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Abstract We give formulae for the first homology of the n-braid group and the pure

2-braid group over a finite graph in terms of graph-theoretic invariants. As immediate

consequences, a graph is planar if and only if the first homology of the n-braid group

over the graph is torsion-free and the conjectures about the first homology of the pure

2-braid groups over graphs in Farber and Hanbury (arXiv:1005.2300 [math.AT]) can

be verified. We discover more characteristics of graph braid groups: the n-braid group

over a planar graph and the pure 2-braid group over any graph have a presentation

whose relators are words of commutators, and the 2-braid group and the pure 2-braid

group over a planar graph have a presentation whose relators are commutators. The

latter was a conjecture in Farley and Sabalka (J. Pure Appl. Algebra, 2012) and so

we propose a similar conjecture for higher braid indices.

Keywords Braid group · Configuration space · Graph · Homology · Presentation

1 Introduction

Given a topological space Γ , let CnΓ and UCnΓ , respectively, denote the ordered

and unordered configuration spaces of n-points in Γ . That is,

CnΓ =
{
(x1, . . . , xn) ∈ Γ n | xi �= xj if i �= j

}

and

UCnΓ =
{
{x1, . . . , xn} ⊂ Γ | xi �= xj if i �= j

}
.
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By considering the symmetric group Sn permuting n coordinates in Γ n, UCnΓ is

identified with the quotient space CnΓ/Sn.

In this article, we assume Γ is a finite connected graph regarded as a Euclidean

subspace and we study topological characteristics, in particular their homologies and

fundamental groups, of CnΓ and UCnΓ via graph-theoretical characteristics of Γ .

Instead of the configuration spaces CnΓ and UCnΓ that have open boundaries, it

is convenient to use their cubical complex alternatives—the ordered discrete configu-

ration space Dn and the unordered discrete configuration space UDn. After regarding

Γ as a 1-dimensional CW complex, we define

DnΓ =
{
(c1, . . . , cn) ∈ Γ n | ∂ci ∩ ∂cj = ∅ if i �= j

}

and

UDnΓ =
{
{c1, . . . , cn} ⊂ Γ | ∂ci ∩ ∂cj = ∅ if i �= j

}

where ci is either a 0-cell (or vertex) or an open 1-cell (or edge) in Γ and ∂ci denotes

either ci itself if ci is a 0-cell or its ends if ci is an open 1-cell.

If Γ is suitably subdivided in the sense that each path between two vertices of

valency �= 2 contains at least n− 1 edges and each simple loop at a vertex contains at

least n+ 1 edges, then according to [1, 12, 14], the discrete configuration space DnΓ

(UDnΓ , respectively) is deformation retract of the usual configuration space CnΓ

(UCnΓ , respectively). Under the assumption of suitable subdivision, the pure graph

braid group PnΓ and the graph braid group BnΓ of Γ are the fundamental groups

of the ordered and the unordered configuration spaces of Γ , that is,

PnΓ = π1(CnΓ ) ∼= π1(DnΓ ) and BnΓ = π1(UCnΓ ) ∼= π1(UDnΓ ).

Abrams showed in [1] that discrete configuration spaces DnΓ and UDnΓ are cubi-

cal complexes of nonpositive curvature and so locally CAT(0) spaces. In particular,

DnΓ and UDnΓ are Eilenberg–MacLane spaces, and PnΓ and BnΓ are torsion-free.

Furthermore,

Hi(PnΓ ) ∼= Hi(CnΓ ) ∼= Hi(DnΓ ) and Hi(BnΓ ) ∼= Hi(UCnΓ ) ∼= Hi(UDnΓ ).

Conceiving applications to robotics, Abrams and Ghrist [2] around 2000 began

to study configuration spaces over graphs and graph braid groups from the topolog-

ical point of view. Research on graph braid groups has mainly been concentrated on

characteristics of their presentations. An outstanding question was which graph braid

group is a right-angled Artin group. The precise characterization of such graphs was

given in [12] for n ≥ 5 by extending the result in [8] for trees and n ≥ 4. So it is

natural to consider two other classes of groups defined by relaxing the requirement

of right-angled Artin groups that have a presentation whose relators are commutators

of generators. A simple-commutator-related group has a presentation whose relators

are commutators, and a commutator-related group has a presentation whose relators

are words of commutators. Farley and Sabalka proved in [9] that B2Γ is simple-

commutator-related if every pair of cycles in Γ are disjoint and they conjectured that

B2Γ are simple-commutator-related whose relators are related to two disjoints cycles

if Γ is planar.
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On the other hand, Farley showed in [6] that the homology groups of the unordered

configuration space UCnT for a tree T are torsion-free and computed their ranks.

Kim, Ko and Park proved that if Γ is non-planar, H1(UCnΓ ) has a 2-torsion and the

converse holds for n = 2, and they conjectured that H1(BnΓ ) is torsion-free iff Γ

is planar [12]. Barnett and Farber showed in [3] that for a planar graph Γ satisfying

a certain condition (which implies that Γ is either the Θ-shape graph or a simple

and triconnected graph), β1(C2Γ ) = 2β1(Γ ) + 1. Furthermore, Farber and Hanbury

showed in [10] that for a non-planar graph Γ satisfying a certain condition (which

also implies that Γ is a simple and triconnected graph), β1(C2Γ ) = 2β1(Γ ). They

also conjectured that H1(C2Γ ) is always torsion-free and that β1(C2Γ ) = 2β1(Γ ) iff

Γ is non-planar, simple and triconnected (this is equivalent to their hypothesis).

In this article, we express H1(UCnΓ ) and H1(C2Γ ) for an finite connected

graph Γ in terms of graph-theoretic invariants (see Theorems 3.16 and 3.25). All

the results and the conjectures, mentioned above, on the first homologies of con-

figuration spaces over graphs are immediate consequences of these expressions. In

addition, we prove that BnΓ is commutator-related for a planar graph Γ and P2Γ is

always commutator-related (see Theorem 4.6). By combining with a result of [3], we

finally prove that for a planar graph Γ , B2Γ and P2Γ are simple-commutator-related

whose relators are commutators of words corresponding to pairs of disjoint cycles on

Γ (see Theorem 4.8).

The major tool for computing H1(UCnΓ ) is to use a Morse complex of UDnΓ

obtained via discrete Morse theory. In Sect. 2, we first give an example that illus-

trates how to use the Morse complex to compute H1(UCnΓ ). Then we choose a nice

maximal tree of Γ and its planar embedding, the second boundary map of the Morse

complex induced from these choices becomes so manageable that a description of the

second boundary map can be given.

In Sect. 3, the matrix for the second boundary map is systematically simplified (see

Theorem 3.5) via row operations after giving certain orders on generating 1-cells and

2-cells (called critical cells) of the Morse complex. Then we decompose Γ into bi-

connected graphs and further decompose each biconnected graph into triconnected

graphs and compute the contribution from critical 1-cells that disappear under these

decompositions. Then we show all critical 1-cells except those coming from deleted

edges are homologous up to signs for a given triconnected graph and generate a sum-

mand Z or Z2 depending on whether the graph is planar or not. Finally we collect

results from all decompositions to have a formula for H1(UCnΓ ). For n = 2, the sec-

ond boundary map of the Morse complex of DnΓ is not any harder than the Morse

complex of UDnΓ . Thus the formula for H1(C2Γ ) is obtained by a similar argument.

In Sect. 4, we develop noncommutative versions of some of technique in the pre-

vious section to obtain optimized presentations of (pure) graph braid groups so that

they have certain desired properties via Tietze transformation. In fact, the orders on

critical 1-cells and 2-cells play crucial roles in systematic eliminations of canceling

pairs of a 2-cell and a 1-cell. And we show that (pure) graph braid groups have pre-

sentations with special characteristics mentioned above. We finish the paper with the

conjecture about a graph Γ such that BnΓ and P3Γ are simple-commutator-related

groups.
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Fig. 1 Choose a maximal tree and give an order

2 Discrete Configuration Spaces and Discrete Morse Theory

Given a finite graph Γ , the unordered discrete configuration space UDnΓ is col-

lapsed to a complex called a Morse complex by using discrete Morse theory devel-

oped by Forman [11]. In Sect. 2.1, we briefly review this technology following [7, 12]

and use it to compute H1(UD2K3,3) as a warm-up that demonstrates what is ahead

for us. In Sect. 2.2, we extend the technique to the discrete configuration space DnΓ

and compute H1(D2K3,3) as an example. In Sect. 2.3, we show how to choose a

nice maximal tree and its embedding so that the second boundary map of the induced

Morse complex can be described in the fewest possible cases. Then we list up all of

these cases in a few lemmas.

2.1 Discrete Morse Theory on UDnΓ

Let Γ be a suitably subdivided graph. In order to collapse the unordered discrete

configuration space UDnΓ via discrete Morse theory, we first choose a maximal tree

T of Γ . Edges in Γ − T are called deleted edges. Pick a vertex of valency 1 in T as

a base point and assign 0 to this vertex. We assume that the path between the base

vertex 0 and the nearest vertex of valency ≥3 in T contains at least n − 1 edges for

the purpose that will be revealed later. Next we give an order on vertices as follows:

Fix an embedding of T on the plane. Let R be a regular neighborhood of T . Starting

from the base vertex 0, we number unnumbered vertices of T as we travel along ∂R

clockwise. Figure 1 illustrates this procedure for the complete bipartite graph K3,3

and for n = 2. There are four deleted edges to form a maximal tree. All vertices in Γ

are numbered and so are referred by the nonnegative integers.

Each edge e in Γ is oriented so that the initial vertex ι(e) is larger than the termi-

nal vertex τ(e). The edge e is denoted by τ(e)-ι(e). A (open, cubical) cell c in the

unordered discrete configuration space UDnΓ can be written as an unordered n-tuple

{c1, . . . , cn} where each cj is either a vertex or an edge in Γ . The cell c is an i-cell

if the number of edges among cj ’s is i. For example, {0-1,3-5} represents a 2-cell in

UD2K3,3 under the order on vertices of K3,3 given in Fig. 1. In fact, UD2K3,3 has

fifteen 0-cells, thirty-six 1-cells and eighteen 2-cells as given on the left in Fig. 2.

A vertex v in an i-cell c is said to be blocked if for the edge e in T such that

ι(e) = v, τ(e) is in c or is an end vertex of another edge in c. Let Ki denote

the set of all i-cells of UDnΓ and K−1 = ∅. Define Wi : Ki → Ki+1 ∪ {void} for

i ≥ −1 by induction on i. Let c = {c1, c2, . . . , cn} be an i-cell. If c /∈ im(Wi−1) and

there are unblocked vertices in c and, say, c1 is the smallest unblocked vertex, then

Wi(c) = {v-c1, c2, . . . , cn} where the edge v-c1 is in T . Otherwise, Wi(c) = void. Let

K∗ =
⋃

Ki . Define W : K∗ → K∗ ∪ {void} by W(c) = Wi(c) for an i-cell c. Then
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Fig. 2 UD2K3,3 and the map W

it is not hard to see that W is well-defined, and each cell in W(K∗) − {void} has

the unique preimage under W , and there is no cell in K∗ that is both an image and

a preimage of other cells under W . For example, each arrow on the right of Fig. 2

points from c to W(c) in UD2K3,3 and the dashed lines represent 1-cells sent to void

under W .

For each pair (c,W(c)) ∈ K∗ × (W(K∗) − {void}), we homotopically collapse

the closure W(c) onto W(c) − (W(c) ∪ c) to obtain a Morse complex UMnΓ of

UDnΓ . Then cells c and W(c) are said to be redundant and collapsible, respectively.

Redundant or collapsible cells disappear in a Morse complex. Cells in W−1(void) −
W(K∗) survive in a Morse complex and are said to be critical. For example, the 0-

cell {1,4} is redundant and the 1-cell {0-1,4} is collapsible in Fig. 2. In fact, there are

one critical 0-cell {0,1}, seven critical 1-cells and three critical 2-cells in the Morse

complex M2K3,3 as shown in Fig. 3.

Farley and Sabalka in [7] gave an alternative description for these three kinds

of cells in UDnΓ as follows: An edge e in a cell c = {c1, . . . , cn−1, e} is order-

respecting if e is not a deleted edge and there is no vertex v in c such that v is

adjacent to τ(e) in T and τ(e) < v < ι(e). A cell is critical if it contains neither



920 Discrete Comput Geom (2012) 48:915–963

Fig. 3 Morse complex

UM2K3,3 of UD2K3,3

order-respecting edges nor unblocked vertices. A cell is collapsible if it contains at

least one order-respecting edge and each unblocked vertex is larger than the initial

vertex of some order-respecting edge. A cell is redundant if it contains at least one

unblocked vertex that is smaller than the initial vertices of all order-respecting edges.

Notice that there is exactly one critical 0-cell {0,1, . . . , n− 1} by the assumption that

there are at least n− 1 edges between 0 and the nearest vertex with valency ≥3 in the

maximal tree.

A choice of a maximal tree of Γ and its planar embedding determine an order on

vertices and in turn a Morse complex UMnΓ that is homotopy equivalent to UDnΓ .

We wish to compute its homology groups via the cellular structure of UMnΓ .

Let (Ci(UDnΓ ), ∂) be the (cubical) cellular chain complex of UDnΓ . For an

i-cell c = {e1, e2, . . . , ei, vi+1, . . . , vn} of UDnΓ such that e1, . . . , ei are edges with

τ(e1) < τ(e2) < · · · < τ(ei) and vi+1, . . . , vn are vertices of Γ , let

∂ ι
k(c) =

{
e1, . . . , ek−1, ek+1, . . . , ei, vi+1, . . . , vn, ι(ek)

}
,

∂τ
k (c) =

{
e1, . . . , ek−1, ek+1, . . . , ei, vi+1, . . . , vn, τ (ek)

}
.

Then we define the boundary map as

∂(c) =

i∑

k=1

(−1)k
(
∂ ι
k(c) − ∂τ

k (c)
)
.

Notice that this definition of ∂ on UDnΓ is different from that in [7] and [12] in

sign convention. This convention seems more convenient in the current work. Let

Mi(UDnΓ ) be the free abelian group generated by critical i-cells. We now try to

turn the graded abelian group {Mi(UDnΓ )} into a chain complex.

Let R : Ci(UDnΓ ) → Ci(UDnΓ ) be a homomorphism defined by R(c) = 0 if

c is a collapsible i-cell, by R(c) = c if c is critical, and by R(c) = ±∂W(c) + c

if c is redundant where the sign is chosen so that the coefficient of c in ∂W(c)

is −1. By [11], there is a nonnegative integer m such that Rm = Rm+1, and

let R̃ = Rm. Then R̃(c) is in Mi(UDnΓ ) and we have a homomorphism R̃ :
Ci(UDnΓ ) → Mi(UDnΓ ). Define a map ∂̃ : Mi(UDnΓ ) → Mi−1(UDnΓ ) by

∂̃(c) = R̃∂(c). Then (Mi(UDnΓ ), ∂̃) forms a chain complex. However, the inclusion

M∗(UDnΓ ) →֒ C∗(UDnΓ ) is not a chain map. Instead, consider a homomorphism
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ε : Mi(UDnΓ ) → Ci(UDnΓ ) defined as follows: For a (critical) i-cell c, ε(c) is ob-

tained from c by minimally adding collapsible i-cells until it becomes closed in the

sense that for each redundant (i − 1)-cell c′ in the boundary of every i-cell summand

in ε(c), W(c′) already appears in ε(c). Then ε is a chain map that is a chain homo-

topy inverse of R̃. Thus (Mi(UDnΓ ), ∂̃) and (Ci(UDnΓ ), ∂) have the same chain

homotopy type.

Example 2.1 Since UM2K3,3 is a nonorientable surface of nonorientable genus 5

as seen in Fig. 2, we easily see that H1(B2K3,3) ∼= Z
4 ⊕ Z2. However, we want

to compute it directly from the chain complex (Mi(UDnK3,3), ∂̃) to demonstrate

discrete Morse theory. In fact, H1(BnK3,3) ∼= H1(B2K3,3) for any braid index n (see

Lemma 3.12) and the existence of a 2-torsion will be needed later.

The Morse complex UM2K3,3 has seven critical 1-cells {0-3,1}, {0-4,1}, {0-4,5},
{1-5,0}, {1-5,2}, {2-4,3}, {3-5,0} and three critical 2-cells {0-3,1-5}, {0-4,1-5},
{0-4,3-5}. We compute the boundary images of critical 2-cells. First,

∂̃
(
{0-3,1-5}

)
= R̃ ◦ ∂

(
{0-3,1-5}

)
= R̃
(
−{1-5,3} + {1-5,0} + {0-3,5} − {0-3,1}

)
.

Since {1-5,0} and {0-3,1} are critical 1-cells, we only consider other two 1-cells.

R̃
(
{1-5,3}

)
= R̃
(
−∂
(
{1-5,2-3}

)
+ {1-5,3}

)
= R̃
(
{2-3,5} − {2-3,1} + {1-5,2}

)

= R̃
(
−{2-3,1}

)
+ {1-5,2} = R̃

(
−∂{2-3,0-1} − {2-3,1}

)
+ {1-5,2}

= R̃
(
−{2-3,0} − {0-1,3} + {0-1,2}

)
+ {1-5,2} = {1-5,2}.

In the above computation, {2-3,5}, {2-3,0}, {0-1,3}, and {0-1,2} are collapsible.

The following computation makes us feel the need of utilities such as Lemma 2.3.

R̃
(
{0-3,5}

)
= R̃
(
∂
(
{0-3,4-5}

)
+ {0-3,5}

)
= R̃
(
{4-5,3} − {4-5,0} + {0-3,4}

)

= R̃
(
{4-5,2}

)
+ R̃
(
−∂{0-3,2-4} + {0-3,4}

)

= R̃
(
{4-5,1}

)
+ R̃
(
{2-4,3} − {2-4,0} + {0-3,2}

)

= R̃
(
{4-5,0}

)
+ {2-4,3} + R̃

(
{0-3,2}

)

= {2-4,3} + R̃
(
{0-3,1}

)
= {2-4,3} + {0-3,1}.

