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Abstract
The construction industry is moving toward digitalization, and technologies support various construction processes. In the
automated construction progress monitoring domain, several modern progress measurement techniques have been intro-
duced. However, a hesitant attitude has been observed toward its adoption. Researchers have highlighted lack of theoretical
understanding of effectual implementation is one of the significant reasons. This study aims to analyze general technological
parameters related to automated monitoring technologies and devise a theoretical-based conceptual framework explaining
the aspects affecting the adequate operation of automated monitoring. The study has been executed by following a systematic
inline process for the identification of effective parameters, which include a structured literature review, semi-structured
interviews, pilot survey, questionnaire survey, and structural equation modeling (SEM)-based mathematical model. A refined
conceptual framework has been devised with 21 effective parameters under five significant categories, i.e., “Target Object,”
“Technical,” “External Interference,” “Occlusions,” and “Sensing.” A knowledge framework has been established by adopting
the SEM technique, which is designed on the characteristics-based theme. This conceptual framework provides the theoret-
ical base for practitioners toward the conceptual understanding of automated monitoring processes related to technological
parameters that affect the outcomes. This study is unique as it focused on the general criteria or parameters that affect the
performance or outcomes of the digital monitoring process and is easily understandable by the user or operator.

Keywords Effective monitoring factors · Automated monitoring framework · Detection technologies · Exploratory factor
analysis · Confirmatory factor analysis
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1 Introduction

Progress monitoring is a procedure to review, track, and
orchestrate the performance of construction projects [1],
referring to comparing and inspecting the daily on-site
progress of work activities with the constructed plan and val-
idating the projected performance [2]. Progress monitoring
of the construction project is crucial and enables construc-
tion managers to make timely decisions based on vital inputs
[3]. In the success of construction projects, effective progress
measurement is a critical key parameter [4]. Effective moni-
toring strategies may turn a defunct project into a successful
completion [2]. Erudition of the actual progress state con-
tributes to critical decision making, as it allows the project
team to accomplish the tasks probably close to achieving the
targeted outcome, regardless of the deviated project schedule
[5]. Unreliable conventional methods and lack of confidence
in gathering relevant data lead to counterproductive decisions
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and have been highlighted as two main reasons for inad-
equate tracking of construction projects [6]. Unfortunately,
the construction sector is still influenced by time-consuming,
manual conventionalmonitoring approaches,which aremore
prone to error due to human involvement [7, 8]. Adopting
such traditional methodologies is inefficient, and 20–30% of
extra efforts are wasted by project teams, which may cost
the project up to 10% of the budgeted cost, as late defect
detections lead to rework [9]. Moreover, ineffective progress
monitoringmay provide unrealistic progress details and inef-
fective resource utilization due to project managers’ flawed
judgments [10]. This emphasizes the importance of select-
ing a righteous monitoring methodology for efficient data
collection and reduced risk. Modern digital monitoring tech-
nologies have overcome these aforementioned concerns [11].
Implementing advanced digitized data-acquisition-detection
technologies is improving the performance of monitoring
practices, especially for as-built construction projects [12].
Monitoring technologies are catered under imaging tech-
niques (videogrammetry, laser scanning, and photogramme-
try), geospatial techniques (geographic information system
(GIS) and global positioning system (GPS), ultra-wideband
(UWB), radio frequency identification (RFID), and barcode),
and virtual reality/augmented reality techniques (VR/AR)
[13]. This technological evolution in the construction sector
has led to remarkable innovations such as building informa-
tion modeling (BIM) [14]. Four-dimensional BIM models
are believed to be significant for automated monitoring and
analyzing the construction sequences [15]. Moreover, BIM
has been considered the main step to digital construction and
has been integrated with various construction processes such
as facility elevations, prefabricated construction projects, and
project management activities [16]. However, one of the fun-
damental functions of BIM is efficient progress control of
construction activities, which could not be achieved without
effective progress monitoring [17].

The construction industry is persuaded toward
the adoption of automated progress monitor-
ing/detection/recognition/tracking technologies; however,
hesitation remains among stakeholders due to technolog-
ical and operational costs because of the unavailability
of required knowledge and information regarding these
technologies [18]. Automated progress assessment using
digital technologies is an emerging area among researchers;
however, substantial research has been accomplished on
its practical applications in construction projects. Most of
the studies have identified the implementation parameters
and conditions focused on individual or specific monitoring
technology for its execution methodology frameworks inte-
grated with advanced techniques. Wang et al. [17] proposed
an advanced technological BIM integrated framework based
on computer-vision-based methods. The framework was

only focused on progress measurement of precast walls dur-
ing execution via data collected during surveillance video
recording. Harichandran et al. [19] machine-learning-based
hierarchical framework to enhance the operational accuracy
of the identification of an “automated construction system
(ACS)". In another study, Arif & Khan [20] introduced a
framework for real-time tracking of construction activities.
The framework was designed for small to medium-sized
construction firms and integrated the total station survey
data to BIM via cloud computing.

