., Sun 1992). We follow the 134 convention of Taylor et al. (2001) in placing all Kimmeridgian-Tithonian strata, which are 135 predominantly siliciclastic, in the Kimmeridge Clay Formation (Fig. 1C). Age-equivalent strata in the 136 Boulonnais outcrops are assigned to a large number of lithostratigraphic units (e.g., Proust et al. 2001; 137 Braaksma et al. 2006) (Fig. 1C). Our focus is on two sandstone units: the Grès de Châtillon and Grès 138 de la Crèche (Figs. 1C, 3). The subsurface succession in southern England and the Boulonnais outcrop 139 succession have both been tied to the same well-established ammonite biozonation (e.g., Wignall 140 1991; Geyssant et al. 1993; Proust et al. 1995; Gallois 2000; Taylor et al. 2001; Williams et al. 2001; 141 Taylor and Sellwood 2002; Braaksma et al. 2006) (Fig. 1C). Kimmeridgian–Tithonian strata from the 142 Baylei to Fittoni ammonite biozones accumulated over c. 9.7 Myr (Fig. 1C), according to the age 143 model of Ogg and Hinnov (2012) (their Figure 26.8). The duration of each sandstone unit is poorly 144 constrained, but, given the total duration of Kimmeridgian–Tithonian strata, is likely to have been 50– 145 500 kyr. 146 147 During the late Jurassic, the Weald Basin was one of a linked chain of intracratonic basins that formed 148 the Laurasian Seaway, which connected the Tethys Ocean to the southeast with the incipient Atlantic 149 Ocean to the northwest (e.g. Ziegler 1989) (Fig. 1A). The basin occupied a paleolatitude of 30-35°N 150 during Kimmeridgian and early Tithonian times and was subject to a warm, humid climate that may 151 have been monsoonal (e.g., Hallam 1984; Sellwood and Valdes 2008; Wignall and Ruffell 1990; 152 Hesselbo et al. 2009; Armstrong et al. 2016). In the Oxfordian, shallow-marine sandstones and 153 carbonates accumulated over much of the Weald Basin (e.g., Brookfield 1973; Bradshaw et al. 1992; 154 Sun 1992). Later, in the Kimmeridgian, accelerated tectonic subsidence due to active extensional of the 155 basin-bounding fault zones resulted in deepening of the basin (Chadwick 1986). At this time, the

156 organic-rich Kimmeridge Clay accumulated over much of the Laurasian Seaway, including the Weald

157 Basin, and thin, shallow-marine sandstones and carbonates fringed the margins of the seaway (Ager

and Wallace 1970; Sun 1992; Proust et al. 1995; Wignall et al. 1996; Taylor et al. 2001; Taylor and

159 Sellwood 2002). Coccolith-rich micritic limestones accumulated in the centre of the Weald Basin

160 during the early Tithonian (Taylor et al. 2001; Taylor and Sellwood 2002). The London–Brabant

161 Massif, which defines the northeastern margin of the Weald Basin (Fig. 1B), formed an emergent

162 landmass that was progressively onlapped throughout the Oxfordian and Kimmeridgian (Pharoah

- 163 2018). The studied sandstone units are interpreted to have been derived from the London–Brabant
- 164 Massif (e.g., Ager and Wallace 1970; Proust et al. 1995; Wignall et al. 1996; Taylor and Sellwood 2002),

165	probably from very low-grade metasediments of late Ordovician to early Devonian age that subcrop
166	Oxfordian and Kimmeridgian strata here (cf. Pharoah 2018). Thus, it is likely that sand was
167	transported only a short distance (< 100 km) from the London–Brabant Massif source to the Weald
168	Basin sink (Fig. 1B). Kimmeridgian-Tithonian paleoshorelines are inferred to have been oriented
169	approximately parallel to the southern margin of the London-Brabant Massif, trending
170	approximately west-east in southern England and curving locally to trend approximately north-
171	south in the Boulonnais (Fig. 1B) (Proust et al. 1995; Wignall et al. 1996). The locations of rivers
172	draining the London-Brabant Massif and of riverine sediment input points to Kimmeridgian-
173	Tithonian paleoshorelines are uncertain, due to early Cretaceous erosion over the massif and adjacent
174	areas (Pharoah 2018).
175	
176	DATA AND METHODS
177	
178	This study uses publically released data from 50 wells from the onshore southern UK, and four
179	measured sections from outcrops in the Boulonnais region of northern France (Fig. 2). Data collection
180	at outcrop was focussed on two sandstone formations, the Grès de Châtillon and Grès de la Crèche
181	(Figs. 1C, 3). The biostratigraphic context of these formations has been synthesized by Geyssant et al.
182	(1993) from a variety of previous sources and original analyses, and tied to a well-established
183	ammonite biozonation (e.g., Proust et al. 1995). High-resolution, 2D shallow seismic data collected
184	offshore of the outcrops also allow some geometric aspects of stratal configuration to be related to
185	vertical successions exposed at outcrop. Previously published interpretations of these shallow seismic
186	data (Mahieux et al. 1998; Proust et al. 2001; Braaksma et al. 2006) have been re-evaluated as part of
187	our analysis.
188	
189	Nine wells contain core through Kimmeridgian-Tithonian sandstones (Fig. 2), and all available core,
190	totalling an along-hole thickness of 138 m, was logged. Gamma-ray logs, sonic logs, and cuttings data
191	were used to determine lithology in uncored wells and uncored intervals of cored wells. Caliper logs
192	indicate that borehole conditions were of variable quality in different wells during wireline logging,
193	such that density and neutron logs may not be reliable for lithological interpretation. Well

- 194 correlations are based on previously published correlations in the Weald Basin (Sun 1992; Hawkes et
- al. 1998; Taylor et al. 2001; Taylor and Sellwood 2002; Trueman 2003). These previous well
- 196 correlations are tied to the same ammonite biozonation as is used for the Boulonnais outcrops (Fig.
- 197 1C; Gallois 2000; Taylor et al. 2001; Taylor and Sellwood 2002). Correlations are consistent with, but
- 198 well below the resolution of, 2D seismic data, in which Kimmeridgian–Tithonian strata are

200	the Weald Basin (e.g., Butler and Jamieson 2013). These seismic data are publically available from the
201	UK Onshore Geophysical Library (<u>www.ukogl.org.uk</u>).
202	
203	Facies analysis of both outcrop and core data is based on observations of lithology, grain size and
204	sorting, sedimentary structures, body fossils, and trace-fossil assemblages. Bioturbation intensity is
205	described using the bioturbation index (BI) of Taylor and Goldring (1993). Paleocurrent data
206	measured at outcrop were corrected for tectonic dip where necessary (e.g. at Cap Gris Nez; Fig. 2).
207	
208	Sandstone petrography was analyzed using thin sections from 17 samples, which were selected from
209	representative facies of sandstone units at outcrop (8 samples) and in core (9 samples). 300 points
210	were counted in each thin section using the standard procedures of Krumbein and Pettijohn (1938)
211	and Galehouse (1971), in order to measure bulk composition using the Gazzi-Dickinson method
212	(Dickinson 1970), as a first-order indicator of provenance (Dickinson et al. 1983).
213	
214	FACIES ANALYSIS
215	
216	Four facies associations have been identified in the studied sandstones and surrounding fine-grained
217	deposits, at outcrop and in core. These facies associations are described and interpreted below, and
218	their vertical stacking into facies successions is then characterized in outcrop and core data (Figs. 4, 5).
219	
220	Facies Association 1: Mudstones (Offshore and Offshore Transition)
221	
222	Description Facies Association 1 consists of variably bioturbated claystones and siltstones in
223	successions that are 0.5 to > 11.1 m thick (Figs. 4, 5). Locally the claystone and siltstone successions
224	contain nodular, calcareous siltstone beds (Fig. 6A) and thin (< 3 cm) lenticular and tabular beds of
225	very fine-grained sandstone that contain ripple cross-lamination disrupted by bioturbation (Fig. 6B-
226	D). Bioturbation is moderate to intense (BI: 3–5) in much of the facies association, and is characterized
227	by a diverse assemblage that includes <i>Planolites</i> , <i>Palaeophycus</i> , <i>Rhizocorallium</i> , <i>Zoophycus</i> , <i>Diplocraterion</i> ,
228	Teichichnus, Thalassinoides, and Chondrites (Figs. 4, 5, 6). However, some claystones and siltstones are
229	nonbioturbated (BI: 0) or exhibit bioturbation of sparse to moderate intensity (BI: 1–3) by Chondrites
230	and Planolites. Claystones and siltstones contain parallel lamination where physical structures are
231	preserved. Fragmented and disarticulated bivalve shells are common throughout the facies

represented by laterally continuous, parallel reflectors of variable amplitude that can be traced across

association (Fig. 6D), and locally occur as thin (< 10 cm) bioclastic shell beds (e.g., at 1.0 m and 1.3 m

233 in Fig. 4C; at 967.6 m in Fig. 5E). A diverse microfauna characterized by abundant foraminifera and

- ostracods has been documented in Facies Association 1 in the Boulonnais outcrops (Wignall 1990;
- 235 Wignall et al. 1996). Facies Association 1 is equivalent to "lithofacies unit 1" of Sun (1992), mudstones
- and bioclastic mudstones assigned to "outer ramp and mid-ramp deposits" by Proust et al. (1995),
- 237 "facies 1" of Wignall et al. (1996), "lithofacies 1, 2, and 5-7" of Proust et al. (2001), and "Facies A" of
- 238 Schlirf (2003). Facies Association 1 overlies Facies Associations 2, 3 and 4 across sharp or, more rarely,
- 239 gradational contacts, and gradationally underlies Facies Association 2 (Figs. 4, 5).
- 240

241 Interpretation.--- The fine-grained, predominantly siliciclastic character of Facies Association 1 242 implies a relatively high supply of clay and silt. Bed-scale variations in bioturbation intensity, early-243 diagenetic calcite cement, and, to an extent, bioclast abundance may reflect variable sedimentation 244 rate (e.g., Ghadeer and MacQuaker 2011; Gingras et al. 2011). The high-diversity trace-fossil 245 assemblage that characterizes most of the facies association constitutes the Cruziana ichnofacies, 246 implying deposition in well-oxygenated, open-marine, offshore and offshore-transition environments 247 below effective storm wave base (Pemberton et al. 1992; MacEachern and Bann 2008). Body-fossil 248 assemblages constitute a diverse infaunal and epifaunal bivalve fauna (Wignall et al. 1996) and a 249 diverse nektonic ostracod fauna (Wignall 1990). In contrast, claystone and siltstone intervals 250 characterized by a low-diversity trace-fossil assemblage (Chondrites, Planolites) were subject to 251 persistent physico-chemical stress during deposition (e.g., Bromley and Ekdale 1984; Savrda and 252 Bottjer 1989; MacQuaker and Gawthorpe 1993; Ghadeer and MacQuaker 2011; Gingras et al. 2011). 253 Thin, ripple cross-laminated, very fine-grained sandstone beds are interpreted to record episodic 254 influxes of sand. Given the close affinity between Facies Associations 1 and 2 (Figs. 4, 5), these sand 255 influxes probably formed in response to anomalously large storms and/or wave-supported sediment 256 gravity flows. Thin, bioclastic shell beds also reflect reworking and winnowing of shells, indicating 257 deposition above effective storm wave base (Fürsich 1986; Proust et al. 1995; Wignall et al. 1996; 258 Schlirf 2003) and condensed sedimentation (Kidwell 1986). 259

260 Facies Association 2: Bioturbated and Laminated Silty Sandstones (Lower Shoreface)

- 261
- 262 Description.--- Facies Association 2 consists of very fine-grained to coarse-grained, moderately to
- 263 well-sorted sandstones that occur in sharp-based, tabular beds up to 20 cm thick, and that are
- variably interbedded with siltstones (Figs. 4, 5). Successions of Facies Association 2 are 0.5–6.7 m thick
- 265 (Figs. 4, 5). Sandstone beds contain charcoal, shell fragments, and mudclasts (Fig. 7E). Medium-
- 266 grained and coarse-grained sandstone beds are structureless (Fig. 7C), whereas very fine-grained to

267 fine-grained sandstone beds contain parallel lamination, low-angle cross-lamination (Fig. 7F), and 268 hummocky cross-stratification. In their upper part, some sandstone beds contain symmetrical and/or 269 asymmetrical ripple cross-lamination. Sandstone bed tops are moderately to intensely bioturbated 270 (BI: 3–5) by Thalassinoides, Ophiomorpha, and Rhizocorallium, while interbedded siltstones are 271 bioturbated to a similar intensity by Planolites, Palaeophycus, Teichichnus, Zoophycus, and Chondrites 272 (Fig. 7A–D). These two trace-fossil assemblages overprint each other in intervals of thin-bedded 273 sandstones and siltstones (Fig. 7A, B, D, G). Facies Association 2 is equivalent to "lithofacies units 2 274 and 4" of Sun (1992), bioturbated sandy shales assigned to "inner ramp deposits" by Proust et al. 275 (1995), "facies 2 and 3" of Wignall et al. (1996), "lithofacies 10 and 11" of Proust et al. (2001), and 276 "Facies B, C, and D" of Schlirf (2003). Facies Association 2 occurs in two contexts in vertical 277 successions. Either it gradationally overlies Facies Association 1 and is sharply overlain by Facies 278 Associations 3, or it overlies Facies Associations 3 and 4 across a sharp contact and is gradationally 279 overlain by Facies Association 1 (Figs. 4, 5).

280

281 Interpretation.--- This facies association records episodic influxes of sand, separated by prolonged 282 periods of silt deposition and sediment reworking by bioturbation. The sharp bases of the sandstone 283 beds indicate that they record erosion and subsequent deposition by waning currents. The occurrence 284 of hummocky cross-stratification in very fine-grained to fine-grained sandstone beds implies 285 deposition from oscillatory or combined currents set up during storms (e.g., Duke 1985; Southard et 286 al. 1990; Dumas et al. 2005). Parallel lamination and low-angle cross-lamination in very fine-grained 287 to fine-grained sandstone beds may have resulted from the action of similar currents, although they 288 may also record upper-plane-bed conditions and bedform migration in response to unidirectional 289 currents, respectively (e.g., Bridge and Best 1988; Cheel 1990). The lack of structures in medium-290 grained and coarse-grained sandstone beds may represent transport of moderately to well-sorted 291 sand as debris flows (e.g., Fisher 1971). In all sandstone beds, rippled tops indicate waning flow 292 velocity. Bioturbation at sandstone bed tops contains elements of the Skolithos ichnofacies, reflecting 293 opportunistic colonization of event beds (Pemberton and MacEachern 1997; MacEachern and Bann 294 2008). The trace-fossil assemblage in interbedded siltstones constitutes the Cruziana ichnofacies. Facies 295 Association 2 therefore represents deposition above effective storm wave base but below fairweather 296 wave base, as previously interpreted by Sun (1992), Proust et al. (1995, 2001), Wignall et al. (1996), 297 Schlirf (2003), in the lower-shoreface environment. The presence of charcoal clasts supports 298 deposition in a shallow-marine environment that was close to land. Variability in sandstone-bed 299 thickness and amalgamation in successions of Facies Association 2 is interpreted to reflect a

300 combination of minor variations in water depth, sand supply, and storm-wave climate (Dott and

301 Bourgeois 1982; Storms and Hampson 2005; Sømme et al. 2008).

- 302
- 303

Facies Association 3: Cross-Bedded Sandstones (Upper Shoreface and Foreshore)

304

305 Description.--- Facies Association 3 comprises very fine-grained to very coarse-grained, granular 306 sandstones that contain trough and tabular cross-beds with subordinate planar-parallel-laminated 307 beds (Figs. 4, 5). Successions of the facies association are 0.4–9.5 m thick (Figs. 4, 5). Cross-sets are 5– 308 30 cm thick (Fig. 8C, D, E), and locally contain charcoal, shell fragments, and mudclasts along their 309 bases and foresets (Fig. 8D). There is no apparent vertical trend in cross-set thickness or stacking 310 (Figs. 4, 5). Some cross-sets overlie thin (< 2 cm), structureless or sparsely bioturbated mudstones (Fig. 311 8B). At outcrop, these mudstones are observed to form laterally discontinuous drapes above trough-312 shaped erosion surfaces that are 20–50 cm wide, up to 1.5 m long, and variably modified by 313 symmetrical ripples (Fig. 8E, F). Symmetrical ripple crests are either curved, so that they trace out the 314 strike of the underlying trough (Fig. 8F), or they are straight, extend across trough boundaries, and 315 are sub-perpendicular to trough axes (Fig. 8G). Ripple crests are either sharp (Fig. 8E) or rounded 316 (Fig. 8F–H). In addition to fields of parallel, straight-crested ripples (Fig. 8E, F, G), some straight-317 crested ripples exhibit a lower-wavelength set of ripples superimposed on, and perpendicular to, 318 their troughs (i.e., ladder ripples). Some bedding planes also exhibit two or three sets of symmetrical 319 ripples of similar wavelength with crestlines of different orientation (i.e., interference ripples) (Fig. 320 8H). Trough and tabular cross-beds exhibit a range of paleocurrent orientations, predominantly 321 towards the southwest and southeast (i.e., obliquely offshore and onshore, respectively), but also 322 towards the north (i.e., alongshore) (Fig. 4) (Wignall et al. 1996). Symmetrical ripple crests strike 323 southwest-northeast and northwest-southeast (i.e., oblique to the paleoshoreline) (Fig. 4) (Wignall et 324 al. 1996). Bioturbation is patchy, and locally absent to moderate in intensity (BI: 0-3). Trace-fossil 325 assemblages in the sandstones are dominated by Thalassinoides and Ophiomorpha (Fig. 8A, G), with less 326 abundant Arenicolites and Diplocraterion. Mudstones contain sparse to low-intensity bioturbation by 327 Planolites, Palaeophycus, and Thalassinoides (Fig. 8B). Palynological assemblages characterized by open-328 marine dincysts have been documented in Facies Association 3 in the subsurface (Sun 1992). Locally, 329 successions of Facies Association 3 are capped by intervals that are pervasively penetrated by rootlets 330 that impart a mottled, subvertical fabric (e.g., at 18.8 m in Fig. 4C; Fig. 8I). At outcrop, the facies 331 association contains isolated, spheroidal calcite-cemented concretions up to 50 cm in diameter (Fig. 4). 332 Calcite-cemented sandstone intervals in core are up to 4.6 m thick (Fig. 5). Facies Association 3 is 333 equivalent to "lithofacies units 3 and 5" of Sun (1992), cross-bedded sandstones assigned to "inner

ramp deposits" by Proust et al. (1995), "facies 4-7" of Wignall et al. (1996), "lithofacies 12-14" of