So ∂̃({0-3,1-5}) = −{1-5,2} + {1-5,0} + {2-4,3}. This result can be expressed by a

row vector of coefficients. The boundary images of the other two critical 2-cells give

two more rows. Thus the second boundary map can be expressed by the following

(3 × 7)-matrix and it can be put into an echelon form via row operations.

⎛
⎝

0 0 0 1 −1 1 0

0 −1 1 1 −1 0 0

0 −1 1 0 0 1 0

⎞
⎠→

⎛
⎜⎝

0 −1 1 1 −1 0 0

0 0 0 1 −1 1 0

0 0 0 0 0 2 0

⎞
⎟⎠.
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Fig. 4 Morse complex M2K3,3 of D2K3,3

Since there is only one critical 0-cell, the first boundary map is zero. So the cok-

ernel of the second boundary map is isomorphic to H1(B2K3,3). The free part of

H1(B2K3,3) is generated by critical 1-cells corresponding to columns that do not

contain a pivot (the first nonzero entry in a row). The torsion part of H1(B2K3,3) gen-

erated by critical 1-cells corresponding to a column contains a pivot that is not ±1.

Thus H1(B2K3,3) ∼= Z
4 ⊕ Z2.

2.2 Discrete Morse Theory on DnΓ

The discrete Morse theory on DnΓ is similar to that on UDnΓ except the fact that it

uses ordered n-tuples instead unordered n-tuples.

Let K̃i denote the set of all i-cells of DnΓ and K̃−1 = ∅. Define W̃i : K̃i →
K̃i+1 ∪ {void} for i ≥ −1 by induction on i. Let o = (c1, c2, . . . , cn) be an i-cell. If

o /∈ im(W̃i−1) and there are unblocked vertices in o as an entry and, say, cj is the

smallest unblocked vertex, then W̃i(o) = (c1, c2, . . . , v-cj , . . . , cn) where the edge

v-cj is in T . Otherwise, W̃i(o) = void. Let K̃∗ =
⋃

K̃i . Define W̃ : K̃∗ → K̃∗ ∪
{void} by W̃ (o) = W̃i(o) for an i-cell o. Then W̃ is well-defined and each cell in

W̃ (K̃∗) − {void} has the unique preimage under W̃ , and there is no cell in K̃∗ that is

both an image and a preimage of other cells under W̃ .

Let ρ : DnΓ → UDnΓ be the quotient map defined by ρ(c1, . . . , cn) =
{c1, . . . , cn}. From the definition of W̃ it is easy to see that an i-cell o in DnΓ is

critical (or collapsible or redundant, respectively) if and only if so is an i-cell ρ(o)

in UDnΓ . Note that there are n! critical 0-cells. Critical cells produce a Morse com-

plex MnΓ of DnΓ . Figure 4 is a Morse complex M2K3,3 of D2K3,3. The circular

(respectively square) dots give the critical 0-cell (0,1) (respectively (1,0)).

Given an i-cell o ∈ DnΓ , let ∂ ι
k(o) (∂τ

k (o), respectively) denote the (i − 1)-cell

obtained from o by replacing the kth edge by its initial (terminal, respectively) vertex.

Define

∂(o) =

i∑

k=1

(−1)k∂ ι
k(o) − ∂τ

k (o).

Then (Ci(DnΓ ), ∂) forms a (cubical) cellular chain complex. Let Mi(DnΓ ) be the

free abelian group generated by critical i-cells. The reduction homomorphism R̃ :
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Ci(DnΓ ) → Mi(DnΓ ) is also well-defined. For ∂̃ = R̃ ◦ ∂ , (Mi(DnΓ ), ∂̃) forms a

Morse chain complex that is chain homotopy equivalent to (Ci(DnΓ ), ∂).

In order to carry over some of computational results on UDnΓ to DnΓ , we

introduce a bookkeeping notation. Give an order among vertices and edges of Γ

by comparing the number assigned to vertices or terminal vertices of edges. De-

fine a projection φ : DnΓ → Sn by sending o = (c1, . . . , cn) to the permutation σ

such that cσ(1) < · · · < cσ(n). And define a bijection Φ : DnΓ → UDnΓ × Sn by

Φ(o) = (ρ(o),φ(o)). For example, Φ((1-3,2)) = ({1-3,2}, id) and Φ((4,3-5)) =
({4,3-5}, (1,2)) where id is the identity permutation. The maps W̃ , ∂ , R̃, and ∂̃ are

carried over to K∗ × Sn, C∗(UDnΓ ) × Sn, and M∗(UDnΓ ) × Sn by conjugating

with Φ . For example, the ith boundary homomorphism on M∗(UDnΓ )×Sn is given

by Φ ◦ ∂̃ ◦ Φ−1. To make the notation more compact, an element (c, σ ) ∈ K∗ × Sn

will be denoted by cσ .

Example 2.2 Let Γ be K3,3 and a maximal tree and an order be given as in Fig. 1.

We want to compute H1(P2K3,3) which will be used later.

From Fig. 4, one can see that H1(P2K3,3) ∼= Z
8. But we want to demonstrate how

to compute H1(P2K3,3) using the Morse chain complex. Let σ be the permutation

(1,2) ∈ S2. There are two critical 0-cells {0,1}id, {0,1}σ . There are fourteen criti-

cal 1-cells {0-3,1}id, {0-3,1}σ , {0-4,1}id, {0-4,1}σ , {0-4,5}id, {0-4,5}σ , {1-5,0}id,

{1-5,0}σ , {1-5,2}id, {1-5,2}σ , {2-4,3}id, {2-4,3}σ , {3-5,0}id, {3-5,0}σ and their im-

age under ∂̃ is as follows:

∂̃
(
{0-3,1}id

)
= R̃
(
−{1,3}σ + {0,1}id

)
= −{0,1}σ + {0,1}id

since R̃({1,3}σ ) = R̃(∂({0-1,3}σ ) + {1,3}σ ) = R̃({0,3}σ ) = · · · = {0,1}σ (see

Lemma 3.18). So ∂̃({0-3,1}σ ) = −{0,1}id + {0,1}σ because of σ 2 = id. Similarly

we can compute images of critical 1-cells as follows:

∂̃
(
{0-4,1}id

)
= ∂̃
(
{1-5,2}id

)
= ∂̃
(
{2-4,3}id

)
= −{0,1}σ + {0,1}id

∂̃
(
{0-4,5}id

)
= ∂̃
(
{1-5,0}id

)
= ∂̃
(
{3-5,0}id

)
= 0.

There are six critical 2-cells {0-3,1-5}id, {0-3,1-5}σ , {0-4,1-5}id, {0-4,1-5}σ ,

{0-4,3-5}id, {0-4,3-5}σ . We compute boundaries for the first two:

∂̃
(
{0-3,1-5}id

)
= R̃
(
−{1-5,3}σ + {1-5,0}id + {0-3,5}id − {0-3,1}id

)
.

Since {1-5,0}id and {0-3,1}id are critical 1-cells, we only consider other two 1-cells.

R̃
(
{1-5,3}σ

)
= R̃
(
−∂
(
{1-5,2-3}σ

)
+ {1-5,3}σ

)

= R̃
(
{2-3,5}id − {2-3,1}σ + {1-5,2}σ

)
= {1-5,2}σ

since R̃({2-3,1}) = 0 and no critical 1-cell appears in the process of computing

R̃({2-3,1}) (see Example 2.1).

R̃
(
{0-3,5}id

)
= R̃
(
{0-3,4}id

)
= R̃
(
−∂
(
{0-3,2-4}id

)
+ {0-3,4}id

)



924 Discrete Comput Geom (2012) 48:915–963

= R̃
(
{2-4,3}σ − {2-4,0}id + {0-3,2}id

)

= {2-4,3}σ + R̃
(
{0-3,1}id

)
= {2-4,3}σ + {0-3,1}id.

So ∂̃({0-3,1-5}id) = −{1-5,2}σ + {1-5,0}id + {2-4,3}σ . This implies ∂̃({0-3,

1-5}σ ) = −{1-5,2}id + {1-5,0}σ + {2-4,3}id.

Over these critical cells, the second boundary map is represented by the following

matrix.
⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 1 −1 0 1 0 0 0

0 0 −1 0 1 0 1 0 0 −1 0 0 0 0

0 0 0 −1 0 1 0 1 −1 0 0 0 0 0

0 0 −1 0 1 0 0 0 0 0 1 0 0 0

0 0 0 −1 0 1 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the kernel of the first boundary map is generated by either o or o ± {0-3,1}id

for all other critical 1-cells o, the matrix obtained from the above matrix by deleting

the first column is a presentation matrix of H1(P2K3,3). Using row operations on the

presentation matrix, we obtain the following echelon form.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 1 0 1 0 0 −1 0 0 0 0

0 0 −1 0 1 0 1 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 1 1 0 0 0

0 0 0 0 0 0 −1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus H1(P2K3,3) ∼= Z
8.

2.3 The Second Boundary Homomorphism

To give a general computation of the second boundary homomorphism ∂̃ on a Morse

complex, we first exhibit redundant 1-cells whose reductions are straightforward and

then explain how to choose a maximal tree of a given graph to take advantage of these

simple reductions.

Let Γ be a graph and T be a maximal tree of Γ . Let c be a redundant i-cell in

UDnΓ , v be an unblocked vertex in c and e be the edge in T starting from v. Let

Ve(c) denote the i-cell obtained from c by replacing v by τ(e). Define a function

V : Ki → Ki by V (c) = Ve(c) if c is redundant and ι(e) is the smallest unblocked

vertex in c, and by V (c) = c otherwise. The function V should stabilize to a function

Ṽ : Ki → Ki under iteration, that is, Ṽ = V m for some nonnegative integer m such

that V m = V m+1.

Lemma 2.3 (Kim–Ko–Park [12]) Let c be a redundant cell and v be an unblocked

vertex. Suppose that for the edge e starting from v, there is no vertex w that is either in

c or an end vertex of an edge in c and satisfies τ(e) < w < ι(e). Then R̃(c) = R̃Ve(c).
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We continue to define more notation and terminology. For each vertex v in Γ , there

is a unique edge path γv from v to the base vertex 0 in T . For vertices v, w in Γ ,

v ∧ w denotes the vertex that is the first intersection between γv and γw . Obviously,

v ∧ w ≤ v and v ∧ w ≤ w. The number assigned to the branch of v occupied by

the path from v to w in T is denoted by g(v,w). If v = w ∧ v, g(v,w) ≥ 1 and if

v > w ∧ v, g(v,w) = 0. An edge e in Γ is said to be separated by a vertex v if ι(e)

and τ(e) lie in two distinct components of T −{v}. It is clear that only a deleted edge

can be separated by a vertex. If a deleted edge d is not separated by v, then ι(d),

τ(d), and ι(d) ∧ τ(d) are all in the same component of T − {v}.
For redundant 1-cells, we can strengthen the above lemma as follows.

Lemma 2.4 (Special Reduction) Let c be a redundant 1-cell containing an edge p.

Suppose the redundant 1-cell c has an unblocked vertex v and the edge e starting

from v satisfies the following:

(a) Every vertex w in c satisfying τ(e) < w < ι(e) is blocked.

(b) If an end vertex w of p satisfies τ(e) < w < ι(e) then p is not separated by τ(e).

Then R̃(c) = R̃Ve(c). Therefore if p is not a deleted edge then R̃(c) = R̃Ṽ (c).

Proof Assume that both ends of p are not between τ(e) and ι(e). Since p is the only

edge in c that can initiate a blockage, it is impossible to have a vertex between τ(e)

and ι(e) due to the condition (a). Then we are done by Lemma 2.3.

Assume that an end of p is between τ(e) and ι(e). By the condition (b), both ι(p)

and τ(p) are in the same component Tp of T −{τ(e)} and are between τ(e) and ι(e).

For a vertex w in Tp , cw denotes the 1-cell obtained from c by replacing v by e and

p by w. We will show that R̃(cι(p)) = R̃(cτ(p)). Then

R̃(c) = R̃Ve(c) ±
{
R̃(cι(p)) − R̃(cτ(p))

}
= R̃Ve(c)

where the sign ± is determined by the order between the terminal vertices of p and e.

Let W be the set of all 1-cells obtained from cι(p) replacing vertices in Tp by

vertices that are also in Tp . If c′ ∈ W has no unblocked vertex in Tp then c′ is unique

because Γ is suitably subdivided. This 1-cell is denoted by cp . If c′ ∈ W has an

unblocked vertex in Tp , let u be the smallest unblocked vertex in Tp and e′ be the

edge starting from u. Then c′ and u satisfy the hypothesis of Lemma 2.3 since e

is the only edge in c′ and every vertex in T − Tp is not between τ(e) and ι(e). So

R̃(c′) = R̃Ve′(c′). By iterating this argument, we have R̃(cι(p)) = R̃(cp) = R̃(cτ(p))

because Ve′(c′) is also in the finite set W .

If p is not a deleted edge, then the condition (b) always holds and so c

and the smallest unblocked vertex in c satisfy the hypothesis of this lemma. So

R̃(c) = R̃V (c). By repeating the argument, we have R̃(c) = R̃Ṽ (c). �

For an oriented discrete configuration space DnΓ , the statement corresponding to

Lemma 2.3 holds at least for n = 2 (see Lemma 3.18), but the statement correspond-

ing to Lemma 2.4 is false in general.
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Fig. 5 The graph Γ

For example, let Γ be the graph in Fig. 5. We consider the critical 2-cell

o = (2-12,6-9,7) in D3Γ . In the unordered case, opposite sides have the same im-

ages under Ṽ but Ṽ ((2-12,6,7)) = (2-12,3,4) and Ṽ ((2-12,9,7)) = (2-12,4,3).

Furthermore,

R̃
(
(12,6-9,7)

)
= R̃
(
(11,6-9,7)

)

= R̃
(
(4,6-9,7) − (4-11,6,7) + (4-11,9,7)

)

= (0,6-9,7) − (4-11,5,6) + (4-11,6,5)

�= Ṽ
(
(12,6-9,7)

)
.

Discrete Morse theory can be powerful in discrete situations but we need to reduce

the number of instances to be investigated and the amount of computation involved

for each instance. In our situation, it is important to choose a nice maximal tree and

its planar embedding. The following lemma make such choices which will be used

throughout the article. For example, the Morse complex induced from such choices

has the second boundary map describable by using Lemma 2.4.

From now on, we assume that every graph is suitably subdivided, finite, and con-

nected unless stated otherwise. When n = 2, it is convenient to additionally assume

that each path between two vertices of valency �= 2 in a suitably subdivided graph

contains at least two edges.

Lemma 2.5 (Maximal Tree and Order) For a given graph Γ , there is a maximal tree

and its planar embedding so that the induced order on vertices satisfies:

(T1) The initial vertices of all deleted edges are vertices of valency 2.

(T2) Every deleted edge d is not separated by any vertex v such that v < τ(d).

(T3) If the kth branch of a vertex v has the property that v separates a deleted edge

d and g(v, ι(d)) = k, and the j th branch of v does not have the property, then

j < k.

Proof We construct a desired maximal tree in the following three steps.

(I) Choice of a base vertex 0 on Γ We assign 0 to a vertex v such that v is of

valency 1 in Γ or Γ − {v} is connected if there is no vertex of valency 1. This

is necessary to make the base vertex have valency 1 in a maximal tree so that

there is one critical 0-cell.

(II) Choice of deleted edges We consider a metric on Γ such that each edge is of

length 1.

(1) Delete an edge nearest from 0 on a circuit nearest from 0.

(2) Repeat (1) until the remainder is a tree T .

Then the order on vertices obtained by any planar embedding p of T satisfies

the conditions (T1) and (T2) since the terminal vertices of all deleted edges are

of valency ≥3 in Γ .
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Fig. 6 Modification of a branch

Fig. 7 Choice of a maximal

tree of K5

Fig. 8 Order on the maximal

tree of K5

(III) Modification of a planar embedding If the order on vertices obtained by p does

not satisfy the condition (T3), then there are a vertex A with valency ≥3 on T

and branches j of A that violate (T3). The base vertex 0 and branches j do not

lie on the same component of Γ − {A}. We slide the components containing

branches j over other branches so that every branch of A satisfies (T3) (see

Fig. 6). We repeat this process until the induced order satisfies (T3). �

From now on, we assume that we always choose a maximal tree and its embedding

as given in Lemma 2.5.

Example 2.6 A maximal tree of K5 and its planar embedding according to Lemma 2.5

for n = 4 are given in Figs. 7 and 8.

When we work with an arbitrary graph Γ of an arbitrary index n, it is convenient

to represent cells of UDnΓ by using the following notation used in [7, 12]. Let A

be a vertex of valency μ + 1 (≥ 3) in a maximal tree of Γ . Starting from the branch

clockwise next to the branch joining to the base vertex, we number branches incident

to A clockwise. Let �a be a vector (a1, . . . , aμ) of nonnegative integers and let |�a| =∑μ
i=1 ai . And �δk denotes the kth coordinate unit vector. Then for 1 ≤ k ≤ μ, Ak(�a)

denotes the set consisting of one edge e with τ(e) = A that lies on the kth branch

together with ai blocked vertices that lie on the ith branch. Sometimes the edge e is

denoted by Ak . Note that this definition is a little different from the one used in [7, 12]

but is more convenient in this work. For 1 ≤ s ≤ n, 0s denotes the set {0,1, . . . , s −1}
of s consecutive vertices from the base vertex. Let Ȧ(�a) denote the set of vertices

consisting of A together with ai blocked vertices that lie on the ith branch and let

A(�a) = Ȧ(�a) − {A}. Then A(�a) can be obtained from Ak(�a − �δk) by replacing an
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edge e with ι(e). Every critical i-cell is represented by the following union:

A1
k1

(
�a1
)
∪ · · · ∪ Aℓ

kℓ

(
�aℓ
)
∪ {d1, . . . , dq} ∪ {v1, . . . , vr} ∪ 0s,

where A1, . . . ,Aℓ are vertices of valency ≥3, and d1, . . . , dq are deleted edges, and

v1, . . . , vr are blocked vertices blocked by deleted edges. Furthermore, since s is

uniquely determined by s = n− (ℓ+|�a1|+ · · ·+ |�aℓ|+q + r), we will omit 0s in the

notation. Let �a − 1 denote the vector obtained from �a by subtracting 1 from the first

positive entry. Then �a − α denotes the vector obtained from �a by iterating the above

operation α times. Define p(�a) = i if ai is the first nonzero entry of �a. For 1 ≤ k ≤ μ,

set (�a)k = (a1, . . . , ak−1,0, . . . ,0) and |�a|k = a1 + · · · + ak−1.