By contrast, few studies have been executed contem-
plating the overall general process of automated progress
measurement using monitoring technologies, in which crit-
ical parameters and limitations have been highlighted for
the effective implementation of procedures. Alizadehsalehi
& Yitmen [21] developed an automated monitoring model,
highlighting the field parameters focusing on BIM integrated
data-acquisition technologies for construction projects. The
model illustrated the managerial propositions by concen-
trating on the benefits, constraints, and procedures of BIM
integrated technologies. In the same way, Alizadehsalehi &
Yitmen [18] examined the effects of automated progress
assessment practices on the key project performance indica-
tors, i.e., time, quality, and cost. The study adopted struc-
tural equation modeling (SEM), and various construction
performance control processes were identified under tradi-
tional and digital progress monitoring environments. These
aforementioned studies have characterized the performance-
based multilevel parameters and significant paradigms of
the project, promoting the evolution of the automated con-
struction sector. Thus, Alaloul et al. [22], on the progress
monitoring of building construction projects via digitized
technologies, emphasized the lack of operational guidelines
and working frameworks. The study also accentuated the
varying working circumstances for various monitoring tech-
nologies andworking frameworks to be designed considering
the internet of things (IoT) environment.

The discussion above concludes that a need to investi-
gate the parameters and technical characteristics affecting
the performance of automated progress monitoring for better
understanding and confidence gain of construction industry
stakeholders does exist. The hesitation of the industry prac-
titioners has been felt toward technological solutions, which
may be due to the unavailability of critical procedural param-
eters causing a theoretical gap [23, 24]. The researchers have
indicated the absence of knowledge management standards,
specifications, and reference frameworks as themain reasons
for the reluctance of the construction industry stakehold-
ers toward adopting technologies [25, 26]. The construction
industry is moving at a swift pace toward digitalization
under the fourth industrial revolution (IR 4.0). To make the
dream of digitalized construction environment successful
and promote the IR 4.0 environment, motivating industry
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Fig. 1 Study methodology
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stakeholders to adopt intelligent systems for construction
processes by providing them clarity to overcome related con-
cerns is needed. This study aims to develop the scientific
model by covering theoretical-based technological attributes
of the automated monitoring method and developing knowl-
edge management standards for efficacious implementation
of automated detection technologies. The SEM technique has
been used to highlight efficacious parameters for automated
monitoring for each technology and determine a conceptual
framework to accomplish the study objective. This study has
been centered on the close-range monitoring technologies,
which could be continuous or single detection operations,
and can be asynchronous (post) or synchronous (real-time).

Researchers have generally defined procedures or opera-
tions falling under the distance of 100–200 m as close-range
processes [27, 28]. This study has established the refer-
encemodel considering close-rangemonitoring technologies
for efficacious implementation on construction sites during
progress assessment activities, which would provide a quick
operational understanding to construction industry profes-
sionals and stakeholders to gain confidence in applying smart
systems. This study’s strength is its capability to stimulate
this knowledge domain toward the development of the base
technological model to improve the performance of con-
struction automated progress monitoring technologies for
effectual outcomes.
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2 Methodology

The methodology is divided into various phases to achieve
this study objective, and each phase is carefully designed
for effective execution and outcomes. In the commencement
phase, the relevant literature was collected via structured
data searching to identify the parameters affecting the perfor-
mance of automated progress-monitoring technologies. The
qualitative and pilot surveys were performed with industry
professionals and academicians, leading to the development
of questionnaire-based survey for quantitative data collec-
tion. The collected data were analyzed via SEM analyses,
and conceptual framework was developed to employ auto-
mated progress monitoring technologies efficiently. Figure 1
illustrates the flowchart of the methodology adopted in this
study.

2.1 Structured Literature Collection

In the commencement phase, systematic data collection
was performed for previous studies on the construction
progress monitoring via digital technologies. The search
scope was limited to “close-range data acquisition-detection
techniques”. Data collection from past literature is vital, as
it leads to the selection of scientific studies and outcomes

that establish the conclusion for any review [29]. Therefore,
four databases, i.e., American Society of Civil Engineers
(ASCE), Science Direct, Scopus, Web of Science (WoS),
and a search engine, i.e., Google Scholar, were chosen for
literature collection for the time period from 2010 to 2021.
The literature search was performed using various combina-
tions of keywords designed for each database. The keywords
combination was set broadly for collecting maximum arti-
cles under automated construction progress monitoring and
filtered based on study scope. Table 1 shows a summary of
data collection outcomes and applied parameters.