- 335 Proust et al. (2001), and "Facies E-J" of Schlirf (2003). Facies Association 3 has sharp lower and upper
- 336 contacts, overlies Facies Association 2, and is overlain by Facies Associations 1, 2 and 4 (Figs. 4, 5).
- 337

338 Interpretation.--- Cross-beds in Facies Association 3 record migration of sinuous- and straight-crested 339 dunes in response to unidirectional currents. The wide range of paleocurrent orientations indicated 340 by trough and tabular cross-beds (Fig. 4) indicates that dunes migrated alongshore, offshore, and 341 onshore (Wignall et al. 1996). Currents were not active continuously, but structureless or sparsely 342 bioturbated mudstones accumulated in the scour pools of migrating dunes, recorded by trough-343 shaped erosion surfaces, during periods of low flow velocity. The internally structureless character of 344 many mudstones indicates deposition from fluid muds, which result from high concentrations of 345 mud in suspension (Dalrymple et al. 2003). Fluid muds are common in shallow-marine environments 346 with high suspended-mud concentrations due to riverine sediment influx, resuspension of mud by 347 waves (e.g., Traykovski et al. 2000; Lamb and Parsons 2005; Ichaso and Dalrymple 2009), or 348 flocculation where fresh and marine waters mix (Dalrymple et al. 2003). The widespread occurrence 349 of symmetrical ripples at sandstone bed tops indicates wave action, with preservation of the ripples 350 attributed to rapid deposition of overlying, cohesive fluid-mud drapes. Curvature of symmetrical 351 ripple crests along the strike of trough-shaped erosion surfaces indicates wave refraction in shallow 352 water, in response to the localized bathymetric relief of dune scour pools. Wave refraction therefore 353 occurred in shallower water than is required for subsequent dune migration. Ladder and interference 354 ripples record the generation of multiple sets of ripple-crest orientations due to refraction and 355 reflection in similarly shallow water (e.g., Tanner 1960, p. 355–372 in Reineck and Singh 1973). Planar-356 parallel-laminated beds record upper-plane-bed conditions developed under higher flow velocities 357 than those that generated dunes, possibly in response to breaking waves (cf. Clifton 1976). This latter 358 interpretation of swash-backwash processes is supported by localized overprinting of planar-parallel-359 laminated sandstones by rootlets, which indicate subaerial exposure. The trace-fossil assemblage in 360 Facies Association 3 constitutes the *Skolithos* ichnofacies, implying deposition in a high-energy, open-361 marine environment (Pemberton et al. 1992; MacEachern and Bann 2008). 362

363 Facies Association 3 is interpreted to record deposition above fairweather wave base (e.g., Sun 1992;

364 Proust et al. 1995, 2001), probably in upper-shoreface and foreshore environments given the localized

365 occurrence of rootlets and charcoal (Wignall et al. 1996; Schlirf 2003). The abundance of cross-

366 bedding, wide range of paleocurrent orientations, and sharp base of successions of Facies Association

367 3 are all consistent with deposition on a high-energy shoreface containing bars separated by troughs

368	(e.g., Davidson-Arnott and Greenwood 1976; Hunter et al. 1979; Clifton 2006). The interbedding of
369	sandstone cross-sets, structureless or sparsely bioturbated mudstones, wave-rippled surfaces, and
370	planar-parallel-laminated sandstones indicates that fluctuations in flow velocity and water depth
371	were pervasive throughout deposition of vertical successions of Facies Association 3, indicating the
372	action of tides in a shallow subtidal to intertidal setting (Ager and Wallace 1970; Proust et al. 1995,
373	2001; Schlirf 2003). Proust et al. (1995, 2001) tentatively interpreted Facies Association 3 to contain
374	distinct tidal-bar, tidal-inlet, and tidal-flat deposits in an overall estuarine succession. Alternatively,
375	these characteristics can be attributed to tidal effects on a wave-dominated shoreface (Dashtgard et al.
376	2009, 2012), particularly one characterized by vertically stacked deposits of subtidal and intertidal
377	bars (cf. Davidson-Arnott and Greenwood 1974, 1976). The latter interpretation is favoured by the
378	consistently sandstone-dominated character of Facies Association 3, which lacks upward-fining,
379	subaerially exposed units that are diagnostic of tidal flats (e.g., p. 355–372 in Reineck and Singh 1973)
380	and deep, channelized scours that are typical of tidal inlets (e.g., Moslow and Tye 1985). The absence
381	of upward-thickening trends in cross-bed thickness in successions of Facies Association 3 also
382	discounts the interpretation of compound tidal dunes, also known as tidal sand waves (Dalrymple
383	and Rhodes 1995; Olariu et al. 2012).
384	
304	
385	Facies Association 4: Bioclastic Sandstones and Gravels (Transgressive Lag)
	Facies Association 4: Bioclastic Sandstones and Gravels (Transgressive Lag)
385	Facies Association 4: Bioclastic Sandstones and Gravels (Transgressive Lag)Description Facies Association 4 consists of individual and stacked sandstone beds that have thin
385 386	
385 386 387	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin
385 386 387 388	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4,
385 386 387 388 389	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly
385 386 387 388 389 390	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of
 385 386 387 388 389 390 391 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone
 385 386 387 388 389 390 391 392 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in
 385 386 387 388 389 390 391 392 393 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in addition to bioclasts. These beds are erosionally based, contain parallel lamination and low-angle
 385 386 387 388 389 390 391 392 393 394 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in addition to bioclasts. These beds are erosionally based, contain parallel lamination and low-angle cross-lamination, and are sparsely to moderately bioturbated by <i>Thalassinoides, Ophiomorpha</i> ,
 385 386 387 388 389 390 391 392 393 394 395 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in addition to bioclasts. These beds are erosionally based, contain parallel lamination and low-angle cross-lamination, and are sparsely to moderately bioturbated by <i>Thalassinoides, Ophiomorpha, Arenicolites, Diplocraterion</i> and <i>Planolites</i> (Figs. 4, 5). Successions of Facies Association 4 are commonly
 385 386 387 388 389 390 391 392 393 394 395 396 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in addition to bioclasts. These beds are erosionally based, contain parallel lamination and low-angle cross-lamination, and are sparsely to moderately bioturbated by <i>Thalassinoides, Ophiomorpha, Arenicolites, Diplocraterion</i> and <i>Planolites</i> (Figs. 4, 5). Successions of Facies Association 4 are commonly calcite cemented, although cementation does not typically extend into underlying deposits (Figs. 4, 5).
 385 386 387 388 389 390 391 392 393 394 395 396 397 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in addition to bioclasts. These beds are erosionally based, contain parallel lamination and low-angle cross-lamination, and are sparsely to moderately bioturbated by <i>Thalassinoides, Ophiomorpha, Arenicolites, Diplocraterion</i> and <i>Planolites</i> (Figs. 4, 5). Successions of Facies Association 4 are commonly calcite cemented, although cementation does not typically extend into underlying deposits (Figs. 4, 5). Facies Association 4 is equivalent to shell layers and shell lags assigned to "mid-ramp and inner ramp
 385 386 387 388 389 390 391 392 393 394 395 396 397 398 	Description Facies Association 4 consists of individual and stacked sandstone beds that have thin (1–10 cm) bioclast gravels in their lower part, and that may also contain mudstone interbeds (Figs. 4, 5). Successions of the facies association are 0.1–2.8 m thick (Figs. 4, 5). Bioclasts are predominantly disarticulated thick-shelled bivalves (<i>Isognomon, Gervillella, Myophorella, Trigonia, Nanogyra</i>), some of which are fragmented (Fig. 9) (Proust et al. 1995, 2001; Wignall et al. 1996; Schlirf 2003). Sandstone beds may contain charcoal clasts (Fig. 9C) and, locally, extrabasinal granules and pebbles (Fig. 9E) in addition to bioclasts. These beds are erosionally based, contain parallel lamination and low-angle cross-lamination, and are sparsely to moderately bioturbated by <i>Thalassinoides, Ophiomorpha, Arenicolites, Diplocraterion</i> and <i>Planolites</i> (Figs. 4, 5). Successions of Facies Association 4 are commonly calcite cemented, although cementation does not typically extend into underlying deposits (Figs. 4, 5). Facies Association 4 is equivalent to shell layers and shell lags assigned to "mid-ramp and inner ramp deposits" by Proust et al. (1995), "facies 8" of Wignall et al. (1996), "lithofacies 6 and 8" of Proust et al.

401 infilled by coarse-grained, bioclastic sandstone from the overlying unit (Fig. 9D). Facies Association 4402 is overlain by Facies Associations 1 and 2 (Figs. 4, 5).

403

404 Interpretation.--- Bioclastic gravels in Facies Association 4 are interpreted as winnowed lags, in 405 which large, dense clasts have been concentrated by strong current reworking and removal of sand 406 and mud. The disarticulated and fragmented character of the bioclasts implies that they may also 407 have been transported. The sharp base of Facies Association 4 is consistent with erosion and 408 reworking of the underlying substrate. Unlined, passively infilled Thalassinoides associated with these 409 surfaces constitute the *Glossifungites* ichnofacies, implying erosional exhumation of a consolidated 410 substrate at a firmground (MacEachern et al. 1992; Pemberton et al. 1992). The bioclastic gravels are 411 associated with sandstone beds and mudstone interbeds that are similar to those in Facies Association 412 2, and which are also interpreted as storm-event beds separated by fairweather deposits. Given their 413 vertical stratigraphic context, units of Facies Association 4 are interpreted as offshore (Facies 414 Association 1) and shoreface deposits (e.g. Facies Associations 2 and 3) that were erosionally 415 reworked by storm waves (Wignall et al. 1996). The local occurrence of extrabasinal granules in Facies 416 Association 4 implies that bedrock outcrops from the basin margins were also erosionally reworked 417 to provide sediment that was then transported basinward (Wignall et al. 1996). The stratigraphic 418 significance of the erosional bases of units of Facies Association 4 is considered below, in the context 419 of vertical facies successions. Calcite cements are microcrystalline, with textures and oxygen and 420 carbon isotopic compositions that imply early cementation from marine pore waters (Al Ramadan et 421 al. 2005). 422 423 **Facies Successions**

424

425 **Description.---** The facies associations described above are arranged into two recurring types of 426 vertical facies succession. The first type is characterized by an overall upward-coarsening trend in 427 grain size, and consists of mudstones (Facies Association 1) passing gradationally upward into 428 bioturbated and laminated silty sandstones (Facies Association 2) that are sharply overlain by cross-429 bedded sandstones (Facies Association 3) (successions represented by upward-widening triangles in 430 Figs. 4, 5). The sharp bases of the cross-bedded sandstones (Facies Association 3) have a planar 431 geometry and low erosional relief (typically several centimeters at outcrop), but mark a more 432 pronounced change in facies than the bases of individual sandstone beds in Facies Association 2. 433 Some successions of this type are incomplete, and lack either mudstones (Facies Association 1) in 434 their lower part (e.g., 1090.0–1083.2 m in Fig. 5A) or cross-bedded sandstones (Facies Association 3) in 435 their upper part (e.g., 0–1.9 m in Fig. 4D; 1033.4–1026.0 m in Fig. 5B, 965.0–951.9 m in Fig. 5E).

```
436 Upward-coarsening facies successions are 4.7–15.9 m thick (Figs. 4, 5).
```

437

The second type of vertical facies succession exhibits an overall upward-fining trend in grain size, and consists of bioturbated and laminated silty sandstones (Facies Association 2) that pass gradationally upward into mudstones (Facies Association 1) (successions represented by upward-thinning triangles in Figs. 4, 5). Bioclastic sandstones and gravels (Facies Association 4) occur locally at the base of (e.g., 442 4.9–5.2 m in Fig. 4B) and within these successions (e.g., 970.9–968.6 m in Fig. 5E). Upward-fining facies successions are 0.2–8.5 m thick (Figs. 4, 5).

444

Interpretation.--- Upward-coarsening facies successions, consisting of Facies Association 1 overlain by Facies Association 2 and then Facies Association 3, are interpreted to record upward shallowing and regression. In this context, the sharp base of Facies Association 3 can be attributed either to migration of troughs between bars on a high-energy shoreface (e.g., Hunter et al. 1979; Clifton 2006), or to wave erosion during falling relative sea level, which generated a regressive surface of marine erosion at the base of a "sharp-based shoreface" (*sensu* Plint 1988) (Proust et al. 1995, 2001; Wignall et al. 1996).

452

453 Upward-fining facies successions, consisting of Facies Association 2 overlain by Facies Association 1, 454 are interpreted to record upward deepening and transgression. Bioclastic sandstone and gravel lags 455 (Facies Association 4) at the base of, and within, such successions are interpreted to line wave 456 ravinement surfaces (sensu Swift 1968) cut by wave action during shoreface retreat. However, 457 bioclastic lags may also occur at the base of individual storm-event beds in Facies Association 2, as 458 noted in other bioclastic-rich sandstones (e.g., Kantarowicz et al. 1987; Morris et al. 2006). The tops of 459 upward-fining facies successions occur within mudstones of Facies Association 1, and are interpreted 460 as flooding surfaces (Proust et al. 1995, 2001).

461

462 We also note that, although not the focus of this paper, thin, condensed, bioclastic shell beds within

463 offshore and offshore-transition mudstones (Facies Association 1) have been interpreted previously as

- 464 very closely spaced or composite wave ravinement and flooding surfaces (e.g. "marine starvation
- 465 surfaces" of Wignall et al. 1996; "condensed section systems tracts" of Braaksma et al. 2006). This
- 466 interpretation is consistent with interpretations of similar units (e.g., Kidwell 1986; Föllmi 2016), and
- 467 implies a distal location for the composite wave ravinement and flooding surfaces, given their

468 juxtaposition above and below offshore and offshore-transition deposits. The interpretation is yet to469 be tested by correlation of the thin, condensed, bioclastic shell beds into more proximal locations.

470

471 Stratal Geometries in Shallow, High-Resolution Seismic Data

472

473 Description.--- Upward-coarsening facies successions are resolved in high-resolution 2D seismic 474 (sparker) data to contain dipping clinoform surfaces that extend from the base to the top of the 475 succession (e.g., in the Grès de Châtillon to the west of the Pointe du Nid de Corbet; Fig. 10A). 476 Clinoforms appear to be linear in cross-sectional geometry, with relatively uniform apparent dip, in 477 seismic lines oriented approximately perpendicular (Fig. 10A, B) and parallel (Fig. 10C) to the 478 paleoshoreline (Figs. 1B, 10D). However, apparent dips vary with the orientation of the 2D seismic 479 line, as would be expected, and potentially with stratigraphic unit (e.g., apparent 1° dip to the west, 480 approximately perpendicular to the paleoshoreline, in the Grès de Châtillon, Fig. 10A; apparent 5–10° 481 dips to the north, approximately parallel to the paleoshoreline, in the Grès de la Crèche, Fig. 10C). 482 Clinoforms are truncated by planar surfaces (dashed blue lines in Fig. 10A, B) that display locally 483 channelized erosional relief (dashed blue line in Fig. 10C), and downlap planar surfaces (dashed red 484 lines in Fig. 10A–C). Locally, the Grès de la Crèche contains two vertically stacked clinoform sets with 485 the characteristics described above (corresponding to the Lower and Upper Grès de la Crèche units of 486 Proust et al. 2001), separated by a unit of parallel, high-amplitude reflectors (corresponding to the 487 Marnes Intercalaires unit of Proust et al. 2001) (Fig. 10B). Also in the Grès de la Crèche, several of 488 these clinoforms are downlapped by or truncate smaller, laterally discontinuous, superimposed 489 clinoform sets with steep internal apparent dips (up to 10°) (Fig. 10C). A few of the larger, through-490 going clinoforms are also marked by subtle truncation related to an angular discordance in clinoform 491 dip (Fig. 10B, C).

492

493 Upward-fining facies successions are resolved as sets of parallel reflectors (e.g., in the Grès de
494 Châtillon to the west of the Pointe du Nid de Corbet; Fig. 10A). The successions overlie top-truncated
495 clinoforms across a planar to locally channelized erosion surface (dashed blue lines in Fig. 10A–C),
496 and are capped by a parallel reflector (solid blue line in Fig. 10A).

497

498 Interpretation.--- The occurrence of a single clinoform set extending from the base to the top of each

499 upward-coarsening facies succession supports their interpretation as regressive shoreface deposits.

500 Clinoforms dip offshore (Fig. 10A, B) and also subparallel to the paleoshoreline (Fig. 10C). The

501 combination of offshore-directed and alongshore-directed progradation of clinoforms in a shoreface

502 succession can potentially be attributed to accretion on: (1) the margin of a laterally migrating rip 503 channel in a barred, high-energy shoreface (e.g., Hunter et al. 1979; Clifton 2006); (2) a spit fronted by 504 a shoreface (e.g., Nielsen et al. 1988); or (3) a shoreline-attached tidal bar (cf. Dalrymple et al. 2003; 505 Olariu et al. 2012) with a wave-reworked shoreface at its front. The erosion surfaces that truncate 506 these clinoform sets (dashed blue lines in Fig. 10A–C) are overlain by an upward-fining, transgressive 507 facies succession (e.g., Fig. 10A) or by another upward-coarsening, regressive facies succession (e.g., 508 Fig. 10B). The erosion surfaces are associated with transgression, and the planar geometry of most 509 surfaces is consistent with their interpretation as wave ravinement surfaces (sensu Swift 1968). Local 510 channelized erosion at the surfaces (e.g., Fig. 10C) is attributed to scour during transgression, possibly 511 by tidal inlets or channels (Braaksma et al. 2006). Where upward-fining, transgressive facies 512 successions are resolved, they are interpreted to be capped by flooding surfaces (solid blue line in Fig. 513 10A).

