
Vegetation controls the exchange of carbon, water, 
momentum and energy between the land and the atmos-
phere, and provides food, fibre, fuel and other valuable 
ecosystem services1,2. Changes in vegetation structure 
and function are driven by climatic and environmen-
tal changes, and by human activities such as land- use 
change. Given that increased carbon storage in vegeta-
tion, such as through afforestation, could combat climate 
change3,4, quantifying vegetation change and its impact 
on carbon storage and climate has elicited considerable 
interest from scientists and policymakers.

However, it is not possible to detect vegetation changes 
at the global scale using ground- based observations  
due to the heterogeneity of change and the lack of obser-
vations that can detect these changes both spatially and 
temporally. While monitoring the changes in some vege-
tation properties (for example, stem- size distribution 
and below- ground biomass) at the global scale remains 
impossible, satellite- based remote sensing has enabled 
continuous estimation of a few important metrics, 
including vegetation greenness, since the 1980s (Box 1).

In 1986, a pioneering study by Tucker et al.5 on 
remotely sensed normalized difference vegetation index 
(NDVI; a radiometric measure of vegetation green-
ness) (Box 1) revealed a close connection between vege-
tation canopy greenness and photosynthesis acti vity  
(as inferred from seasonal variations in atmospheric 

CO2 concentration). This index was successfully used 
to constrain vegetation primary production globally6. 
Using NDVI data from 1981 to 1991, Myneni et al.7 
reported an increasing trend in vegetation greenness 
in the Northern Hemisphere, which was subsequently 
observed across the globe8–13. This ‘vegetation greening’ 
is defined as a statistically signi ficant increase in annual or 
seasonal vegetation greenness at a location resulting, for 
instance, from increases in average leaf size, leaf number 
per plant, plant density, species composition, duration of 
green- leaf presence due to changes in the growing season 
and increases in the number of crops grown per year.

There has also been considerable interest in under-
standing the mechanisms or drivers of greening11,14. 
Lucht et al.14 and Xu et al.10 revealed that warming has 
eased climatic constraints, facilitating increasing vege-
tation greenness over the high latitudes. Zhu et al.11 
further investigated key drivers of greenness trends and 
concluded that CO2 fertilization is a major factor driv-
ing vegetation greening at the global scale. Subsequent 
studies based on fine- resolution and medium- resolution 
satel lite data13 have shown the critical role of land- surface 
history, including afforestation and agricultural intensi-
fication, in enhancing vegetation greenness. The large 
spatial scale of vegetation greening and the robustness 
of its signal have led the Intergovernmental Panel on 
Climate Change (IPCC) special report on climate change 
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and land15 to list it, together with global- scale warming, 
sea- level rise16 and sea- ice decline16, as highly credible 
evidence of the environmental impact of anthropogenic 
climate change.

Greener vegetation not only results from climatic and 
atmospheric changes but also feeds back to the climate 
through biogeochemical and biogeophysical processes. 
These feedbacks are often studied with Earth system 
models (ESMs), in which vegetation is coupled with 
the atmosphere and the hydrologic cycle17. ESM- based 
studies have demonstrated that greening can accelerate 
the hydrologic cycle by increasing the amount of water 
transpired by plants, alter the energy exchange between 
land and the atmosphere, and affect atmospheric 
circulation patterns18,19.

In this Review, we synthesize past and recent efforts 
to characterize the spatiotemporal patterns of vegeta-
tion greening since the 1980s. We discuss how rising 
atmospheric CO2 concentration, climate change, land- 
use change and nitrogen deposition are the key drivers 
of greenness changes on the global and regional scale. 
We assess the impacts of vegetation greening on carbon, 
water and energy balances, and conclude by identifying 
key challenges and perspectives for future research.

Greenness changes

Global- scale vegetation greening has been demonstrated 
using nearly four decades of NDVI and leaf area index 
(LAI) greenness data derived from the Advanced Very- 
High-Resolution Radiometer (AVHRR) instrument 

(Fig. 1a,b). While early studies primarily used the NDVI 
to detect changes in global greenness, recent studies 
widely use the LAI, since it has clear physical inter-
pretation and is a fundamental variable in almost all 
land- surface models (Box 1). An ensemble of LAI data-
sets has shown that 52% (P < 0.05) to 59% (P < 0.10) of 
global vegetated lands displayed an increasing trend in 
growing season LAI since the 1980s11 (Fig. 1a). Although 
some studies reported a stalling, or even a reversal, of 
the greening trend since 2000 based on AVHRR20 and 
collection 5 (C5) of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) data21, this signal might 
be an artefact of sensor degradation and/or process-
ing22–24. For example, using a revised calibration of the 
MODIS data in the most recent collection 6 (C6) data-
set24, Chen et al.13 showed that leaf area increased by 
5.4 million  km2 over 2000–2017, an area equivalent to 
the areal extent of the Amazon rainforest13. Indeed, 34% 
of vegetated land exhibited greening (P < 0.10), whereas 
only 5% experienced browning (P < 0.10), that is, a loss 
of vegetation greening.