A total of 1560 articles were collected using the designed
keyword combinations, and out of them, 205 articles were
found relevant under the defined scope, comprising journals
and conference articles covering the review and technical
studies. A detailed review was conducted on the collected
205 research articles to identify effective domains, technolo-
gies, and parameters adopted for the close-range monitoring
practices in the construction projects. Studies acknowledged
nine progress monitoring technologies falling under the cat-
egory of close range, i.e., videogrammetry, photogrammetry,
laser scanner, kinect sensors,UWB,RFID,AR, swarmnodes,
and infrared thermography [22]. Table 2 illustrates the out-
come summary of the evaluated characteristics/parameters
from the selected literature in reference to close-range digital

Table 1 Summary of data
collection outcomes and applied
parameters

Database/search engine Keywords combination Total collected
studies

Relevant
studies

WoS “TS � (automat* AND (construction
OR project OR progress) AND
(monitor* OR updat* OR track* OR
detect* OR recogn*))”

624 56

Scopus “TITLE-ABS-KEY (automat* AND
(construction OR project OR
progress) AND (monitor* OR updat*
OR track* OR detect* OR recogn*))”

472 66

ASCE "((automated OR automation) project
monitoring) AND (construction
project updating) AND (construction
progress tracking) AND
(construction progress detection)
AND (construction progress
recognition)”

150 30

Science direct “(automated OR automation) AND
(construction OR project OR
progress) AND (monitor OR updat
OR track OR detect)”

231 43

Google scholar “automated construction project
monitoring OR construction project
updating OR construction progress
tracking OR construction progress
detection OR construction progress
recognition”

83 10

Total 1560 205
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Table 2 Evaluated characteristics/parameters from the literature review

Categories Subcategories Parameters Sources

3D scanner Density point cloud Higher number of passes [30, 31,32, 33]

Presence of false-negative point clouds

Site occlusions Blockage by static elements [34, 35, 36, 37]

Blockage by dynamic objects

Specifications Accuracy varies with model [38, 39, 40, 36, 7]

Range of laser scanner

Scanning distance to the object

Angular resolution

Incident angle

Environment Weather condition [31, 41, 32, 42, 37]

Time of shooting

Reflection of laser from glass and surfaces

BIM Level of detail in the planned model (LOD 300,
LOD 400, LOD 500)

[22]

Digital imaging (camera, smartphone,
CCTV, drone, etc.)

Construction site
image

Higher number of images give good results [43, 44, 45, 46]

Higher resolution of image

Environment Time of shooting [47, 48, 49, 11, 50]

Conditions of shooting

Objects with same color and shape affect results

Extreme lightning condition is not
recommended

Site occlusions Blockage by static elements [51, 52, 10, 35]

Blockage by dynamic objects

BIM Level of detail in the planned model (LOD 300,
LOD 400, LOD 500)

[22]

Drone Rotational and angular movement affects
results

[53, 54, 55, 13, 56]

Drone distance from the object

High angular velocity affects results

Results are dependent on drones’ specifications

Tracker devices (sensing technology and
tags)

Reading device Accuracy is affected in several tags [57, 58, 59, 60, 61]

Detection range

RFID Results inaccuracy in the presence of metal and
liquids

AR/VR Technology Type of technology [62, 63, 64, 65]

BIM Level of detail in the planned model (LOD 300,
LOD 400, LOD 500)

[22]

Digital video (camera, smartphone, CCTV,
drone, etc.)

Video quality Number of frames enhances results [66, 67, 68, 69]

Occlusions Blockage by static elements [45, 70, 71, 72]

Blockage by dynamic objects

Drone Rotational and angular movement affects the
video quality

[73, 53, 74, 18]

Drone distance from the object
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Table 2 (continued)

Categories Subcategories Parameters Sources

High angular velocity will reduce accuracy

Features vary with model specifications

BIM Level of detail in the planned model (LOD 300,
LOD 400, LOD 500)

[73, 53, 74, 18]

Data capturing Data capture distance [66, 67, 68, 69]

technologies for effective implementation progress monitor-
ing process. Thus, five major data collection domains were
identified for automated progress monitoring, i.e., (1) digi-
tal site images via camera, smartphone, CCTV, or drone, (2)
3D scanner, (3) digital site video via camera, smartphone,
CCTV, or drone, (4) tracker devices, and (5) AR/VR, with
40 overall parameters.