514

515 Small, laterally discontinuous clinoform sets that are superimposed on the regressive shoreface 516 clinoforms are interpreted as bars; the common apparent dip direction of clinoforms at both scales 517 (Fig. 10C) implies that the bars migrated down the clinoform and subparallel to the paleoshoreline. 518 This hierarchical arrangement and orientation of cross-stratification is consistent with deposition on 519 the margin of a laterally migrating rip channel in a barred, high-energy shoreface (e.g., Hunter et al. 520 1979; Clifton 2006) or the distal tip of a spit (e.g., Nielsen et al. 1988). However, this geometric 521 configuration is not consistent with a shoreline-attached tidal bar, in which clinoforms at the scale of 522 the tidal bar record lateral accretion, and superimposed cross-strata record perpendicular, offshore-523 directed dune migration (cf. Dalrymple et al. 2003; Olariu et al. 2012). Locally, bar clinoform sets are 524 vertically stacked within the same shoreface clinoform set (Fig. 10C). Subtle truncation and angular 525 discordance across some through-going, shoreface clinoforms (Fig. 10B, C) is interpreted to reflect 526 localized shoreline reorientation and/or readjustment of the shoreface profile (e.g., Hampson et al. 527 2008; Sømme et al. 2008; Isla et al. 2018).

528

529 Erosion surfaces at the base of shoreface clinoform sets (dashed red lines in Fig. 10A–C) are inferred

530 to correspond to the sharp bases of units of Facies Association 3 in upward-coarsening, regressive

531 facies successions (Figs. 4, 5). As noted in the interpretation of facies successions, these erosional

532 surfaces can be interpreted either as the stratigraphic expression of migrating troughs in a barred,

533 high-energy shoreface (Hunter et al. 1979; Clifton 2006), or as regressive surfaces of marine erosion

534 cut by wave erosion during falling relative sea level (Proust et al. 1995, 2001; Wignall et al. 1996).

538 The two types of facies succession documented above are also imaged in conventional wireline-log 539 data, most consistently within gamma-ray logs (Fig. 11B, C). Upward-coarsening facies successions 540 are represented by an upward-decreasing gamma-ray trend, reflecting an overall upward decrease in 541 clay content, and upward-fining facies successions are represented by an upward-increasing gamma-542 ray trend, reflecting an overall upward increase in clay content (e.g., cored intervals of individual 543 wells in Fig. 11B, C). Typically, upward-fining facies successions are relatively thin and poorly 544 expressed in the gamma-ray logs, such that many upward-coarsening facies successions appear to 545 have sharp tops at the resolution of the logs. Individual facies associations also cannot be consistently 546 distinguished in the wireline-log data. Thus, regressive-transgressive tongues bounded by 547 interpreted flooding surfaces, which are marked by high gamma-ray values, are the smallest stratal 548 units that can be consistently identified with confidence in wireline-log data (Fig. 11B, C). 549 550 Correlation of regressive-transgressive tongues and their bounding flooding surfaces is based on 551 identification of patterns and markers in the gamma-ray logs (e.g., Taylor et al. 2001). Figure 11B and 552 C shows two such correlations in the Weald Basin, based on previously published well correlations 553 (Sun 1992; Taylor et al. 2001; Taylor and Sellwood 2002; Trueman 2003) and calibrated to core (Fig. 5). 554 Regressive-transgressive tongues are correlated to have large lateral extent, comparable to that of 555 regressive-transgressive tongues in the Boulonnais outcrops (Fig. 11A; after Proust et al. 2001), and 556 their bounding flooding surfaces are interpreted to be basinwide (cf. Taylor et al. 2001; Taylor and 557 Sellwood 2002). 558 559 FACIES MODEL 560 561 The interpretations presented above for Facies Associations 1–3, upward-coarsening facies

562 successions, and clinoform-bearing stratal geometries are synthesized into a facies model of a high-563 energy, tidally modulated, barred shoreface developed under either an ascending regressive (i.e. 564 normal regressive) or a descending regressive (i.e., forced regressive) shoreline trajectory (*sensu* 565 Helland-Hansen and Martinsen 1996) (Fig. 12B, C). The model comprises three facies belts, each 566 corresponding to a facies association, that represent the following subenvironments, from distal to 567 proximal: (1) offshore and offshore transition, (2) lower shoreface, and (3) upper shoreface and 568 foreshore.

572 High-resolution shallow seismic data show that shoreface deposits are characterized by steeply 573 dipping clinoforms (up to 10°), on which are superimposed laterally discontinuous, smaller-scale 574 clinoform sets (Fig. 10C) that dip down the shoreface clinoforms, and are interpreted to represent 575 migrating bars that were separated by troughs (Fig. 12B, C). Clinoform dip directions indicate 576 offshore-directed and alongshore-directed progradation of the shoreface, probably due to lateral 577 migration of rip channels in the shoreface (e.g., Hunter et al. 1979; Clifton 2006) or to accretion along 578 recurved, shoreface-fronted spits (Fig. 12A; e.g., Nielsen et al. 1988). Bar deposits are most evident 579 and abundant in the upper part of thick shoreface clinoform sets (c. 12 m locally in Grès de la Crèche, 580 Fig. 10C; Braaksma et al. 2006), but occur locally in the lower part of the same thick shoreface 581 clinoform sets (Fig. 10C), implying that the shoreface at times contained both inner-bar and outer-bar 582 systems (cf. Davidson-Arnott and Greenwood 1976). Trough and tabular cross-bedded sandstones 583 that correspond to these bar deposits exhibit a wide range of paleocurrent directions, implying that 584 dunes migrated alongshore, offshore, and onshore (Wignall et al. 1996) over the bars and adjacent 585 troughs, and potentially through shoreline-perpendicular or shoreline-oblique rip channels that 586 dissected the bars (cf. Davidson-Arnott and Greenwood 1974, 1976) or around the recurved tips of 587 spits (Fig. 12A; cf. Nielsen et al. 1988; Fruergaard et al. 2020). Stratal geometries consistent with 588 stacking of dune cross-sets to form bar cosets are not noted at outcrop, implying that the stratal 589 relationships resolved in thick shoreface clinoform sets (Fig. 10C) may be more subtly expressed, or 590 absent, in the thinner shoreface deposits typical of the Boulonnais outcrops (Fig. 4). However, 591 surfaces marked by straight wave-ripple crests that extend across dune-scale trough boundaries (Fig. 592 8G) may represent the remnants of poorly preserved bar morphologies. The lateral migration of 593 troughs between bars may also account for the sharp bases of cross-bedded, upper-shoreface and 594 foreshore sandstones (Facies Association 3) (Hunter et al. 1979; Clifton 2006). The occurrence of steep 595 shoreface clinoforms and shoreface bar systems implies high fairweather-wave energy (Clifton 2006), 596 in contrast to moderate fairweather-wave energy, which results in more gently dipping shoreface 597 profiles (c. 0.5°) and the generation of wave-modified, symmetrical, dune cross-bedding in shoreface 598 deposits (Vaucher et al. 2017, 2018). 599

600 Tidal Influence

601

As noted previously, two features of cross-bedded, upper-shoreface and foreshore sandstones (FaciesAssociation 3) can potentially be attributed to tidal influence, although this is not a unique

604 interpretation: (1) the occurrence of structureless and sparsely bioturbated mudstone drapes, 605 indicating fluid-mud deposition during periods of low flow velocity; (2) the abundance of wave 606 ripples that record refraction and interference in erosional troughs implies repeated fluctuations in 607 water depth typical of an intertidal setting (Proust et al. 1995, 2001; Schlirf 2003). Although these and 608 other characteristics of the cross-bedded, upper-shoreface and foreshore sandstones (Facies 609 Association 3) are noted in modern shorefaces developed under a large tidal range, including those 610 fronting spits (e.g., Fruergaard et al. 2020), they do not provide the direct evidence of strong tidal 611 currents that typifies tide-influenced shorefaces (Dashtgard et al. 2012). The repeated interbedding of 612 structures generated by swash-backwash (planar-parallel lamination), surf and breaking waves 613 (trough and tabular cross-beds), and shoaling waves (wave ripples) in deposits of the upper-shoreface 614 and foreshore facies belt is consistent with regular variations in water depth during a tidal cycle on a 615 tidally modulated shoreface (Dashtgard et al. 2009, 2012) (Fig. 12B, C). Upper shoreface and foreshore 616 deposits form a large proportion of the overall thickness of regressive shoreface-sandstone 617 successions (42–78% at outcrop, Fig. 4; 32–93% in core, Fig. 5), which may indicate that upper-618 shoreface and foreshore deposits were "overthickened" as a result of a high tidal range (Dashtgard et 619 al. 2012). The correspondingly small relative thickness of lower-shoreface deposits and scarcity of 620 well-preserved hummocky cross-stratified beds implies low storm-wave energy, high tidal energy, or 621 limited sand supply. 622 623 Sequence Stratigraphic Variations on Facies Model 624 625 The facies model described above and presented in Figure 12B assumes an ascending regressive (i.e. 626 normal regressive) shoreline trajectory (sensu Helland-Hansen and Martinsen 1996). In this model, the 627 sharp bases of cross-bedded, upper-shoreface and foreshore sandstone units (Facies Association 3) are 628 attributed to lateral migration of bars on a high-energy shoreface (Hunter et al. 1979; Clifton 2006). 629 Alternatively, the sharp bases of these sandstone units may have resulted from wave erosion during 630 falling relative sea level, which generated a regressive surface of marine erosion at the base of a 631 "sharp-based shoreface" (sensu Plint 1988) (Fig. 12C; Proust et al. 1995, 2001; Wignall et al. 1996). The 632 latter mechanism requires that the angle of descending regressive (i.e., forced regressive) shoreline 633 trajectory (sensu Helland-Hansen and Martinsen 1996) was steeper than the angle of shoreface-shelf 634 dip at wave base (Cant 1991). This geometric condition is unlikely to have been met for large 635 progradation distances (greater than several kilometers), since it requires a high-magnitude relative 636 sea-level fall that continually outpaced progradation driven by sediment supply (e.g., Hampson

637 2000). However, the thin, laterally extensive geometry of the shoreface sandstones and the absence of

- 638 coastal-plain deposits (Fig. 11) are both consistent with shoreface progradation under a net-
- 639 descending regressive shoreline trajectory, which may have been punctuated by intervals of
- 640 ascending regressive shoreline trajectory (i.e., alternation of the shoreline trajectories shown in Fig.
- 641 12B and C), particularly if combined with subsequent transgressive erosion (cf. Plint 1988). Patterns of
- 642 carbonate-grain dissolution and concomitant carbonate cementation in the Grès de Connincthun,
- 643 Grès de Châtillon, and Grès de la Crèche are also consistent with the incursion of meteoric waters
- 644 during relative sea-level fall during progradation of each sandstone unit (Al-Ramadan et al. 2015).
- 645
- 646 During transgression, only the distal components of the facies model are preserved, in the form of an
- 647 upward-deepening succession that comprises lower-shoreface deposits overlain by offshore and
- 648 offshore-transition deposits (Fig. 12B, C). Such successions are bounded at their base by surfaces that
- 649 record transgressive erosion by waves during shoreface retreat (i.e., wave ravinement surfaces), and
- 650 at their top by surfaces that record maximum water depth (i.e., flooding surfaces) (Figs. 4, 5).
- 651
- 652

STRATIGRAPHIC AND PALEOGEOGRAPHIC CONTEXT

653

654 Tidally modulated shorefaces, such as those interpreted above, are inferred to develop preferentially 655 in embayments and epicontinental seaways, where tidal amplification is pronounced but wave 656 energy is low to moderate (Dashtgard et al. 2012; Vaucher et al. 2017). Below, we evaluate the 657 stratigraphic framework and paleogeographic distribution of the studied Kimmeridgian–Tithonian 658 sandstones. This contextual information is then used in combination with previously published tidal-659 modelling results for the Laurasian Seaway (Fig. 1A) to assess the potential for appropriate wave and 660 tide conditions for the development of tidally modulated shorefaces in the Weald Basin (Fig. 1B).

661

662 Sequence Stratigraphic Framework

663

664 Sandstones in the Boulonnais region are correlated between outcrop measured sections using the

665 framework of Proust et al. (2001), which uses offshore, high-resolution seismic data (e.g., Fig. 10) and

666 biostratigraphic data to interpret stratal relationships that are not exposed in the onshore outcrop belt,

- 667 which is folded and faulted (Bonte et al. 1985; Mansy et al. 2007) (Fig. 11A). The large lateral extent (>
- 668 25 km) and continuous, sheet-like geometry of regressive-transgressive tongues bounded by flooding
- 669 surfaces in the Boulonnais outcrop belt (Fig. 11A) have been used to guide correlation of regressive-
- 670 transgressive sandstone tongues between wells in the subsurface of southern England (Fig. 11B, C).

671 Our subsurface correlation panels have been adapted from those previously published by Taylor et al.

- 672 (2001) and Taylor and Sellwood (2002) for Kimmeridgian strata in the Weald Basin (Fig. 11B, C).
- 673

674 Flooding surfaces that bound regressive-transgressive sandstone tongues in the subsurface Weald 675 Basin are numbered based on the sequence stratigraphic nomenclature of Taylor et al. (2001) and 676 Taylor and Sellwood (2002) (Fig. 1C). The regressive-transgressive sandstone tongues in neither the 677 subsurface Weald Basin nor the Boulonnais region coincide consistently with the high-frequency, 678 "third-order" sequence boundaries interpreted by Taylor et al. (2001) and Taylor and Sellwood (2002) 679 (Fig. 1C), despite their potential association with deposition during periods of falling relative sea level 680 (Proust et al. 2001). It is notable that the regressive-transgressive sandstone tongues in the Boulonnais 681 outcrops do not consistently occur at the same stratigraphic levels as those in the subsurface Weald 682 Basin (Wignall 1991) (Fig. 1C). These observations suggest that the detailed, high-frequency 683 stratigraphic and paleogeographic distribution of regressive-transgressive sandstone tongues is 684 strongly influenced by local controls, although the sandstone-bearing succession from the Baylei to 685 Scitulus chronozones (Fig. 1C) exhibits an overall, low-frequency retrogradational stacking pattern 686 (Taylor et al. 2001; Taylor and Sellwood 2002), which is consistent with progressive onlap onto the 687 London-Brabant Massif. The short distance (< 100 km) of sediment routing from the London-Brabant 688 Massif source to the Weald Basin sink (Fig. 1B) may have aided the transfer of high-frequency 689 sediment-supply signals from the sediment source, for example due to local variations in topographic 690 relief or bedrock erodability, into shallow-marine stratigraphic patterns (e.g., Paola et al. 1992; 691 Romans et al. 2016). 692 693 Paleogeographic Distribution and Provenance

694

Each of the regressive-transgressive sandstone tongues forms a west-northwest to east-northeast belt
that fringes the southern margin of the London-Brabant Massif (Fig. 13) (cf. Bradshaw et al. 1992;
Proust et al. 1995; Wignall et al. 1996). Although the sandstones contain some carbonate grains, in the
form of variably reworked bioclasts (Fig. 14B-D), their bulk detrital composition implies a quartzose
recycled-orogen provenance (Fig. 14A) (cf. Dickinson et al. 1983). This composition supports
derivation from late Ordovician to Lower Devonian sandstones and mudstones of the London-

701 Brabant Massif, which were subjected to very low-grade metamorphism during the late Caledonian

702 Orogeny (Pharoah 2018).

704	Sandstone detrital grains are subrounded (Fig. 14B–D), implying extended physical reworking before
705	deposition. This inference is supported by the occurrence of authigenic glauconite grains (Fig. 14B, C),
706	which indicate reworking in a shallow-marine setting characterized by low sedimentation rates (e.g.,
707	Cloud 1955; Gaynor and Swift 1988). The narrow range of sandstone detrital compositions (Fig. 14A)
708	implies that there was little spatial variation in the lithology of eroded sediment that was ultimately
709	deposited along the shoreline. Grain-size variability in the same facies association between different
710	outcrop and well locations (e.g., compare Fig. 14B and Fig. 14D) is attributed to alongshore variations
711	in: (1) proximity to fluvial sediment input points to the shoreline; (2) proximity to (wave-eroded?)
712	coastal headlands that supplied sediment to the shoreline; (3) grain-size distribution of sediment
713	supply; and (4) the velocity of wave-generated longshore currents and tidal currents. Similar
714	parameters are inferred to have controlled localized variations in the dip extent of the sandstone belt
715	fringing the London–Brabant Massif (Fig. 13). For example, areas of large sandstone dip extent may
716	be characterized by: (1) high local sand supply from an extrabasinal fluvial source or a reworked,
717	intrabasinal marine source; and/or (2) low accommodation due to unusually shallow local water
718	depth or slow subsidence, reflecting fault-related uplift (e.g., Sun 1992; Mansy et al. 2003) or elevated
719	paleotopography of the London-Brabant Massif.
720	
720 721	Potential for Tidal Amplification and Low to Moderate Wave Energy
	Potential for Tidal Amplification and Low to Moderate Wave Energy
721	Potential for Tidal Amplification and Low to Moderate Wave Energy Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the
721 722	
721 722 723	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the
721 722 723 724	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that
 721 722 723 724 725 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and
 721 722 723 724 725 726 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of >4 m) conditions developed in localized embayments and areas of shoaling
 721 722 723 724 725 726 727 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to
 721 722 723 724 725 726 727 728 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to changes in water depth in the Laurasian Seaway, although the latter controls the precise location of
 721 722 723 724 725 726 727 728 729 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to changes in water depth in the Laurasian Seaway, although the latter controls the precise location of funnelling through straits and shoaling over areas of shallow water depth, which can lead to local
 721 722 723 724 725 726 727 728 729 730 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to changes in water depth in the Laurasian Seaway, although the latter controls the precise location of funnelling through straits and shoaling over areas of shallow water depth, which can lead to local amplification of tidal range or to locally elevated tidal-current velocities (Mitchell et al. 2011). The
 721 722 723 724 725 726 727 728 729 730 731 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to changes in water depth in the Laurasian Seaway, although the latter controls the precise location of funnelling through straits and shoaling over areas of shallow water depth, which can lead to local amplification of tidal range or to locally elevated tidal-current velocities (Mitchell et al. 2011). The Kimmeridgian–Tithonian paleogeography and paleobathymetry of the Laurasian Seaway are similar
 721 722 723 724 725 726 727 728 729 730 731 732 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to changes in water depth in the Laurasian Seaway, although the latter controls the precise location of funnelling through straits and shoaling over areas of shallow water depth, which can lead to local amplification of tidal range or to locally elevated tidal-current velocities (Mitchell et al. 2011). The Kimmeridgian–Tithonian paleogeography and paleobathymetry of the Laurasian Seaway are similar to those modelled by Mitchell et al. (2011) for the Lower Jurassic seaway, such that the same general
 721 722 723 724 725 726 727 728 729 730 731 732 733 	Tidal modelling demonstrates that during the Early Jurassic the tidal wave propagated from the Tethys Ocean into the Laurasian Seaway (Fig. 15A) (Mitchell et al. 2011). Model results indicate that the seaway was regionally microtidal (tidal range of < 2 m), with mesotidal (tidal range of 2–4 m) and macrotidal (tidal range of > 4 m) conditions developed in localized embayments and areas of shoaling close to the Tethys Ocean (Mitchell et al. 2011). The regional tidal range is relatively insensitive to changes in water depth in the Laurasian Seaway, although the latter controls the precise location of funnelling through straits and shoaling over areas of shallow water depth, which can lead to local amplification of tidal range or to locally elevated tidal-current velocities (Mitchell et al. 2011). The Kimmeridgian–Tithonian paleogeography and paleobathymetry of the Laurasian Seaway are similar to those modelled by Mitchell et al. (2011) for the Lower Jurassic seaway, such that the same general