By condition (T1), there are no vertices blocked by the initial vertex of any deleted

edge. Let d(�a) denote the set consisting of a deleted edge d together with ai blocked

vertices that lie on the ith branch of τ(d) for each i. Every critical 2-cell can be

represented by one of the following forms:

Ak(�a) ∪ Bℓ(�b), Ak(�a) ∪ d(�b), d(�a) ∪ d ′(�b)

where A and B are vertices of valency ≥3 in T , d and d ′ are deleted edges. Condition

(T2) implies that there is no pair of edges such that the terminal vertex of one edge

separates the other edge and vice versa. So we need not handle this troublesome case.

Condition (T3) will be used in Sect. 3.1.

The following notation is useful in describing images under the second boundary

map:

A(�a, ℓ) = R

(
|�a|∑

α=0

Ap(�a−α)

(
(�a − α) − �δp(�a−α) + �δℓ

)
)

where A is a vertex of valency ≥3, �a is a vector defined at A, and 1 ≤ ℓ ≤ μ. It is

straightforward to see that a sum of critical 1-cells represented by this notation has

the following properties.

Proposition 2.7

(i) If am = bm for all m > ℓ, then A(�a, ℓ) = A(�b, ℓ).

(ii) If p(�a) > ℓ, then A(�a, ℓ) − A(�a − 1, ℓ) = R(Ap(�a)(�a − �δp(�a) + �δℓ)).

As mentioned above, there are three types of critical 2-cells. We will describe the

images of each of these three types under ∂̃ . Since an edge Ak is never separated

by any vertex, Lemma 2.5 implies ∂̃(Ak(�a) ∪ Bℓ(�b)) = 0, which was first proved by

Farley and Sabalka in [7]. So we consider the remaining two types. To help grasp the

idea behind, examples are followed by general formulae.

Example 2.8 Let Γ be K5 and a maximal tree and an order be given as in Exam-

ple 2.6. We want to compute ∂̃(c) for the 2-cell c = B3(1,0,1) ∪ d2 in M2(UD4Γ )

(see Fig. 9).
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Fig. 9 B3(1,0,1) ∪ d2

Since τ(d2) < B , using ∂̃ = R̃∂ and Lemma 2.3 we have

∂̃(c) = R̃
(
B(1,0,2) ∪ d2

)
− R̃
(
Ḃ(1,0,1) ∪ d2

)

− R̃
(
B3(1,0,1) ∪ ι(d2)

)
+ B3(1,0,1)

= R̃
(
B(0,0,2) ∪ d2

)
− R̃
(
B(0,0,1) ∪ d2

)
− B3(1,1,1) + B3(1,0,1).

Since B3(0,0,1) ∪ d2 is collapsible, using Lemma 2.3 we have

0 = ∂̃R̃
(
B3(0,0,1) ∪ d2

)
= R̃∂

(
B3(0,0,1) ∪ d2

)

= R̃
(
B(0,0,2) ∪ d2 − Ḃ(0,0,1) ∪ d2 − B3(0,0,1) ∪ ι(d2) + B3(0,0,1)

)

= R̃
(
B(0,0,2) ∪ d2

)
− R̃
(
B(0,0,1) ∪ d2

)
− B3(0,1,1).

Similarly,

0 = ∂̃R̃(B3 ∪ d2) = R̃∂(B3 ∪ d2)

= R̃
(
B(0,0,1) ∪ d2 − {B} ∪ d2 − B3 ∪ ι(d2) + B3

)

= R̃
(
B(0,0,1) ∪ d2

)
− d2 − B3(0,1,0).

So

∂̃(c) = B3(1,0,1) − B3(1,1,1) + B3(0,1,1)

= B3(1,0,1) − B3(1,1,1) − B
(
(1,0,1),2

)
+ B
(
(1,0,2),2

)
.

Lemma 2.9 (Boundary Formula I) Let c = Ak(�a) ∪ d(�b) and ℓ = g(A, ι(d)). If d is

separated by A, then

∂̃(c) = Ak(�a) − Ak(�a + �δℓ) − A(�a, ℓ) + A(�a + �δk, ℓ).

Otherwise, ∂̃(c) = 0.

Proof Let B = τ(d). Then

∂̃(c) = R̃∂
(
Ak(�a) ∪ d(�b)

)

= ±R̃
(
Ȧ(�a) ∪ d(�b) − A(�a + �δk) ∪ d(�b) − Ak(�a) ∪ Ḃ(�b)

+ Ak(�a) ∪ B(�b) ∪
{
ι(d)
})

where the sign is determined by the order between A and B .
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Fig. 10 d6(0,1) ∪ d4

Since Ak is not separated by any vertex, Lemma 2.4 implies R̃(Ak(�a) ∪ Ḃ(�b)) =
R̃ ◦ Ṽ (Ak(�a)∪ Ḃ(�b)) and R̃(Ak(�a)∪B(�b)∪{ι(d)}) = R̃ ◦ Ṽ (Ak(�a)∪B(�b)∪{ι(d)}).

Assume that d is not separated by A. Then Ṽ (Ak(�a)∪ Ḃ(�b)) = Ṽ (Ak(�a)∪B(�b)∪
{ι(d)}). So we only consider R̃(Ȧ(�a)∪d(�b)−A(�a + �δk)∪d(�b)). Let C be the unique

largest vertex of valency ≥3 such that C < A. Since d is not separated by any vertex

between C and A, Lemma 2.3 implies R̃(Ȧ(�a) ∪ d(�b)) = R̃(C((|�a| + 1)�δg(C,A)) ∪

d(�b)) = R̃(A(�a + �δk) ∪ d(�b)). Thus ∂̃(c) = 0.

Assume that d is separated by A. By condition (T1) on our maximal tree, A > B

= τ(d) and so the negative sign is valid in the expression of ∂̃(c) above. Lemma 2.4

implies R̃(Ak(�a) ∪ Ḃ(�b)) = Ak(�a) and R̃(Ak(�a) ∪ B(�b) ∪ {ι(d)}) = R̃ ◦ Ṽ (Ak(�a +
�δℓ) ∪ B(�b)) = Ak(�a + �δℓ). Let m = g(B,A). Since R̃(Ȧ(�a) ∪ d(�b)) = R̃(A(�a) ∪
d(�b + �δm)), it is sufficient to prove the formula

R̃
(
A(�a) ∪ d(�b)

)
= d
(
�b + |�a|�δm

)
+ A(�a, ℓ).

We use the induction on |�a|.

R̃
(
A(�a) ∪ d(�b)

)

= R̃
(
Ȧ(�a − 1) ∪ d(�b) + Ap(�a)(�a − �δp(�a)) ∪ B(�b) ∪

{
ι(d)
})

− R̃
(
Ap(�a)(�a − �δp(�a)) ∪ Ḃ(�b)

)

= R̃
(
A(�a − 1) ∪ d(�b + �δm) + Ap(�a)(�a + �δℓ − �δp(�a)) − Ap(�a)(�a − �δp(�a))

)

= d
(
�b + |�a|�δm

)
+ A(�a − 1, ℓ) + R

(
Ap(�a)(�a + �δℓ − �δp(�a))

)

= d
(
�b + |�a|�δm

)
+ A(�a, ℓ).

Notice that Ap(�a)(�a − �δp(�a)) is collapsible. It is easy to verify the formula for

|�a| = 1. �

Let d and d ′ be deleted edges such that τ(d) > τ(d ′), C = ι(d) ∧ ι(d ′),

ℓ = min{g(C, ι(d)), g(C, ι(d ′))} and k = max{g(C, ι(d)), g(C, ι(d ′))}. Then we de-

fine
∧(

d, d ′
)
= Ck(�δℓ).

Example 2.10 Let Γ be K5 and a maximal tree and an order be given as in Exam-

ple 2.6. We want to compute ∂̃(c) for the 2-cell c = d6(0,1) ∪ d4 in M2(UD4Γ ) (see

Fig. 10).
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Since τ(d4) < τ(d6), using ∂̃ = R̃∂ and Lemma 2.3, we have

∂̃(c) = R̃
(
A(0,1) ∪

{
ι(d6)
}

∪ d4

)
− R̃
(
Ȧ(0,1) ∪ d4

)

− R̃
(
d6(0,1) ∪ ι(d4)

)
+ R̃
(
d6(0,1) ∪ τ(d4)

)

= R̃
(
B(0,0,1) ∪ d4(1)

)
− d4(2) − d6(0,2) + d6(0,1).

Since B3 ∪ d4(1) is collapsible, using Lemma 2.3 we have

0 = ∂̃R̃
(
B3 ∪ d4(1)

)
= R̃∂

(
B3 ∪ d4(1)

)

= R̃
(
B(0,0,1) ∪ d4(1) − {B} ∪ d4(1) − B3 ∪ ι(d4) + B3

)

= R̃
(
B(0,0,1) ∪ d4(1)

)
− d4(2) − B3(1,0,0).

So

∂̃(c) = d6(0,1) − d6(0,2) +
{
d4(2) + B3(1,0,0)

}
− d4(2)

= d6(0,1) − d6(0,2) +
∧

(d6, d4).

Lemma 2.11 (Boundary Formula II) Let c = d(�a) ∪ d ′(�b) such that τ(d) > τ(d ′)

and let A = τ(d), k = g(A, ι(d)), and ℓ = g(A, ι(d ′)). If d ′ is separated by A, then

∂̃(c) = d(�a) − d(�a + �δk) − A(�a, ℓ) + A(�a + �δk, ℓ) + ε ∧
(
d, d ′
)

where ε = 0 for k �= ℓ, ε = −1 for k = ℓ and ι(d) < ι(d ′), and ε = 1 for k = ℓ and

ι(d ′) < ι(d). Otherwise, ∂̃(c) = 0.

Proof Let B = τ(d ′). Then A = τ(d) > B . So

∂̃(c) = R̃
(
A(�a) ∪ d ′(�b) ∪

{
ι(d)
}

− Ȧ(�a) ∪ d ′(�b) − d(�a) ∪ B(�b) ∪
{
ι
(
d ′
)}

+ d(�a) ∪ Ḃ(�b)
)
.

Note that d is not separated by B . Assume d ′ is not separated by A. By Lemma 2.4,

R̃(A(�a) ∪ d ′(�b) ∪ {ι(d)}) = R̃(Ȧ(�a) ∪ d ′(�b)), R̃(d(�a) ∪ B(�b) ∪ {ι(d ′)}) = R̃(d(�a) ∪
Ḃ(�b)) and so ∂̃(c) = 0.

Now assume that d ′ is separated by A. If k �= ℓ, then d ′ (and d , respectively) is not

separated by any vertex other than A on the path between A and ι(d) (and ι(d ′)). So

we see that R̃(A(�a) ∪ d ′(�b) ∪ {ι(d)}) = R̃(A(�a + �δk) ∪ d ′(�b)) and R̃(d(�a) ∪ B(�b) ∪
{ι(d ′)}) = R̃(d(�a + �δℓ) ∪ B(�b)).

Assume k = ℓ. Let C = ι(d) ∧ ι(d ′), m = g(C, ι(d ′)) and p = g(C, ι(d)). Then

A < C. If ι(d) < ι(d ′), then p < m and so Lemma 2.4 implies

R̃
(
A(�a) ∪ d ′(�b) ∪

{
ι(d)
})

= R̃
(
A(�a + �δk) ∪ d ′(�b)

)
.

And we have
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R̃
(
d(�a) ∪ B(�b) ∪

{
ι
(
d ′
)})

= R̃
(
d(�a) ∪ B(�b) ∪ {C} + A(�a) ∪ B(�b) ∪ Cm(δm) ∪

{
ι(d)
})

− R̃
(
Ȧ(�a) ∪ B(�b) ∪ Cm(�δm)

)

= R̃
(
d(�a + �δℓ) ∪ B(�b)

)
+ R̃
(
A(�a) ∪ B(�b) ∪

∧(
d, d ′
))

= R̃
(
d(�a + �δℓ) ∪ B(�b)

)
+
∧(

d, d ′
)
.

Finally if ι(d ′) < ι(d), then m < p and so Lemma 2.4 implies

R̃
(
A(�a) ∪ d ′(�b) ∪

{
ι(d)
})

= R̃
(
A(�a) ∪ d ′(�b) ∪ {C} − A(�a) ∪ B(�b) ∪ Cp(δp) ∪

{
ι
(
d ′
)})

+ R̃
(
A(�a) ∪ Ḃ(�b) ∪ Cp(�δp)

)

= R̃
(
A(�a + �δk) ∪ d ′(�b)

)
+ R̃
(
A(�a) ∪ B(�b) ∧

(
d, d ′
))

= R̃
(
A(�a + �δk) ∪ d ′(�b)

)
+
∧(

d, d ′
)
.

And we have

R̃
(
d(�a) ∪ B(�b) ∪

{
ι
(
d ′
)})

= R̃
(
d(�a + �δℓ) ∪ B(�b)

)
.

The remaining part can be proved by the same argument as in the proof of

Lemma 2.9. �

To prove that for planar graphs the first homologies of graph braid groups are

torsion-free, we need an additional requirement. So we modify Lemma 2.5 for planar

graphs as follows.

Lemma 2.12 (Maximal Tree and Order for Planar Graph) For a given planar graph

Γ , there is a maximal tree and its planar embedding so that the induced order on

vertices satisfies (T1), (T2), and (T3) in Lemma 2.5, and additionally

(T4) If τ(d ′) < τ(d) and g(τ(d), ι(d)) = g(τ(d), ι(d ′)) then ι(d) < ι(d ′).

Proof Since Γ is suitably subdivided, each path between two vertices of valency �= 2

passes through at least 2 edges.

(I) Choices of a base vertex 0 and a planar embedding We assign 0 to a vertex v

such that v is of valency 1 in Γ or Γ − {v} is connected if there is no vertex of

valency 1. Choose a planar embedding of Γ such that the base vertex 0 lies in

the outmost region. Let T = Γ . Go to Step II.

(II) Choice of deleted edges Take a regular neighborhood R of T . As traveling the

outmost component of ∂R clockwise from the base vertex until either coming

back to 0 or meeting an edge that is on a circuit. If the former is the case, we are

done. If the latter is the case, delete the edge and let T be the rest. Repeat Step II.
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Fig. 11 Relative locations of

two deleted edges

Fig. 12 The maximal tree and the order on K4

Then the order on vertices obtained by traveling a regular neighborhood R of

the maximal tree T clockwise from 0 satisfies conditions (T1) and (T2) since the

terminal vertices of all deleted edges are vertices of valency ≥3 in Γ . Moreover, if

τ(d ′) < τ(d) and g(τ(d), ι(d)) = g(τ(d), ι(d ′)) for two deleted edges d and d ′ then

there are two possibilities as in Fig. 11 since there is no intersection of the two edges.

But Step II prevents the possibility of Fig. 11(b) from occurring. So the order satisfies

condition (T4).

Suppose that there is a vertex A with valency ≥3 on T and branches of A that

violate condition (T3). Step II guarantees that the base vertex 0 and the branches do

not lie on the same component of Γ − {A}. So we can modify the planar embedding

of Γ as in Lemma 2.5 to make A satisfy condition (T3) while maintaining condi-

tion (T4) because the modification neither changes the maximal tree T nor creates

the unwanted possibility of Fig. 11(b). �

Example 2.13 A maximal tree and an order on K4 for n = 3, which satisfy

Lemma 2.12 (see Fig. 12).

Condition (T4) implies that there are no critical 2-cells whose boundary images

correspond to the case ε = 1 in Lemma 2.11. Note that condition (T4) implies that

the given graph is planar. Thus a given graph has a maximal tree and an order on

vertices satisfies conditions (T1)–(T4) if and only if the graph is planar.

3 First Homologies

We will derive formulae for H1(BnΓ ) and H1(P2Γ ) in terms of graph-theoretical

quantities. We will characterize presentation matrices for H1(BnΓ ) over bases given

by critical 2-cells and critical 1-cells in Sect. 3.1 and will count the number of rel-

evant critical 1-cells in terms of graph-theoretical quantities in Sect. 3.2. A parallel

discussion for H1(P2Γ ) will be presented in Sect. 3.3.
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3.1 Presentation Matrices

A presentation matrix of H1(BnΓ ) is determined by the second boundary homomor-

phism over bases given by critical 2-cells and critical 1-cells. We will give orders on

critical 1-cells and critical 2-cells to easily locate pivots and zero rows in the presen-

tation matrices.

The number of critical cells enormously grows in both the size of graph and the

braid index. For example, consider K5 with braid index 4 and its maximal tree and

an order given in Example 2.6. The numbers of critical 1-cells of the form Ak(�a) and

d(�a) are 58 and 21. And the numbers of critical 2-cells of the form Ak(�a) ∪ Bℓ(�b),

Ak(�a)∪d(�b) and d(�a)∪d ′(�b) are 15, 167 and 56. So we have a presentation matrix of

the size 238×79. Fortunately, rows of the matrix are highly dependent. The following

lemmas illustrates some points of this phenomenon.

Lemma 3.1 (Dependence Among Boundary Images I)

(1) ∂̃(Ak(�a) ∪ d ′(�b)) = ∂̃(Ak(�a) ∪ d ′).

(2) ∂̃(d(�a) ∪ d ′(�b)) = ∂̃(d(�a) ∪ d ′) for τ(d) > τ(d ′).

Proof We can observe that the boundary images in Lemmas 2.9 and 2.11 are inde-

pendent of �b and depend only on the initial vertex of the first edge whose terminal

vertex is less than ends of the second edge. �

Lemma 3.2 (Dependence Among Boundary Images II)

(1) If A separates d ′ and d ′′ and g(A, ι(d ′)) = g(A, ι(d ′′)), then

∂̃
(
Ak(�a) ∪ d ′

)
= ∂̃
(
Ak(�a) ∪ d ′′

)
.