New satellite- based vegetation indices also support 
the global greening trend observed since 2000 (Fig. 1), 
including the enhanced vegetation index (EVI) and 
near- infrared reflectance of terrestrial vegetation (NIRv) 
(Box 1). However, while vegetation greenness is increas-
ing at the global scale, the changes vary considerably 
between regions and seasons.

Regional trends. In the high northern latitudes (>50°N), 
AVHRR and Landsat records indicate a widespread 
increase in vegetation greenness since the 1980s8,12,25 
(Fig. 2a–d). Regions with the greatest greening trend 
include northern Alaska and Canada, the low- Arctic 
parts of eastern Canada and Siberia, and regions of 
Scandinavia12,25,26. Dendrochronological data and photo-
graphic evidence further corroborate these findings27–30. 
In general, the LAI over high northern latitudes will con-
tinue to increase by the end of this century31, based on 
the results of an ensemble of ESMs (Fig. 2e–h). However, 
although only 3% of the high latitudes show browning 
during 1982–2014 (reF.25), there is a growing proportion  
of Arctic areas exhibiting a browning trend32. Such 
trends first emerged in boreal forests, where a multi-
tude of disturbances (for example, fires, harvesting and 
insect defoliation) prevail9,33–37. The North American 
boreal forests in particular exhibit browning areas nearly  
20 times larger than the Eurasian boreal forests, showing 
heterogeneous regional greenness change38.

The northern temperate region (25–50°N) is another 
vegetation greening hotspot, experiencing faster rates  
of greening than the high latitudes since 2000 (Fig. 2b,d). 
Indeed, ~14 million km2 of the temperate region greened 
(P < 0.10), contributing about one- half of the global net 
leaf area increase over this time period13. The increase of 
vegetation greenness is especially strong in agricultural 
regions (for example, India13) and recently afforested 
areas (for example, China13,39); collectively, China and 
India alone contribute more than 30% of the total net 
increase in the global LAI13.

Tropical regions (25°S–25°N) are also greening 
(Fig. 2b,d), contributing about a quarter of the net global 

Key points

•	Long-	term	satellite	records	reveal	a	significant	global	greening	of	vegetated	areas	
since	the	1980s,	which	recent	data	suggest	has	continued	past	2010.

•	Pronounced	greening	is	observed	in	China	and	India	due	to	afforestation	and	
agricultural	intensification.

•	Global	vegetation	models	suggest	that	CO2	fertilization	is	the	main	driver	of	global	
vegetation	greening.

•	Warming	is	the	major	cause	of	greening	in	boreal	and	Arctic	biomes,	but	has	negative	
effects	on	greening	in	the	tropics.

•	Greening	was	found	to	mitigate	global	warming	through	enhanced	land	carbon	
uptake	and	evaporative	cooling,	but	might	also	lead	to	decreased	albedo	that	could	
potentially	cause	local	warming.

•	Greening	enhances	transpiration,	a	process	that	reduces	soil	moisture	and	runoff	
locally,	but	can	either	amplify	or	reduce	runoff	and	soil	moisture	regionally	through	
altering	the	pattern	of	precipitation.
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increase in leaf area since 2000 (reF.13). However, the 
tropics also have areas where significant browning has 
been reported, for example, in the Brazilian Cerrado and 
Caatinga regions and Congolian forests13,40. It is worth 
noting that substantial uncertainties remain in the tropi-
cal vegetation greenness estimations due to the saturation 
effects of greenness indices in dense vegetation41 and con-
tamination by clouds and aerosols42. These uncertainties 
partly underlie the disagreement between the MODIS 
and AVHRR products13 when measuring tropical green-
ness and the debate on whether the Amazonian forests 
have greened or browned in response to droughts42–44.

The extratropical Southern Hemisphere (>25°S) has 
experienced a general greening trend since the 1980s13,45, 
but it is lower than that in the temperate and high-latitude 
Northern Hemisphere13 (Fig. 2a–d). Regional greening 
hotspots in southern Brazil and southeast Australia 

mostly overlap with the intensive cropping areas13, high-
lighting the increasing contribution of managed eco-
systems to vegetation greening. Note that most of this 
region is dominated by semi- arid ecosystems46, where  
vegetation coverage is generally sparse. Thus, satel-
lite vegeta tion indices over this region are generally sensi-
tive to change in soil background. For example, browning 
was detected from the AVHRR dataset since the 2000s20 
(Fig. 2b), but MODIS C6 data (which is better calibrated 
and can distinguish vegetation from background more 
accurately) instead showed an overall greening trend 
particularly since 2002 (reF.13; Fig. 2c,d).

Seasonal changes of greenness. In the northern temper-
ate and high latitudes, greenness often shows distinctive 
seasonal patterns within a calendar year (Fig. 3). Several 
metrics of land- surface phenology have been developed 

Land- surface phenology

Cyclic phenomena in vegetated 

land surfaces observed from 

remote sensing.