738	$\mathbf{R} = \sqrt{(gh)} / (2\Omega \sin \theta)$	(1)
-----	--	-----

740 in which g is the acceleration due to gravity (9.81 m.s⁻²), h is the depth of the water column (m), Ω is 741 the rotation rate of the Earth (7.27 x 10^{-5} rad.s⁻¹), and \emptyset is the latitude (e.g., Cushman-Roisin 1994). The 742 Kimmeridgian–Tithonian Laurasian Seaway occupied a paleolatitude of 35–40°N and was 50–100 m 743 deep, suggesting that parts of the seaway that exceeded 400–800 m (i.e., 2R) in width contained 744 clockwise-circulating cells that rotated about amphidromic points. The Weald Basin was too narrow 745 to contain one of these cells (Fig. 15B), implying that banking of the rotating tidal wave up against the 746 northeastern shoreline of the Weald Basin is unlikely to have amplified tidal range here. 747 748 Tidal amplification takes place in an embayment when its dimensions are in resonance with the 749 quarter wavelength of the tidal wave according to the relationship (Pugh 1987; Sztanò and De Boer 750 1995) 751 752 $l = \frac{1}{4}T\sqrt{(gh)}$ (2) 753 754 in which l is the length of the embayment, and T is the period of the tidal wave (12.42 hours for the 755 principal semidiurnal lunar tidal constituent, M2). The northeastern shoreline of the Weald Basin is 756 reconstructed to define a broad open embayment 150-200 km wide (Figs. 1B, 15B), implying that 757 water depths of 18-33 m would have been required for resonance of semidiurnal tides. Such water 758 depths are consistent with the thickness range of regressive-transgressive sandstone tongues (4-16 m; 759 Figs. 4, 5), particularly when the latter are decompacted. In contrast, tidal resonance in a narrower (c. 760 50 km) embayment in the Boulonnais area would require a water depth of c. 2 m. Thus, tidal 761 resonance in a broad embayed shoreline is a plausible mechanism to account for amplified tidal range 762 in the northeastern Weald Basin.

763

764 The studied shoreline deposits also contain evidence for fairweather- and storm-wave processes,

765 which requires that shorelines along the northeastern Weald Basin were open to wave energy.

766 Paleoclimate models indicate that the prevailing wind direction varied seasonally between westerly

767 (i.e., from west to east) and southwesterly (i.e., from southwest to northeast), and that these winds

768 originated at a paleolatitude of 30°N as part of Hadley-cell circulation (Sellwood and Valdes 2008;

769 Armstrong et al. 2016). These models imply a fetch of 200–600 km for waves reaching the

northeastern margin of the Weald Basin (Fig. 15A). In the Wessex Basin, which lies adjacent to and

south-southwest of the Weald Basin (Figs. 1B), the occurrence of highly organic-rich shales in the

772 Kimmeridge Clay is attributed to temporary stratification of the shallow (< 200 m) water column

- 773 (Tyson et al. 1979; Wignall 1989). Graded, laminated beds and coccolith-rich laminae, which indicate
- 774 well-mixed, oxygenated waters, in the Kimmeridge Clay of the Wessex Basin are attributed to storm
- events (Wignall 1989; Macquaker and Gawthorpe 1993; Pearson et al. 2004). By implication,
- fairweather wave base was shallow, consistent with the small thickness (0.4–9.5 m) of upper-
- shoreface and foreshore deposits (Figs. 4, 5) and temporary stratification of the water column, but
- 778 maximum storm wave base was much deeper, extending to the basin floor during major storms. The
- small thickness of lower-shoreface sandstones (0.5–6.7 m; Figs. 4, 5) relative to the interpreted deep
- 780 effective storm wave base is attributed to limited sand availability rather than limited storm-wave
- transport capacity. The interpretations outlined above are consistent with the development of wave-
- 782 dominated shorefaces at the margins of the Wessex and Weald basins.
- 783
- 784 CONCLUSIONS AND IMPLICATIONS
- 785

786 Kimmeridgian–Tithonian shallow-marine sandstones from the Weald Basin (southern England and 787 northern France) occur as thin (5–24 m), laterally extensive (tens of kilometers), regressive– 788 transgressive tongues that are interpreted as the deposits of high-energy, tidally modulated, wave-789 dominated, barred shorefaces. The sandstone tongues fringe the northeastern margin of the Weald 790 Basin, which formed part of the intracratonic Laurasian Seaway that connected the Tethys Ocean to 791 the southeast with the incipient Atlantic Ocean to the northwest. The sedimentologic character of 792 these sandstone tongues is documented in order to extend the range of facies models for mixed-793 influence shallow marine deposits, and to understand the paleogeographic and stratigraphic context 794 in which they occur.

795

796 The lower, regressive part of each sandstone tongue comprises, from base to top: (1) mudstones that 797 are, in general, moderately to intensely bioturbated by a diverse Cruziana ichnofacies, which represent 798 offshore to offshore-transition deposits; (2) hummocky cross-stratified, very fine- to fine-grained 799 sandstone beds and mudstone interbeds that are moderately to intensely bioturbated by a mixed 800 Skolithos and Cruziana ichnofacies, which represent subtidal lower-shoreface deposits; and (3) cross-801 bedded, medium- to coarse-grained sandstones that are sparsely to moderately bioturbated by a low-802 diversity Skolithos ichnofacies, and that contain mudstone drapes, mudclast lags and wave-rippled 803 surfaces; these cross-bedded sandstones represent shallow subtidal and intertidal deposition on the 804 upper shoreface and foreshore. The interbedding of sandstone cross-beds, mudstone drapes, wave-805 rippled surfaces (including interference ripples), and planar-parallel-laminated sandstones in upper806 shoreface and foreshore sandstones is attributed to pervasive fluctuations in flow velocity and water 807 depth that were modulated by tides. Steeply paleoseaward- and alongshore-dipping (1-10°) 808 clinoforms extend through the regressive part of the shoreface tongues, indicating shoreface 809 progradation and accretion on the margins of laterally migrating rip channels or the tips of recurved, 810 shoreface-fronted spits. Smaller, superimposed clinoform sets in upper-shoreface sandstones are 811 interpreted as bar deposits, indicating a barred-shoreface morphology. The upper, transgressive part 812 of each sandstone tongue comprises an erosionally based bioclastic lag overlain by lower shoreface 813 sandstones that pass upwards into offshore mudstones.

814

815 The resulting facies model contains three of the diagnostic features proposed previously for tidally 816 modulated shorefaces: (1) shoreface facies successions are characterized by pervasive interbedding of 817 sedimentary structures that indicate different, depth-dependent wave processes; (2) upper-shoreface 818 and foreshore deposits are "overthickened"; and (3) lower-shoreface deposits contain a mixture of 819 Skolithos and Cruziana ichnofacies. Potential indicators of direct tidal influence are limited to 820 mudstone drapes in upper-shoreface sandsones. In contrast to previous facies models for tidally 821 modulated shorefaces, upper-shoreface deposits have a sharp, rather than gradational, base that is 822 marked by downlap of shoreface clinoforms. Downlap and the occurrence of paleoseaward- and 823 alongshore-dipping shoreface clinoforms are attributed to the three-dimensional morphology of the 824 shoreface (e.g., presence of longshore bars and troughs, and shoreline-perpendicular to shoreline-825 oblique rip channels) and the coastal landforms that are fronted by the shoreface (e.g., spits). Current 826 facies models for tidally modulated shorefaces assume a simple linear shoreline, and thus need to be 827 modified to accommodate alongshore variability in shoreline morphology and sediment transport. 828

829 Published paleogeographic reconstructions, and climate-model and ocean-model simulations,

830 indicate that the northeastern margin of the Weald Basin formed a broad (150–200 km) embayment

 $831 \qquad \text{that was exposed to an energetic wave climate driven by westerly and southwesterly winds with a}\\$

fetch of 200–600 km and to the tidal wave that propagated northwestwards from the Tethys Ocean.

833 The development of tidally modulated shorefaces in this embayment probably records resonant

834 amplification of semidiurnal tides, implying shallow water depths (18–33 m) that are consistent with

835 observed sandstone tongue thicknesses.

836

837 Estimation of Rossby radius (as a proxy for the potential occurrence of amphidromic cells), potential

tor tidal resonance, and potential wave fetch can be applied to other case studies as a tool to predict

839 the spatio-temporal distribution of tidally modulated shorefaces. This approach requires

840	reconstructions of paleogeography and paleobathymetry that constrain paleolatitude, seaway width,
841	embayment length, and water depth. The resulting predictions indicate the potential for tidally
842	modified shorefaces to be developed, and sensitivity associated with this potential.
843	
844	ACKNOWLEDGMENTS
845	
846	The authors gratefully acknowledge funding and support from UK Oil & Gas plc, and in particular
847	Stephen Sanderson and Robert Wallace. We thank the British Geological Survey for providing access
848	to core material. We are grateful for the constructive review and editorial comments of an anonymous
849	reviewer, Piret Plink-Björklund, Jennifer Aschoff, and Peter Burgess.
850	
851	REFERENCES
852	
853	AGER, D.V., AND WALLACE, P., 1970, The distribution and significance of trace fossils in the uppermost
854	Jurassic rocks of the Boulonnais, northern France, in Crimes, T.P., and Harper, J.C., eds., Trace Fossils:
855	Geological Journal, Special Issue 3, p. 1-18.
856	
857	AINSWORTH, R.B., FLINT, S.S., AND HOWELL, J.A., 2008, Predicting coastal depositional style: influence
858	of basin morphology and accommodation to sediment supply within a sequence stratigraphic
859	framework, in Hampson, G.J., Steel, R.J., Burgess, P.M., and Dalrymple, R.W., eds., Recent Advances
860	in Models of Siliciclastic Shallow-Marine Stratigraphy: SEPM, Special Publication 90, p. 237-264.
861	
862	AINSWORTH, R.B., VAKARELOV, B.K., AND NANSON, R.A., 2011, Dynamic spatial and temporal
863	prediction of changes in depositional processes on clastic shorelines: toward improved subsurface
864	uncertainty reduction and management: American Association of Petroleum Geologists, Bulletin, v.
865	95, p. 267-297.
866	
867	AL-RAMADAN, K., MORAD, S., PROUST, J.N., AND AL-AASM, I., 2005, Distribution of diagenetic
868	alterations in siliciclastic shoreface deposits within a sequence stratigraphic framework: evidence
869	from the Upper Jurassic, Boulonnais, NW France: Journal of Sedimentary Research, v. 75, p. 943-959.
870	
871	ANDREWS, I.J., 2014, The Jurassic shales of the Weald Basin: geology and shale oil and shale gas
872	resource estimation: British Geological Survey for Department of Energy and Climate Change,
873	London, UK, 79 p.

874	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/313701/BGS_DECC_I
875	urassicWealdShale_study_2014_MAIN_REPORT.pdf
876	
877	Armstrong, H.A., Wagner, T., Herringshaw, L.G., Farnsworth, A.J., Lunt, D.J., Harland, M.,
878	IMBER, J., LOPTSON, C., AND ATAR, E.F., 2016, Hadley circulation and precipitation changes controlling
879	black shale deposition in the Late Jurassic Boreal Seaway: Paleoceanography, v. 31, p. 1041-1053.
880	
881	BONTE, A., COLBEAUX, J-P., LEPLAT, J., AND SOMMÉ, J., 1985, Boulogne-Sur-Mer: Bureau de Recherches
882	Géologiques et Minières, Carte Géologique de la France à 1:50,000, Feuille 10.
883	
884	Braaksma, H., Proust, J.N., Kenter, J.A.M., Drijkoningen, G.G., and Filippidou, N., 2006,
885	Sedimentological, petrophysical, and seismic characterization of an Upper Jurassic shoreface-
886	dominated shelf margin (the Boulonnais, northern France): Journal of Sedimentary Research, v. 76, p.
887	175-199.
888	
889	Bradshaw, M.J., Cope, J.C.W., Cripps, D.W., Donovan, D.T., Howarth, M.K., Rawson, P.F., West,
890	I.M., AND WIMBLEDON, W.A., 1992, Jurassic, in Cope, J.C.W., Ingham, J.K., and Rawson, P.F., eds.,
891	Atlas of Palaeogeography and Lithofacies: Geological Society of London, Memoir 13, p. 107-129.
892	
893	BRIDGE, J.S., AND BEST, J.L., 1988, Flow, sediment transport and bedform dynamics over the transition
894	from dunes to upper-stage plane beds: implications for the formation of planar laminae:
895	Sedimentology, v. 35, p. 753-763.
896	
897	BROMLEY, R.G., AND EKDALE, A.A., 1984, Chondrites: a trace fossil indicator of anoxia in sediments:
898	Science, v. 224, p. 872-874.
899	
900	BROOKFIELD, M., 1973, Palaeogeography of the upper Oxfordian and lower Kimmeridgian (Jurassic) in
901	Britain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 14, p. 137-167.
902	
903	BUTLER, M., AND JAMIESON, R., 2013, Preliminary interpretation of six regional profiles across onshore
904	basins of England: UK Onshore Geophysical Library.
905	http://maps.lynxinfo.co.uk/docs/images/interpretations/
906	

907	CANT, D.J., 1991, Geometric modelling of facies migration: theoretical development of facies
908	successions and local unconformities: Basin Research, v. 3, p. 51-62.
909	
910	CATTANEO, A. AND STEEL, R.J., 2003, Transgressive deposits: a review of their variability: Earth-Science
911	Reviews, v. 62, p. 187-228.
912	
913	CHADWICK, R.A., 1986, Extension tectonics in the Wessex Basin, southern England: Geological Society
914	of London, Journal, v. 143, p. 465-488.
915	
916	CHEEL, R.J., 1990, Horizontal lamination and the sequence of bed phases and stratification under
917	upper-flow-regime conditions: Sedimentology, v. 37, p. 517-529.
918	
919	CLIFTON, H.E., 1976, Wave-formed sedimentary structures — a conceptual model, <i>in</i> Davis, R.A., and
920	Ethington, R.L., eds., Beach and Nearshore Processes: SEPM, Special Publication 24, p. 126-148.
921	
922	CLIFTON, H.E., 2006, A re-examination of facies models for clastic shorelines, in Posamentier, H.W.,
923	and Walker, R.G., eds., Facies Models Revisited: SEPM, Special Publication 84, p. 293-337.
924	
925	CLOUD JR., P.E., 1955. Physical limits of glauconite formation: American Association of Petroleum
926	Geologists, Bulletin, v. 39, p. 484-492.
927	
928	CUSHMAN-ROISIN, B., 1994, Introduction to Geophysical Fluid Dynamics: Prentice Hall, New Jersey,
929	USA, 830 p.
930	
931	DALRYMPLE, R.W., AND RHODES, R.N., 1995, Estuarine dunes and bars, in Perillo, G.M.E., ed.,
932	Geomorphology and Sedimentology of Estuaries: Amsterdam, Elsevier, Developments in
933	Sedimentology, v. 53, p. 359-422
934	
935	DALRYMPLE, R.W., BAKER, E.K., HARRIS, P.T., AND HUGHES, M.G., 2003, Sedimentology and
936	stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea), in Sidi, F.H.,
937	Nummedal, D., Imbert, P., Darman, H., and Posamentier, H.W., eds., Tropical Deltas of Southeast
938	Asia — Sedimentology, Stratigraphy, and Petroleum Geology: SEPM, Special Publication 76, p. 147-
939	173.
940	

941	DASHTGARD, S.E., GINGRAS, M.K., AND MACEACHERN, J.A., 2009, Tidally modulated shorefaces:
942	Journal of Sedimentary Research, v. 79, p. 793-807.
943	
944	DASHTGARD, S.E., MACEACHERN, J.A., FREY, S.E. AND GINGRAS, M.K., 2012, Tidal effects on the
945	shoreface: towards a conceptual framework: Sedimentary Geology, v. 279, p. 42-61.
946	
947	DAVIDSON-ARNOTT, R.G.D., AND GREENWOOD, B., 1974, Bedforms and structures associated with bar
948	topography in the shallow-water wave environment, Kouchibouguac Bay, New Brunswick, Canada:
949	Journal of Sedimentary Petrology, v. 44, p. 698-704.
950	
951	DAVIDSON-ARNOTT, R.G.D., AND GREENWOOD, B., 1976, Facies relations on a barred coast,
952	Kouchibouguac Bay, New Brunswick, Canada, in Davis, R.A., and Ethington, R.L., eds., Beach and
953	Nearshore Processes: SEPM, Special Publication 24, p. 149-168.
954	
955	DICKINSON, W.R., 1970, Interpreting detrital modes of graywacke and arkose: Journal of Sedimentary
956	Petrology, v. 40, p. 695-707.
957	
958	DICKINSON, W.R., BEARD, L.S., BRAKENRIDGE, G.R., ERJAVEC, J.L., FERGUSON, R.C., INMAN, K.F., KNEPP,
959	R.A., LINDBERG, F.A., AND RYBERG, P.T., 1983, Provenance of North American Phanerozoic sandstones
960	in relation to tectonic setting: Geological Society of America, Bulletin, v. 94, p. 222-235.
961	
962	DOTT, R.H., AND BOURGEOIS, J. 1982, Hummocky stratification: significance of its variable bedding
963	sequences: Geological Society of America, Bulletin, v. 93, p. 663-680.
964	
965	DUKE, W.L., 1985, Hummocky cross stratification, tropical hurricanes, and intense winter storms:
966	Sedimentology, v. 32, p. 167-194.
967	
968	DUMAS, S., ARNOTT, R.W.C., AND SOUTHARD, J.B., 2005, Experiments on oscillatory-flow and
969	combined-flow bed forms: implications for interpreting parts of the shallow-marine sedimentary
970	record: Journal of Sedimentary Research, v. 75, p. 501-513.
971	
972	ELLIOTT, T., 1986, Clastic shorelines, in: Reading, H.G., ed., Sedimentary Environments and Facies:
973	Blackwell Scientific Publications, Oxford, p. 143-177.
974	