(2) If τ(d) separates d ′ and d ′′ and g(τ(d), ι(d)) �= g(τ(d), ι(d ′)) = g(τ(d), ι(d ′′)),

then

∂̃
(
d(�a) ∪ d ′

)
= ∂̃
(
d(�a) ∪ d ′′

)
.

(3) If τ(d) separates d ′ and d ′′ and g(τ(d), ι(d)) = g(τ(d), ι(d ′)) = g(τ(d), ι(d ′′)),

then

∂̃
(
d(�a) ∪ d ′ − d(�a) ∪ d ′′

)
= ±
(∧(

d, d ′
)
±
∧(

d, d ′′
))

.

Proof Immediate from Lemmas 2.9 and 2.11. �

Using the lemmas, we can reduce the size of the presentation matrix of H1(B4K5)

to 91 × 79 by ignoring zero rows. We will see that the number of rows is still large

compared to the number of pivots. In order to find pivots systematically, we need to

order critical cells.

Define the size s(c) of a critical 1-cell c to be the number of vertices blocked by

the edge in c; more precisely, define s(c) = |�a| for c = Ak(�a) or c = d(�a). Define the

size s(c) of a critical 2-cell c to be the number of vertices blocked by the edge in c

that has the larger terminal vertex.
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We assume that a set of m-tuples is always lexicographically ordered in the discus-

sion below. For edges e, e′, Declare e > e′ if e is a deleted edge and e′ is an edge on

T or if both are either deleted edges or edges on T and (τ (e), ι(e)) > (τ(e′), ι(e′)).

The set of critical 1-cells c is linearly ordered by triples (s(c), e, �a) where c is given

by either Ak(�a) or d(�a). The following lemma motivates this order.

Lemma 3.3 (Leading Coefficient) Let c be a critical 2-cell containing two edges e

and e′ such that τ(e) > τ(e′). Assume that �a represent vertices blocked by τ(e) in c. If

∂̃(c) �= 0 then the largest summand in ∂̃(c) has the triple (s(c)+1, e, �a+�δg(τ(e),ι(e′))).

Furthermore, if e is a deleted edge d , then the largest summand is −d(�a +
�δg(τ(e),ι(e′))) and if e is on T , then the largest summand is −Ak(�a + �δg(τ(e),ι(e′)))

where A = τ(e) and k = g(A, ι(e)).

Proof By Lemmas 2.9 and 2.11 we see that ∂̃(c) is determined by e, �a and τ(e′).

Using the order on critical 1-cells, it is easy to verify the lemma. �

In the view of this lemma, it is natural to order critical 2-cells as follows. For a

critical 2-cell c, let e and e′ denote edges in c such that τ(e) > τ(e′) and �a and �a′

represent vertices blocked by e and e′, respectively. The set of critical 2-cells c is

linearly ordered by 6-tuples

(
s(c), e, �a + �δg(τ(e),ι(e′)), g

(
τ(e), ι

(
e′
))

, e′, �a′
)
.

Then the first three terms determine the largest summand in ∂̃(c). The fourth term

helps to find the boundary image of c other than a summand of the form
∧

(d, d ′)

and the last two terms are added to make the order linear.

Lemma 3.3 implies that the second boundary homomorphism ∂̃ is represented

by a block-upper-triangular matrix over bases of critical 2-cells and critical 1-cells

ordered reversely. In fact, the presentation matrix is divided into blocks by s(c) and

each block is further divided into smaller blocks by the value e of 6-tuples. The first

column of each diagonal block is a vector of −1. The −1 entry at the lower left corner

of each diagonal block will be called a pivot and a critical 2-cell corresponding to a

pivotal row is said to be pivotal. In other word, a pivotal 2-cell is the smallest one

among all critical 2-cells that have the same (up to sign) largest summand in their

boundary images. The following lemma says that non-pivotal rows turn into a zero

row with few exceptions under row operations.

Lemma 3.4 (Non-pivotal Rows) Let c be a non-pivotal critical 2-cell such that

∂̃(c) �= 0. If s(c) ≥ 1, then the row corresponding to c is a linear combination of

rows below. If s(c) = 0, then the row corresponding to c is either a linear combina-

tion of rows below or made into a row consisting of only two nonzero entries that are

±1 by row operations.

Proof Assume e′ is a deleted d ′ separated by τ(e) since ∂̃(c) = 0 otherwise. We may

also assume that c is the smallest among all critical 2-cells whose boundary images

equal to ∂̃(c). Then by Lemmas 3.1 and 3.2, the 6-tuple for c is given by

(
s(c), e, �a + �δg(τ(e),ι(d ′)), g

(
τ(e), ι

(
d ′
))

, d ′,0
)
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so that there is no smaller deleted edge d ′′ separated by τ(e) satisfying g(τ(e),

ι(d ′)) = g(τ(e), ι(d ′′)). Set k = g(τ(e), ι(e)) and ℓ = g(τ(e), ι(d ′)).

There are three possibilities: (I) s(c) ≥ 1 and c = d(�a) ∪ d ′, (II) s(c) ≥ 1 and

c = Ak(�a) ∪ d ′, and (III) s(c) = 0 and c = d ∪ d ′.

(I) Assume s(c) ≥ 1 and c = d(�a) ∪ d ′ Set A = τ(d). We consider the following

two cases separately:

(a) There is a deleted edge d ′′ separated by A such that am �= 0 and m < ℓ for

m = g(A, ι(d ′′));

(b) There is no such a deleted edge.

For case (a), we consider the following boundary image of a linear combination:

∂̃
(
d(�a) ∪ d ′ − d(�a + �δℓ − �δm) ∪ d ′′ − d(�a − �δm) ∪ d ′ + d(�a − �δm) ∪ d ′′

)

= A(�a + �δℓ − �δm,m) − A(�a − �δm,m)

−
{
A(�a + �δℓ − �δm + �δk,m) − A(�a − �δm + �δk,m)

}
.

The three terms other than c on the left side of the equation are critical 2-cells

less than c. So it is sufficient to show that the right side, which will be denoted

by R, is a linear combination of boundary images of critical 2-cells less than c.

The sum R depends on the order among k, ℓ and m. If m ≥ k then A(�a + �δℓ −
�δm,m) = A(�a + �δℓ − �δm + �δk,m) and A(�a − �δm,m) = A(�a − �δm + �δk,m) by

Proposition 2.7 and so R = 0.

Since m < ℓ, Proposition 2.7 and Lemma 2.9 imply that for any �x,

∂̃ ◦ R

(
|�x|ℓ∑

α=0

Ap(�x−α)

(
(�x − α) − �δp(�x−α) + �δm

)
∪ d ′

)

= A(�x,m) − A(�x + �δℓ,m) + Aℓ

((
�x − |�x|ℓ

)
+ �δm

)
.

To shorten formulae, let �b = �a − �δm + �δk and �c = �a − �δm. If m < k. then

R = ∂̃ ◦ R

(
|�b|ℓ∑

α=0

A
p(�b−α)

(
(�b − α) − �δ

p(�b−α)
+ �δm

)
∪ d ′

)

− ∂̃ ◦ R

(
|�c|ℓ∑

α=0

Ap(�c−α)

(
(�b − α) − �δ

p(�b−α)
+ �δm

)
∪ d ′

)

− Aℓ

((
�b − |�b|ℓ

)
+ �δm

)
+ Aℓ

((
�c − |�c|ℓ

)
+ �δm

)
.

If m < k < ℓ, �b − |�b|ℓ = �c − |�c|ℓ by Lemma 2.9. If m < ℓ ≤ k,

∂̃
(
Aℓ

((
�c − |�c|ℓ

)
+ �δm

)
∪ d ′′′
)
= Aℓ

((
�b − |�b|ℓ

)
+ �δm

)
− Aℓ

((
�c − |�c|ℓ

)
+ �δm

)

since there is a deleted edge d ′′′ separated by A such that k = g(A, ι(d ′′′)) by

(T3) of Lemma 2.5.
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In case (b), by the assumption there is no deleted edge d ′′ separated by τ(d)

such that g(A, ι(d ′′)) = m < ℓ and xm �= 0 for �x = �a + �δℓ and so there is no

critical 2-cell with the 6-tuple (s(c), d, �x,m,d ′′,0) such that m < ℓ and A sep-

arates d ′′. If k �= ℓ, c would be pivotal by the assumption on c. So k = ℓ. By

Lemma 3.2(3), ∂̃(d(�a)∪ d ′ − d(�a)∪ d ′′′) = ∂̃(d ∪ d ′ − d ∪ d ′′′) where d ′′′ is the

smallest deleted edge such that A separates d ′′′ and g(A, ι(d ′′′)) = ℓ. Note that

|�a| ≥ 1 since s(c) ≥ 1. And d ′′′ < d ′ since c is pivotal. Thus we have a desired

linear combination.

(II) Assume s(c) ≥ 1 and c = Ak(�a) ∪ d ′ Consider the following cases separately:

(a) There is a deleted edge d ′′ separated by A such that g(A, ι(d ′′)) = m < ℓ

and one of the following conditions holds:

(i) am ≥ 1 if k ≤ m,

(ii) am ≥ 1 and |�a|k ≥ 2 if m < k ≤ ℓ,

(iii) am ≥ 1 and |�a|k ≥ 2 if m < ℓ < k, and

(iv) am ≥ 1 and |�a|k = 1 if m < ℓ < k;

(b) There is no such a deleted edge.

For cases (a)(i)–(iii), we consider the following boundary image of the linear

combination:

∂̃
(
Ak(�a) ∪ d ′ − Ak(�a + �δℓ − �δm) ∪ d ′′ − Ak(�a − �δm) ∪ d ′ + Ak(�a − �δm) ∪ d ′′

)

= A(�a + �δℓ − �δm,m) − A(�a − �δm,m)

−
{
A(�a + �δℓ − �δm + �δk,m) − A(�a − �δm + �δk,m)

}
.

The three terms other than c on the left side of the equation are critical 2-cells

less than c. Then it is sufficient to show that the right side is a linear combination

of boundary images of critical 2-cells less than c. We omit the proof since it is

similar to case (I)(a).

For case (a)(iv), we consider the following boundary image of the linear

combination:

∂̃
(
Ak(�a) ∪ d ′ − Ak(�a + �δℓ − �δm) ∪ d ′′ − Aℓ(�a + �δℓ − �δk) ∪ d ′′′

)
= 0

where d ′′′ is a deleted edge separated by A and g(A, ι(d ′′′)) = k. Note that the

existence of d ′′′ is guaranteed by condition (T3) of Lemma 2.5.

We will show that case (b) does not happen. Suppose that there is no

deleted edge d ′′ separated by A such that g(A, ι(d ′′)) = m < ℓ and Ak(�x − �δm)

is critical for �x = �a + �δℓ. So there is no critical 2-cell with the 6-tuple

(s(c),Ak(�δk), �x,m,d ′′,0) such that m < ℓ and A separates d ′′. Then c would

be pivotal since d ′ is the smallest among deleted edges d ′′ separated by A such

that g(A, ι(d ′′)) = ℓ.

(III) Assume s(c) = 0 and c = d ∪ d ′ Let k = g(τ(d), ι(d)). Since c is non-pivotal,

k = ℓ. By Lemma 3.2(3), ∂̃(d ∪ d ′ − d ∪ d ′′) = ±(
∧

(d, d ′) ±
∧

(d, d ′′)) where

d ′′ is the smallest deleted edge separated by A such that g(A, ι(d ′′)) = ℓ. Note

that if d ′ = d ′′ then c would be pivotal. This completes the proof. �

We are ready to see the main theorem of this section.
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Theorem 3.5 Let M be a presentation matrix of H1(BnΓ ) represented by ∂̃ over

bases of critical 2-cells and 1-cells ordered reversely. Up to row operations, each

row of M satisfies one of the following:

(1) it consists of all zeros;

(2) there is a ±1 entry that is the only nonzero entry in the column it belongs to;

(3) there are only two nonzero entries which are ±1.

If Γ is planar then two nonzero entries in (3) have opposite signs. Furthermore, the

number of rows satisfying (3) does not depend on braid indices.

Proof This theorem is merely a restatement of Lemma 3.4 via row operations. A piv-

otal row corresponding to a pivotal 2-cell satisfies (2). A row of the type (3) is pro-

duced from the relation ∂̃(d ∪d ′′ −d ∪d ′) = ±(
∧

(d, d ′′)±
∧

(d, d ′)) in the last part

of the proof of the previous lemma. Note that neither
∧

(d, d ′) nor
∧

(d, d ′′) corre-

spond to a pivotal column due to Lemma 3.3 and the order among critical 1-cells.

Obviously the number of these relations does not depend on braid indices. If Γ

is planar, the relation becomes ∂̃(d ∪ d ′′ − d ∪ d ′) = ±(
∧

(d, d ′′) −
∧

(d, d ′)) by

Lemmas 2.11 and 2.12. Therefore two nonzero entries in (3) have opposite signs. �

Further row operations among rows of the type (3) in the theorem may produce

new pivots ±2 but if two nonzero entries have opposite signs, all of new pivots are

±1 and so we have the following corollary.

Corollary 3.6 If H1(BnΓ ) has a torsion, it is a 2-torsion and the number of

2-torsions does not depend on braid indices. For a planar graph Γ , H1(BnΓ ) is

torsion-free.

We classify critical 1-cells according to Theorem 3.5. A critical 1-cell is said to be:

(i) pivotal if it corresponds to pivotal columns, which is related to (2);

(ii) separating if it corresponds to columns of nonzero entries of (3);

(iii) free otherwise.

Clearly, a pivotal 1-cell has no contribution to H1(BnΓ ) and a free 1-cell con-

tributes a free summand to H1(BnΓ ). To complete the computation of H1(BnΓ ), it

is enough to consider the submatrix obtained by deleting pivotal rows and zero rows

and deleting pivotal columns and columns of free 1-cells. This submatrix will be re-

ferred as an undetermined block for H1(BnΓ ) and will be studied in Sect. 3.2. Rows

of an undetermined block are of the type (3) and columns correspond to separating

1-cells. It will be useful later to have a geometric characterization of pivotal 1-cells.

Lemma 3.7 (Pivotal 1-Cell) A critical 1-cell c is pivotal if and only if c is either

Ak(�a) or d(�a) such that there is a deleted edge d ′ separated by A or τ(d) and am ≥ 1

for m = g(A, ι(d ′)), and in addition s(c) ≥ 2 when c = Ak(�a).

Proof By the definition of pivotal 1-cell and Lemma 3.3, c is a pivotal 1-cell iff there

is a critical 2-cell whose boundary image has the largest summand c iff s(c) ≥ 2 for
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Fig. 13 The maximal tree and

the order on K5

Ak(�a) (s(c) ≥ 1 for d(�a), respectively) and there is a deleted edge d ′ separated by

A such that the 1-cell Ak(�a − �δm) (d(�a − �δm), respectively) exits and is critical for

m = g(A, ι(d ′)). A critical 1-cell d(�a − �δm) exits iff am ≥ 1. So we are done.

Assume that c = Ak(�a). The “only if” part is now clear. To show the “if” part,

consider |�a|k and m. If |�a|k ≥ 2 or |�a|k = 1 and m ≥ k, then Ak(�a − �δm) is a critical

1-cell and we are done. If |�a|k = 1 and m ≤ k − 1, then aj ≥ 1 for some j ≥ k since

s(c) ≥ 2. By condition (T3) in Lemma 2.5, there is a deleted edge d ′′ separated by A

such that g(A, ι(d ′′)) = j . Then the largest summand of ∂̃(Ak(�a − �δj ) ∪ d ′′) is c and

so c is pivotal. �

We can also have a geometric characterization for a separating 1-cell which is

clear from the definition of separating 1-cells and Lemma 3.2(3).

Lemma 3.8 (Separating 1-Cell) A critical 1-cell c is separating if and only if there

are three deleted edges such that c is a summand of ∂̃(d ∪ d ′ − d ∪ d ′′) such that

τ(d) > τ(d ′), τ(d) > τ(d ′′) and g(τ(d), ι(d)) = g(τ(d), ι(d ′)) = g(τ(d), ι(d ′′)). In

fact, c is of the form Ak(�δm) such that c =
∧

(d, d ′) (or
∧

(d, d ′′), respectively) and

deleted edges d and d ′ (or d ′′) are separated by A.

It is now easy to recognize free 1-cells. So we can compute H1(BnΓ ) by using the

undetermined block after counting the number of free 1-cells.

Example 3.9 Suppose a maximal tree and an order is given as in Example 2.6 for the

complete graph K5. We want to compute H1(B4K5) which will be needed later.

Recall the maximal tree and the order on vertices as in Fig. 13. By Lemma 3.7,

all critical 1-cells but of the forms d or Ak(�a) with |�a| = 1 are pivotal. All of critical

1-cells of the form Ak(�a) with |�a| = 1 are separating by Lemma 3.8. Thus the number

of free 1-cells is 6 which equals β1(Γ ). Critical 2-cells of the form d ∪ d ′ − d ∪ d ′′

give separating 1-cells by Lemma 3.2(3). Over the basis {d6 ∪ d5 − d6 ∪ d2, d6 ∪

d4 − d6 ∪ d2, d6 ∪ d3 − d6 ∪ d2, d5 ∪ d3 − d5 ∪ d1, d5 ∪ d2 − d5 ∪ d1, d4 ∪ d3 −

d4 ∪ d1, d4 ∪ d2 − d4 ∪ d1} of critical 2-cells and the basis {C3(1,0,0), C3(0,1,0),

C2(1,0,0), B3(1,0,0), B3(0,1,0), B2(1,0,0), A2(1,0)} of separating 1-cells, we
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Fig. 14 Γ and a maximal tree T

have the undetermined block for H1(B4Γ ) as follows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1

1 −1

−1 −1

−1 −1

1 −1

−1 −1

−1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1

−1 −1

−1 −1

1 −1

1 −1

−1 −1

−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After putting the undetermined block into a row echelon form, we see that all sep-

arating 1-cells but A2(1,0) are null homologous and A2(1,0) represents a 2-torsion

homology class. Thus H1(B4K5) ∼= Z
6 ⊕Z2 and the free part is generated by [di] for

i = 1, . . . ,6.