Box 1 | remotely sensed vegetation greenness

Remotely	sensed	vegetation	greenness	generally	refers	
to spectral	vegetation	indices	(VIs)	or	the	leaf	area	
index (LAI).	Photosynthetic	pigments	in	plant	leaves	
(mainly	chlorophyll	and	carotenoids)	strongly	absorb	
photosynthetically	active	radiation,	which	largely	
overlaps with	the	visible	spectrum	(400–700	nm),	
particularly	red	wavelengths	(620–700	nm).		
In	the	near-	infrared	(NIR)	domain	(700–1,300	nm),	
absorbance	by leaf	constituents	is	either	small		
or	absent;	thus,	scattering	increases	the	likelihood		
that	photons	will exit	the	leaf.	This	is	the	biophysical	
basis	for	high leaf-	level	reflectance	in	the	NIR	region.	
At	the	canopy	scale,	structural	properties	such	as	
LAI and leaf-	angle	distribution	dominate	variability		
in	NIR	reflectance176.	This	unique	spectral	signature		
of	vegetation	in	the	red	and	NIR	channels,	
a characteristic	not	present	in	common		
non-	vegetative	features	such	as	soil,	snow	
and water177,178,	has	thus	been	utilized	to	
derive	numerical	VIs	measuring	
vegetation	greenness176,179,180	
(Supplementary	Table	S1).	
For example,	the	normalized	
difference	vegetation	index,	
which	is	one	of	the	most	widely	used	
VIs in	assessing	vegetation	greenness		
and	its	changes	from	local	to	global	scales	
(Supplementary	Table	S2),	is	useful	for	
measuring	canopy	structural	properties,	such	
as	leaf	area,	light	interception	and	biomass41,181,182.	
Satellite sensors,	such	as	the	Advanced	Very-	High-	
Resolution	Radiometer	(AVHRR),	Moderate	Resolution	
Imaging	Spectroradiometer	(MODIS),	Vegetation,	Medium	Resolution	Imaging	Spectrometer	(MERIS)	and	Visible	
Infrared	Imaging	Radiometer	Suite	(VIIRS),	have	been	deployed	with	varying	temporal	coverage,	providing	VI	products	
based	on	a	wide	range	of	spectral-	band	specifications	and	data	processing	(Supplementary	Table	S3).	For	example,	
the AVHRR	does	not	have	a	blue	channel,	so	this	sensor	is	unable	to	produce	blue-	band-based	greenness	indices		
like	the	enhanced	vegetation	index.	These	sensor	differences	make	it	a	non-	trivial	challenge	to	produce	consistent		
and	continuing	long-	term	greenness	products183.

Compared	with	VIs,	the	LAI	(the	one-	sided	green	leaf	area	per	unit	ground	area	in	broadleaf	canopies	or	one-	half		
of	the	total	needle	surface	area	per	unit	ground	area	in	coniferous	canopies184,185)	is	a	well-	defined	physical	attribute	of	
vegetation.	The	LAI	is	a	state	variable	in	all	land	models	and	key	to	quantifying	the	exchanges	of	mass,	momentum	and	
energy	between	the	surface	and	the	atmosphere.	Multiple	approaches	for	retrieving	the	LAI	from	remote	sensing	data	
have	been	developed	—	these	can	be	conceptually	categorized	as:	empirical	approaches	that	are	based	on	relationships	
between	VIs	and	the	LAI186,187;	machine-	learning	approaches	that	train	surface	reflectance	or	VIs	to	given	reference	
LAIs182,188,189;	and	physical	approaches	that	are	based	on	the	physics	of	radiation	interaction	with	elements	of	a	canopy	and	
transport	within	the	vegetative	medium184,190,191.	See	Supplementary	Table	S4	for	currently	available	global	LAI	products.
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to depict the seasonal cycle of greenness47, including 
the widely used start of the growing season (SOS) and 
end of the growing season (EOS)48. Although phenol-
ogy dates can vary depending on the greenness product 
or algorithm used49–51, significant trends towards both  
earlier SOS (2–8 days decade−1) and later EOS (1–6 days  
decade−1) and, thus, longer lengths of the growing sea-
son (LOS) (2–10 days decade−1), have been observed in 
most Northern Hemisphere regions during the past four  
decades7,8,25,52–54 (Fig. 3a–c). These trends are corroborated 

by ground-based observation data in spring and 
autumn55–57. The increase in LOS is driven mainly by an 
advanced SOS in Eurasia (53–81% of LOS lengthening is 
due to SOS advance) and delayed EOS in North America 
(57–96% of LOS lengthening is due to EOS delay), with 
the more rapid total LOS increase seen in Eurasia25,58–60.