975	FISHER, R.V., 1971, Features of coarse-grained, high-concentration fluids and their deposits: Journal of
976	Sedimentary Petrology, v. 41, p. 916-927.
977	
978	FÖLLMI, K.B., 2016, Sedimentary condensation: Earth-Science Reviews, v. 152, p. 143-180.
979	
980	FREY, S.E., AND DASHTGARD, S.E., 2011, Sedimentology, ichnology and hydrodynamics of
981	strait-margin, sand and gravel beaches and shorefaces: Juan de Fuca Strait, British Columbia, Canada:
982	Sedimentology, v. 58, p. 1326-1346.
983	
984	FRUERGAARD, M., TESSIER, B., POIRIER, C., MOUAZÉ, D., WEILL, P., AND NOËL, S., 2020, Depositional
985	controls on a hypertidal barrier-spit system architecture and evolution, Pointe du Banc spit,
986	north-western France: Sedimentology, v. 67, p. 502-533.
987	
988	FÜRSICH, F.T., 1986, Storm shell beds of Nanogyra virgula in the upper Jurassic of France: Neues
989	Jahrbuch für Geologie Paläontologie, Abhandlungen, v. 172, p. 141-161.
990	
991	GALEHOUSE, J.S., 1971, Point counting, in: Carver, R.E., ed., Procedures in Sedimentary Petrology:
992	New York, Wiley-Interscience, p. 385-407.
993	
994	GALLOIS, R., 2000, The stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) in the RGGE
995	project boreholes at Swanworth Quarry and Metherhills, south Dorset: Proceedings of the Geologists'
996	Association, v. 111, p. 265-280.
997	
998	GAYNOR, G.C., AND SWIFT, D.J., 1988, Shannon Sandstone depositional model; sand ridge dynamics on
999	the Campanian Western Interior Shelf: Journal of Sedimentary Petrology, v. 58, p. 868-880.
1000	
1001	Geyssant, J.R., Vidier, J.P., Herbin, J.P., Proust, J.N., and Deconinck, J.F., 1993. Biostratigraphie et
1002	paléoenvironnement des couches de passage Kimméridgien/Tithonien du Boulonnais (Pas-de-Calais):
1003	nouvelles données paléontologiques (ammonites), organisation séquentielle et contenu en matière
1004	organique: Géologie de la France, v. 4, p. 11-24.
1005	
1006	GHADEER, S.G., AND MACQUAKER, J.H.S., 2011, Sediment transport processes in an ancient mud-
1007	dominated succession: a comparison of processes operating in marine offshore settings and anoxic
1008	basinal environments: Geological Society of London, Journal, v. 168, p. 1121-1132.

1009	
1010	GINGRAS, M.K., MACEACHERN, J.A., AND DASHTGARD, S.E., 2011, Process ichnology and the
1011	elucidation of physico-chemical stress: Sedimentary Geology, v. 237, p. 115-134.
1012	
1013	HALLAM, A., 1984, Continental humid and arid zones during the Jurassic and Cretaceous:
1014	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 47, p. 195-223.
1015	
1016	HAMPSON, G.J., 2000, Discontinuity surfaces, clinoforms, and facies architecture in a wave-dominated,
1017	shoreface-shelf parasequence: Journal of Sedimentary Research, v. 70, p. 325-340.
1018	
1019	HAMPSON, G.J., RODRIGUEZ, A.B., STORMS, J.E.A., JOHNSON, H.D., AND MEYER, C.T., 2008, Architecture
1020	and genesis of intra-parasequence discontinuity surfaces in wave-dominated deltaic deposits: Upper
1021	Cretaceous Sunnyside Member, Blackhawk Formation, Book Cliffs, Utah, USA, in Hampson, G.J.,
1022	Steel, R.J., Burgess, P.M., and Dalrymple, R.W., eds., Recent Advances in Models of Siliciclastic
1023	Shallow-Marine Stratigraphy: SEPM, Special Publication 90, p. 117-142.
1024	
1025	HANSEN, D.L., BLUNDELL, D.J., AND NIELSEN, S.B., 2002, A model for the evolution of the Weald Basin:
1026	Geological Society of Denmark, Bulletin, v. 49, p. 109-118.
1027	
1028	HAWKES, P.W., FRASER, A.J., AND EINCHCOMB, C.C.G., 1998, The tectono-stratigraphic development
1029	and exploration history of the Weald and Wessex Basin, Southern England, UK, in Underhill, J.R., ed.,
1030	Development, Evolution and Petroleum Geology of the Wessex Basin: Geological Society of London,
1031	Special Publication 133, p. 39-65.
1032	
1033	HELLAND-HANSEN, W. AND MARTINSEN, O.J., 1996, Shoreline trajectories and sequences: description of
1034	variable depositional-dip scenarios: Journal of Sedimentary Research, v. B66, p. 670-688.
1035	
1036	Hesselbo, S.P., Deconinck, J.F., Huggett, J.M., and Morgans-Bell, H.S., 2009, Late Jurassic
1037	palaeoclimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay,
1038	Dorset, UK: Geological Society of London, Journal, v. 166, p. 1123-1133.
1039	
1040	HUNTER, R.E., CLIFTON, H.E., AND PHILLIPS, R.L., 1979, Depositional processes, sedimentary structures,
1041	and predicted vertical sequences in barred nearshore systems, southern Oregon coast: Journal of
1042	Sedimentary Petrology, v. 49, p. 711-726.

1043	
1044	ICHASO, A.A., AND DALRYMPLE, R.W., 2009, Tide-and wave-generated fluid mud deposits in the Tilje
1045	Formation (Jurassic), offshore Norway: Geology, v. 37, p. 539-542.
1046	
1047	ISLA, M.F., SCHWARZ, E., AND VEIGA, G.D., 2018, Bedset characterization within a wave-dominated
1048	shallow-marine succession: an evolutionary model related to sediment imbalances: Sedimentary
1049	Geology, v. 374, p. 36-52.
1050	
1051	KANTOROWICZ, J.D, BRYANT, I.D., AND DAWANS, J.M., 1987, Controls on the geometry and distribution
1052	of carbonate cements in Jurassic sandstones: Bridport Sands, Southern England and Viking Group,
1053	Troll field, Norway, in Marshall, J.D., ed., Diagenesis of Sedimentary Sequences: Geological Society of
1054	London, Special Publication 36, p. 103-118.
1055	
1056	KIDWELL, S.M., 1986, Models for fossil concentrations: paleobiologic implications: Paleobiology, v. 12,
1057	p. 6-24.
1058	
1059	KRUMBLEIN, W.C. AND PETTIJOHN, F.J., 1938, Manual of Sedimentary Petrography: New York,
1060	Appleton-Century-Crofts, 549 p.
1061	
1062	LAMB, M.P., AND PARSONS, J.D., 2005, High-density suspensions formed under waves: Journal of
1063	Sedimentary Research, v. 75, p. 386-397.
1064	
1065	MACEACHERN, J.A., AND BANN, K.L., 2008, The role of ichnology in refining shallow marine facies
1066	models, in Hampson, G.J., Steel, R.J., Burgess, P.M., and Dalrymple, R.W., eds., Recent Advances in
1067	Models of Siliciclastic Shallow-Marine Stratigraphy: SEPM, Special Publication 90, p. 73-116.
1068	
1069	MACEACHERN, J.A., RAYCHAUDHURI, I., AND PEMBERTON, S.G., 1992, Stratigraphic applications of the
1070	Glossifungites ichnofacies: delineating discontinuities in the rock record, in Pemberton, S.G., ed.,
1071	Applications of Ichnology to Petroleum Exploration: SEPM, Core Workshop 17, p. 169-198.
1072	
1073	MACQUAKER, J.H.S., AND GAWTHORPE, R.L., 1993, Mudstone lithofacies in the Kimmeridge Clay
1074	Formation, Wessex Basin, southern England: implications for the origin and controls of the
1075	distribution of mudstones: Journal of Sedimentary Petrology, v. 63, p. 1129-1143.
1076	

1077	MAHIEUX, G., PROUST, J.N., TESSIER, B., AND DEBATIST, M., 1998, Comparison between high-resolution
1078	seismic and sequence stratigraphic approaches applied to the Upper Jurassic deposits of the Dover
1079	strait area (Northern France): Marine and Petroleum Geology, v. 15, p. 329-342.
1080	
1081	Mansy, J.L., Manby, G.M., Averbuch, O., Everaerts, M., Bergerat, F., Van Vliet-Lanoë, B.,
1082	LAMARCHE, J., AND VANDYCKE, S., 2003, Dynamics and inversion of the Mesozoic Basin of the Weald-
1083	Boulonnais area: role of basement reactivation: Tectonophysics, v. 373, p. 161-179.
1084	
1085	Mansy, J-L., Guennoc, P., Robaszynski, F., Amédro, F., Auffret, J-P., Vidier, J., Lamarche, J.,
1086	Lefèvre, D., Sommé, J., Brice, D., Mistiaen, B., Prud'homme, A, Rohart, JC., and Vachard, D.,
1087	2007, Marquise: Bureau de Recherches Géologiques et Minières, Carte Géologique de la France à
1088	1:50,000, Feuille 5.
1089	
1090	MITCHELL, A.J., ALLISON, P.A., GORMAN, G.J., PIGGOTT, M.D., AND PAIN, C.C., 2011, Tidal circulation in
1091	an ancient epicontinental sea: the Early Jurassic Laurasian Seaway: Geology, v. 39, p. 207-210.
1092	
1093	MORRIS, J.E., HAMPSON, G.J., AND JOHNSON, H.D., 2006, A sequence stratigraphic model for an
1094	intensely bioturbated shallow-marine sandstone: the Bridport Sand Formation, Wessex Basin, UK:
1095	Sedimentology, v. 53, p. 1229-1263.
1096	
1097	MOSLOW, T.F., AND TYE, R.S., 1985, Recognition and characterization of Holocene tidal inlet sequences:
1098	Marine Geology, v. 63, p. 129-151.
1099	
1100	NIELSEN, L.H., JOHANNESSEN, P.N., AND SURLYK, F., 1988, A Late Pleistocene coarse-grained
1101	spit-platform sequence in northern Jylland, Denmark: Sedimentology, v. 35, p. 915-937.
1102	
1103	NUMMEDAL, D., AND SWIFT, D.J.P., 1987, Transgressive stratigraphy at sequence-bounding
1104	unconformities: some principles derived from Holocene and Cretaceous example, in Nummedal, D.,
1105	Pilkey, O.H., and Howard, S.D., eds., Sea Level Fluctuation and Coastal Evolution: SEPM, Special
1106	Publication 41, p. 241–260.
1107	
1108	OGG, J.G., AND HINNOV, L.A., 2012, Jurassic, in: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg,
1109	G.M., eds., The Geologic Time Scale 2012: Amsterdam, Elsevier, p. 731-791.
1110	

1111	OLARIU, C., STEEL, R.J., DALRYMPLE, R.W., AND GINGRAS, M.K., 2012, Tidal dunes versus tidal bars: the
1112	sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower
1113	Baronia Sandstone (Lower Eocene), Ager Basin, Spain: Sedimentary Geology, v. 279, p. 134-155.
1114	
1115	PAOLA, C., HELLER, P.L., AND ANGEVINE, C.L., 1992, The large-scale dynamics of grain-size variation in
1116	alluvial basins, 1: theory: Basin Research, v. 4, p. 73-90.
1117	
1118	PEARSON, S.J., MARSHALL, J.E.A., AND KEMP, A.E.S., 2004, The White Stone Band of the Kimmeridge
1119	Clay Formation, an integrated high-resolution approach to understanding environmental change:
1120	Geological Society of London, Journal, v. 161, p. 675-683.
1121	
1122	PEMBERTON, S.G., AND MACEACHERN, J.A., 1997, The ichnological signature of storm deposits: the use
1123	of trace fossils in event stratigraphy, in Brett, C.E., and Baird, G.C., eds., Paleontological Events:
1124	Stratigraphic, Ecological and Evolutionary Implications: Columbia University Press, New York, p. 73-
1125	109.
1126	
1127	PEMBERTON, S.G., MACEACHERN, J.A., AND FREY, R.W., 1992, Trace fossil facies models: environmental
1128	and allostratigraphic significance, in Walker, R.G., and James, N.P., eds., Facies Models; Response to
1129	Sea-Level Change: Geological Association of Canada, p. 47-72.
1130	
1131	PHARAOH, T., 2018, The Anglo–Brabant Massif: persistent but enigmatic palaeo-relief at the heart of
1132	western Europe: Proceedings of the Geologists' Association, v. 129, p. 278-328.
1133	
1134	PLINT, A.G., 1988, Sharp-based shoreface sequences and "offshore bars" in the Cardium formation of
1135	Alberta: their relationship to relative changes in sea level, in Wilgus, C.K., Hastings, B.S., Kendall,
1136	C.G.St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C., eds., Sea-Level Changes - An
1137	Integrated Approach: SEPM, Special Publication 42, p. 357-370.
1138	
1139	PROUST, J.N., DECONINCK, J.F., GEYSSANT, J.R., HERBIN, J.P., AND VIDIER, J.P., 1995, Sequence analytical
1140	approach to the Upper Kimmeridgian-Lower Tithonian storm-dominated ramp deposits of the
1141	Boulonnais (Northern France). A landward time-equivalent to offshore marine source rocks:
1142	Geologische Rundschau, v. 84, p. 255-271.

1144	PROUST, J.N., MAHIEUX, G., AND TESSIER, B., 2001, Field and seismic images of sharp-based shoreface
1145	deposits: Implications for sequence stratigraphic analysis: Journal of Sedimentary Research, v. 71, p.
1146	944-957.
1147	
1148	PUGH, D.T., 1987, Tides, Surges and Mean Sea-Level: a Handbook for Engineers and Scientists:
1149	London, John Wiley and Sons, 472 p.
1150	
1151	REINECK, H.E., AND SINGH, I.B., 1973, Depositional Sedimentary Structures: Springer-Verlag, Berlin,
1152	439 p.
1153	
1154	Romans, B.W., Castelltort, S., Covault, J.A., Fildani, A., and Walsh, J.P., 2016, Environmental
1155	signal propagation in sedimentary systems across timescales: Earth-Science Reviews, v. 153, p. 7-29.
1156	
1157	ROSSI, V.M., PERILLO, M.M., STEEL, R.J., AND OLARIU, C., 2017, Quantifying mixed-process variability in
1158	shallow-marine depositional systems: What are sedimentary structures really telling us?: Journal of
1159	Sedimentary Research, v. 87, p. 1060-1074.
1160	
1161	SAVRDA, C.E., AND BOTTJER, D.J., 1989: Trace-fossil model for reconstructing oxygenation histories of
1162	ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation, Colorado:
1163	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 74, p. 49-74.
1164	
1165	SCHLIRF, M., 2003, Palaeoecologic significance of Late Jurassic trace fossils from the Boulonnais, N
1166	France: Acta Geologica Polonica, v. 53, p. 123-142.
1167	
1168	SELLWOOD, B.W. AND VALDES, P.J., 2008, Jurassic climates: Proceedings of the Geologists' Association,
1169	v. 119, p. 5-17.
1170	
1171	SIXSMITH, P.J., HAMPSON, G.J., GUPTA, S., JOHNSON, H.D., AND FOFANA, J.J., 2008, Facies architecture of
1172	a net transgressive sandstone reservoir analog: the Cretaceous Hosta Tongue, New Mexico: American
1173	Association of Petroleum Geologists, Bulletin, v., p. 513-547.
1174	
1175	Southard, J.B., Lambie, J.M., Federico, D.C., Pile, H.T., and Weidman, C.R., 1990, Experiments on
1176	bed configurations in fine sand under bidirectional purely oscillatory flow, and the origin of
1177	hummocky cross stratification: Journal of Sedimentary Petrology, v. 60, p. 1-17.

1178	
1179	STORMS, J.E.A., AND HAMPSON, G.J., 2005, Mechanisms for forming discontinuity surfaces within
1180	shoreface-shelf parasequences: sea level, sediment supply or wave regime?: Journal of Sedimentary
1181	Research, v. 75, p. 67-81.
1182	
1183	SUN, S.Q., 1992, A storm-dominated offshore sandstone interval from the Corallian Group (Upper
1184	Jurassic), Weald Basin, southern England. Marine and Petroleum Geology, v. 9, p. 274-286.
1185	
1186	SWIFT, D.J.P., 1968, Coastal erosion and transgressive stratigraphy: Journal of Geology, v. 76, p. 444-
1187	456.
1188	
1189	SZTANÒ, O., AND DE BOER, P.L., 1995, Basin dimensions and morphology as controls on amplification
1190	of tidal motions (the Early Miocene North Hungarian Bay): Sedimentology, v. 42, p. 665-682.
1191	
1192	SØMME, T.O., HOWELL, J.A., HAMPSON, G.J., AND STORMS, J.E.A., 2008, Architecture and genesis of
1193	intra-parasequence discontinuity surfaces in wave-dominated deltaic deposits: Upper Cretaceous
1194	Sunnyside Member, Blackhawk Formation, Book Cliffs, Utah, USA, in Hampson, G.J., Steel, R.J.,
1195	Burgess, P.M., and Dalrymple, R.W., eds., Recent Advances in Models of Siliciclastic Shallow-Marine
1196	Stratigraphy: SEPM, Special Publication 90, p. 421-441.
1197	
1198	TANNER, W.F., 1960, Shallow water ripple mark varieties: Journal of Sedimentary Petrology, v. 30, p.
1199	481-485.
1200	
1201	TAYLOR, A.M., AND GOLDRING, R., 1993, Description and analysis of bioturbation and ichnofabric:
1202	Geological Society of London, Journal, v. 150, p. 141-148.
1203	
1204	TAYLOR, S.P., AND SELLWOOD, B.W., 2002, The context of lowstand events in the Kimmeridgian (Late
1205	Jurassic) sequence stratigraphic evolution of the Wessex–Weald Basin, Southern England:
1206	Sedimentary Geology, v. 151, p. 89-106.
1207	
1208	TAYLOR, S.P., SELLWOOD, B.W., GALLOIS, R.W., AND CHAMBERS, M.H., 2001, A sequence stratigraphy of
1209	the Kimmeridgian and Bolonian stages (late Jurassic): Wessex–Weald Basin, southern England:
1210	Geological Society of London, Journal, v. 158, p. 179-192.

