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Abstract—The characteristics of guided modes in the planar
waveguides which the core or cladding consists of chiral nihility
meta-materials are studied theoretically. The dispersion curves,
electromagnetic fields, energy flow distribution and the power of several
low-order guided modes in the chiral nihility waveguides are presented.
Some novel features such as anomalous dispersion curves, the power
flows opposite to the wave vector propagation direction in the chiral
nihility waveguides have been found.

1. INTRODUCTION

Studies on the propagation of electromagnetic waves in waveguides
are important for device design. Recently, the negative refractive
index materials (NIMs) have attracted much attention because NIM
has many novel features and potential applications such as perfect
lens. Various waveguides including NIM have been investigated
intensively [1–11]. Many novel characteristics of guided waves in
NIM waveguides were found. Guided modes in a slab of uniaxial
backward-wave medium can carry energy in opposite directions inside
and outside the slab with backward waves inside the slab [1]. Peculiar
properties of guided waves in NIM slab waveguides include the
absence of fundamental modes, mode double degeneracy, and the
sign-varying energy flux [2]. Anomalous dispersion curves were
revealed: Below cutoff, there is a frequency range for which there
are two possible propagation coefficients [3]. There exists a sort
of unique electromagnetic waves termed as “surface waves” whose
electromagnetic fields exponentially decay on both sides of the
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interfaces between NIM and conventional materials, and cannot exist
in normal waveguides [4–6]. All surface plasmon polarition (so-
called SPP) eigenmodes supported by generalized asymmetric slab
heterostructures have been identified and classified [5]. Similar peculiar
properties of guided modes and surface wave (SPP) are also found in
the NIM grounded slab waveguides [7–9]. Waves in NIM waveguides
can propagate very slowly and even can be stopped [10, 11].

On the other hand, waveguides including chiral media have been
studied intensively because of their important potential applications
in optics and microwaves [12–14]. More recently, the chiral medium
has been suggested to achieve NIM [15–17]. It has been shown
that the chirality parameter can be greater than refraction index at
least near the resonant frequency, thus one eigen-wave in the chiral
medium becomes a backward wave, making negative refraction in
the chiral medium possible [16, 17]. The effective negative index of
refraction in chiral meta-materials has been experimentally achieved
at microwave frequencies [18] and THz frequencies [19] in 2009. The
novel feature of guided modes in chiral negative refraction waveguides
has been investigated theoretically [20–22]. Waves in the parallel-
plate waveguide containing two-layer chiral nihility meta-materials
(the chiral medium in which the permittivity and permeability are
simultaneously zero) and one air layer [23], and in the grounded chiral
nihility metamaterial slab has been examined [24].

In this paper, we firstly present the dispersion equations of general
chiral planar waveguides in which both the core and cladding consist
of chiral materials. Then two special cases: The planar waveguides
consisting of a chiral nihility meta-material core with an achiral
cladding and a chiral nihility meta-material cladding with an achiral
core are examined in detail. For guided odd and even modes, the
dispersion equations, normalized cutoff frequencies, electromagnetic
fields, and energy flow of right-handed and left-handed circularly
polarized (RCP and LCP) modes are derived in explicit forms.
Numerical results of several low-order guided modes are given for
typical chirality parameters. Some novel features such as anomalous
dispersion curves and the power flows opposite to the wave vector
propagation direction in the chiral nihility waveguides are found.

2. DISPERSION EQUATIONS OF GENERAL
THREE-LAYERED PLANAR CHIRAL WAVEGUIDES

Consider three-layered symmetric planar chiral waveguides in which
the core and cladding materials are chiral, as shown in Fig. 1. The
thickness of the core is d. The constitutive relations in the chiral media
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Figure 1. Geometry of the three-layered planar chiral waveguide.

adopted here for a time-harmonic field with exp(jωt) are as follows:

D = εiE − jκi
√

μ0ε0 H, B = μiH + jκi
√

μ0ε0 E (1)

where μi, εi, κi (i = 1, 2) are permeability, permittivity and chirality
parameter, respectively.