In addition to longer growing seasons, satellite green-
ness data also reveal important shifts in the timing 
and magnitude of the seasonal peak greenness47,61. For 
example, the timing of peak greenness has advanced by 
1.2 days decade−1 during 1982–2015 (reF.62) and 1.7 days 
decade−1 during 2000–2016 (reF.61) over the extratropical 
Northern Hemisphere (Fig. 3a), with the boreal region 
peak greenness advancing twice as fast as the Arctic  
tundra and temperate ecosystem peaks61. Since the 1980s, 
the magnitude of the peak greenness has also increased 
over the extratropical Northern Hemisphere by ~0.1 
standardized NDVI anomaly per year62, with a stronger 
signal in the pan-Arctic region63,64.

Phenology changes, including the SOS advancement,  
EOS delay and peak greenness enhancement, can signif-
icantly change the Earth’s seasonal landscape. Northern 
high latitudes, which traditionally have high seasonality 
(that is, short and intense growing seasons), are exhibit-
ing seasonality similar to that of their counterparts  
6° to 7° south in the 1980s. In other words, the latitudi-
nal isolines of northern vegetation seasonality have 
shifted southward since the 1980s. The diminished 
seasonality of the northern high- latitude vegetation10 
is consistent with changes in the velocity of vegetation 
greenness (defined as the ratio of temporal greenness 
change to its spatial gradient)65, which showed faster 
northward movement of the SOS (3.6 ± 1.0 km year−1) 
and the EOS (6.0 ± 1.1 km year−1) than the peak greenness 
(3.1 ± 1.0 km year−1) during 1982–2011 (reF.65).

Drivers of greening

Several factors are thought to impact vegetation green-
ing, including rising atmospheric CO2 concentrations, 
climate change, nitrogen deposition and land- use 
changes. However, nonlinear impacts and interactions 
make it challenging to quantify the individual contrib-
ution of these factors to the observed greening trend. 
In this section, we review the contribution of several 
key drivers of vegetation greening and efforts to quanti-
tatively attribute the observed greening trend to each of 
these factors.

CO2 fertilization. As CO2 is the substrate for photo-
synthesis, rising atmospheric CO2 concentration can 
enhance photosynthesis66 by accelerating the rate of 
carboxylation; this process is known as the ‘CO2 ferti-
lization effect’. In addition, increased CO2 concentra-
tions can also enhance vegetation greenness by partially 
closing leaf stomata, leading to enhanced water- use 
efficiency67, which should relax water limitation to 
plant growth, particularly over semi- arid regions45,68,69. 
Analysis of the ‘Trends and drivers of the regional- scale 
sources and sinks of carbon dioxide’ (TRENDY) ensem-
ble of dynamic global vegetation models (DGVMs)70 
suggests that rising CO2 is the dominant driver of veg-
etation greening, accounting for nearly 70% of global 
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LAI trend since the 1980s11 (Fig. 4). Statistical modelling 
also supports the important role of rising atmospheric 
CO2 concentration in driving vegetation greening71,72. 
Free- air CO2 enrichment (FACE) experiments show that 
elevating the CO2 concentration by ~200 ppm above the 
ambient conditions significantly enhances vegetation 
productivity73 and increases leaf area74. Different plant 

species vary largely in the magnitude of LAI enhance-
ment75, with the larger effect on forest stands having 
lower LAI at the ambient conditions76. In DGVMs, 
elevated CO2 increases vegetation productivity more in 
tropical ecosystems than in temperate and boreal eco-
systems11,77,78 (Fig. 4b). However, the strength of the CO2 
fertilization effect can be limited by extreme weather 
events79,80 and nutrient and water availability73,81,82. 
Indeed, nitrogen and phosphorus have been shown to 
regulate the global pattern of CO2 fertilization effects83. 
Since nutrient processes were under- represented in the 
ESMs used in the IPCC Fifth Assessment Report (AR5), 
the predictions of continued greening trends through 
2100 (reF.31) (Figs 2e–h,5) might overestimate the CO2 
fertilization effects.

Climate change. Although rising atmospheric CO2 con-
centration is the main driver of global greening, climate 
change, such as anthropogenic warming and regional 
trends in precipitation, is a dominant driver of green-
ness changes over 28% of the global vegetated area11. 
The global contribution of climate change to increas-
ing greenness is only 8% (Fig. 4a), however, because 
impacts of climate change on vegetation greenness vary 
between regions11. For example, warming could reduce 
vegetation growth in the tropics84, where ambient tem-
perature is close to vegetation optimal temperature85, 
but warming significantly increases vegetation green-
ness in the boreal and Arctic regions86 by enhancing 
metabolism87 and extending the growing season59,88,89. 
DGVM simulations show that the positive effects of 
climate change, primarily from warmer temperature14, 
dominate the greening trend over more than 55% of 
the northern high latitudes (Fig. 4b) and in the Tibetan 
Plateau11. However, this positive impact of anthropo-
genic warming on greenness appears to have weakened 
during the past four decades90,91, when the correla-
tion coefficient between temperature and greenness 
decreased by more than 50%90,91, suggesting a possible 
saturation of future greening in response to warmer 
temperature.