3.2 First Homologies of Graph Braid Groups

In this section we will discuss how to compute the first integral homology of a graph

braid group in terms of graph-theoretic invariants. Our strategy is to decompose a

given graph into simpler graphs and to compute the contribution from simpler pieces

and from the cost of decomposition. The following example illustrates this strategy.

Example 3.10 Let Γ be a graph with a maximal tree given in Fig. 14. We want to

compute H1(B3Γ ).

Give an order on vertices obtained by traveling a regular neighborhood of the maxi-

mal tree T clockwise from 0. There are no pairs of critical 2-cells that induce a row

satisfying (3) in Theorem 3.5. So there are no separating 1-cells. Thus there is no

torsion and the rank of H1(B3Γ ) is equal to the number of free 1-cells. There are 28

free 1-cells as follows:
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di for i = 1,2,3,4; di(�a) for i = 1,2 and �a = (1,0,0,0), (0,1,0,0), (2,0,0,0),

(1,1,0,0), (0,2,0,0); A2(�a) for �a = (1,0,0,0), (2,0,0,0), (1,1,0,0); A3(�a)

for �a = (1,0,0,0), (0,1,0,0), (2,0,0,0), (1,1,0,0), (0,2,0,0); and A4(�a) for

�a = (1,0,0,0), (0,1,0,0), (0,0,1,0), (2,0,0,0), (1,1,0,0), (0,2,0,0).

Consequently, H1(B3Γ ) ∼= Z
28.

The vertex A decomposes Γ into two circles and one Θ-shape graph that are

all subgraphs of the original. The first homologies of two circles are generated by

d4(2,0,0,0) and d3(0,2,0,0). And the first homology of Θ-shape graph is generated

by d1, d2 and A4(0,0,1,0). The remaining free 1-cells lie over at least two distinct

components and they are the cost of decomposition. So the first homology of Γ can

also be decomposed as

H1(B3Γ ) =
〈
d4(2,0,0,0)

〉
⊕
〈
d3(0,2,0,0)

〉
⊕
〈
d1, d2,A4(0,0,1,0)

〉
⊕ Z

23.

In order to formalize this idea, we need some notions and facts from graph theory.

A cut of a connected graph is a set of vertices whose removal separates at least a

pair of vertices. A graph is k-vertex-connected if the size of a smallest cut is ≥k.

If a graph has no cut (for example, complete graphs) and the number m of vertices

is ≥2, then the graph is defined to be (m − 1)-vertex-connected. The graph of one

vertex is defined to be 1-vertex-connected. The “2-vertex-connected” and “3-vertex-

connected” will be referred to as biconnected and triconnected. Let C be a cut of Γ .

A C-component is the closure of a connected component of Γ − C in Γ viewed as

topological spaces. So a C-component is a subgraph of Γ .

Recall that we are assuming that every graph is suitably subdivided, finite, and

connected. A suitably subdivided graph is always simple, i.e has neither multiple

edges nor loops, and moreover it has no edge between vertices of valency ≥3. A cut

is called a k-cut if it contains k vertices. The set of 1-cuts of a graph Γ is well-defined

and we can decompose Γ into components that are either biconnected or the complete

graph K2 by iteratively taking C-components for all 1-cuts C. This decomposition

is unique. The topological types of biconnected components of a given graph do

not depend on subdivision. In fact, a subdivision merely affects the number of K2

components.

Let C be a 2-cut {x, y} of a biconnected graph Γ . We find it convenient to modify

each C-component by adding an extra edge between x and y. We refer to this modi-

fied C-component as a marked C-component. If a marked C-component has a 2-cut

C′, we take all marked C′-components of the marked C-component. By iterating this

procedure, we can decompose a biconnected graph into components that are either

triconnected or the complete graph K3. This decomposition is unique for a bicon-

nected suitably subdivided graph (for example, see [5]) and will be called a marked

decomposition. The topological types of triconnected components of a given graph

do not depend on subdivision. In fact, a subdivision merely affects the number of K3

components.

A graph is said to have topologically a certain property if it has the property after

ignoring vertices of valency 2. We assume that each component in the above two

decompositions is always suitably subdivided by subdividing it if necessary. Then

triconnected components in the above decompositions are topologically triconnected.

Note that a subdivision of a biconnected graph is again biconnected.
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Lemma 3.11 (Decomposition of Connected Graph) Let x be a 1-cut in a graph Γ .

Then

H1(BnΓ ) ∼=

(
μ⊕

i=1

H1(BnΓx,i)

)
⊕ Z

N(n,Γ,x)

where Γx,i are x-components of Γ ,

N(n,Γ,x) =

(
n + μ − 2

n − 1

)
× (ν − 2) −

(
n + μ − 2

n

)
− (ν − μ − 1),

μ is the number of x-components of Γ , and ν is the valency of x in Γ .

Proof Assume that Γ has a maximal tree T and an order on vertices as Lemma 2.5.

Except the x-component containing the base vertex 0, each x-component Γx,i has

new base point x and we maintain the numbering on vertices. Then x is the small-

est vertex on each x-component not containing the original base vertex 0. Unless

A = x, every critical 1-cell of the type Ak(�a) can be thought of as a critical 1-cell in

one of x-components by regarding vertices blocked by 0 as vertices blocked by x.

Similarly, unless ι(d) = x or τ(d) = x, a deleted edge d does not join distinct

x-components and so a critical 1-cell of the type d(�a) can be regarded as a criti-

cal 1-cell in one of x-components. Therefore a critical 1-cell in UDnΓ that belongs

to none of x-components must contain an edge incident to x.

We first claim that the undetermined block for H1(BnΓ ) is a block sum of the

undetermined blocks for H1(BnΓx,i)’s. A row of an undetermined block is obtained

by the boundary image of a critical 2-cell of the form d ∪ d ′ (see Lemma 3.8). If

two deleted edges d and d ′ are in distinct x-component, the boundary image is trivial

since the terminal vertex of one edge cannot separate the other. Thus both d and d ′

are in the same x-component and so each separating 1-cell for UDnΓ must be a

separating 1-cell for exactly one of x-components.

The proof is completed by counting the number of free 1-cells that cannot be re-

garded as those in any one of x-components. Let m be the valency of x in the maximal

tree. Then μ ≤ m. Recall that branches incident to x are numbered by 0,1, . . . ,m−1

clockwise starting from the 0th branch pointing the base vertex 0. The ith and the

j th branches do not belong to the same x-component for 1 ≤ i, j ≤ μ − 1 by (T2)

of Lemma 2.5. When μ ≤ m − 1, the ith and the 0th branches belong to the same

x-component for μ ≤ i ≤ m − 1 by condition (T3) of Lemma 2.5. For 1 ≤ i ≤ μ, let

Γx,i denote the x-component containing the i-branch. Then the x-component Γx,μ

contains the μth to the (m − 1)st branches and the 0th branch.

Set A = x. If 1 ≤ k ≤ μ−1 or |�a|μ ≥ 1, then Ak(�a) cannot be a critical 1-cell over

any one of x-components. We divide this situation into the following four cases:

(a) 1 ≤ k ≤ μ − 1 and |�a| = |�a|μ,

(b) 1 ≤ k ≤ μ − 1 and |�a| > |�a|μ,

(c) μ ≤ k ≤ m − 1 and |�a| = |�a|μ,

(d) μ ≤ k ≤ m − 1 and |�a| > |�a|μ.

To use Lemma 3.7, consider a deleted edge d ′ such that g(A, ι(d ′)) = i. For 1 ≤ i ≤
μ − 1, τ(d ′) is in Γx,i since ι(d ′) is in Γx,i . So A cannot separate d ′. Thus every
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critical 1-cell satisfying either (a) or (c) is free. On the other hand, for μ ≤ i ≤ m− 1,

we may choose d ′ such that g(A, τ(d ′)) = 0 since both the ith and the 0th branches

lie on Γx,μ. So A separates d ′. Thus every critical 1-cell satisfying either (b) or (d) is

pivotal. Note that in cases of (a) and (c), |�a|μ ≥ 1 since Ak(�a) is critical.

There are ν − m deleted edges d such that τ(d) = x and ι(d) lies on the ith

branch of x for some 1 ≤ i ≤ m − 1. Unless all (n − 1) vertices blocked by τ(d) lie

on the x-component containing ι(d), d(�a) cannot be a critical 1-cell over any one

of x-components. If |�a| > |�a|μ then a critical 1-cell d(�a) is pivotal. Otherwise it is

free. This means that vertices in Γx,μ must lie on the 0th branch in order to be free.

Counting combinations with repetition, the numbers of free 1-cells for the three cases

are given as follows:

The number of Ak(�a) in (a) =

(
n + μ − 2

n − 1

)
× (μ − 2) −

(
n + μ − 2

n

)
+ 1.

The number of Ak(�a) in (c) =

(
n + μ − 2

n − 1

)
× (m − μ) − (m − μ).

The number of d(�a) =

(
n + μ − 2

n − 1

)
× (ν − m) − (ν − m).

The sum is equal to N(n,Γ,x) which is the number of free 1-cells that cannot be

seen inside each x-component. �

The above lemma decomposes the first homology of a graph braid group into the

first homologies of graph braid groups on biconnected components together with a

free part determined by the valency and the number of x-component of each 1-cut x.

Since N(n,Γ,x) = 0 for a 1-cut x of valency 2 and UDn(Γ ) is contractible if Γ

is topologically a line segment, this decomposition of H1(BnΓ ) is independent of

subdivision. Farley obtained a similar decomposition in [6] when Γ is a tree.

Lemma 3.12 For a biconnected graph Γ and n ≥ 2, H1(BnΓ ) ∼= H1(B2Γ ).

Proof A sequence of vertices starting from the base vertex in a critical cell can be

ignored to give a corresponding critical cell for a lower braid index. So a critical

1-cell with s(c) ≤ 1 in UDnΓ can be regarded as a critical 1-cell in UD2Γ . An

undetermined block involves only critical 2-cells with s(c) = 0 and critical 1-cells

with s(c) = 1 and so it is well-defined independently of braid indices ≥2.

It is now sufficient to show that every critical 1-cell c with s(c) ≥ 2 is pivotal. To

show that a critical 1-cell Ak(�a) with |�a| ≥ 2 is pivotal, we need to find a deleted edge

satisfying Lemma 3.7. Suppose there is no deleted edge d ′ such that A separate d ′ and

g(A, ι(d ′)) = g(A,v) for the second smallest vertex v blocked by A. By Lemma 2.5

(T2), τ(d ′) < A. This means that the vertex A disconnects the g(A,v)th branch of A

from the rest of Γ . This contradicts the biconnectivity of Γ .

For a critical 1-cell d(�a) with |�a| ≥ 2, let v be the smallest vertex blocked by τ(d).

Then we can argue similarly to show that d(�a) is pivotal. �

For the sake of the previous lemma, it is enough to consider 2-braid groups for

biconnected graphs in order to compute n-braid groups.
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Fig. 15 A decomposition of Γ

Lemma 3.13 Let {x, y} be a 2-cut in a biconnected graph Γ , Γ ′ be a {x, y}-
component of Γ , Γ̂ ′ be the marked {x, y}-component of Γ ′, Γ ′′ be the complemen-

tary subgraph, i.e. Γ ′′ be the closure of Γ − Γ ′ in Γ , and Γ̂ ′′ be obtained from Γ ′′

by adding an extra edge between x and y. Then

H1(B2Γ ) ⊕ Z ∼= H1

(
B2Γ̂

′
)
⊕ H1

(
B2Γ̂

′′
)
.

Proof If either Γ̂ ′ or Γ̂ ′′ is a topological circle, this lemma is a tautology since

H1(B2S
1) ∼= Z. So we assume that Γ̂ ′ and Γ̂ ′′ are not a topological circle. For a

biconnected graph, we may regard x as the base vertex 0 and choose a maximal tree

T of Γ that contains a path between 0 and y through Γ ′. Choose a planar embedding

of T as given in Fig. 15(a) by using Lemma 2.5 and number vertices of Γ . Then

maximal trees of Γ̂ ′ and Γ̂ ′′ and their planar embeddings are induced as Fig. 15(b),

(c) where d0 is the new deleted edge on the (subdivided) edge added between 0 and

y and di ’s for i ≥ 1 are deleted edges incident to 0 in Γ and Γ̂ ′′. We maintain the

numbering on vertices of Γ̂ ′ and Γ̂ ′′ so that all vertices of valency 2 on the added

edge that is subdivided is larger than any vertex in Γ̂ ′ and y is the second smallest

vertex of valency ≥3 in Γ̂ ′′. Let ν and ν′ be valencies of y in maximal trees of Γ

and Γ ′, respectively. Then ν − ν′ + 1 is in fact the number of {0, y}-components by

Lemma 2.5.

There is a natural graph embedding f ′ : Γ̂ ′ → Γ by sending the extra edge to a

path from y to 0 via the ν′th branch of y after suitable subdivision. Then the delete

edge d0 is sent to one of di ’s. Also there is a natural graph embedding f ′′ : Γ̂ ′′ → Γ

by sending the extra edge to the path from 0 to y in the maximal tree of Γ after

subdivision. Both f ′ and f ′′ are order-preserving. It is easy to see that f ′′ induces a

bijection between critical 1-cells of UD2Γ̂
′′ and those of UD2Γ and it preserves the

types of critical 1-cells: pivotal, free or separating. Thus the induced homomorphism

f ′′
∗ : H1(B2Γ̂

′′) → H1(B2Γ ) is injective. Every critical 2-cell in UD2Γ is of the form

d ∪ d ′. If a critical 2-cell d ∪ d ′ is in neither UD2(f
′(Γ ′)) nor UD2(f

′′(Γ ′′)) then

both deleted edges are not simultaneously in the same image under f ′ or f ′′ and so

∂̃(d ∪ d ′) = 0 by Lemma 2.11. Thus the induced homomorphisms f ′
∗ : H1(B2Γ̂

′) →
H1(B2Γ ) and f ′′

∗ : H1(B2Γ̂
′′) → H1(B2Γ ) are injective. Moreover, it is clear that

im(f ′
∗) ∩ im(f ′′

∗ ) is isomorphic to Z generated by f ′
∗([d0]).

We are done if we show im(f ′
∗) + im(f ′′

∗ ) = H1(B2Γ ). Set A = y. There are

the following two types of 1-cells in UD2Γ that are neither in UD2(f
′(Γ ′)) nor in

UD2(f
′′(Γ ′′)): d(�δm) for τ(d) = A and 1 ≤ m < ν′ ≤ g(A, ι(d)) ≤ ν − 1 or Ak(�δm)

for 1 ≤ m < ν′ ≤ k ≤ ν − 1. Since Γ ′ is an {x, y}-component, for each mth branch of

A such that 1 ≤ m < ν′ there is a deleted edge d ′ separated by A satisfying τ(d ′) > 0

and g(A, ι(d ′)) = m and so d(�δm) are pivotal and so it vanishes in H1(B2Γ ).
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Since {x, y} is a 2-cut, for each kth branch of A such that ν′ ≤ k ≤ ν − 1 there

is a deleted edge di such that g(A, ι(di)) = k and τ(di) = 0. Since g(τ(d ′), ι(di)) =
g(τ(d ′),A) = g(τ(d ′), ι(f ′(d0))) for the deleted edge d ′ found above,

∂̃
(
d ′ ∪di −d ′ ∪f ′(d0)

)
= ±
(∧(

d ′, di

)
±
∧(

d ′, f ′(d0)
))

= ±
(
Ak(�δm)±Aν′(�δm)

)

by Lemma 3.2(3). Thus Ak(�δm) and Aν′(�δm) are homologous up to signs and Aν′(�δm)

is a critical 1-cell in UD2(f
′(Γ ′)). �

Let Θm be the graph consisting of two vertices and m edges between them. For

example, Θ3 is the letter shape of Θ .

Lemma 3.14 (Decomposition of Biconnected Graph) Let {x, y} be a 2-cut in a bi-

connected graph Γ , and Γ1, . . . ,Γm denote {x, y}-components. Then

H1(B2Γ ) ⊕ Z ∼=

m⊕

i=1

H1(B2Γi) ⊕ Z
(m−1)(m−2)/2.

Proof By repeated application of Lemma 3.13 on the marked complementary graph,

we have

H1(B2Γ ) ⊕ Z
m ∼=

m⊕

i=1

H1(B2Γi) ⊕ H1(B2Θm).

To compute H1(B2Θm), we choose a maximal tree and give an order according to

Lemma 2.5. Then there are (m − 1)(m − 2)/2 critical 1-cells of the type Ak(�δm),

(m − 1) critical 1-cells of the type d and no critical 2-cells. Thus

H1(B2Θm) ∼= Z
(m−1)(m−2)/2+(m−1)

and the formula follows. �

Note that Θm for m ≥ 3 only occurs as a marked complementary graph and it

never appears in a marked decomposition of a simple biconnected graph by 2-cuts.

We can repeatedly apply Lemma 3.14 to each marked 2-cut component unless it is

topologically a circle and end up with the problem how to compute H1(B2Γ ) for a

topologically triconnected graph Γ . Note that topologically triconnected components

of a given biconnected graph are topologically simple since we assume that graphs

are suitably subdivided.

Given any triconnected graph Γ , there exists a sequence Γ1,Γ2, . . . ,Γr of graphs

such that Γ1 = K4, Γr = Γ , and for 1 ≤ i ≤ r − 1, Γi+1 is obtained from Γi by either

adding an edge or expanding at a vertex of valency ≥4 as in Fig. 16 (for example,

see [4]). Note that an expansion at a vertex is a reverse of a contraction of an edge with

end vertices of valency ≥3. When we deal with a topologically triconnected graph,

we first ignore vertices of valency 2 and find a sequence and then we subdivide each

graph on the sequence if necessary.
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Fig. 16 A sequence for K5

Fig. 17 Expanding Γr−1 at x

Lemma 3.15 (Topologically Simple Triconnected Graph) Let Γ be a topologically

simple and triconnected graph. Then all critical 1-cells of the type Ak(�δm) are ho-

mologous up to signs. Furthermore,

H1(B2Γ ) ∼= Z
β1(Γ ) ⊕ K

where K is Z if Γ is planar or Z2 if Γ is non-planar.