1212	TRAYKOVSKI, P., GEYER, W.R., IRISH, J.D., AND LYNCH, J.F., 2000, The role of wave-induced density-
1213	driven fluid mud flows for cross-shelf transport on the Eel River continental shelf: Continental Shelf
1214	Research, v. 20, p. 2113–2140.
1215	
1216	TRUEMAN, S., 2003, The Humbly Grove, Herriard, Storrington, Singleton, Stockbridge, Goodworth,
1217	Horndean, Palmers Wood, Bletchingley and Albury fields, Hampshire, Surrey and Sussex, UK
1218	onshore, in Gluyas, J.G., and Hitchens, H.M., eds., United Kingdom Oil and Gas Fields,
1219	Commemorative Volume: Geological Society of London, Memoir 20, p. 929-941.
1220	
1221	TYSON, R.V., WILSON, R.C.L., AND DOWNIE, C., 1979, A stratified water column environmental model
1222	for the type Kimmeridge Clay: Nature, v. 277, p. 377-380.
1223	
1224	VAKARELOV, B.K., AINSWORTH, R.B., AND MACEACHERN, J.A., 2012, Recognition of wave-dominated,
1225	tide-influenced shoreline systems in the rock record: variations from a microtidal shoreline model:
1226	Sedimentary Geology, v. 279, p. 23-41.
1227	
1228	VAUCHER, R., PITTET, B., HORMIÈRE, H., MARTIN, E.L. AND LEFEBVRE, B., 2017, A wave-dominated,
1229	tide-modulated model for the Lower Ordovician of the Anti-Atlas, Morocco: Sedimentology, v. 64, p.
1230	777-807.
1231	
1232	VAUCHER, R., PITTET, B., PASSOT, S., GRANDJEAN, P., HUMBERT, T., AND ALLEMAND, P., 2018, Bedforms
1233	in a tidally modulated ridge and runnel shoreface (Berck-Plage; North France): implications for the
1234	geological record: Société Géologique de France, Bulletin, v. 189 (5), 15 p.
1235	
1236	WIGNALL, P.B., 1989, Sedimentary dynamics of the Kimmeridge Clay: tempests and earthquakes:
1237	Geological Society of London, Journal, v. 146, p. 273-284.
1238	
1239	WIGNALL, P.B., 1990, Ostracod and foraminifera micropaleoecology and its bearing on
1240	biostratigraphy: a case study from the Kimmeridgian (Late Jurassic) of North West Europe: Palaios, v.
1241	5, p.219-226.
1242	
1243	WIGNALL, P.B., 1991, Test of the concepts of sequence stratigraphy in the Kimmeridgian (Late
1244	Jurassic) of England and northern France: Marine and Petroleum Geology, v. 8, p. 430-441.
1245	

1246	WIGNALL, P.B., AND RUFFELL, A.H., 1990, The influence of a sudden climatic change on marine
1247	deposition in the Kimmeridgian of northwest Europe: Geological Society of London, Journal, v. 147,
1248	p. 365-371.
1249	
1250	WIGNALL, P.B., SUTCLIFFE, O.E., CLEMSON, J., AND YOUNG, E., 1996, Unusual shoreface sedimentology
1251	in the Upper Jurassic of the Boulonnais, northern France: Journal of Sedimentary Research, v. 66, p.
1252	577-586.
1253	
1254	WILLIAMS, C.J., HESSELBO, S.P., JENKYNS, H.C. AND MORGANS-BELL, H.S., 2001, Quartz silt in mudrocks
1255	as a key to sequence stratigraphy (Kimmeridge Clay Formation, Late Jurassic, Wessex Basin, UK):
1256	Terra Nova, v. 13, p. 449-455.
1257	
1258	YOSHIDA, S., STEEL, R.J., AND DALRYMPLE, R.W., 2007, Changes in depositional processes—an
1259	ingredient in a new generation of sequence-stratigraphic models: Journal of Sedimentary Research, v.
1260	77, p. 447-460.
1261	
1262	ZIEGLER, P.A., 1989, Evolution of the North Atlantic—an overview, in Tankard, A.J., and Balkwill,
1263	H.R., eds., Extensional Tectonics and Stratigraphy of the North Atlantic Margins: American
1264	Association of Petroleum Geologists, Memoir 46, p. 111-129.
1265	
1266	

1267 FIGURE CAPTIONS

1268 1269 Figure 1 1270 A) Regional Late Jurassic paleogeographic setting of the transcontinental Laurasian Seaway of 1271 northwestern Europe, which connected the Tethys Ocean to the southeast with the incipient Atlantic 1272 Ocean to the northwest (after Ziegler 1989; Hesselbo et al. 2009). B) Late Jurassic paleogeography of 1273 the Weald Basin, southern UK, its extension in the Boulonnais region, northern France, and 1274 surrounding areas (after Bradshaw et al. 1992; Proust et al. 1995; Wignall et al. 1996). The study area 1275 (Fig. 2) is highlighted. C) Lithostratigraphy, biostratigraphy, and sequence stratigraphy of 1276 Kimmeridgian–Tithonian strata in the Weald Basin and Boulonnais region. Ammonite zonal 1277 boundaries are from Geyssant et al. (1993), Proust et al. (1995), and Braaksma et al. (2006) in 1278 Boulonnais, and from Taylor et al. (2001) and Taylor and Sellwood (2002) in the Weald Basin. 1279 Absolute ages for selected international stage boundaries and Boreal ammonite zonal boundaries are 1280 taken from Ogg and Hinnov (2012) (their Figure 26.8). The sequence stratigraphic framework for the 1281 Weald Basin of Taylor et al. (2001) and Taylor and Sellwood (2002) is shown. This framework is used 1282 as the basis for the nomenclature of sequence stratigraphic surfaces interpreted in this study, which 1283 are annotated on lithostratigraphic columns of the Weald Basin and the Boulonnais region.

1284

1285 Figure 2

- 1286 Map showing the surface geology of the Weald Basin, southern UK, and its extension in the
- 1287 Boulonnais region, northern France. Well and outcrop data used in this study are shown. Abbreviated
- 1288 names of key wells: A1, Ashour 1; As2, Ashdown 2; Ba1, Balcombe 1; Br1, Brightling 1; D1, Detention
- 1289 1; F1, Fairlight 1; GB1, Godley Bridge 1; H1, Holtye 1; IG1, Iden Green 1; LK1A, Lower Kingswood
- 1290 1A; PW1-5, Palmers Wood 1-5; R1, Rotherfield 1; TH1, Turners Hill 1; W1, Wallcrouch 1. Abbreviated
- 1291 names of outcrop locations: CdlC, Cap de la Crèche; CGN, Cap Gris Nez; CP, Cran Poulet; LP, Le
- 1292 Portel; PdNdC, Pointe du Nid de Corbet.
- 1293

1294 Figure 3

- 1295 Photograph of the Grès de Châtillon, Argiles de Châtillon, and lower and upper Grès de la Crèche
- 1296 (Fig. 1B) exposed directly south of Cap de la Crèche (Fig. 2). Upward-coarsening and upward-fining
- 1297 grain-size trends in the Grès de Châtillon and Grès de la Crèche are indicated respectively by
- 1298 upward-widening and upward-narrowing triangles.
- 1299
- 1300 Figure 4

- 1301 Measured sections illustrating facies associations and facies successions in Kimmeridgian–Tithonian
- 1302 sandstones at outcrops in the Boulonnais region: A) Grès de Châtillon at Cran Poulet, B) Grès de
- 1303 Châtillon at Pointe du Nid de Corbet, C) Grès de la Crèche at Cap Gris Nez, and D) Grès de la Crèche
- 1304 at Le Portel. Outcrops are located in Figure 2, and the stratigraphic position of the exposed
- 1305 sandstones is shown in Figures 1B and 3. The lower and upper Grès de la Crèche are labelled in
- 1306 Figure 4C and D, based on the seismic and outcrop mapping of Proust et al. (2001; their Figure 6).
- 1307 Petrographic sample locations (Fig. 14) are indicated with an asterisk.
- 1308
- 1309 Figure 5
- 1310 Measured sections illustrating facies associations and facies successions in cores through
- 1311 Kimmeridgian–Tithonian sandstones at A) Palmers Wood 3, B) Palmers Wood 2, C) Palmers Wood 5,
- 1312 D) Palmers Wood 4 (core 3), E) Holtye 1, F) Ashour 1, G) Rotherfield 1, H) Fairlight 1, and I) Iden
- 1313 Green 1. Cored wells are located in Figure 2, and the stratigraphic position of the cored intervals is
- 1314 shown in Figures 1B and 12. Petrographic sample locations (Fig. 14) are indicated with an asterisk.
- 1315 Key as for Figure 4.
- 1316

1317 Figure 6

- 1318 Photographs illustrating characteristics of Facies Association 1 in core. A) Pale-colored, nodular,
- 1319 calcareous claystones intercalated with dark-colored, silty claystones. Bioturbation comprises
- 1320 Chondrites (Ch) and Thalassinoides (Th) (732.1 m in Rotherfield 1; Fig. 5G). B) Bioturbated siltstone
- 1321 containing *Chondrites* (*Ch*), *Planolites* (*Pl*), and *Zoophycos* (*Z*) (730.3 m in Rotherfield 1; Fig. 5G). C)
- 1322 Bioturbated sandy siltstone containing Chondrites (Ch), Planolites (Pl), Palaeophycus (Pa), Teichichnus
- 1323 (*T*), and *Zoophycos* (*Z*) (1097.3 m in Palmers Wood 3; Fig. 5A). **D**) Bioturbated siltstone with
- 1324 disarticulated and fragmented, thin bivalve shells (472.7 m in Iden Green 1; Fig. 5I). Coin of 2 cm
- 1325 diameter for scale.
- 1326

1327 Figure 7

- 1328 Photographs illustrating characteristics of Facies Association 2 at outcrop and in core. A–C)
- 1329 Bioturbated sandstone beds and siltstone interbeds containing Chondrites (Ch), Planolites (Pl),
- 1330 Palaeophycus (Pa), Teichichnus (T), Zoophycos (Z), and Thalassinoides (Th) (954.5 m and 953.0 m in Holtye
- 1331 1; Fig. 5E and 727.3 m in Rotherfield 1; Fig. 5G). Coin of 2 cm diameter for scale. D) Bioturbated sandy
- 1332 siltstone interbed between sandstone beds. Bioturbation comprises Chondrites (Ch), Planolites (Pl),
- 1333 Palaeophycus (Pa), and Thalassinoides (Th) (1094.5 m in Palmers Wood 3; Fig. 5A). E) Charcoal fragment
- 1334 in bioturbated sandstone bed (8.0 m in Cap Gris Nez log; Fig. 4C). Finger for scale. F) Low-angle

cross-lamination in sandstone bed (30.4 m in Cap Gris Nez log; Fig. 4C). Pen for scale. G) Intensely
bioturbated sandstone beds containing prominent *Rhizocorallium* (*Rh*) and *Thalassinoides* (*Th*) (1.2 m in
Cran Poulet log; Fig. 4A).

1338

1339 Figure 8

1340 Photographs illustrating characteristics of Facies Association 3 at outcrop and in core. A) Mudclasts

- and *Ophiomorpha* (*O*) in cross-bedded sandstone (980.0 m in Holtye 1; Fig. 5E). **B**) Sparsely bioturbated
- 1342 mudstones in between sandstone cross-sets. Bioturbation comprises *Planolites (Pl)* and *Thalassinoides*
- 1343 (*Th*) (978 m in Holtye 1; Fig. 5E). C) Cross-bedded sandstone (13.0 m in Cap Gris Nez log; Fig. 3C). D)
- 1344 Charcoal lining toesets of sandstone cross-set (4.3 m in Pointe du Nid de Corbet log; Fig. 4B). E-G)
- 1345 Cross-bedded sandstone in which symmetrical ripples overprint trough-shaped erosion surfaces.
- 1346 Rippled surfaces contain mudclasts and *Ophiomorpha* (O), and are draped by discontinuous
- 1347 mudstones (labelled "m" in Part E) (0–3.0 m in Pointe du Nid de Corbet log; Fig. 4B). H) Symmetrical
- 1348 ladder ripples on bedding plane (0–3.0 m in Pointe du Nid de Corbet log; Fig. 4B). I) Pervasive
- 1349 mottled fabric in sandstone due to overprinting by roots; individual root traces are picked out where
- 1350 distinct (r) (18.8 m in Cap Gris Nez log; Fig. 4C). Coin of 2 cm diameter (Fig. 8A, B), finger (Fig. 8D),
- 1351 compass-clinometer (Fig. 8F), and pen (Fig. 8G, H) for scale.
- 1352

1353 Figure 9

- Photographs illustrating characteristics of Facies Association 4 at outcrop and in core. A) Bioclastic lag
 containing disarticulated and fragmented, thin bivalve shells (465.7 m in Iden Green 1; Fig. 5I). B)
 Bioclastic lag containing abraded, disarticulated, thick bivalve shells (1089.9 m in Palmers Wood 3;
 Fig. 5A). C, D) Bioclastic lag containing charcoal fragments and disarticulated, thin bivalve shells. The
 lag overlies a surface marked by *Thalassinoides* (*Th*) filled by coarse-grained, bioclastic sandstone that
 extend into underlying medium-grained sandstone (4.9 m in Pointe du Nid de Corbet log; Fig. 4B). E)
- 1360 Bioclastic lag containing extrabasinal pebbles of quartz and reworked sandstone, seen in bedding-
- 1361 plane view (2.0 m in Le Portel log; Fig. 4B). Coin of 2 cm diameter (Fig. 9A), finger (Fig. 9C), and pens
- 1362 (Fig. 9D, E) for scale.

1363

1364 Figure 10

1365 A–C) Uninterpreted sparker profiles (upper) and geoseismic interpretations (lower), and D)

- 1366 paleogeographic map (cf. Fig. 1B) locating sparker profiles in the area offshore of the present-day
- 1367 Boulonnais outcrops, northern France (Fig. 2). A) Depositional-dip-oriented profile Bdb93005 through
- 1368 the Grès de Châtillon (after Figure 3 in Mahieux et al. 1998; Figure 8 in Proust et al. 2001); **B**)

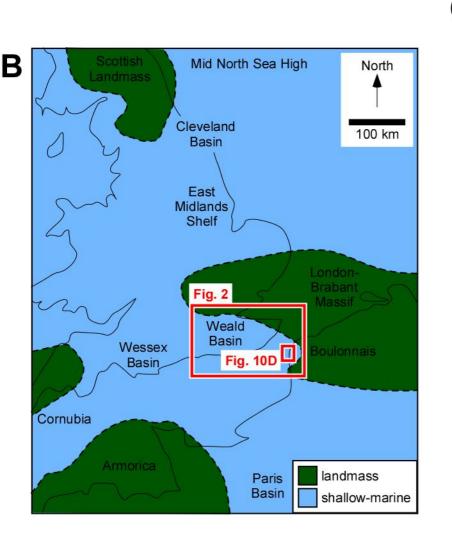
- depositional-dip-oriented part of profile Bdb93028 through the Grès de la Crèche (after Figure 9B in
- 1370 Proust et al. 2001); and C) depositional-strike-oriented profile Bdb95004 through the Grès de la Crèche
- 1371 (after Figure 11C in Braaksma et al. 2006). The lower and upper Grès de la Crèche are labelled in Parts
- B and C, based on the seismic and outcrop mapping of Proust et al. (2001; their Figure 6).
- 1373

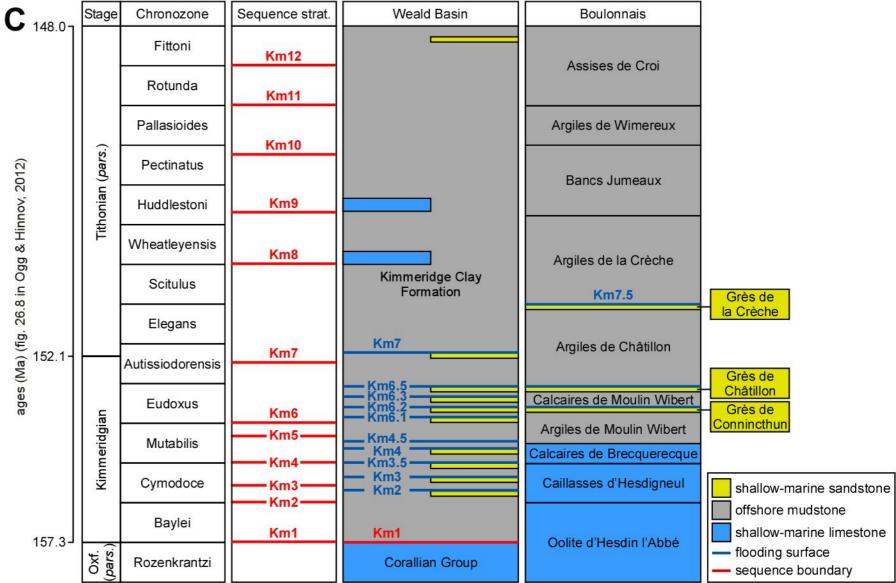
1374 Figure 11

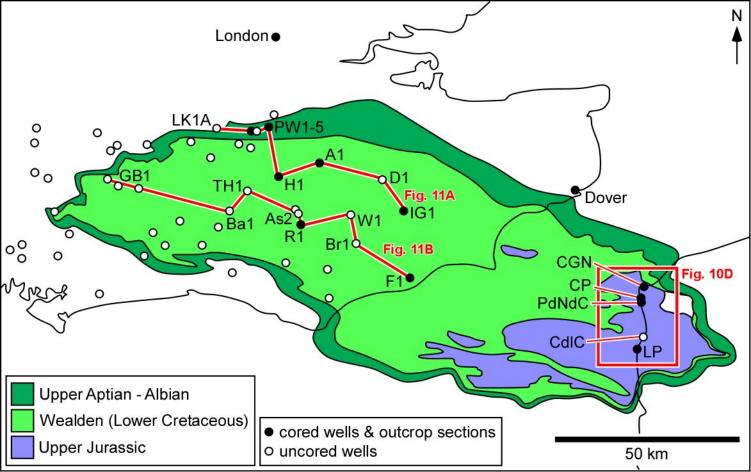
- A) Correlation panel between measured sections in the Boulonnais outcrops (modified from Proust etal. 2001). The outcrop belt is folded and faulted (Bonte et al. 1985; Mansy et al. 2007), and shallow,
- 1377 high-resolution seismic data (e.g., Fig. 10) has been used to aid correlation (Mahieux et al. 1998;
- 1378 Proust et al. 2001). The panel is oriented north–south. B) Northerly and C) southerly well correlation
- 1379 panels oriented west–east across the Weald Basin. Correlations are based on gamma-ray log patterns
- 1380 calibrated to lithology data from cores and cuttings, and are consistent with previous well
- 1381 correlations (Taylor et al. 2001; Taylor and Sellwood 2002). Regressive-transgressive tongues and
- 1382 their bounding flooding surfaces have been correlated, and the latter named according to the
- 1383 stratigraphic nomenclature of Taylor et al. (2001) and Taylor and Sellwood (2002). Correlation panels
- 1384 are located in Figure 2.
- 1385