In water- limited ecosystems, changes in precipitation 
— reflecting either decadal climate variability or trends 
from anthropogenic climate change — were suggested 
as the main driving factor of greening and browning45,92. 
Precipitation- driven greening is most evident in the 
African Sahel93,94 and semi- arid ecosystems of southern 
Africa and Australia45,95 (Fig. 4c). Both empirical models 
and DGVMs indicate that ‘the greening Sahel’, one of the 
early examples of vegetation greening detected by satel-
lite measurements93,94, was primarily driven by increases 
in precipitation after a severe drought in the early 
1980s96–98. This causal relationship between precipitation 
and greenness changes was further supported through 
analyses of recent microwave satellite measurements and 
long- term field surveys99,100.

Land-use change. Like climate change, land-use change  
exerts a considerable but highly spatially variable 
influence on greenness changes11,13 (Fig. 4). Specifically, 
deforestation dominates the tropics101,102, while affores-
tation increases forest area over temperate regions, 

0.1

0.2

0.3

0.4

0.5

0.6

N
D

V
I

a

–60 –40 –20 0 20 40 60
Change in SOS (days)

0

2

4

6

8

F
re

q
u

e
n

c
y 

(1
0

4
)

b

–60 –40 –20 0 20 40 60
Change in EOS (days)

60 120 180 240 300
Day of year

–15

–10

–5

0

5

10

D
e

tr
e

n
d

e
d

 C
O

2
 (p

p
m

)

d

SOS EOS

Peak

1982–1986

>50°N

2008–2012

1980–1984

Barrow (71°N)

2013–2017

LOS

60 120 180 240 300
Day of year

0

2

4

6

F
re

q
u

e
n

c
y 

(1
0

4
)

c

DelayAdvance DelayAdvance

S
e

a
so

n
a

l
a

m
p

li
tu

d
e

SZC

AZC

Peak

Trough

Fig. 3 | Changes in the seasonality of vegetation greenness and atmospheric Co2 

concentration. a | Five- year mean seasonal variations of the normalized difference 

vegetation index (NDVI) over Northern Hemisphere high latitudes (>50oN) during 

1982–1986 (black line) and 2008–2012 (green line). start of the growing season (sOs)  

and end of the growing season (EOs) are shown as 50% of the maximum NDVI. The 

length of the growing season (LOs) is the difference between the EOs and the sOs.  

b | Frequency distribution of sOs change in the Northern Hemisphere during 1982–2012. 

c | Frequency distribution of EOs change in the Northern Hemisphere during 1982–2012. 

d | Five- year mean detrended seasonal CO2 variations at Barrow , AK , UsA (71oN) 

(NOAA EsRL archive: https://www.esrl.noaa.gov/gmd/ccgg/obspack/) during 

1980–1984 (black line) and 2013–2017 (green line). Vertical lines mark the spring  

zero- crossing date (sZC) and autumn zero- crossing date (AZC). Horizontal lines mark 

the seasonal amplitude as the difference between the maximum and the minimum  

of detrended seasonal CO2 variations. shaded areas show the range of interannual 

variations in the NDVI in part a and the standard deviation of the detrended CO2 mole 

fraction (ppm) in part d at the day of year. NDVI data are the updated dataset from  

Tucker et al.194. Parts b and c are adapted with permission from reF.48, wiley- VCH.

www.nature.com/natrevearthenviron

Rev iews

https://www.esrl.noaa.gov/gmd/ccgg/obspack/


particularly in China, where the forest area has increased 
by more than 20% since the 1980s103. The TRENDY 
ensemble of DGVMs70 indicates that greenness 
changes over 19% of the northern temperate vegetation  
(25–50°N) are primarily driven by land-use change11 
(Fig. 4c). However, this might be an underestimate since 
critical land- use processes104,105 are under- represented 
or missing in the current generation of DGVMs. For 
example, forest- age dynamics are not represented in most 
DGVMs, even though one- third of the global forests are 
younger than 20 years old106, implying that forest regrowth 
might contribute to global greening in the future. In addi-
tion, agricultural intensification with multiple cropping,  
irrigation and fertilizer usage must contribute consider-
ably to vegetation greening, which is exemplified by the 
dominance of other unmodelled factors over agricultural  
lands of India, China and Eastern Europe (Fig. 4c).