Proof We use induction on the number s of vertices of valency ≥3. To check for

the smallest triconnected graph K4, consider the maximal tree of K4 and the order

on vertices given in Fig. 12. Then it is easy to see that the lemma is true and in fact

H1(B2K4) ∼= Z
4.

Assume that for s > 4, the lemma holds. Let Γ be a triconnected graph with s + 1

vertices of valency ≥3. There is a sequence K4 = Γ1, . . . ,Γr−1,Γr = Γ of tricon-

nected graphs described above. Since Γ is topologically simple, we may assume that

Γ is obtained from Γr−1 by expanding at a vertex x. After ignoring vertices of va-

lency 2, Γr−1 is a triconnected graph with s vertices that may have double edges inci-

dent to x and let Γ ′
r−1 be a simple triconnected graph obtained from Γr−1 by deleting

one edge from each pair of double edges. Then there is an obvious graph embedding

Γ ′
r−1 →֒ Γr−1. Let x0 and x1 be the expanded vertices of x in Γ . Choose maximal

trees T , Tr−1, and T ′
r−1 of Γ , Γr−1 and Γ ′

r−1 and orders on vertices according to

Lemma 2.5 so that x is the base vertex for Γr−1 and Γ ′
r−1 and x0 is the base vertex 0

for Γ as in Fig. 17. Then there are natural graph embeddings T ′
r−1 →֒ Tr−1 →֒ T

that preserve the base vertices and orders.

Let X be the second smallest vertex of valency ≥3 in Γr−1. If there are topolog-

ically double edges between 0 and X in Γr−1, then X has valency 3 in Tr−1. Other

vertices with topological double edges are situated in Γr−1 like Y in Fig. 17. Ver-

tices of the types X or Y behave in the same way in both Γr−1 and Γ . So there is a

one-to-one correspondence between the set of all critical 1-cells of the form Ak(�δℓ)

in UD2Γr−1 and the set of those in UD2Γ .
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By the induction hypothesis, all critical 1-cells of the form Ak(�δℓ) in UD2Γ
′
r−1

are separating and homologous up to signs. We first find out which critical 1-cell of

the form Ak(�δℓ) in UD2Γr−1 is not separating. It is enough to check for the vertices

of the type either X or Y since Ak(�δℓ) can be regarded as a critical 1-cell in UD2Γ
′
r−1

for all other vertices A and UD2Γr−1 has more critical 2-cells than UD2Γ
′
r−1. For X,

there is only one critical 1-cell X2(�δ1) and it is not separating by Lemma 3.8. Suppose

the pth and the (p + 1)st branches of Y are topological double edges from Y to 0.

Then Yp+1(�δp) is not separating either by Lemma 3.8. Unless k = p + 1 and ℓ = q ,

Yk(�δℓ) is separating because one of the pth and the (p + 1)st branches lies on Γ ′
r−1

and so Yk(�δℓ) is homologous up to signs to other separating 1-cells by the induction

hypothesis.

Finally we show that critical 1-cells of UD2Γ , X2(�δ1) and Yp(�δq) are separating

and homologous up to signs to other separating 1-cells. Let d1 (d2, respectively)

be a deleted edge lying on the topological edge between 0 and X (Y , respectively)

in Γ , d3 be a deleted edge lying on the topological edge between x1 and Y in Γ .

Then g(Y, ι(d3)) and g(Y, ι(d2)) correspond to p and p + 1. Since Γ is topologically

triconnected, there is a deleted edge d other than d1, d2 and d3 such that τ(d) is either

0 or x1. Otherwise, {X,Y } would be a 2-cut in Γ . In fact, Fig. 17 shows examples

of d1, d2, d3, and d . Consider the following boundary images on the Morse chain

complex of UD2Γ :

For τ(d) = 0,

∂̃(d3 ∪ d1 − d3 ∪ d) = X2(�δ1) ±
∧

(d3, d),

∂̃(d3 ∪ d2 − d3 ∪ d) = −Yp(�δq) ±
∧

(d3, d).

For τ(d) = x2,

∂̃(d3 ∪ d1 − d3 ∪ d2) = X2(�δ1) + Yp(�δq),

∂̃(d ∪ d1 − d ∪ d2) = X2(�δ1) ±
∧

(d, d2).

So
[
X2(�δ1)

]
= −
[
Yp(�δq)

]
= ±
[∧

(d3, d)
] (

or ±
[∧

(d, d2)
])

.

Thus all critical 1-cells of the form Ak(�a) in UD2Γ are separating and homologous

up to signs.

Now we consider H1(B2Γ ). Since we know that Ak(�a) are separating, free 1-cells

are of the form d for some deleted edge d by Lemma 3.7. The number of deleted

edges is equal to β1(Γ ). So

H1(B2Γ ) ∼= Z
β1(Γ ) ⊕

〈[
Ak(�a)

]〉
.

It is easy to see that [Ak(�a)] is not trivial in H1(B2Γ ). If Γ is planar then [Ak(�a)]
is torsion-free by Corollary 3.6. It is easy to see that if a topologically simple tri-

connected graph Γ is embedded in a topologically simple triconnected graph Γ̃ as

graphs, then the embedding induces a homomorphism: H1(B2Γ ) → H1(B2Γ̃ ) which
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corresponds the homology class [Ak(�a)] to the same kind of homology classes. From

Example 3.9, [Ak(�a)] in H1(B2K5) is a 2-torsion. It is easy to check that [Ak(�a)]
in H1(B2K3,3) is a 2-torsion from Example 2.1. So if Γ is a non-planar graph then

[Ak(�a)] in H1(B2Γ ) generates the summand Z2. �

By combining lemmas in this section, we can give a formula for H1(BnΓ ) for

a finite connected graph Γ and any braid indices using the connectivity of graphs.

Recall that

N(n,Γ,x) =

(
n + μ(x) − 2

n − 1

)
×
(
ν(x)−2

)
−

(
n + μ(x) − 2

n

)
−
(
ν(x)−μ(x)−1

)

where μ(x) is the number of x-components of Γ and ν(x) is the valency of x in Γ .

Note that if ν(x) = 2 (and so μ(x) = 2), then N(n,Γ,x) = 0. Let V1(Γ ) denote a set

of 1-cuts that decomposes Γ into biconnected components and copies of topological

line segments. Define

N1(n,Γ ) =
∑

x∈V1(Γ )

N(n,Γ,x).

For a biconnected graph Γ , let V2 denote a set of 2-cuts whose marked decompo-

sition decomposes Γ into triconnected components and copies of topological circles.

Define

N2(Γ ) =
∑

{x,y}∈V2

(μ({x, y}) − 1)(μ({x, y}) − 2)

2

where μ({x, y}) denotes the number of {x, y}-components in Γ . Note that for C ∈ V2,

μ(C) in Γ is equal to that in any marked D-component for D ∈ V2. And note that if

one of x and y has valency 2 for a 2-cut {x, y} ∈ V2, then μ({x, y}) = 2.

For a connected graph Γ , define N2(Γ ) =
∑k

i=1 N2(Γi) where Γ1, . . . ,Γk are

biconnected components of Γ .

For a connected graph Γ , let N3(Γ ) (N ′
3(Γ ), respectively) be the number of tri-

connected components of Γ that are planar (non-planar, respectively).

Theorem 3.16 For a finite connected graph Γ ,

H1(BnΓ ) = Z
N1(n,Γ )+N2(Γ )+N3(Γ )+β1(Γ ) ⊕ Z

N ′
3(Γ )

2 .

Proof By Lemmas 3.11 and 3.12 we have

H1(BnΓ ) =

(⊕

i

H1(B2Γi)

)
⊕ Z

N1(n,Γ )

where Γi ’s are biconnected components of Γ . Since N2(Γ ), N3(Γ ), N ′
3(Γ ) and

β1(Γ ) are equal to the sum of those for Γi , it is sufficient to show that for a bi-

connected graph Γ ,

H1(B2Γ ) = Z
N2(Γ )+N3(Γ )+β1(Γ ) ⊕ Z

N ′
3(Γ )

2 .
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Let V2 be a set of 2-cuts in Γ such that the marked decomposition along V2 de-

composes a biconnected graph Γ into triconnected components and copies of topo-

logical circles. Let {Γ̂i} be the set of marked components obtained from Γ by cutting

along V2. By Lemma 3.14,

H1(B2Γ ) ⊕ Z
|V2| =

(⊕
H1(B2Γ̂i)

)
⊕ Z

N2(Γ ).

By Lemma 3.15, H1(B2Γ̂i) ∼= Z
β1(Γ̂i) ⊕ Z, Z

β1(Γ̂i) ⊕ Z2, or Z if Γ̂i is a planar tricon-

nected graph, a non-planar triconnected graph, or a topological circle, respectively.

Thus
⊕

H1(B2Γ̂i) ∼= Z
N3(Γ )+

∑
β1(Γ̂i ) ⊕ Z

N ′
3(Γ )

2 . Since we are dealing with marked

components,
∑

β1(Γ̂i) = β1(Γ ) + |V2|. Thus H1(B2Γ ) ∼= Z
N2(Γ )+N3(Γ )+β1(Γ ) ⊕

Z
N ′

3(Γ )

2 . �

It seems difficult to compute higher homology groups of BnΓ in general. How-

ever, UD2Γ is a 2-dimensional complex and so H2(B2Γ ) is torsion-free. And the

second Betti number of B2Γ is given as follows:

Corollary 3.17 For a finite connected graph Γ ,

β2(B2Γ ) = N1(n,Γ ) + N2(Γ ) + N3(Γ ) −
1

2

∑

x∈V (Γ )

(
ν(x) − 1

)(
ν(x) − 2

)

+
1

2
β1(Γ )

(
β1(Γ ) − 1

)
+ 2.

Proof We choose a maximal tree such that two end vertices of every deleted edge

have valency 2. Then the number of critical 2-cells is equal to 1
2
β1(Γ )(β1(Γ ) − 1)

and the number of critical 1-cells is 1
2

∑
x∈V (Γ )(ν(x)− 1)(ν(x)− 2)+β1(Γ ). Using

Euler characteristic of the Morse chain complex, we have

1 − β1(B2Γ ) + β2(B2Γ )

= 1 −
1

2

∑

x∈V (Γ )

(
ν(x) − 1

)(
ν(x) − 2

)
− β1(Γ ) +

1

2
β1(Γ )

(
β1(Γ ) − 1

)
.

We use β1(B2Γ ) = N1(n,Γ ) + N2(Γ ) + N3(Γ ) + β1(Γ ) to complete the proof. �

3.3 The Homologies of Pure Graph 2-Braid Groups

In Sect. 2.2, we describe a Morse chain complex MnΓ of DnΓ . The technology

developed for UDnΓ in this article is not enough to compute H1(PnΓ ). For example,

the boundary image of (Ak(�a)∪Bℓ(�b))σ never vanishes in MnΓ for n ≥ 4. However,

for braid index 2 the second boundary map behaves in the way similar to unordered

cases. This is because there are only one type critical 2-cells (d ∪ d ′)σ .

In general, the image of cσ under R̃ or ∂̃ is obtained by right multiplication by σ on

the permutation subscript of each term in the image of cid. For example, if R̃(cid) =
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∑
i(ci)τi

then R̃(cσ ) =
∑

i(ci)τiσ . Thus we only consider cid. We will discuss 2-braid

groups in this section and ρ denotes the nontrivial permutation in S2.

We have the following lemma for D2Γ that is similar to Lemma 2.3 for UDnΓ

but it is hard to have a lemma corresponding to Lemma 2.4.

Lemma 3.18 (Special Reduction) Suppose a redundant 1-cell cid in D2Γ has a sim-

ple unblocked vertex. Then R̃(cid) = R̃(V (c)id).

Proof Let e and v be the edge and the vertex in c. Since c contains only one vertex,

v is the smallest unblocked vertex. Let ev be the edge starting from v. Then

R(cid) = V (c)id +
{
ev, ι(e)

}
ρm −
{
ev, τ (e)

}
id

where m is 1 if τ(e) < v < ι(e) or 0 otherwise.

We use induction on i such that Ri(cid) = Ri+1(cid). Since cid is redundant,

i ≥ 2. Since V ({ev, ι(e)}ρm) = {ev, τ (e)}ρ2m , R̃V ({ev, ι(e)}ρm) = R̃({ev, τ (e)}ρ2m)

by induction hypothesis. Thus R̃({ev, ι(e)}ρm − {ev, τ (e)}id) = R̃V ({ev, ι(e)}ρm) −
R̃({ev, τ (e)}id) = 0. Thus R̃(cid) = R̃(V (c)id). �

Since all critical 2-cells in DΓ is of the form (d ∪d ′)σ , we only need the following:

Lemma 3.19 (Boundary Formulae) Let c = d ∪ d ′, τ(d) > τ(d ′), k = g(τ(d), ι(d))

and ℓ = g(τ(d), ι(d ′)).

(a) If d ′ is separated by τ(d), k �= ℓ and ι(d) < ι(d ′) then

∂̃(cid) = did − d(�δℓ)ρ .

(b) If d ′ is separated by τ(d), k = ℓ and ι(d) < ι(d ′) then

∂̃(cid) = did − d(�δℓ)ρ −
∧(

d, d ′
)

id
.

(c) If d ′ is separated by τ(d) and ι(d ′) < ι(d) then

∂̃(cid) = did − d(�δℓ)ρ +
∧(

d, d ′
)
ρ
.

(d) Otherwise ∂̃(cid) = 0.

Proof It is sufficient to compute images under R̃ for each boundary 1-cell after ob-

taining the boundary of cid in D2Γ .

If ι(d ′) < τ(d), then

∂
((

d ∪ d ′
)

id

)
=
(
d ∪
{
τ
(
d ′
)})

id
−
(
d ∪
{
ι
(
d ′
)})

id
+
(
d ′ ∪
{
ι(d)
})

id
−
(
d ′ ∪
{
τ(d)
})

id
.

By Lemma 3.18 we have R̃((d ∪{τ(d ′)})id) = R̃((d ∪{ι(d ′)})id) = did. Since ι(d ′) <

τ(d) < ι(d), we have R̃((d ′ ∪ {ι(d)})id) = d ′ ∪ {τ(d)}id. So if ι(d ′) < τ(d), then

∂̃((d ∪ d ′)id) = 0.
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If ι(d ′) > τ(d), then

∂
((

d ∪ d ′
)

id

)
=
(
d ∪
{
τ
(
d ′
)})

id
−
(
d ∪
{
ι
(
d ′
)})

ρ
+
(
d ′ ∪
{
ι(d)
})

id
−
(
d ′ ∪
{
τ(d)
})

id
.

Let B = ι(d ′) ∧ τ(d) and m = g(B, ι(d ′)). If d ′ is not separated by τ(d) then ι(d ′) >

ι(d) from g(B, ι(d ′)) > g(B, τ(d)) = g(B, ι(d)). So we have R̃((d ′ ∪ {ι(d)})id) =
(d ′ ∪ {τ(d)})id and

R̃
((

d ∪
{
ι
(
d ′
)})

ρ

)
= R̃
((

d ∪ B(�δm)
)
ρ

)

= R̃
((

d ∪ {B}
)

id
+
(
Bm ∪

{
ι(d)
})

id
−
(
Bm ∪

{
τ(d)
})

id

)

= R̃
((

d ∪ {B}
)

id

)
= R̃
((

d ∪
{
τ
(
d ′
)})

id

)
,

since R̃((Bm ∪ {ι(d)})id) = R̃((Bm ∪ {τ(d)})id) by Lemma 3.18. So if ι(d ′) > τ(d)

and d ′ is not separated by τ(d), then ∂̃((d ∪ d ′)id) = 0.

Let q = g(τ(d ′), τ (d)). If d ′ is separated by τ(d), then it is easy to see that

R̃
((

d ∪
{
τ
(
d ′
)})

id

)
= did and R̃

((
d ′ ∪
{
τ(d)
})

id

)
= d ′(�δq)id.

Let C = ι(d ′)∧ ι(d) and m1 = g(C, ι(d ′)). Consider R̃((d ∪{ι(d ′)})ρ). If either k �= ℓ

or k = ℓ and ι(d ′) < ι(d), then R̃((d ∪ {ι(d ′)})ρ) = d(�δℓ)ρ by Lemma 3.18. If k = ℓ

and ι(d) < ι(d ′), then by Lemma 3.18,

R̃
((

d ∪
{
ι
(
d ′
)})

ρ

)
= R̃
((

d ∪ C(�δm1
)
)
ρ

)

= R̃
((

d ∪ {C}
)
ρ

+
(
Cm1

∪
{
ι(d)
})

id
−
(
Cm1

∪
{
τ(d)
})

ρ

)

= R̃
((

d ∪ {C}
)
ρ

+
(
Cm1

∪
{
ι(d)
})

id

)
= d(�δℓ)ρ +

∧(
d, d ′
)

id
.

Let m2 = g(C, ι(d)). Finally consider R̃((d ′ ∪ {ι(d)})id). If ι(d) < ι(d ′) then

R̃((d ′ ∪ {ι(d)})id) = d ′(�δq)id. If ι(d ′) < ι(d), then

R̃
((

d ′ ∪
{
ι(d)
})

id

)
= R̃
((

d ′ ∪ C(�δm2
)
)

id

)

= R̃
((

d ′ ∪ {C}
)

id
+
(
Cm2

∪
{
ι(d)
})

ρ
−
(
Cm2

∪
{
τ(d)
})

id

)

= R̃
((

d ′ ∪ {C}
)

id
+
(
Cm2

∪
{
ι(d)
})

ρ

)
= d(�δℓ)id +

∧(
d, d ′
)
ρ
.

Combining the results, we obtain the desired formulae. �

Using the above lemma, we have the following lemma similar to Lemma 3.2.