2.2 Qualitative Analyses

A qualitative questionnaire was prepared based on the
collected information consisting of general queries on dig-
ital monitoring technologies and identified data collection
domains. The questionnaire comprised five sections, with the
first section covering general queries, and the remaining sec-
tions consisted of discussion on digital imaging techniques
(infrared thermography, and photogrammetry), 3D scanner
techniques (kinect sensor, and laser scanning), digital video
techniques (videogrammetry), tracking and sensing tech-
niques (RFID, UWB, and swarm nodes), and AR)/VR. For
semi-structured interviews, various studies indicate a varying
number for a minimum sample size. The sample size selec-
tion seems to be a simple procedure. By contrast, this number
is a base that supports the inquiry, as qualitative data col-
lection is goal-directed to obtain enriched information [75].
Kremeike et al. [76] recommended a sample size of 10–20
as suitable for interviews, which has also been endorsed by
Konstantina Vasileiou et al. [75]. Dworkin [77] highlighted
that the vast number of books, book chapters, and research
articles indicate minimum interviews with between five to 50
professionals/researchers. Therefore, keeping the minimum
suggested number in preview, the semi-structured interviews
were performed with 15 academicians and industry profes-
sionals. However, due to COVID-19 restrictions, meetings
were conducted online via conference interviews. Based on
the response of interviewees, the category VR/AR was elim-
inated from the derived framework. It was suggested that in
the construction sector, VR ismainly adopted for site training
and design platforms [13, 78]. By comparison, AR outcome
is more reliant on the hardware type of the equipment. In
the construction progress-monitoring processes, AR com-
prised superimposed models integrated with the outcomes

by imaging techniques. Hence, AR is a virtual phenomenon
in real-world scenarios [64]. The collected data was ana-
lyzed through qualitative data analysis software, i.e., NVivo.
Content analysis was adopted to characterize the substantial
words from the interviewees. NVivo codingwas used to iden-
tify the significant words from the semi-structured interview
scripts. Figures 2(a), (b), (c), (d), and (e) show the obtained
models from the content of the semi-structured interviews
extracted by NVivo.

Four primary categories and related subcategories were
established in the content analysis. The primary cate-
gories were “Tracking & Sensing”, “Digital Video”, “Dig-
ital Images”, and “3D Scanner”, where eight codes were
extracted for “3D Scanner”, ten for “Digital Images”, seven
for “Digital Video”, and five for “Tracking & Sensing”. A
total of 30 codes/parameters were extracted via content anal-
ysis using NVivo. The final framework was developed by
colligating the outcomes from the literature review and qual-
itative analysis, leading to a detailed questionnaire-based
survey for quantitative data collection. The effective param-
eters were then modified and refined to 49 parameters under
four prime categories, which comprise the outcomes from
literature and semi-structured interviews.

2.3 Quantitative Analyses

Based on the outcomes of the qualitative part, a 49-item-
based questionnaire was developed for which a pilot survey
was conducted. However, the literature establishes differing
guidelines concerning the pilot survey’s minimum sample
size, i.e., 10 [79], 12 [79], or 10% of the project sample
size [80]. Therefore, the pilot survey was performed with
20 academicians and construction industry experts. Detailed
responses were received, and the questionnaire was refined
and improved to 36 itemsunder four prime categories. Table 3
illustrates the complete framework with 49 parameters high-
lighting categories, subcategories, related parameters, and
performed actions (maintained or modified or deleted) based
on pilot survey responses for the improvement in the final
framework.
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Fig. 2 Content analysis (a): Extracted parameters for 3D scanner, (b): Extracted parameters for digital images, (c): Extracted parameters for tracking
& sensing, (d): Extracted parameters for digital video, (e): Themes grouping
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Table 3 Colligated framework (49 parameters)

Categories Subcategories Codes/parameters Remarks

3D scanner (kinect sensor, and laser
scanning)

Site condition Glass and reflecting surface Modified

Point cloud density Number of passes Deleted

Presence of false-negative Deleted

Occlusion Dynamic elements Maintained

Stationary elements Maintained

Laser scanner Accuracy Deleted

Angular resolution Deleted

Measurement range Maintained

Position of scanner Maintained

Specification of scanner Maintained

Environment Lightning condition Modified

Weather Maintained

Data capturing Number of scan points Maintained

Point cloud quality Maintained

BIM Level of detail (LOD 300, LOD 400,
LOD 500)

Deleted

Digital images (infrared thermography,
and photogrammetry)

Digital camera/CCTV/drone/smart
phone

Calibration of camera Maintained

Number of images Maintained

Image resolution Maintained

Specification of camera Maintained

Distance of camera to object Maintained

Capturing angle Maintained

Human intervention Maintained

Environment Air quality Maintained

Similarity of object Deleted

Shooting time Deleted

Weather Maintained

Lightning condition (photogrammetry) Modified

Occlusion Stationary elements Maintained

Dynamic elements Maintained

BIM Level of detail (LOD 300, LOD 400,
LOD 500)

Deleted

Digital video (videogrammetry) Data capturing Rotational and angular movement
(drone)

Deleted

Data capturing distance Deleted

Video quality Number of frames (frame per second) Deleted

Occlusion Dynamic elements Deleted

Stationary elements Maintained

Environment Weather Maintained

Lightning condition Modified

Smart phone/video camera/drone Specification Maintained

Video quality Maintained
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Table 3 (continued)