Nitrogen deposition. Anthropogenic changes in the 
amount, rate and distribution of nitrogen deposition 
can impact greening patterns, since insufficient nitrogen 
availability can stunt plant growth107–109, potentially slow-
ing greening or causing browning, but excess nitrogen 
can enhance plant growth in nitrogen- limited systems109. 
However, the few DGVMs that include the nitrogen cycle 
do not indicate that nitrogen deposition plays a domi-
nant driving role on the greening at either the global 
or regional scales (Fig. 4). Modelling studies differ on  
the contribution of increasing nitrogen deposition to the 
global LAI increase11 (9 ± 12%), largely due to the incom-
plete representation of nitrogen- related processes110. 
A growing number of DGVMs are currently incorporat-
ing nitrogen processes111, though, and future research pri-
orities include better measurement and representation of 
processes such as plant nitrogen uptake and allocation110.
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Impact of greening on the carbon cycle

Greening increases the amount of photosynthetically 
active sunlight that is absorbed by vegetation and, thus, 
enhances productivity112,113. There has been substantial 
evidence showing enhanced vegetation productivity 
from contiguous solar- induced fluorescence (CSIF; 
Fig. 1f) observations114, empirical models of vegetation 
productivity92,115 and DGVM and ESM simulations70,116 
(Fig. 6). It should be noted, though, that CSIF is not fully 
independent from MODIS greenness indices, since its 
derivation relies on both solar- induced fluorescence 
measurements from Orbiting Carbon Observatory 2 
and MODIS reflectance measurements114.

Enhanced vegetation productivity increases terres-
trial carbon storage, slowing down anthropogenic 
climate warming117. For example, about 29% of anthro-
pogenic CO2 emissions since the 1980s have been offset 
by the land carbon sink (2.5 ± 1.0 PgC year−1)111. This 
vegetation- induced large land carbon sink was also 
inferred from forest inventories118 and above- ground 
biomass estimated from the vegetation optical depth 
(Fig. 1e), a microwave- based satellite measurement of 
both woody and leaf biomass119. Multiple lines of evi-
dence, including analyses from DGVMs, atmospheric 
inversion models and the residual land sink (the mass 
balance residual of anthropogenic CO2 emissions, atmos-
pheric CO2 growth rate and ocean CO2 budget), confirm 
the increasing magnitude of the global land carbon sink 
since the 1980s111 (Fig. 6). An ecosystem model driven 
by satellite LAI measurements estimated that increased 
LAI accounts for 36% (0.4 PgC year−1) of the land carbon 
sink enhancement of 1981–2016 (reF.112). Recent studies 

indicate that the trend in the land carbon sink has fur-
ther accelerated since the late 1990s120,121. For example, 
the rate of update during 1998–2012 was three times 
that of 1980–1988 (0.17 PgC year−2 in comparison with 
0.05 PgC year−2)121, attributed to afforestation- induced 
greening in the temperate Northern Hemisphere13,121. 
These hotspots of afforestation and forest regrowth 
are in accordance with the greening pattern observed  
since 2000 by MODIS (Fig. 2c). Recent DGVM stud-
ies122,123 have further confirmed that the carbon sink 
during the 2000s was partly driven by afforestation and 
forest regrowth in East Asia and Europe124. The extensive 
greening over croplands, however, has probably contrib-
uted less to the carbon sink, because only a minor por-
tion of assimilated carbon by crops remain sequestered 
due to crop harvest.

The impact of greening on the carbon cycle is also 
partly responsible for the increasing seasonality of 
atmospheric CO2 in the northern high latitudes125. The 
amplitude of the Northern Hemisphere CO2 seasonal 
cycle has increased by as much as 50% for latitudes 
north of 45°N126,127 since the 1960s, indicating enhanced 
vegetation productivity in northern ecosystems during 
the carbon- uptake period128. The spring zero- crossing 
date — the time when the detrended seasonal CO2 vari-
ations down- cross the zero line in spring — is a pheno-
logical indicator of the timing of early season net carbon 
uptake125,129. From 1987 to 2009, the spring zero- crossing 
date has advanced at high- latitude stations130 (from 
−0.5 days decade−1 to −1.8 days decade−1) (Fig. 3d), a trend 
that is consistent with the advancing SOS (Fig. 3b). At the 
end of the net carbon- uptake period, the autumn zero- 
crossing dates of detrended seasonal CO2 variations —  
the time when the detrended seasonal CO2 variations 
up- cross the zero line in autumn — have also advanced 
over eight of the ten Northern Hemisphere stations stud-
ied131. The observed autumn zero- crossing date advance-
ment (Fig. 3d) is in contrast to the delayed EOS (Fig. 3a)  
in autumn. This divergence in the autumnal CO2 and 
greenness trends suggests that, unlike in spring, autumn 
vegetation greening does not lead to an increased car-
bon sink because respiration is increasing more quickly 
than photosynthesis in autumn131. Visual observations 
(for example, from the Pan European Phenology Project 
PEP725) and cameras (for example, PhenoCam datasets) 
are providing an increasing amount of ground- based 
phenological evidence of this process. In the future, 
these data can be paired with eddy covari ance flux 
data, to further our mechanistic understanding of the 
climate- change-induced seasonal change in greenness 
and carbon balance.

Biogeophysical impacts of greening

Greening has discernable impacts on the hydrologic  
cycle and climate through modifying surface biogeo-
physical properties (for example, albedo, evapotranspir-

ation (ET) and surface roughness) on local to regional  
and global scales19,132 (Fig. 7). Vegetation’s biogeophysi-
cal feedbacks to climate are, thus, critical to under-
standing the potential of ecosystem management, such 
as afforestation, for climate change mitigation3,132,133.  
In this section, we present the feedbacks of vegetation 

Evapotranspiration

The flux of water emitted  

from the earth’s surface to  

the atmosphere. it is the sum 

of evaporation by the soil,  

wet canopy, open- water 

surfaces and transpiration  

by plant stomata.
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greening on the hydrologic cycle and land- surface  
air temperature.