Lemma 3.20 (Dependence Among Boundary Images) If d1 and d2 are separated by

τ(d) and g(τ(d), ι(d1)) = g(τ(d), ι(d2)), then

(1) If g(τ(d), ι(d)) �= g(τ(d), ι(d1)), then ∂̃((d ∪ d1)id) = ∂̃((d ∪ d2)id).

(2) If g(τ(d), ι(d)) = g(τ(d), ι(d1)), then

∂̃
(
(d ∪ d1)id − (d ∪ d2)id

)
= −(−1)i ∧ (d, d1)ρi + (−1)j ∧ (d, d2)ρj .
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Note that the second formula of the above lemma contains i, j only for the parity

purpose and plays an important role of showing that H1(P2Γ ) is torsion-free.

Declare an order on S2 by id > ρ. Recall the orders on critical 1-cells and critical

2-cells of UDnΓ from Sect. 3.1. By adding a permutation as the last component

of the orders, we obtain orders given by 4-tuples (s(c), e, �a,σ ) for critical 1-cells

in D2Γ and by 7-tuples (s(c), e, �a + �δg(τ(e),ι(e′)), g(τ (e), ι(e′)), e′, �b,σ ) for critical

2-cells.

The second boundary homomorphism ∂̃ is represented by a matrix over bases of

critical 2-cells and critical 1-cells ordered reversely. We go through the exactly same

arguments as in Sect. 3.1 by using Lemmas 3.20 and 3.19 and obtain the following

theorem:

Theorem 3.21 Let M be the matrix representing the second boundary homomor-

phism of D2Γ over bases of critical 2-cells and critical 1-cells ordered reversely. Up

to row operations, each row of M satisfies one of the following:

(1) it consists of all zeros;

(2) there is a ±1 entry that is the only nonzero entry in the column it belongs to;

(3) there are only two nonzero entries which are ±1.

Furthermore, up to multiplications of column by −1, the property (3) above can be

modified to

(3′) there are two nonzero entries which are ±1 and have opposite signs.

Proof Lemma 3.20 (2) implies that (3′) can be achieved by choosing a basis of critical

1-cells in which (−1)mcρm is used instead of just cid or cρ . �

Since there are exactly two critical 0-cells, the 0th skeleton (M2Γ )0 of a Morse

complex of M2Γ of D2Γ consists of two points. Then the second boundary ho-

momorphism gives a presentation matrix for H1(M2Γ, (M2Γ )0). And H1(M2Γ,

(M2Γ )0) ∼= H1(M2Γ ) ⊕ Z ∼= H1(P2Γ ) ⊕ Z.

Critical 1-cells of D2Γ can be classified to be pivotal, free, or separating as before.

The undetermined block of separating 1-cells produces no torsion due to the property

(3′) and so we have the following:

Corollary 3.22 For a finite connected graph Γ , H1(P2Γ ) is torsion-free.

Using free 1-cells and the undetermined block for H1(M2Γ, (M2Γ )0), we can

compute H1(P2Γ ).

Example 3.23 Let Γ be K5 and a maximal tree and an order be given as in Exam-

ple 2.6. We want to compute H1(P2Γ ).

From ∂̃(d6 ∪ d5 − d6 ∪ d2) = −C2(1,0,0) − B3(0,1,0) in Example 3.9, we obtain

∂̃
(
(d6 ∪ d5)id − (d6 ∪ d4)id

)
= −C2(1,0,0)id +

{
−B3(0,1,0)ρ

}
.
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From Example 3.9 and Lemma 3.19, we obtain the undetermined block as follows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1

1 −1

−1 1

1 −1

−1 1

1 −1

−1 1

1 −1

−1 1

1 −1

−1 1

1 −1

−1 1

1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1

1 −1

−1 1

1 −1

−1 1

1 −1

1 −1

−1 1

1 −1

−1 1

−1 1

1 −1

−1 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

There are twelve free 1-cells, all of which are of the form dσ . From the above matrix,

H1(M2Γ, (M2Γ )0) ∼= Z
13 and so H1(P2Γ ) ∼= Z

12.

For a free 1-cell c in UD2Γ , cid and cρ are free 1-cells in D2Γ . So it is easy

to modify Lemmas 3.11 and 3.12 for H1(M2Γ, (M2Γ )0) accordingly and one can

verify that the contribution by N1(2,Γ ) and N2(Γ ) doubles because the number of

free 1-cells doubles. However, the proof of Lemma 3.15 deals with the undetermined

block and it is safe to redo.

Lemma 3.24 (Topologically Simple Triconnected Graph) For a topologically simple

and triconnected Γ ,

H1(P2Γ ) ∼= Z
2β1(Γ )+ǫ

where ǫ is 1 if Γ is planar or 0 if Γ is non-planar.
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Proof We need to show that H1(M2Γ, (M2Γ )0) ∼= Z
2β1(Γ )+ǫ+1. Critical 1-cells are

of the forms dσ , d(δℓ)σ and Ak(�δℓ)σ with k > ℓ. It is easy to see that every crit-

ical 1-cell of the form d(δℓ)σ is pivotal and the number of critical 1-cells of the

form dσ is equal to 2β1(Γ ). We consider the undetermined block. From the proof

of Lemma 3.15, there are at most two homology classes of the form [Ak(�δℓ)id]
and [Ak(�δℓ)ρ]. So it is sufficient to show that [Ak(�δℓ)id] �= [Ak(�δℓ)ρ] if Γ is pla-

nar and [Ak(�δℓ)id] = [Ak(�δℓ)ρ] if Γ is non-planar. If Γ is planar, then by condi-

tion (T4) in Lemma 2.12, there is no row representing ±{Ak(�δℓ)id + Bk′(�δℓ′)ρ}. So

[Ak(�δℓ)id] �= [Ak(�δℓ)ρ]. For non-planar graphs, we only need to verify for K5 and

K3,3 as was explained in the proof of Lemma 3.15. Examples 2.2 and 3.23 show that

H1(P2K5) and H1(P2K3,3) satisfy the lemma. �

Using the same arguments in the proof of Theorem 3.16, we obtain the formula

H1

(
M2Γ, (M2Γ )0

)
∼= Z

2N1(2,Γ )+2N2(Γ )+2N3(Γ )+2β1(Γ )+N ′
3(Γ ).

This implies the following theorem.

Theorem 3.25 For a finite connected graph Γ ,

H1(P2Γ ) ∼= Z
2N1(2,Γ )+2N2(Γ )+2N3(Γ )+2β1(Γ )+N ′

3(Γ )−1.

Since there are no critical i-cells for i ≥ 3 in D2Γ , H∗(P2Γ ) is torsion-free. So

we can compute H2(P2Γ ) as follows. Choose a maximal tree such that two end

vertices of every deleted edge have valency 2. Then there are two critical 0-cells

and β1(Γ )(β1(Γ ) − 1) critical 2-cells and the number of critical 1-cells is equal to∑
x∈V (Γ )(ν(x) − 1)(ν(x) − 2) + 2β1(Γ ). So we have the second Betti number of

P2Γ as follows:

β2(P2Γ ) = 2N1(2,Γ ) + 2N2(Γ ) + 2N3(Γ ) + N ′
3(Γ ) + β1(Γ )

(
β1(Γ ) − 1

)

−
∑

x∈V (Γ )

(
ν(x) − 1

)(
ν(x) − 2

)
.

A formula for β1(P2Γ ) − β2(P2Γ ) was given by Barnett and Farber in [3].

As a closing thought of this section, it is tempting to use Lyndon–Hochschild–

Serre spectral sequence for Sn = BnΓ/PnΓ to extract some information about

H1(PnΓ ) via homologies of the other two groups. In fact, we have the exact sequence

H2(BnΓ ) → H2(Sn) → H1(PnΓ )Sn → H1(BnΓ ) → H1(Sn) → 0

where H1(PnΓ )Sn is isomorphic to H1(PnΓ )/IH1(PnΓ ) as Z[Sn]-modules and I is

the kernel of the augmentation Z[Sn] → Z. Even though the action on critical 1-cells

by Sn is clearly understood, the action on homology classes is not so clear without

any information about the second boundary map.
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4 Applications and More Characteristics of Graph Braid Groups

In this section we first discuss consequences of the formulae obtained in the previous

section. Then we develop a technology for graph braid groups themselves that is

parallel to the technology successfully applied for the first homologies of graph braid

groups. And we discover more characteristics of graph braid groups and pure braid

groups beyond their homologies. These characteristics are defined by weakening the

requirement for right-angled Artin groups.

4.1 Planar and Non-planar Triconnected Graphs

Since we are not interested in trivial graphs such as a topological line segment of a

topological circle, we assume Γ has at least a vertex of valency ≥3 in this discus-

sion. For any 1-cut x of valency ≥3, N(n,Γ,x) > 0. Thus N1(n,Γ ) = 0 if and only if

there is no 1-cut of valency ≥3 if and only if Γ is biconnected. If N2(Γ ) = 0 for a bi-

connected graph Γ , then μ({x, y}) = 2 for every 2-cut {x, y}. If Γ has multiple edges

between vertices x and y after ignoring vertices with valency 2, then μ({x, y}) > 2

for some 2-cut {x, y} and so N2(Γ ) > 0. Thus if N2(Γ ) = 0 for a biconnected graph,

then Γ is topologically simple. If N3(Γ ) = N ′
3(Γ ) = 0, then Γ does not topologi-

cally contain the complete graph K4 by the construction of triconnected graphs. If

N1(n,Γ ) = N2(Γ ) = 0 and N3(Γ )+N ′
3(Γ ) = 1, then Γ is topologically simple and

triconnected.

Barnett and Farber proved in [3] that if for a finite connected planar graph Γ

with no vertices of valency ≤2 that is embedded in R
2, the connected components

U0,U1, . . . ,Ur of the complement R
2 − p(Γ ) with the unbounded component U0

satisfy the conditions that

(i) the closure of every domain Ūi>0 is contractible and Ū0 is homotopy equivalent

to S1, and

(ii) for every i, j ∈ {1, . . . , r}, Ūi ∩ Ūj is connected,

then β1(D2Γ ) = 2β1(Γ ) + 1.

Condition (i) implies that Γ has no 1-cut. Condition (ii) implies that either

Γ is the Θ-shape graph if |V (Γ )| = 2 or Γ has neither multiple edges nor

2-cuts if |V (Γ )| > 2. So the hypotheses imply that Γ is either the Θ-shape graph

or a planar simple triconnected graph. Thus Theorem 3.25 covers this result.

Furthermore, for any planar graph Γ , β1(P2Γ ) = 2β1(Γ ) + 1 if and only if

N1(2,Γ ) + N2(Γ ) + N3(Γ ) = 1 and N ′
3(Γ ) = 0. There are three nonnegative so-

lutions: (N1(2,Γ ),N2(Γ ),N3(Γ )) = (1,0,0), (0,1,0) and (0,0,1).

In the case of (1,0,0), Γ has only one 1-cut vertex of valency 3. So Γ is either

the Y -shape tree or the P -shape graph. In the case of (0,1,0), Γ is biconnected and

has only one 2-cut {x, y} with μ({x, y}) = 3. So Γ is the Θ-shape graph. Finally, the

solution (0,0,1) implies that Γ is topologically simple and triconnected. Thus for a

connected planar graph Γ with no vertices of valency ≤2, β1(P2Γ ) = 2β1(Γ ) + 1 if

and only if Γ is either the Θ-shape graph or a simple triconnected graph. Note that

we cannot remove the assumption of being planar because there is a counterexample

given in Fig. 18.
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Fig. 18 A non-planar graph Γ

with β1(P2Γ ) = 2β1(Γ ) + 1

Farber and Hanbury proved in [10] that if for a graph Γ with no vertices of valency

≤2, there exists a sequence Γ1,Γ2, . . . ,Γr of graphs satisfying the conditions:

(i) Γ1 is either K5 or K3,3 and Γr = Γ ;

(ii) for 1 ≤ i ≤ r − 1, Γi+1 is obtained by adding an edge with ends {x, y} to Γi such

that the complement Γi − {x, y} is connected where x and y are points in Γi ;

then β1(D2Γ ) = 2β1(Γ ).

The above construction obviously produces a non-planar, simple and triconnected

graph Γ . Then N1(2,Γ ) = N2(Γ ) = N3(Γ ) = 0 and N ′
3(Γ ) = 1 and so Theo-

rem 3.25 contains this result. Moreover, they conjectured that Γ is non-planar and

triconnected (this is equivalent to their hypothesis) if and only if β1(D2Γ ) = 2β1(Γ )

and H1(P2Γ ) is torsion-free. The same theorem also verifies this conjecture. The-

orem 3.25 implies that β1(P2Γ ) = 2β1(Γ ) if and only if 2N1(2,Γ ) + 2N2(Γ ) +
2N3(Γ ) + N ′

3(Γ ) = 1. There is only one nonnegative solution N1(2,Γ ) = N2(Γ ) =
N3(Γ ) = 0 and N ′

3(Γ ) = 1 for the equation. Thus β1(P2Γ ) = 2β1(Γ ) if and only if

the graph Γ is non-planar, topologically simple and topologically triconnected.

4.2 Graph Braid Groups and Commutator-Related Groups

A group G is commutator-related if it has a finite presentation 〈x1, . . . , xn |
r1, . . . , rm〉 such that each relator rj belongs to the commutator subgroup [F,F ]
of the free group F generated by x1, . . . , xn. We will prove that planar graph braid

groups and pure graph 2-braid groups are commutator-related groups.

Since the abelianization of a given group G is the first homology of G, we have

the following.

Proposition 4.1 Let G be a group such that H1(G) ∼= Z
m. If G has a finite presen-

tation with m-generators, then G is commutator-related.

Let Γ be a planar graph. Since UDnΓ is a finite complex, BnΓ has a finite pre-

sentation. To prove that BnΓ is a commutator-related group, it is sufficient to show

that there is a finite presentation with m generators for BnΓ for m = β1(UDnΓ ).

The braid group BnΓ is given by the fundamental group of a Morse complex

UMnΓ of UDnΓ . Thus BnΓ has a presentation whose generators are critical 1-cells

and whose relators are boundary words of critical 2-cells in terms of critical 1-cells.

On the other hand, the computation using critical 1-cells and critical 2-cells in a

Morse complex MnΓ of DnΓ does not give PnΓ since there are n! critical 0-cells

and critical 1-cells between distinct critical 0-cells are also treated as generators.
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Instead it gives π1(MnΓ/ ∼) where MnΓ/ ∼ is the quotient obtained by identifying

all critical 0-cells.

Even though discrete Morse theory can apply to DnΓ for any braid index n, we

have not reached a level of sophistication sufficient to make good use due to obsta-

cles explained in Sect. 3.3. For n = 2, π1(M2Γ/ ∼) = P2Γ ∗ Z. In fact, M2Γ/ ∼ is

homotopy equivalent to the wedge product of M2Γ and S1 under a homotopy sliding

one critical 0-cell to the other along a critical 1-cell and therefore a presentation of

P2Γ is obtained from that of π1(M2Γ/ ∼) by killing any one of critical 1-cells join-

ing two 0-cells in the Morse complex M2Γ , for example, a critical 1-cell of the form

Ak(�δℓ)id. Thus it is enough to show that π1(M2Γ/ ∼) is a commutator-related group.

In order to rewrite a word in 1-cells of UDnΓ into an equivalent word in critical

1-cells, we use the rewriting homomorphism r̃ from the free group on 1-cells to the

free group on critical 1-cells defined as follows: First define a homomorphism r from

the free group on K1 to itself by r(c) = 1 if c is collapsible, r(c) = c if c is critical,

and

r(c) =
{
v-v1, v2, . . . , vn−1, ι(e)

}
{v, v2, . . . , vn−1, e}

{
v-v1, v2, . . . , vn−1, τ (e)

}−1

if c = {v1, v2, . . . , vn−1, e} is redundant such that v1 is the smallest unblocked vertex

and e is the edge in c. In fact, the abelian version of r is the map R defined in Sect. 2.1.

Forman’s discrete Morse theory in [11] guarantees that there is a nonnegative inte-

ger k such that rk(c) = rk+1(c) for all 1-cells c. Let r̃ = rk , then for any 1-cell c, r̃(c)

is a word in critical 1-cells that is the image of c under the quotient map defined by

collapsing UDnΓ onto its Morse complex. We note that k = 0 iff c is critical, k = 1

iff c is collapsible, and k ≥ 2 iff c is redundant. By considering ordered n-tuples, we

can similarly define r̃ from the free group on 1-cells of DnΓ to the free group on

critical 1-cells of DnΓ .

By rewriting the boundary word of a critical 2-cell in terms of critical 1-cells, it

is possible to compute a presentation of BnΓ (or π1(DnΓ/ ∼), respectively) using

a Morse complex of UDnΓ (or DnΓ ). However, the computation of r̃ is usually

tedious and the following lemma somewhat shortens it.

Lemma 4.2 (Kim–Ko–Park [12]) Let c be a redundant 1-cell and v be an unblocked

vertex. Suppose that for the edge e starting from v, there is no vertex w that is either in

c or an end vertex of an edge in c and satisfies τ(e) < w < ι(e). Then r̃(c) = r̃(Ve(c))

where Ve(c) denotes the 1-cell obtained from c by replacing ι(e) by τ(e).

Example 4.3 We show that B3Θ4 and P3Θ4 are surface groups. These will serve

counterexamples later.

Choose a maximal tree and an order on vertices as in Fig. 19. First we compute

B3Θ4. There are eight critical 1-cells A2(1,0,0), A2(1,0,1), A3(1,0,0), A3(0,1,0),

A3(1,1,0), d1, d2, d3 and three critical 2-cells A2(1,0,0) ∪ d1, A3(1,0,0) ∪ d2,

A3(0,1,0) ∪ d3. Using Lemma 4.2, relators are given as follows:
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Fig. 19 Θ4 with the maximal

tree and the order

r̃ ◦ ∂w

(
A2(1,0,0) ∪ d1

)
= r̃
(
{2-4,3,5}{d1,2,3}{2-4,0,3}−1{d1,3,4}−1

)

= {2-4,3,5}{d1,1,2}{2-4,0,3}−1{d1,1,2}−1

= A2(1,0,1) · d1 · A2(1,0,0)−1 · d−1
1 .