1386 Figure 12

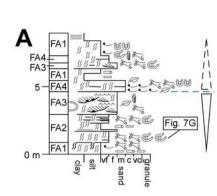
1387 Facies model for Kimmeridgian-Tithonian sandstones in the Weald Basin, southern UK and 1388 Boulonnais region, northern France, as the deposits of high-energy, tidally modulated, barred 1389 shorefaces developed under conditions of high fairweather-wave energy and low storm-wave energy 1390 (after Davidson-Arnott and Greenwood 1976, Hunter et al. 1979, Wignall et al. 1996, Dashtgard et al. 1391 2012). The model portrays A) shoreface progradation directed offshore and locally alongshore around 1392 a spit (cf. Nielsen et al. 1988; Fruergaard et al. 2020), under either B) an ascending regressive shoreline 1393 trajectory, with a discontinuous erosion surface formed at the base of the upper shoreface by bar 1394 migration (dashed red line), or C) a descending regressive shoreline trajectory, leading to enhanced 1395 erosion at the base of the upper shoreface (solid red line). Evidence of subaerial exposure is inferred 1396 to have been removed by subsequent transgressive erosion for both regressive trajectories. 1397

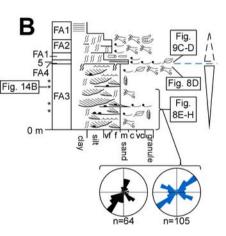

1398 Figure 13

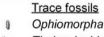

1399 Maps showing the distribution of regressive–transgressive sandstone tongues (Figs. 1, 11) at their

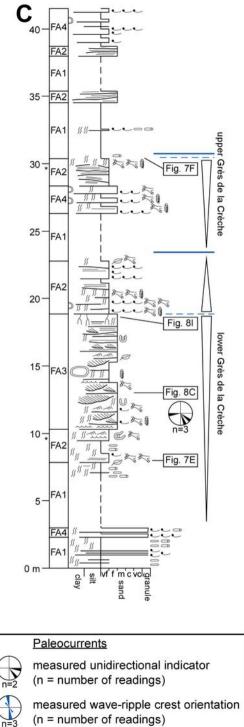

- 1400 maximum regressive extent, from oldest to youngest: A) beneath Km3 flooding surface, B) beneath
- 1401 Km6.1 flooding surface, C) beneath Km6.2 flooding surface (Grès de Connincthun), D) beneath Km6.3

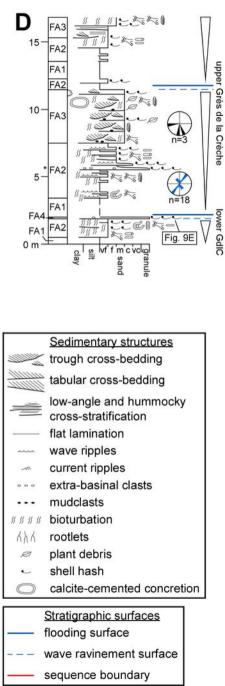
1402	flooding surface, E) beneath Km6.5 flooding surface (Grès de Châtillon), F) beneath Km7 flooding
1403	surface, and G) beneath Km7.5 flooding surface (Grès de la Crèche).
1404	
1405	Figure 14
1406	A) Ternary diagram showing the petrographic composition of Kimmeridgian–Tithonian sandstones
1407	from the subsurface Weald Basin and Boulonnais outcrops. Sandstones occur in the quartzose
1408	recycled-orogen field (cf. Dickinson et al. 1983). B–D) Thin-section photomicrographs of
1409	representative sandstone textures under plane-polarized light: B) medium-grained, cross-bedded
1410	sandstones of Facies Association 3 (3.2 m in Pointe du Nid de Corbet log; Fig. 4B); C) bioturbated silty
1411	sandstones of Facies Association 2 (606.2 m in Fairlight 1; Fig. 5H); and D) medium- to coarse-
1412	grained, cross-bedded sandstones of Facies Association 3 (973.0 m in Holtye 1; Fig. 5E).
1413	Monocrystalline quartz (m) is the most abundant detrital component of all samples, which also
1414	contain glauconite grains (gl), bioclasts (bi), grain-lining clays (cl), and poikilotopic calcite cement
1415	(po).
1416	
1417	Figure 15
1418	Summary of inferred controls on wave (red) and tide (blue) influence on late Jurassic shorelines along
1419	the northeastern margin of the Weald Basin. \mathbf{A}) Prevailing westerly and southwesterly wind
1420	directions associated with Hadley-cell circulation imply a wave fetch of 200–600 m, while tidal wave
1421	propagated into the Laurasian Seaway from the Tethys Ocean. B) Constriction of the tidal wave in
1422	narrow (220 km wide) straits at the southeastern entrance to the Weald Basin elevated bed shear
1423	stress due to tidal currents, while semidiurnal tides were amplified by resonance in the shallow (18-
1424	33 m), wide (150–200 km), open embayment of the Weald Basin.

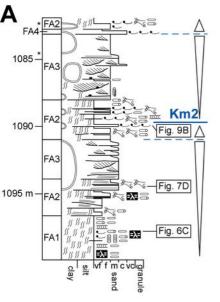


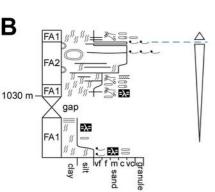


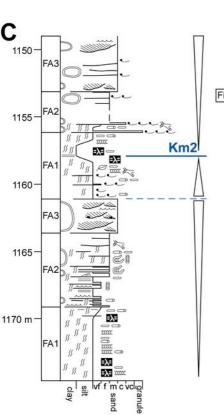


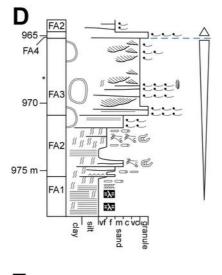


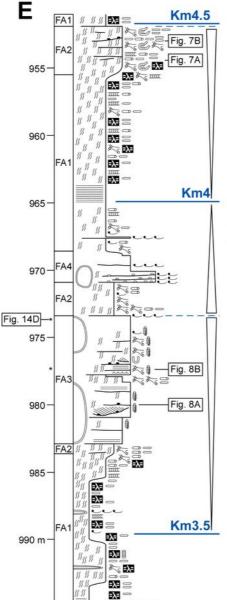


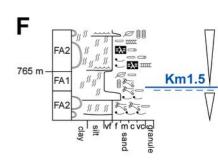


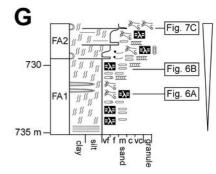


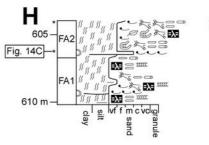

- ≫₅ Thalassinoides
- ⊌ Diplocrateron
- C Rhizocorallium
- Teichichnus
- zer Zoophycos
- Planolites
- Palaeophycus
- Chondrites