The hydrologic cycle. Vegetation greening modulates 
water cycling. Land water losses to the atmosphere 
occur through ET, which includes transpiration (60–90% 
of the total land ET134–136) and evaporation. Greening 
increases water losses through an extended area of 
leaves performing transpiration137. A larger foliage area 

reduces the bare ground surface from which soil evapo-
ration occurs, but increases the re- evaporation of rainfall 
intercepted by leaves138, so that greening can cause the 
net evaporation to either increase or decrease. Various 
remote- sensing-based ET estimates consistently point 
to a significant increase in global terrestrial ET over 
the past four decades, suggesting an intensified water 
exchange between the land and the atmosphere concur-
rent with the greening trend139. More than half of the 
global ET increase since the 1980s has been attributed 
to vegetation greening138,139 (Fig. 7).

By controlling the changes in ET, vegetation green-
ing also alters the water distribution between regions 
and water pools (for example, water in soil, rivers and  
the atmosphere). Assuming that precipitation does not 
change in response to vegetation greening, a greening- 
induced ET increase will reduce soil moisture and 
runoff, which can intensify droughts at the catchment  
scale140,141. In China’s Loess Plateau for instance, where  
intensive afforestation is associated with a pronoun-
ced local greening, the river discharge has indeed 
decreased by a rate of 0.25 km3 year−2 over the past six 
decades142. However, when using ESMs that consider 
both the greening- induced ET increase and consequent 
changes in precipitation, simulations forced only with 
satellite- observed LAI trends do not generate dramatic 
changes in soil moisture or runoff at continental or 
global scales143,144. This is because greening- induced 
ET enhancement increases atmospheric water vapour 
content, which, in turn, promotes downwind precipita-
tion145,146. The enhanced precipitation over transpiring 
regions is parti cularly evident in moist forests147 like 
the Amazon or Congo, which are ‘closed’ atmospheric 
systems where 80% of the rainfall originates from 
upwind ET145. Such an efficient atmospheric water recy-
cling mitigates water loss from the soil, sustains inland 
vegetation and maintains mesic and humid ecosystems.

In addition to intensifying water cycling at the 
annual scale, vegetation greening also induces seasonal 
hydro logic changes. There is emerging evidence that 
spring- greening-enhanced ET leads to a reduction in 
soil moisture content, which carries over into the fol-
lowing summer and likely suppresses vegetation growth 
and increases the risk of heatwaves148,149. The greening- 
induced water loss through ET is recycled as land precip-
itation in subsequent months, benefitting some remote 
regions through modulating large- scale atmospheric 
circulation patterns, despite often being insufficient to 
compensate for evaporative water loss locally149. Proposed 
climate- mitigation strategies, such as afforestation, there-
fore need to fully consider coupling between vegetation 
and other components of the Earth system.

Land- surface air temperatures. Greening impacts the 
exchange of energy between the land and the atmos-
phere, which ultimately leads to modifications in sur-
face air temperature150. Greening increases ET, which 
cools the surface through evaporative cooling19,150, but  
greener canopies have a lower albedo than bare ground 
and absorb more sunlight, which can result in a larger 
sensible heat flux. This enhanced sensible heat warms 
the land surface, an effect called albedo warming151.  
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Fig. 6 | Changes in global carbon fluxes and seasonal Co2 amplitude. Graphs depict 

changes in Barrow, AK, UsA, since 1980. a | Global gross primary production (GPP).  

b | Net primary production. c | Net biome production (NBP). d | Residual land sink.  

e | seasonal CO2 amplitude. The GPP is from the ensemble mean of 16 dynamic global 

vegetation models (DGVMs)111. The NPP is from greenness- based modelling by  

Smith et al.198. The NBP is from the ensemble mean of 16 DGVMs and two atmospheric 
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The net effect of greening on surface air temperature in 
many cases can be viewed as the balance between evap-
orative cooling and albedo warming152,153, which was 
estimated globally to be −0.9 W m−2 from evaporative 
cooling and +0.1 W m−2 from albedo warming19 (Fig. 7c).

Greening can also trigger a series of changes through 
atmospheric circulation that indirectly affect the surface 
temperature154. For example, the additionally transpired 
water enhances atmospheric water vapour content, 
which results in more longwave solar radiation entrap-
ment and re- emission in the atmosphere, but reduces the 
amount of shortwave solar radiation reaching the Earth’s 
surface through increased cloud formation19,155,156 (Fig. 7). 
When all the aforementioned impacts of vegetation 
greening on near- surface air temperature were simulated 
in coupled ESMs driven by the satellite- based greening 
since the 1980s, the results suggested a net cooling trend 
by 12% ± 3% of the concurrent observed warming rate19.