Categories Subcategories Codes/parameters Remarks

Shooting location Maintained

Flight alignment (drone) Modified

Human intervention Maintained

BIM Level of detail (LOD 300, LOD 400,
LOD 500)

Deleted

Tracking & sensing (RFID/UWB/swarm
nodes)

Data capturing Presence of several tags Maintained

Misclassification of material Modified

Influence of signal Maintained

Distance of device to object Maintained

Site condition Presence of other material Modified

Congested site Maintained

The questionnaire was finalized on 36 parameters. To
investigate the opinion of the industry on efficacious param-
eters of close-range automated progress detection technolo-
gies for construction projects, the Likert scale methodology
was adopted. The Likert scale was set to the scale of 1–5,
where 1 � “Strongly Disagree”, 2 � “Disagree”, 3 �
“Neutral”, 4 � “Agree”, and 5 � “Strongly Agree”. The
questionnaire distribution was made following two varying
strategies. To collect the responses, the questionnaires were
forwarded to Malaysian construction industry professionals
and contractor companies. As per the record of the “Con-
struction Industry Development Board (CIDB) Malaysia”,
the total number of registered contractors is 95,997 [81]. In
academia, the opinion was collected from around the globe,
i.e., the questionnaires were emailed to academicians in the
United States of America (USA), Malaysia, India, Hong
Kong, theKingdom of Saudi Arabia (KSA), Pakistan, United
Kingdom (UK), and Australia. The sample size for this study
was calculated by using Israel [82], with 99 as the minimum
number of respondents. However, the distribution was made
to more than 700 construction industry and academia-based
individuals.

Based on the collected responses, the SEM was per-
formed. SEM was introduced in the 1980s, and because it
is considered a versatile multivariate statistical technique, a
quasi-routine, for testing hypotheses about relations among
latent variables and observed [83]. SEM comprises two
models, the first model, which is known as the measure-
ment model, performs confirmatory factor analysis (CFA),
which correlates the constructs by measuring variables to
latent factors by testing their validity and reliability as per
defined standards to refine the model. The second model,
which is known as a structural model, evaluates the relation-
ships between the latent factors by determining variances
(explained and unexplained), testing the hypotheses, and
refining the model accordingly. It replaces the constructs’

correlation to the anticipated causal relations in the concep-
tual model and tests the hypothesis by modifying the model
until it satisfies the criteria [84]. SEMcan be performed either
on the theory-based conceptual frameworks or frameworks
developed based on exploratory factor analysis (EFA). EFA
investigates the appropriateness of the proposed combination
of variables or attributes and explores the probable underly-
ing factor structure of a group of observed variables without
imposing a pre-determined structure on the outcome [85]. A
conceptual framework was developed in this study for the
evaluation by SEM, which was designed by performing EFA
on the identified automatedmonitoringparameters to develop
a technical characteristics-based framework.

3 Results and Analyses

3.1 Data Collection and Reliability Test

To collect the data from the construction industry profession-
als and academia,more than 700 questionnaireswere sent via
email, and 253 responses were received. Figures 3(a) and (b)
represent the demographic profile summary of respondents.

It can be observed that 78% (197) of the responses were
collected from the professionals and practitioners of the con-
struction industry, wherein 22% (56) of the responses were
from academia. Good feedback was collected from experi-
enced individuals, as 15% (38) of respondents were above
ten years of experience, and 44% (111) of the respondents
had work experience of more than five years. Only 22% (55)
of respondents were with experience of less than one year on
the job.

The collected responses were then tested to analyze the
internal consistency of the data by using Cronbach’s alpha.
The Cronbach’s alpha is “an evaluation of internal reliabil-
ity or consistency between a number of objects, ratings, or
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(a)  Percentage distribution against job title (b) Distribution against work experience
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Fig. 3 Demographic profile summary (a): Percentage distribution against job title, (b): Distribution against work experience

Table 4 Cronbach’s alpha summary

Categories Subcategories Number of
parameters

Cronbach’s
alpha

Tracking &
sensing

2 6 0.88

Digital
images

3 12 0.93

Digital video 3 8 0.91

3D scanner 5 10 0.92

Overall
cronbach’s
alpha

13 36 0.92

measurements”. It is a simple statistical tool to calculate
and check the credibility of collected feedback or survey
responses [86]. In this case, 253 responses data were tested
by applying Cronbach’s alpha to each category separately
and the whole collected data. The attained Cronbach’s alpha
values (α) of each section, except for “Tracking & Sensing”
(0.88), were above 0.90. As a rule of thumb, α ≥ 0.9 is
deemed excellent, while α ≥ 0.7 is believed reliable. Most
researchers have considered α ≤ 0.55 as unsatisfactory [87,
88]. Table 4 illustrates the summary of the reliability test for
253 response data.