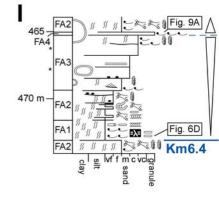


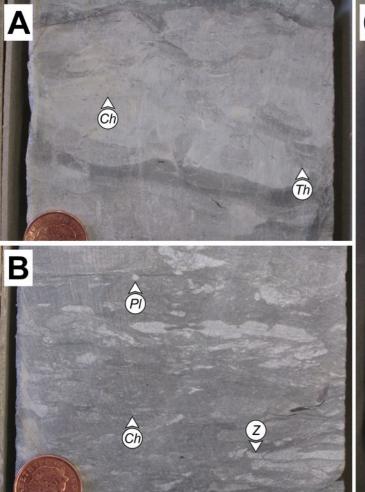


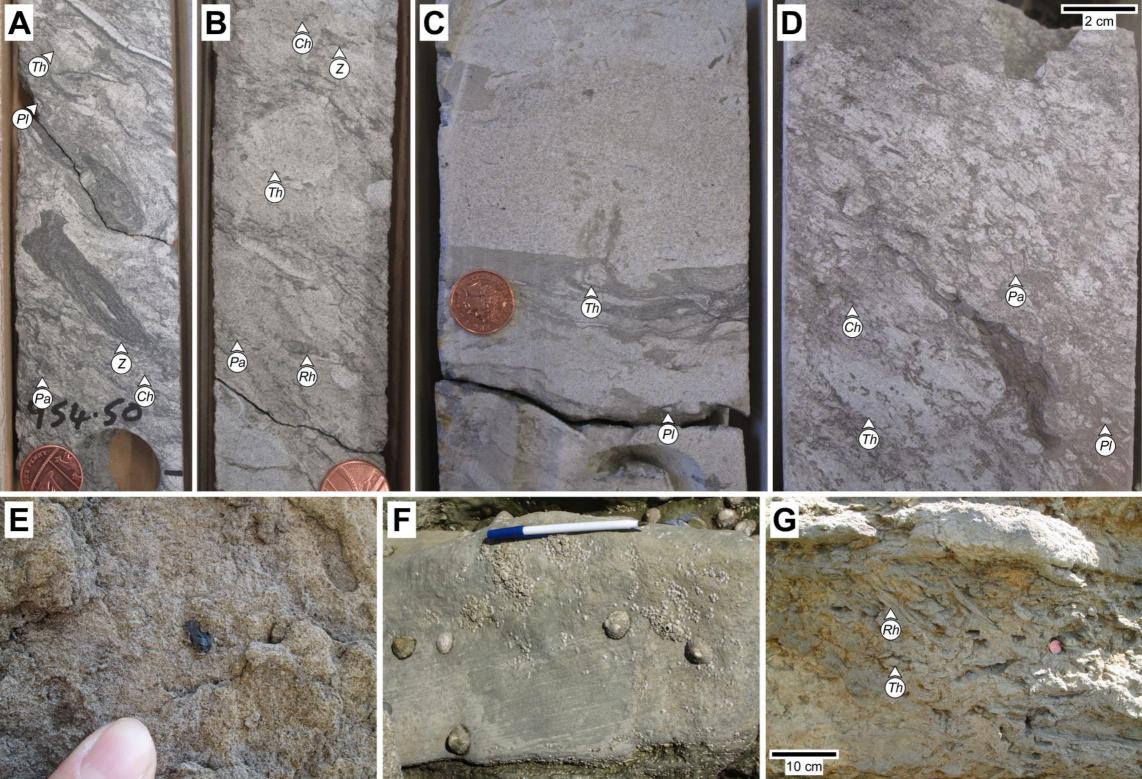


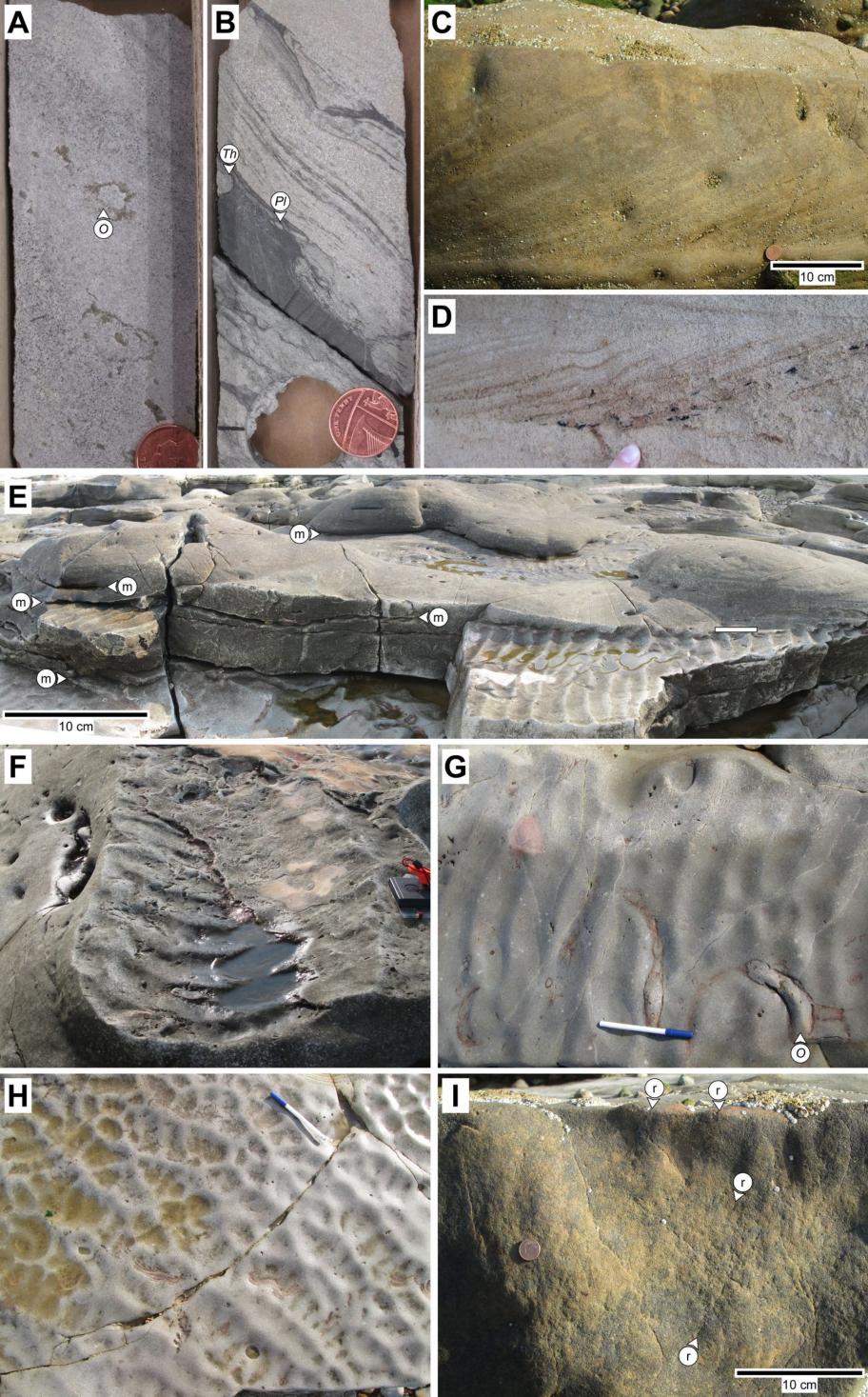


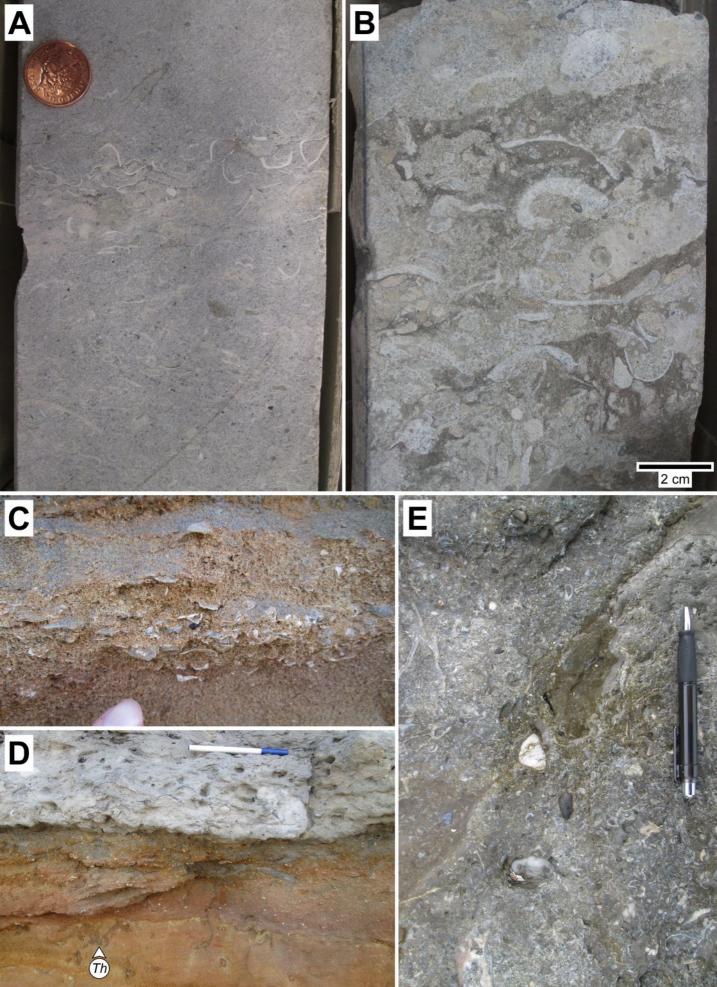


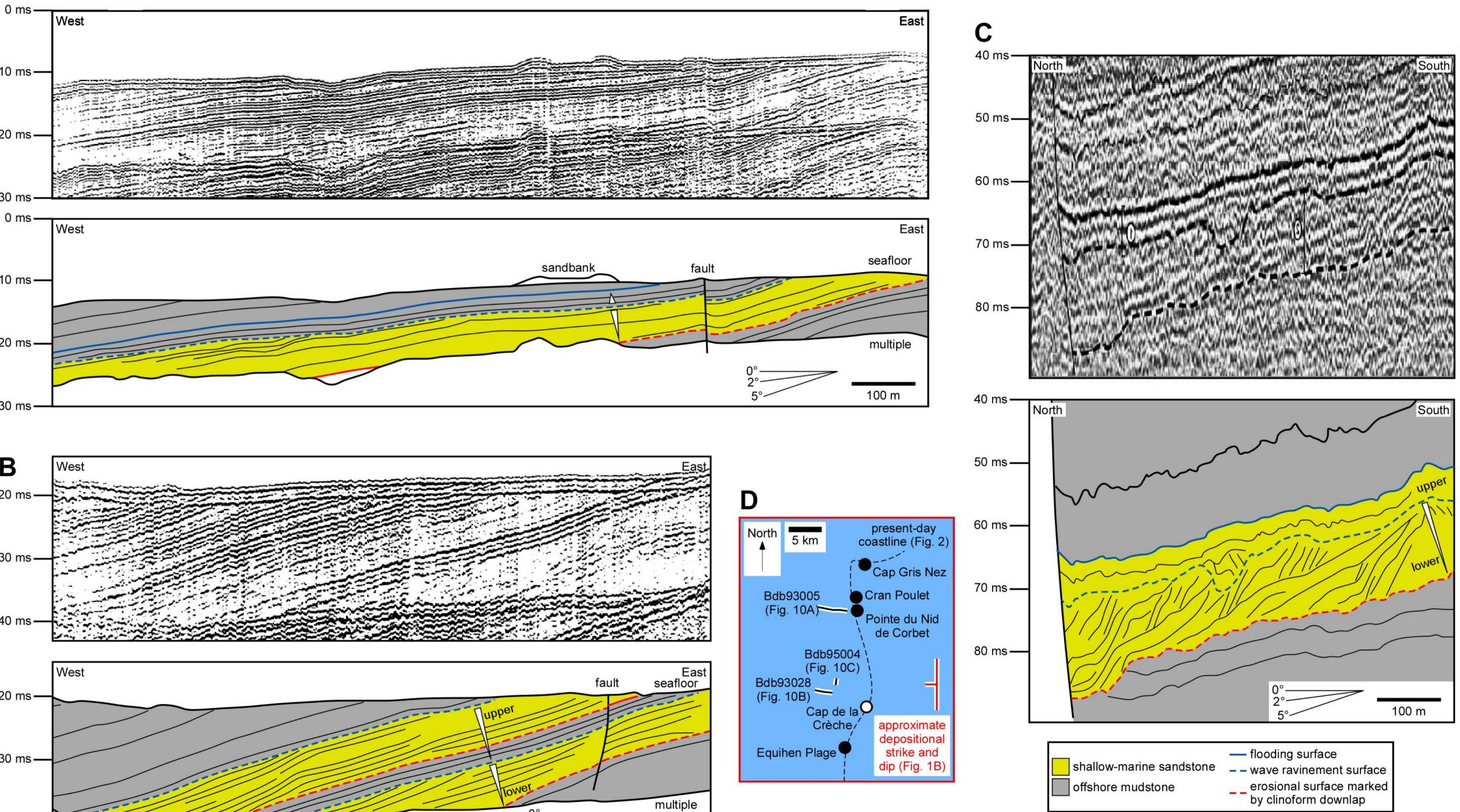

sit of fmcvclgranule

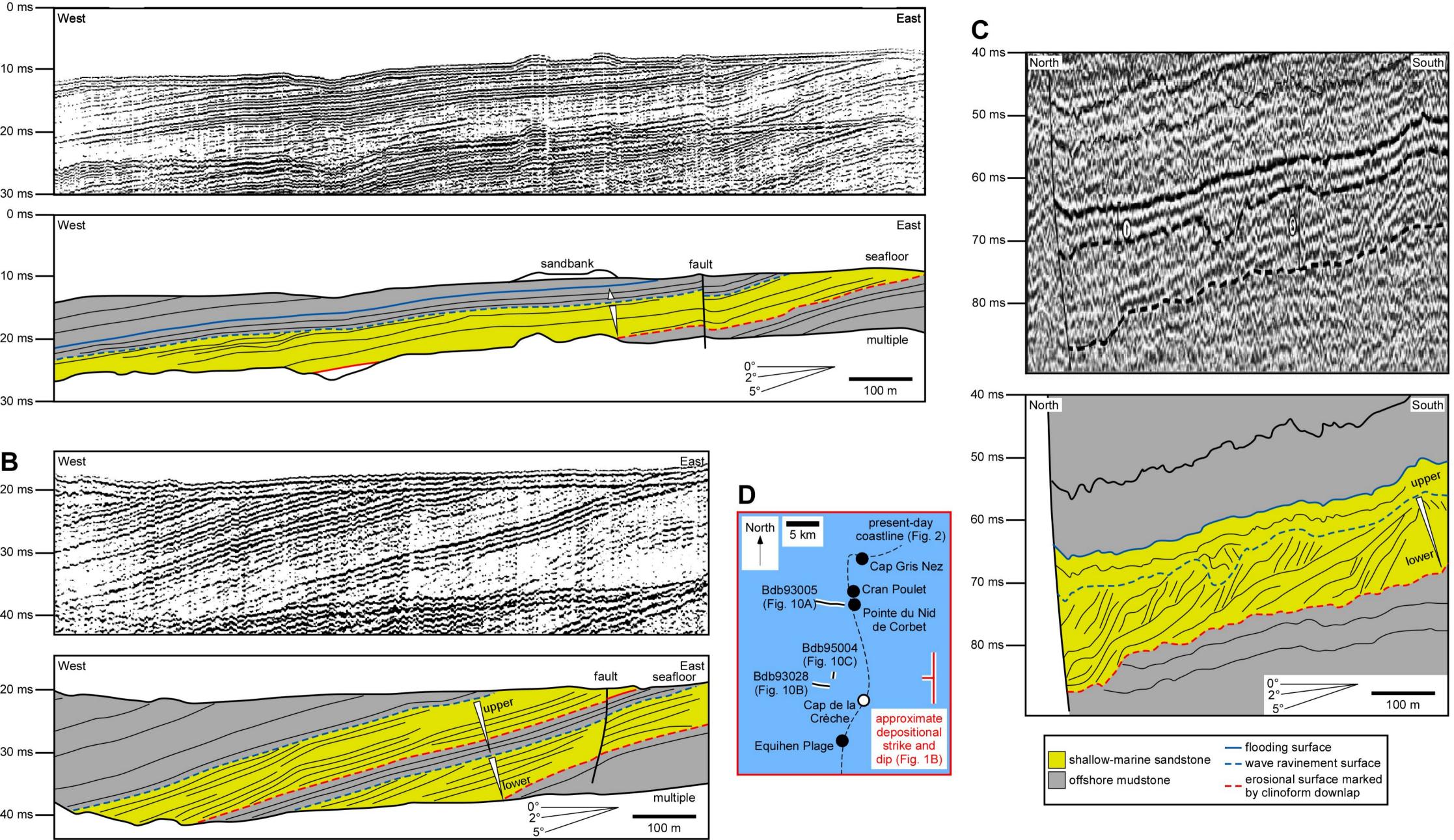

clay

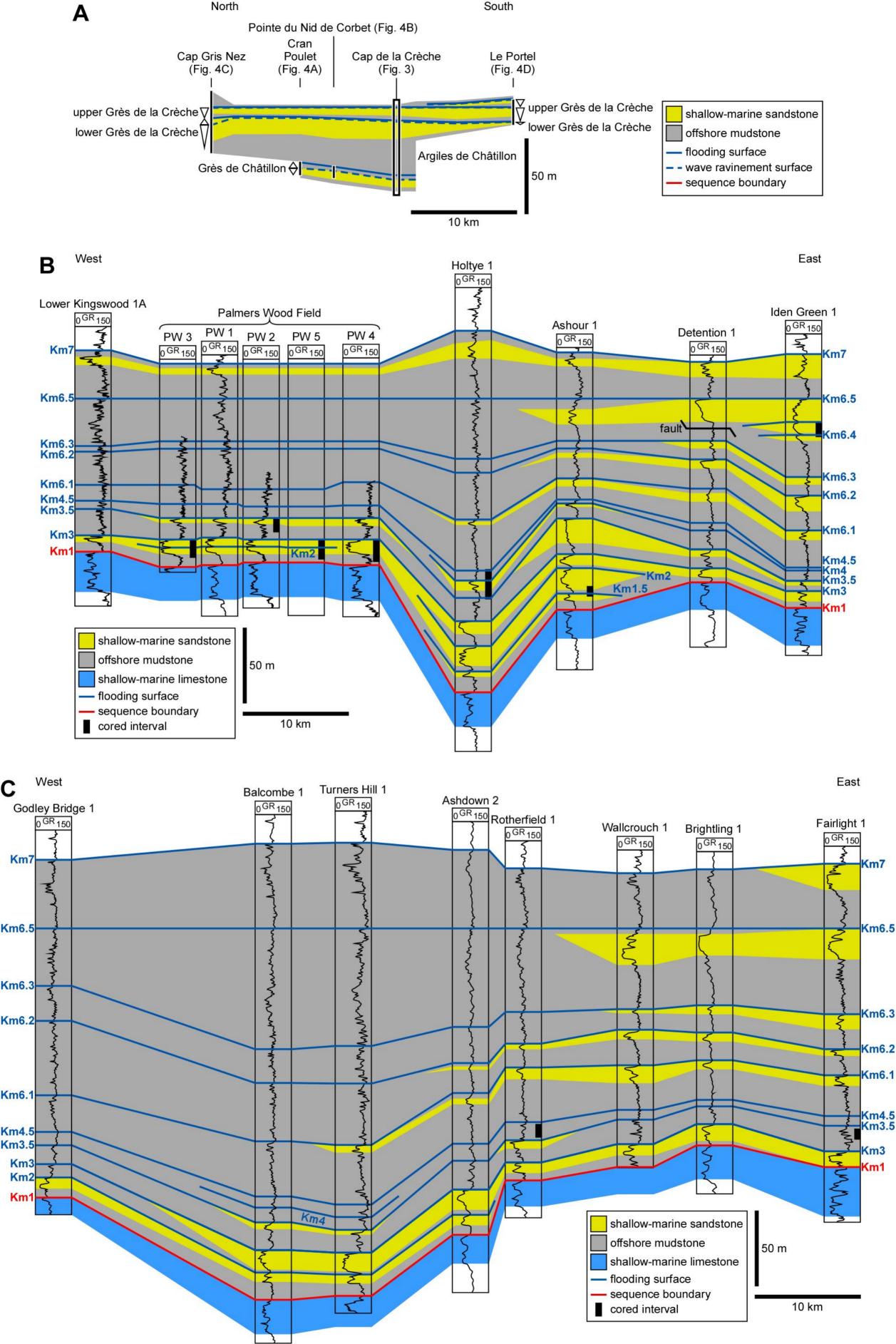


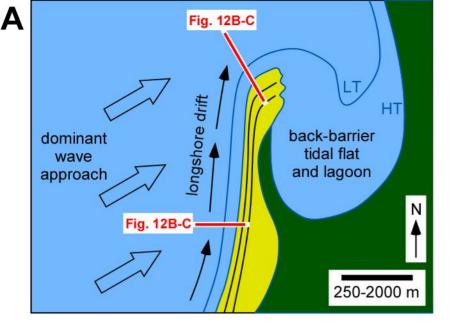




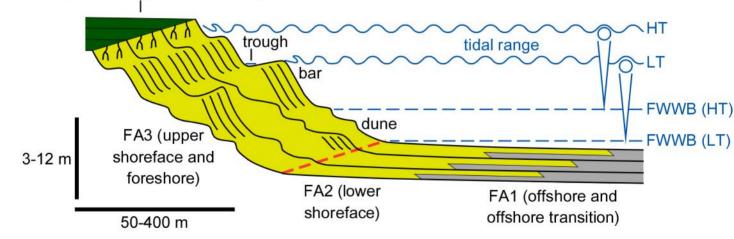


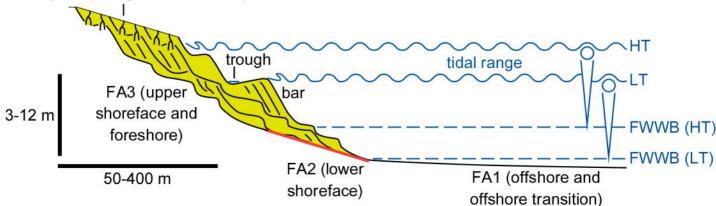


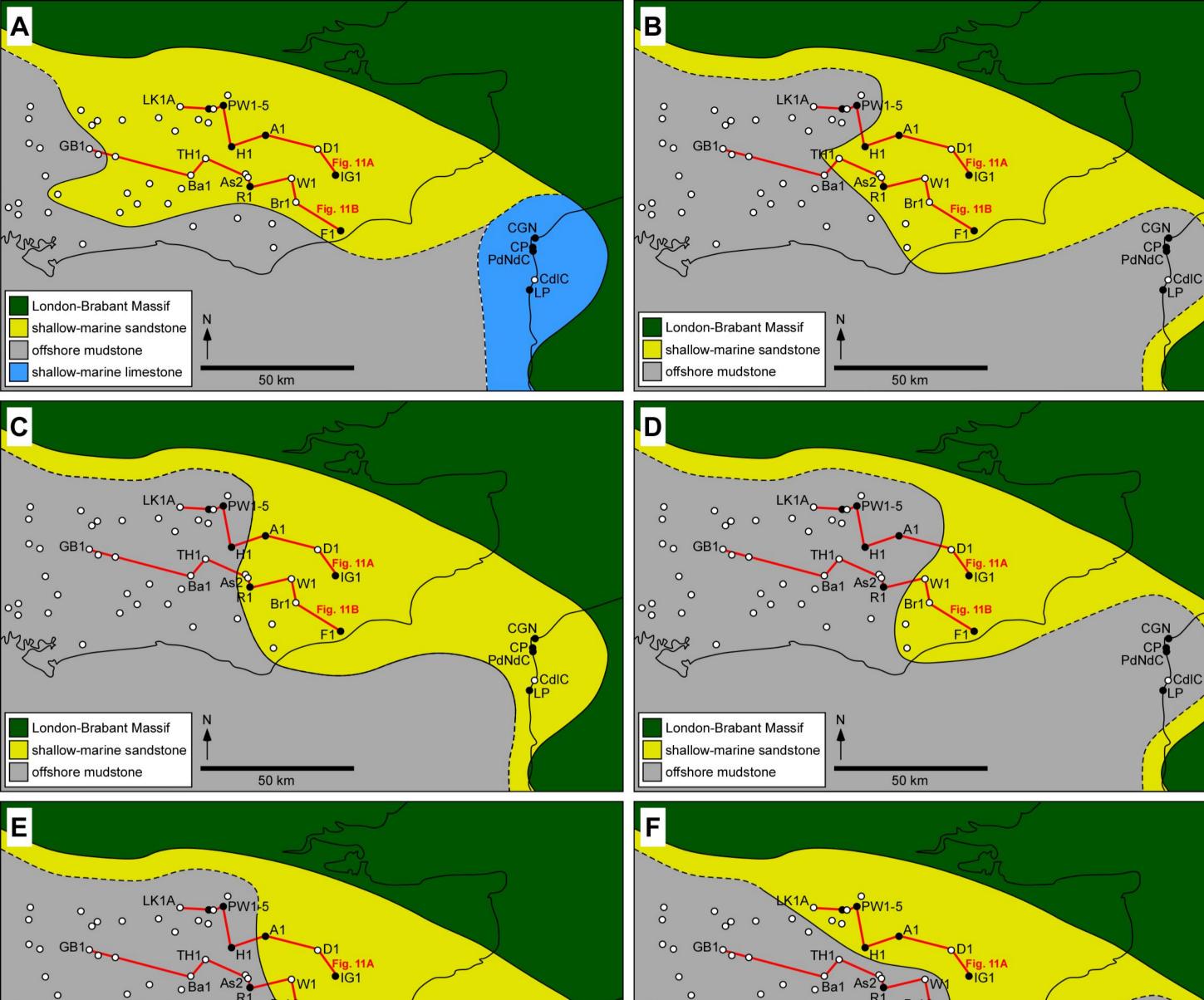


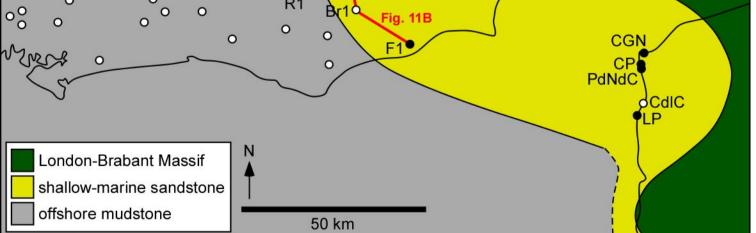


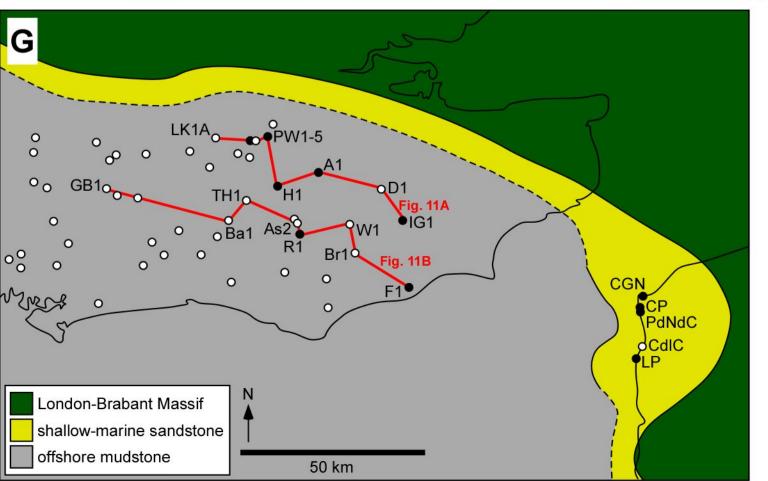
Α

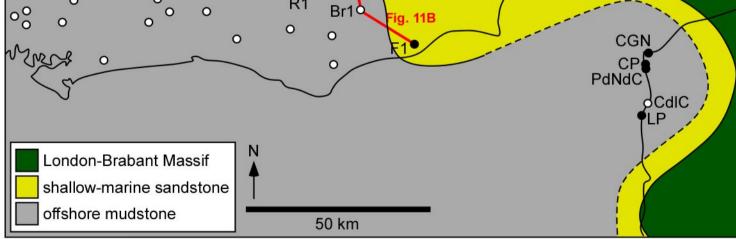







B coastal plain (removed by subsequent transgressive erosion)




C subaerial exposure surface (removed by subsequent transgressive erosion)