In warm regions such as the tropics and subtropics, 
evaporative cooling effects are generally larger than 
albedo warming effects, leading to a net cooling effect 
when vegetation greenness increases19,157,158. However, 
the net effect of greening on surface air temperature 
over the Northern Hemisphere extratropical regions is 
still subject to debate. Studies based on idealized affores-
tation and/or deforestation experiments1,159 or compar-
isons of the energy budget differences between paired 
forest and short vegetation sites132,153 suggested that the 
albedo warming effect plays a dominant role. These 
studies, though, assumed complete land cover changes, 
whereas greening can be gradual. By integrating satel-
lite observations with ESMs, several studies provided an 
alternative approach that more realistically simulated the 
effects of vegetation greenness changes and isolated 
the signal of climate response to greening. These stud-
ies found that greening slowed down warming through 
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evaporative cooling in Arctic and boreal regions19, the 
Tibetan Plateau160 and temperate regions like East Asia161. 
Nonetheless, current state- of-the- art modelling efforts 
are still inconclusive, as some processes are not yet well 
represented in ESMs, such as snow masking by greener 
canopies during cold seasons162–164 and the partitioning 
of transpiration and evaporation that is sensitive to veg-
etation greenness change136. Since most ESMs under-
estimate the ratio of transpiration to ET136, evaporative 
cooling by greening could have been underestimated19,133.

Conclusions

Widespread vegetation greening since the 1980s is one 
of the most notable characteristics of biosphere change  
in the Anthropocene. Greening has significantly enhanced  
the land carbon sink, intensified the hydrologic cycle 
and cooled the land surface at the global scale. A mecha-
nistic understanding of the underlying drivers shows 
how anthropogenic forcing has fundamentally altered 
today’s Earth system through a set of feedback loops. 
Improved knowledge of greenness changes, together  
with recent progress in observing technology and model-
ling capacity, has resulted in major advances in under-
standing global vegetation dynamics. Nonetheless, we 
still face many challenges ahead.

One key challenge is to continue developing the 
capa city of remote sensing to measure vegetation struc-
ture and functions. Although the vegetation greenness 
indices described in this Review have proved highly 
reliable, contemporary satellite greenness products still 
suffer from limitations, such as inadequate sensitivity 
to detect changes in dense vegetation, aliasing between 
snow cover decrease and leaf area increase in cold eco-
systems (such as boreal forests), atmospheric contami-
nation, orbital drift and sensor replacements. Compared 
with the AVHRR, the new moderate- resolution spectral 
bands and spatial resolutions of 250 m to 1 km of the 
MODIS sensors on board the Terra (operating since 
1999) and Aqua (operating since 2002) satellites have 
provided global datasets that largely improved the long- 
term monitoring of vegetation greenness13. The current 
scientific community needs to include Earth observ-
ations with higher temporal, richer spectral and finer 
spatial resolutions to capture various ecosystem func-
tions and processes responding to different parts of the 

electro magnetic spectrum165. We expect the develop-
ment of next- generation satellite missions and vegetation 
indices to better fulfil these needs. For example, ongoing 
efforts on developing hyperspectral remote sensing such 
as the EnMAP, FLEX and HyspIRI missions will improve 
the richness and specificity of spectral information on 
vegetation structure and functioning.

Another equally important challenge is to validate 
satellite- based greenness changes with ground observ-
ations. Currently, the lack of systematic long- term 
ground observations covering a large spatial gradient 
from the high Arctic to the tropics has led to few avail-
able ground truths166 to confirm greenness changes 
detected through satellite products. Therefore, expand-
ing existing observational networks (such as PhenoCam 
and FLUXNET) is a high priority. For example, the mis-
match between the spatial distribution of vegetation 
productivity and the density of FLUXNET sites167 high-
lights the need to expand the current network from the 
mid-latitudes to the tropics, where the most photosyn-
thesis takes place. Also, growing crowd- sourced obser-
vations by citizen scientists, such as the CrowdCurio 
phenology observations over the eastern USA168, can 
provide valuable data that complement the more expen-
sive professional ground observation networks. These 
increasing types and amounts of data, together with 
the rapid development of deep learning169 and process 
modelling11, offer promising tools for improving our 
understanding of vegetation greening169.

Considerable uncertainties remain in ESM projec-
tions on if and where vegetation greening will occur. 
Recent studies have identified several processes causing 
vegetation browning in some regions, including forest 
diebacks170, insect35 and disease outbreaks171, thermokarst 
development172, human mismanagement36,173, destruc-
tive logging174 and industrial development175. These 
emerging threats could lead to unexpected changes in 
vegetation greenness relative to our current projections 
(such as the projections shown in Figs 2e–h,5), since 
these processes are under- represented in ESMs. Thus, 
integrating continued space and ground monitoring and 
advancing ESM developments is a critical cross- sectoral 
research priority.
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