In the chiral medium, electromagnetic fields can be expressed
as [17]:

E = E+ + E−, H = H+ + H− (2)

The relationship between electric and magnetic fields is

H± = ±j ·E±/ηi (3)

where E+ and E− are solutions of the wave equations:

(∇2 + k2
i+)E+ = 0, (∇2 + k2

i−)E− = 0 (4)

where ki± = ni±k0, and ni± = ni ± κi are the effective refractive
index of the two eigen-waves (the subscription + and − correspond to
right- and left-handed circularly polarized waves, respectively denoted
as RCP and LCP) in the chiral media; k0 = ω

√
μ0ε0, ni =

√
μiεi/μ0ε0

and ηi =
√

μi/εi are the wavenumber in free space, the refractive index
and wave impedance of the chiral medium. If the chirality parameter
is very large (κi > ni), then the effective refractive index ni− for the
LCP eigen-wave is negative (ni− < 0). We call this type of strong
chiral medium as chiral negative refraction medium.

Because the planar chiral waveguide structure is symmetry to x-
axis, we can express the solutions of the longitudinal-field component
in Equation (4) as [14]:

Ez± =
{

A± sin(kx±x) |x| < d/2
B± exp[−γx±(|x| − d/2)] |x| > d/2

(5)
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for guided odd modes, and

Ez± =
{

A± cos(kx±x) |x| < d/2
B± exp[−γx±(|x| − d/2)] |x| > d/2

(6)

for guided even modes, where exp[j(ωt− βz)] is omitted for simplicity
and β is the longitudinal propagation constant, the parameters
kx±, γx± are kx± = (k2

2± − β2)1/2, γx± = (β2 − k2
1±)1/2.

The relationship between the transversal and longitudinal
electromagnetic field components can be found in [12]. According
to the boundary condition (continuity of the tangential fields) for
electromagnetic field components at x = d/2, the dispersion equations
of guided modes in the planar chiral waveguides can be derived as
follows:(

k1+

γx+
sin u+− k2+

kx+
cos u+

)(
− k1−

γx− sin u−+ k2−
kx− cos u−

)
(η1+η2)2

+
(

k1−
γx− sin u++ k2+

kx+
cos u+

)(
k1+

γx+
sin u−+ k2−

kx− cos u−
)
(η1−η2)2 =0

(7)

for guided odd modes, and(
k1+

γx+
cos u++ k2+

kx+
sinu+

)(
k1−
γx− cos u−+ k2−

kx− sinu−
)
(η1+η2)2

+
(

k1−
γx− cos u+− k2+

kx+
sinu+

)(
− k1+

γx+
cos u−+ k2−

kx− sin u−
)
(η1−η2)2=0

(8)

for guided even modes, where u± = kx±d/2. These dispersion
equations are consistent with whose in [14]. However, the constitutive
relations adopted here are different, and there were many typo mistakes
in dispersion relation formula in [14].

In the next sections, we will focus on the two special cases: The
planar waveguides consisting of a chiral nihility core with an achiral
cladding and a chiral nihility cladding with an achiral core. The chiral
nihility means μi = 0, εi = 0, κi �= 0.

3. GUIDED MODES IN PLANAR CHIRAL NIHILITY
CORE WAVEGUIDES

When the core is a chiral nihility meta-material and cladding is an
achiral medium, the above parameters become k2± = ±κ2k0, kx± =
(k2

2± − β2)1/2 = (κ2
2k

2
0 − β2)1/2 = kx, γx± = (β2 − k2

1±)1/2 =
(β2 − k2

1)
1/2 = γx, u± = kx±d/2 = kxd/2 = u. It is shown that

both the dispersion Equations (7) and (8) can be divided into two
equations which correspond to RCP and LCP modes, respectively.
For guided odd and even modes, the dispersion equations, normalized
cutoff frequencies, electromagnetic fields, and energy flow of RCP and
LCP modes are obtained as follows.
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3.1. Odd Modes