Similarly,

r̃ ◦ ∂w

(
A3(1,0,0) ∪ d2

)
= A3(1,1,0) · d2 · A3(1,0,0)−1 · d−1

2 · A3(0,1,0)−1

and

r̃ ◦ ∂w

(
A3(0,1,0) ∪ d3

)
= A3(1,1,0) · A2(1,0,0) · d3

· A3(0,1,0)−1 · d−1
3 · A3(1,0,0)−1 · A2(1,0,1)−1.

We perform Tietze transformations that add three generators and relations as follows:

D2 = A3(0,1,0) · d2 · A2(1,0,0)−1 · A3(0,1,0)−1,

D3 = A2(1,0,0) · A3(1,0,0) · d3,

B = A3(0,1,0) · A2(1,0,0) · A3(1,0,0) · A2(1,0,0)−1 · A3(0,1,0)−1.

Then we eliminate A2(1,0,1), A3(1,1,0), A3(1,0,0), d2 and d3. Thus B3Θ4 has a

presentation with six generators and one relator as follows:

〈
A2(1,0,0),A3(0,1,0),B, d1,D2,D3

∣∣ [d1,A2(1,0,0)
][

D3,A3(0,1,0)
]
[B,D2]

〉
.

This is a fundamental group of an orientable closed surface of genus 3.

In fact, UD3Θ4 is an orientable closed surface of genus 3. So we can see that

its sixfold cover D3Θ4 is an orientable surface of genus 13 by considering Euler

characteristics.

The rewriting algorithm seems exponential in the size of graphs. Fortunately, we

need not precisely compute the boundary word of a critical 2-cell since we are only

interested in the number of generators and how to eliminate generators via Tietze

transformations. We use the technique developed in Sect. 3.1 for UDnΓ and the

parallel technique developed in Sect. 3.3 for D2Γ . Recall that the orders on critical

1-cells an on critical 2-cells were important ingredients for the techniques. Using

the presentation matrices for H1(BnΓ ) or H1(D2Γ, (D2Γ )0) over bases of 2-cells

and 1-cells ordered reversely, critical 1-cells were classified into pivotal, free, and

separating 1-cells.
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Lemma 4.4 (Elimination of Pivotal 1-Cells) Assume that Γ has a maximal tree and

an order according to Lemma 2.5. Then BnΓ and π1(D2Γ/ ∼) are generated by free

and separating 1-cells.

Proof There is no difference between BnΓ and π1(D2Γ/ ∼) in our argument. We

discuss only BnΓ . The proof for π1(D2Γ/ ∼) is exactly the same except the fact that

permutations are used as subscripts to express critical cells.

Consider pairs (c2, c1) of a pivotal 2-cell c2 that produces a pivotal 1-cell c1. Then

either s(c1) ≥ 2 or c1 is of the form d(�δℓ). In Sect. 3.1, a pivotal 1-cell c1 is the largest

summand of ∂̃(c2) and so is not a summand of ∂̃(c′
2) for a pivotal 2-cell c′

2 < c2. We

want to obtain the corresponding noncommutative version.

We need to slightly modify the order on critical 1-cells when only pivotal 1-cells

are compared. For an edge e in Γ , set t (e) = 0 if e is in the maximal tree T and

t (e) = 1 otherwise. Declare e > e′ if (τ (e), t (e), ι(e)) > (τ(e′), t (e′), ι(e′)). The set

of pivotal 1-cells are linearly ordered by the triple (s(c), e, �a) under the modified

order on edges. We modified the order on the set of pivotal 2-cells accordingly, that

is, c2 > c′
2 for pivotal 2-cells c2 and c′

2 if c1 > c′
1 when (c2, c1) and (c′

2, c
′
1) are pairs

of a pivotal 2-cell and the corresponding pivotal 1-cell.

Let ∂w(c) denote the boundary word of a given pivotal 2-cell c. We claim the

following:

(a) c1 appears in the word r̃ ◦ ∂w(c2) exactly once (as a letter or the inverse of a

letter).

(b) Under the order defined above, c1 is the largest of pivotal 1-cells appeared in

r̃ ◦ ∂w(c2)

Note that (b) implies that c1 does not appear in r̃ ◦ ∂w(c′
2) for any pivotal 2-cell

c′
2 < c2. Then, via Tietze transformations, we can inductively eliminate pivotal 1-cells

from the set of generators given by critical 1-cells in UDnΓ . Thus BnΓ is generated

by free and separating 1-cells. Note that it is easy to perform inductive eliminations

of pivotal 1-cells in decreasing order because no substitution is required.

To show our claim, we have to analyze each term in ∂w(c2) due to the lack of

luxury such as Lemmas 2.9 and 2.11. First consider the image of a redundant 1-cell

under r̃ . Let c = {e, v1, . . . , vn−1} be a 1-cell. Repeated applications of Lemma 4.2

imply that for any critical 1-cell c′ = {e′, v′
1, . . . , v

′
n−1} appearing in r̃(c), the vertex

τ(e′) is of valency ≥3 in Γ and of the form vi ∧ vj or vi ∧ τ(e) or vi ∧ ι(e) and,

moreover, s(c′) is less than or equal to the number of vertices that do not lie on the

0th branch of τ(e′) among v1, . . . , vn−1, ι(e), and τ(e). By Lemma 3.3, if c′ contains

a deleted edge, then c also contains a deleted edge and c′ appears only once in r̃(c).

And the terminal vertex of the edge in c1 is the larger one between terminal vertices

of two edges in c2.

Since c2 is pivotal, the edge in c2 with the smaller terminal vertex blocks no ver-

tices (see the proof of Lemma 3.4), there are two possibilities for ∂w(c2) as follows:

∂w

(
Ak(�a) ∪ d ′

)
= Ak(�a) ∪ ι

(
d ′
)
· d ′ ∪ Ȧ(�a) ·

{
Ak(�a) ∪ τ

(
d ′
)}−1

·
{
d ′ ∪ A(�a + �δk)

}−1
,
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∂w

(
d(�a) ∪ d ′

)
= d(�a) ∪ ι

(
d ′
)
· d ′ ∪ Ȧ(�a) ·

{
d(�a) ∪ τ

(
d ′
)}−1

·
{
d ′ ∪ A(�a) ∪ ι(d)

}−1
,

where A = τ(d) and k = g(A, ι(d)). Let c be a redundant 1-cell in the above bound-

ary words, e be the edge in c, and v be a vertex of valency ≥3 in Γ other than the base

vertex 0. Then the number of vertices that do not lie on the 0th branch of v among

vertices in c and end vertices of e is less than or equal to s(c2) + 1.

In the case of c2 = Ak(�a) ∪ d ′, the corresponding pivotal 1-cell c1 is Ak(�a +
�δg(A,ι(d ′))) by Lemma 3.3. Repeated application of Lemma 4.2 implies r̃(Ak(�a) ∪
ι(d ′)) = c1. Consider other three redundant 1-cells. Since s(c1) = s(c2) + 1 and

τ(d ′) ∧ A = τ(d ′) < A, the words r̃(d ′ ∪ Ȧ(�a)) and r̃(Ak(�a) ∪ τ(d ′)) contain no

pivotal 1-cells >c1. Since d ′ ∪ A(�a + �δk) contains a vertex <ι(Ak), ai ≥ 1 for some

i < k, that is, p(�a) < k. If c = Ap(�a)(�a+�δk −�δp(�a) +�δg(A,ι(d ′))) is pivotal then c < c1.

This implies that r̃(d ′ ∪ A(�a)) contains no pivotal 1-cells >c1. We are done.

In the case of c2 = d(�a) ∪ d ′, c1 = d(�a + �δg(τ(d),ι(d ′))) by Lemma 3.3 and so (a) is

true since c1 contains a deleted edge. Both words r̃(d ′ ∪ Ȧ(�a)) and r̃(d(�a) ∪ τ(d ′))

contain no pivotal 1-cell >c1 by the same argument as for Ak(�a) ∪ d ′. For any vertex

v > τ(d) of valency ≥3 in Γ , there is only one vertex in d(�a)∪ ι(d ′) that does not lie

on the 0th branch of v. If c′ is a critical 1-cell in r̃(d(�a)∪ ι(d ′)) such that the terminal

vertex of the edge in c is larger than τ(d), then s(c′) = 1 and so it is a critical 1-cell

of the form Bk′(�δℓ′) and so c′ is not pivotal. Similarly r̃(d ′ ∪ A(�a) ∪ ι(d)) contains

no pivotal 1-cell >c1. This completes the proof. �

Lemma 4.5 (Fewest Generators) BnΓ (π1(D2Γ/ ∼), respectively) has a presenta-

tion over m generators for the rank m of H1(UDnΓ ;Z2) (H1(D2Γ, (D2Γ )0), re-

spectively).

Proof We discuss only UDnΓ . The proof for D2Γ/ ∼ is essentially the same.

Lemma 4.4 gives a presentation for BnΓ over free and separating 1-cells. Since each

free 1-cell contributes to the rank of the first homology, we leave them. To consider

separating 1-cell, let d ∪d ′ be a pivotal 2-cell whose boundary word contains a pivotal

1-cell of the form d(�δm) with g(τ(d), ι(d)) = m and d ∪ d ′′ be another critical 2-cell

whose boundary word also contains d(�δm) as the largest critical 1-cell. Recall that

the row corresponds to the difference of the two critical 2-cells d ∪ d ′ and d ∪ d ′′ and

consists of two nonnegative entries ±1 that correspond to separating 1-cells
∧

(d, d ′)

and
∧

(d, d ′′) in a presentation matrix for H1(BnΓ ). For the group presentation, this

can be done by the Tietze transformation that eliminates the pivotal 1-cell d(�δm).

After the elimination, a new relator w(d,d ′, d ′′) is obtained by a substitution from

the two boundary words. And w(d,d ′, d ′′) contains separating 1-cells
∧

(d, d ′) and∧
(d, d ′′). Furthermore, since

r̃∂w

(
d ∪ d ′

)
= r̃
(
d ′ ∪ ι(d) · d ∪ τ

(
d ′
)
·
{
d ′ ∪ τ(d)

}−1
·
{
d ∪ ι
(
d ′
)}−1)

,

the terminal vertex of the edge in a critical 1-cell other than
∧

(d, d ′) in r̃∂w(d ∪ d ′)

is ≤τ(d) by a similar argument as in the proof of Lemma 4.4. Thus
∧

(d, d ′) and∧
(d, d ′′) are greater than any other critical 1-cells of the form Ak(�δℓ) and so they are
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greater than other separating 1-cells in w(d,d ′, d ′). Moreover, the exponent sum of

each generator other than
∧

(d, d ′) and
∧

(d, d ′′) in w(d,d ′, d ′′) is zero.

By our setup, if two separating 1-cells
∧

(d, d ′) and
∧

(d, d ′′) are homologous,

then (i) there is a relator w(d,d ′, d ′′) that contains each of them once, (ii) any other

separating 1-cell in w(d,d ′, d ′′) is less than them, and (iii) the exponent sum of

each generator other than them is 0. Clearly the converse is also true. Consider a

labeled graph G in which separating 1-cells are vertices and there are edges labeled

by w(d,d ′, d ′′) between two vertices
∧

(d, d ′) and
∧

(d, d ′′). The number of con-

nected components of G is exactly the number of homology classes of separating

1-cells. We are done if each connected component becomes a graph with one vertex

(and loops) via inductive edge contractions.

Starting from the vertex
∧

(d, d ′) that is the smallest separating 1-cell in G, we

eliminate
∧

(d, d ′) via a Tietze transformation as follows: Choose the smallest ver-

tex
∧

(d, d ′′) among all vertices adjacent to
∧

(d, d ′), contract an edge w(d,d ′, d ′′)

(choose any edge if it is a multi-edge) by throwing away the vertex
∧

(d, d ′), solve

w(d,d ′, d ′′) for
∧

(d, d ′), and assign new labels obtained by substitutions to all other

edges that used to be incident to
∧

(d, d ′). Then all edge labels except for loops again

have the properties (i), (ii), and (iii) above. In particular, (i) follows from (ii) since∧
(d, d ′) was the smallest vertex in G. To iterate the process, let G be the modified

graph. Go to the smallest vertex in G and start again. Since separating 1-cells are

linearly ordered, this iteration clearly turns each connected component of G into a

graph with only the largest vertex together with loops. Note that the exponent sum of

the vertex in the label of each loop is either 0 or ±2 due to the property of original

labels. �

Theorem 4.6 If Γ is a finite connected planar graph (a finite connected graph, re-

spectively), then BnΓ (P2Γ , respectively) is a commutator-related group.

Proof Note that if Γ is planar, H1(BnΓ ) ∼= Z
m for the rank m of H1(BnΓ ;Z2). Now

the theorem is immediate from Proposition 4.1 and Lemma 4.5. In fact, a careful anal-

ysis of the proof of Lemma 4.5 can also prove the theorem without Proposition 4.1. �

4.3 Presentations of B2Γ and P2Γ

A group G is simple-commutator-related if G has a presentation whose relators are

commutators. Clearly a right-angled Artin group is simple-commutator-related and a

simple-commutator-related group is commutator-related.

In [9], Farley and Sabalka conjectured that B2Γ is simple-commutator-related for

a planar graph Γ and relators are commutators of two words that represent disjoint

circuits on the planar graph. In a private correspondence, Abrams conjectured that

P2Γ is simple-commutator-related for a planar graph Γ . There has been some doubt

on these conjectures (for example, see [13]). By combining our result with the result

by Barnett and Farber in [3], we will prove that for a planar graph Γ , both B2Γ and

P2Γ are simple-commutator-related and relators are commutators of disjoint circuits

on Γ . So these conjectures are true.

First we need the following lemma proved by Barnett and Farber in [3].
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Lemma 4.7 (Barnett and Farber [3]) Let Γ ⊂ R
2 be a planar graph and U0,

U1, . . . ,Ur be the connected components of R
2 −Γ with U0 denoting the unbounded

component and S(i) denote ∂U i ⊂ Γ . Then homology classes [S(i) × S(j)] with

S(i) ∩ S(j) = ∅ freely generate H2(D2Γ ).

To show the lemma, Barnett and Farber noticed the exact sequence

0 → H2(D2Γ ) → H2(Γ × Γ ) → H2(Γ × Γ,D2Γ ).

There is a corresponding exact sequence

0 → H2(UD2Γ ) → H2(Γ × Γ/ ∼) → H2(Γ × Γ/ ∼,UD2Γ )

where Γ × Γ/ ∼ is the quotient space obtained by (x, y) ∼ (y, x). Under this equiv-

alence relation, the homology classes [S(i) × S(j)] and [S(j) × S(i)] are identified

and give a homology class {S(i) × S(j)} in H2(UD2Γ ). Lemma 4.7 implies that

homology classes {S(i)×S(j)} with S(i)∩S(j) = ∅ freely generate H2(UD2Γ ). In

fact, β2(D2Γ ) = 2β2(UD2Γ ) by the formulae for second Betti numbers in Sects. 3.2

and 3.3. We are now ready for the last theorem.

Theorem 4.8 For a planar graph Γ , both B2Γ and P2Γ are simple-commutator-

related and relators are commutators of two disjoint circuits on Γ . In fact, there is

a presentation of B2Γ (P2Γ , respectively) over β1 generators such that it has β2

relators that are all commutators, where β1 and β2 are the first and second Betti

numbers of B2Γ (P2Γ , respectively).

Proof There is no difference between B2Γ and P2Γ in our argument. We discuss

only P2Γ . Each torus S(i) × S(j) in Lemma 4.7 is embedded in the discrete config-

uration space D2Γ . Since each circuit in Γ contains at least a deleted edge, so does

each S(i). So the embedded torus S(i) × S(j) remains as an immersed torus Tij in

a Morse complex M2Γ since deleted edges gives critical 1-cells. The immersed tori

may intersect each other but are never identified since they generate H2(M2Γ ).

Each Tietze transformation performed in the proofs of Lemmas 4.4 and 4.5 is an

elimination of a pair of a generator and a relation. In the cell complex M2Γ , this cor-

responds to collapsing of a canceling pair of a 1-cell and a 2-cell. Let M ′
2Γ denote the

cell complex obtained from M2(Γ ) by collapsing all canceling pairs corresponding

to Tietze transformations performed in the proofs of the two lemmas. Each immersed

torus Tij in M2Γ remains as an immersed torus T ′
ij in M ′

2Γ after collapsing even

though it may become complicated.

By Lemma 4.5, the cell complex M ′
2Γ has two 0-cells and (m − 1) 1-cells for the

rank m of H1(D2Γ/ ∼) since the identification space D2Γ/ can also be obtained

by adding a 1-cell between two base vertices which remains in M ′
2Γ . By consid-

eration of Euler characteristics, the number of 2-cells in M ′
2Γ is equal to the rank

of H2(D2Γ ) and so equal to the number of (ordered) tori S(i) × S(j). Therefore

each 2-cell must form an immersed torus T ′
ij and produces a relator that must be a

commutator. �
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Note that Theorem 4.8 is false for braid index n ≥ 3. For example, B3Θ4 and

P3Θ4 are surface groups (see Example 4.3). One can show that B3Θ4/(B3Θ4)3 is

isomorphic to BnΘ4/(BnΘ4)3 for n ≥ 4 where G3 denotes the third lower central

subgroup of a group G. Thus BnΘ4 is not simple-commutator-related for n ≥ 3. If Γ

contains a subgraph Θ4, BnΓ (P3Γ , respectively) has a subgroup that is not simple-

commutator-related since there is a local isometric embedding from UDnΘ4 (P3Θ4,

respectively) to UDnΓ (P3Γ , respectively). Thus it seems reasonable to propose the

following conjecture:

Conjecture 4.9 For a planar graph Γ , BnΓ for n ≥ 3 and P3Γ are simple-

commutator-related if and only if Γ does not contain a subgraph Θ4.

For instance, Farley and Sabalka showed in [7] that every tree braid group is

simple-commutator-related.
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