3.2 Development of Conceptual Framework

SEM is a popular statistical analysis technique in quan-
titative social research. SEM success can be attributed to
the simplicity of the underlying scientific model, as well
as the ability to solve critical substantive problems. SEM
has three significant advantages over traditional multivariate

techniques: (1) precise assessment of measurement error; (2)
testing of model till structure can be enacted and assessed
as to fit of the data; and (3) estimation of (unobserved)
latent variables with observed variables. Most multivariate
methods inadvertently disregard measurement errors by not
directly predicting them, while SEM models approximate
these error variance parameters for both dependent and inde-
pendent variables [89]. SEM evaluation has been performed
in this study to achieve a better refined automatedmonitoring
framework. The developed framework explains the general
parameters for effective implementation of the digital moni-
toring process for construction projects.

The conceptual framework has been designed by per-
forming EFA on the refined 36 parameters to develop
a characteristics-based framework for effective automated
monitoring implementation. This exercise aimed to sort tech-
nological parameters based on their characteristics, affecting
the implementation of automated monitoring. The EFA is
known as a data reduction technique and helps in identify-
ing the framework from the collected data. In this study, the
principal axis factor methodology and the varimax rotation
method have been adopted, identifying automated monitor-
ing effective parameters and better interpretability of factor
loadings. In reference to the sample size, the items with a
factor loading of less than 0.40 were screened out [90] in
the EFA as weak indicators of the construct. Table 5 shows
a summary of the extracted EFA model.

In the EFA, few parameters, i.e., P8 (air quality), P9
(weather), V2 (weather), L1 (glass and reflecting surface),
and L2 (occlusion-stationary element) were excluded either
due to factor loadings of less than 0.4 or due to cross-
loading, and this led to the refined conceptual framework.
The EFA concluded all parameters under five constructs,
i.e., “Technical”, “Target Object”, “Occlusions”, “Sensing”,
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Table 5 Extracted parameters from EFA

Factors ID Technical Target object External interference Sensing Occlusions

Number of images captured in
the site

P2 0.850 – – – –

Image resolution P3 0.794 – – – –

Calibration (smart
phone/CCTV/drone/digital
camera)

P1 0.786 – – – –

Specification (CCTV/smart
phone/drone/digital camera)

P4 0.705 – – – –

Capturing angle P6 0.681 – – – –

Distance of device to object P5 0.656 – – – –

Human intervention P7 0.550 – – – –

Lightning condition P10 0.539 – – – –

Weather L8 – 0.753 – – –

Specification (laser scanner) L6 – 0.735 – – –

Position of scanner L5 – 0.732 – – –

Number of scan points L9 – 0.724 – – –

Point cloud density L10 – 0.707 – – –

Measurement range L4 – 0.613 – – –

Lightning condition L7 – 0.586 – – –

Shooting location V6 – – 0.830 – –

Video quality V5 – – 0.776 – –

Human intervention V7 – – 0.739 – –

Specification (video
camera/drone/smart phone)

V4 – – 0.735 – –

Lightning condition V3 – – 0.699 – –

Flight alignment (drone) V8 – – 0.694 – –

Influence of signal T5 – – – 0.755 –

Misclassification of material T4 – – – 0.753 –

Presence of several
tags/barcodes

T3 – – – 0.728 –

Congested site T2 – – – 0.715 –

Presence of other material T1 – – – 0.621 –

Distance of reader to object T6 – – – 0.612 –

Occlusion–dynamic element
(photogrammetry)

P12 – – – – 0.819

Occlusion–dynamic element
(laser scanning)

L3 – – – – 0.762

Occlusion–stationary element
(videogrammetry)

V1 – – – – 0.751

Occlusion–stationary element
(photogrammetry)

P11 – – – – 0.736

and “External Interference”. Based on this collected data, the
measurement model was developed to perform CFA to eval-
uate the reliability and validity of the conceptual framework.
The observed variables with loadings of less than 0.6 were
deleted [91] in CFA. Figure 4 illustrates the final fit of the
measurement model for technical characteristics/parameters
for the efficacious application of automated monitoring.

The final refined parameters/variables have been catego-
rized under five constructs, i.e., “TargetObject”, “Technical”,
“Sensing”, “Occlusions”, and “External Interference”. CFA
was performed on the finalized framework, while P3 (image
resolution), P7 (human intervention), P10 (lightning condi-
tion), V3 (lightning condition), and T6 (distance of reader to
object) were deleted either due to containing factor loadings
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Fig. 4 Measurement model based
on effective parameters for
automated monitoring

Table 6 Reliability and validity of the parameters

Constructs Cronbach’s
Alpha (α >
0.6)

CR (CR ≥
0.6)

AVE (AVE ≥
0.5)