3.1.1. Dispersion Equation

The dispersion equations are:

(κ2
2k

2
0−β2)1/2 d

2
=tan−1

[
κ2k0

k1

(
β2−k2

1

κ2
2k

2
0−β2

)
1/2

]
+mπ, m=0, 1, 2 . . . (9)

for RCP odd modes, and

(κ2
2k

2
0−β2)1/2 d

2
=−tan−1

[
κ2k0

k1

(
β2−k2

1

κ2
2k

2
0−β2

)
1/2

]
+mπ, m=1, 2, 3 . . . (10)

for LCP odd modes, where m is mode number. It is noted that m
starts from 0 for RCP odd modes and from 1 for LCP odd modes.

3.1.2. Normalized Cutoff Frequency

The normalized cutoff frequencies can be obtained from the dispersion
Equations (9) and (10) by setting β → k1:

(k0d)c =
2mπ

(κ2
2 − n2

1)1/2
, m = 0, 1, 2 . . . (11)

for RCP odd modes, and

(k0d)c =
2mπ

(κ2
2 − n2

1)1/2
, m = 1, 2, 3 . . . (12)

for LCP odd modes.

3.1.3. Electromagnetic Field

The electromagnetic fields can be derived directly in explicit forms;
here only x > 0 region are presented; and x < 0 region can be obtained
according to symmetry.

In the core x < d/2, the electric fields for both RCP and LCP odd
modes are: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ex = −jβ

kx

C

sin(u)
cos(kxx)

Ey = −κ2k0

kx

C

sin(u)
cos(kxx)

Ez =
C

sin(u)
sin(kxx)

(13)
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In the cladding x > d/2, the electric fields are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ex = −jβ

γx
Ce−γx(x−d/2)

Ey = ∓k1

γx
Ce−γx(x−d/2)

Ez = Ce−γx(x−d/2)

(14)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively
where C is an arbitrary constant, which can be determined by total
power.

The magnetic fields in the core and cladding are:{
Hx

Hy

Hz

}
= ± j

η1

{
Ex

Ey

Ez

}
(15)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.

3.1.4. Energy Flow

Energy flow along the z-axis in the waveguides is defined by

Sz =
1
2
Re(E × H∗) · ẑ =

1
2
Re(ExH∗

y − EyH
∗
x) (16)

In the core x < d/2, energy flow is:

Sz = ±βκ2k0

η1k2
x

∣∣∣∣ C

sin(u)

∣∣∣∣
2

cos2(kxx) (17)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.
In the cladding x > d/2, energy flow is:

Sz =
βk1

η1γ2
x

|C|2e−2γx(x−d/2) (18)

for both RCP and LCP odd modes.
It is obvious from formulas (17), (18) that Sz is positive for RCP

odd modes and negative for LCP odd modes in the core, and positive
for both RCP and LCP odd modes in the cladding. It indicates that
energy flow of LCP modes is in opposite directions in the core and
cladding.



Progress In Electromagnetics Research B, Vol. 14, 2009 113

3.2. Even Mode

3.2.1. Dispersion Equation

The dispersion equations are:

(κ2
2k

2
0−β2)1/2 d

2
=−tan−1

[
k1

κ2k0

(
κ2

2k
2
0−β2

β2−k2
1

)
1/2

]
+mπ, m=1, 2, 3 . . . (19)

for RCP even modes, and

(κ2
2k

2
0−β2)1/2 d

2
=tan−1

[
k1

κ2k0

(
κ2

2k
2
0−β2

β2−k2
1

)
1/2

]
+mπ, m=0, 1, 2 . . . (20)

for LCP even modes.
It is noted that, in contrast to odd modes, m starts from 1 for

RCP even modes and starts from 0 for LCP even modes.

3.2.2. Normalized Cutoff Frequency

The normalized cutoff frequencies can be obtained from the dispersion
Equations (19) and (20) by setting β → k1:

(k0d)c =
(2m − 1)π

(κ2
2 − n2

1)1/2
, m = 1, 2, 3 . . . (21)

for RCP even modes, and

(k0d)c =
(2m + 1)π

(κ2
2 − n2

1)1/2
, m = 0, 1, 2 . . . (22)

for LCP even modes.