Sensing Technical Target
Object

External
Interference

Occlusions

Sensing 0.85 0.855 0.543 0.737

Technical 0.90 0.899 0.642 0.591 0.801

Target Object 0.90 0.914 0.640 0.599 0.678 0.800

External
Interference

0.93 0.931 0.729 0.583 0.627 0.770 0.854

Occlusions 0.80 0.888 0.666 0.544 0.575 0.629 0.473 0.816

123



Arabian Journal for Science and Engineering (2023) 48:4731–4749 4743

Table 7 GOF indices for measurement model

Index Acceptance criteria Attained values

Chisq p > 0.05, p > 0.01 586.566

RMSEA < 0.08 0.07

GFI > 0.90, > 0.80 0.81

CFI > 0.90 0.91

TLI > 0.90 0.91

Chisq/df < 2,3 2.2

of less than 0.6 or for variables showing large covariance
values. In the model, for the improvement, error correlations
have been established for the variables P5-P6 (distance of
device to object-capturing angle), and L9-L10 (number of
scan points-point cloud density); however, correlated vari-
ables are unique parameters and have no similarity. Table 6
shows the reliability and validity tests for the measurement
model.

The goodness of fit (GOF) model fit is shown in Table 7.
Based on the model fit of the measurement model and struc-
tural model (SM) was developed, as shown in Fig. 5, which
was assessed for model fit by the following GOF indices, as
shown in Table 8.

The attained SM comprised five primary constructs with
25 general parameters. Five parameters have been refined
under “Technical” construct, six under “Target Object”, five
under “Sensing”, four under “Occlusions”, and five under
“External Interference”. GOF indices have been assessed for
both CFA and SM, which validates the model fit.

4 Discussion

This study designed the reference model for automated
construction progress monitoring via close-range data acqui-
sition and detection technologies by following a strategy
based on a structured literature review, semi-structured
interviews, and questionnaire surveys, which led to the
development of knowledge-based standards. Furthermore,
the critical parameters for effective implementation of the
automated construction monitoring process have been iden-
tified and refined by executing SEM. This study’s theme
was to design a conceptual framework highlighting the gen-
eral technical parameters supporting progress monitoring
operations. The conceptual framework has been attained by
analyzing and refining 25 parameters of SM under five con-
structs to 21 general characteristics under five constructs, as
few parameters were conceptually common but were varied
based on technologies. Figure 6 represents the framework
highlighting general parameters for the efficacious appli-
cation of the automated construction progress monitoring

process via close-range digital technologies. The framework
has been generalized for its parameters, irrespective of tech-
nology. Repeated parameters under the same construct or
other construct have been merged or removed to make it
more practicable.

Five parameters have been catered under the “Technical”
construct, and this group basically defines the overall tech-
nical aspects related to data capturing gadgets, which may
affect the monitoring outcome. A good calibrated and high-
specification device may capture enriched data. Likewise,
the quality of data can be compromised depending on the
distance of the device from the targeted object, its captur-
ing angle, and fewer images/scans/passes. Five parameters
have been refined under “Sensing”, highlighting the aspects
that may affect the results. The sensing and tracking gad-
gets’ outcomesmay deviate in the presence of othermaterials
(metals and liquids), congested site conditions, and the pres-
ence of several tags, which may lead to the misclassification
of materials. The detection accuracy of tracking and sensing
devices also depends on the signal’s strength. The conceptual
framework defines only two parameters under “Occlusions”,
as irrespective of any monitoring technology, the obstruc-
tions have been observed either due to stationary or moving
objects. However, the construct “Target Object” reflects five
parameters, which define general characteristics linked with
the monitoring operation and outcome of the desired struc-
ture. The range of the device to the object, its position, and
lighting directly affects the outcome of data capturing tech-
nologies. It affects the quality of attained data, such as data
density. Lighting has no impact on “Tracking & Sensing”
technologies; it is more related to imaging, video, and scan-
ning devices. However, rapid light fluctuation may interfere
with sensing tags. The last construct, “External Interference,”
highlights the parameters such as the location of the activity,
flight alignment in the case of drones, and human interven-
tion during digital monitoring, which may adversely affect
the quality of data collection.

The structured literature review revealed that not many
studies have been primely focused on identifying techno-
logical parameters in the automated monitoring domain.
However, executed studies have focused on the effect of auto-
mated monitoring technologies on construction processes
considering key performance indicators or BIM follow-
ing SEM, such as studies by Alizadehsalehi & Yitmen
[18] (already discussed in the Introduction section), and
Alizadehsalehi & Yitmen [92], which proposed SEM-based
model for BIM-based field data capturing technologies.
However, the latter study only focuses on the effects of auto-
mated project progress monitoring via field data capturing
technologies only considering BIM workflows. Many stud-
ies have explained the relationship between technologies
against operational variables. Kopsida et al. [2] compared
random construction progress monitoring technologies and
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Fig. 5 Structural model based on effective parameters for automated monitoring

assessed them in terms of general parameters such as
accuracy, required preparation, level of automation, time effi-
ciency, utility, training requirements, mobility, and cost. Pour
Rahimian et al. [13] compared imaging techniques, geospa-
tial techniques, and VR/AR techniques for their advantages
and limitations. Moreover, it was also revealed from the
structured literature review that the majority of studies high-
light the factors affecting the outcomes of overall monitoring
operation. However, such studies are technology-specific,
and associated factors may differ among studies, such as
Mahami et al.[93], highlighted the impacts of imaging tech-
niques, and Alex Braun & Tuttas [94], focused on the
scanning technique. Moreover, Arif & Khan [20] analyzed
the effect of automated progress monitoring in comparison
with traditional methods in the environment of the Pakistani
construction industry. An economical and real-time track-
ing framework was suggested for monitoring construction
activities. However, the study utilized advanced tracking
methodology, i.e., Survey-Cloud-BIM integration via the
total station, cloud computing, Dynamo programming, and
BIM. The framework was designed to gather construction
progress data-activity-wise.

Compared with the aforementioned models, this general
characteristic-based automated monitoring model highlights
various aspects that can impact the effectiveness of the auto-
matedmonitoring process. The overall theme of this model is
to illustrate the general understanding of the criteria for the
efficacious application of automated monitoring processes
irrespective of implemented technology. This model offers a
general guideline to stakeholders for any close-range moni-
toring technology and its implementation. Researchers have
assessed the outcomes of digital monitoring technologies for
the effectiveness of monitoring operations either by compar-
ing performance or ranking related factors by adopting the
relative importance index (RII) technique, such as studies
performed by Alizadehsalehi & Yitmen [21] and Álvares &
Costa [95]. Likewise, Hannan Qureshi et al. [96] highlighted
the technology-related factors and a simple framework based
on RII. Therefore, in comparison with the aforementioned
studies, this conceptual framework has been devised via per-
forming mathematical modeling technique, i.e., SEM, which
underlines the precise variables and parameters related to
automated progress monitoring process, to confidence gain
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Table 8 GOF indices for structural model

Index Acceptance criteria Attained values

Chisq p > 0.05, p > 0.01 608.14

RMSEA < 0.08 0.07

GFI > 0.90, > 0.80 0.81

CFI > 0.90 0.91

TLI > 0.90 0.91

Chisq/df < 2,3 2.2

on its application, basics operational guidelines, and to edu-
cate construction industry stakeholders. The model is unique
because it focuses on the general parameters that affect the
performance of the digital monitoring operation and is easily
understandable by the practitioners.

5 Conclusion

This study aimed to identify and highlight basic parame-
ters that affect the performance of automated technology-
based progress monitoring in construction projects. The

study followed a structured literature review strategy and
selected relevant studies. The performance-based techno-
logical parameters were extracted, and 49 parameters were
finalized based on literature and semi-structured interviews.
These automated monitoring technological parameters were
refined to 36 items based on the feedback in pilot surveys. The
questionnaire-based feedback was collected by the industry
professionals and academicians on refined parameters. An
SEM-based statistical analysis approach was adopted based
on the collected responses, which directly focused on the
automated monitoring process implementation parameters.
A refinedmodelwas achieved followingSEManalyses, high-
lighting the characteristics that provide the foundation for
the efficient operation of close-range automated monitoring
technologies. The developed conceptual framework reflects
the 21 general parameters impacting the application of the
automated monitoring process, which has been developed by
performing EFA and CFA. These parameters reflect the main
characteristics affecting automated monitoring implementa-
tion and are grouped under the related constructs, i.e., “Target
Object”, “Technical”, “Occlusions”, “External Interference”,
and “Sensing”. This model illustrates the aspects that sup-
port the effective implementation of automated monitoring

Fig. 6 General characteristics based conceptual framework for automated monitoring process
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processes and would help stakeholders in understanding the
general parameters. The structured literature review per-
formed in this study highlighted that not many studies could
be found focusing on the automated progress monitoring
implementation of basic frameworks and guidelines. There-
fore, this study intended to deliver a knowledge framework to
consummate the information gap, which fuels the hesitation
of construction industry stakeholders towards technologies.
The achieved model will encourage the construction indus-
try practitioners to the adoption of monitoring technologies,
supporting the IR 4.0 environment and being cost-beneficial
in the long run.

Themodel has been designed considering themain param-
eters affecting automatedmonitoring performance.However,
for future considerations, SM can be assessed for the impacts
of automated monitoring on the project performance con-
trol or key performance indicators (cost, time, and quality),
related project’s primary or secondary processes (safetyman-
agement, project planning, supply chainmanagement, and so
on), and external implications (CO2 emission). Moreover,
these models can be extended to spatial monitoring tech-
nologies for building and highway projects for an overall
preview.
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