3.2.3. Electromagnetic Field

In the core x < d/2, the electric fields for both RCP and LCP even
modes are: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ex =
jβ

kx

C

cos(u)
sin(kxx),

Ey =
κ2k0

kx

C

cos(u)
sin(kxx),

Ez =
C

cos(u)
cos(kxx)

(23)

In the cladding x > d/2, the electric fields are the same as those
for RCP and LCP odd modes (see Equation (14)).
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The relationship between magnetic and electric fields in the core
and cladding is also the same as that for RCP and LCP odd modes
(see Equation (15)).

3.2.4. Energy Flow

In the core x < d/2, energy flow is:

Sz = ±βκ2k0

η1k2
x

∣∣∣∣ C

cos(u)

∣∣∣∣
2

sin2(kxx) (24)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.
In the cladding x > d/2, the formulas of energy flow are the same

as those for RCP and LCP odd modes (see Equation (18)).

3.3. Numerical Example

The propagation constants can be calculated numerically from the
dispersion equations (9), (10), (19), (20), then the electromagnetic fields
and the energy flow distribution can be obtained. The normalized total
power can be expressed as [2]

P =
P1 + P2

|P1| + |P2| (25)

where P1 = 2
∫ ∞
d/2 Szdx and P2 =

∫ d/2
−d/2 Szdx are the power in the

cladding and core, respectively. In this section, we present typical
numerical results for the parameters in the core and cladding being
μ2 = ε2 = 0, κ2 = 1.5 and μ1 = μ0, ε1 = ε0, κ1 = 0.

Figure 2 shows the dispersion curves of several low-order guided
odd and even modes in the planar chiral nihility core waveguide,
where neff = β/k0 is the effective refractive index; k0d is the
normalized frequency. Dashed and solid curves correspond to the
odd and even modes, respectively. For RCP odd and even modes,
the curves of effective refractive index versus normalized frequency
increases monotonically, and the normalized cutoff frequencies (points
C1, C2, when neff = 1) satisfy Equation (11) or (21). However, for
LCP odd and even modes, dispersion curves are no longer increasing
monotonically, but are bent, and the cutoff frequencies (when neff = 1)
are not the minimum frequencies that waves can propagate. When
m = 0, there is one solution below cutoff frequency (point C1) for LCP
even mode in some frequency region. When m = 1, there are two
solutions below cutoff frequencies (points C2, C3) for both LCP even
and odd modes in some frequency region. Thus the cutoff frequencies
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Figure 2. Dispersion curves of guided modes in the planar chiral
nihility core waveguide.

here are not really “cutoff”. The real “cutoff” frequencies correspond
to the minimum frequencies (critical points B0,D0) that guided wave
can propagate. As the normalized frequency increases from the critical
points B0,D0, dispersion curves bifurcate two branches, which the
effective refractive index increases for upper branch and decreases to
neff = 1 for lower branch.

Figures 3 and 4 show the amplitudes of electromagnetic field
components and energy flux distribution at normalized frequency
k0d = 2 (point A in Fig. 2) for LCP even mode when m = 0. Ez,Hz are
even functions of x (cos form) and Ex, Ey,Hx,Hy (sin form) are odd
functions of x. Sz is negative in the core and positive in the cladding;
the absolute power |P2| in the core is smaller than power P1 in the
cladding, thus the total power is positive.

Figures 5 and 6 show the amplitude of electromagnetic field
components and energy flux distribution at normalized frequency
k0d = 5.2 for LCP odd mode when m = 1. Ez,Hz are odd functions
of x (sin form) and Ex, Ey,Hx,Hy (cos form) are even functions of x.
Sz is negative in the core and positive in the cladding, too. However,
there are two propagation constants at k0d = 5.2. For larger effective
refractive index (point B1 in upper branch dispersion curve in Fig. 2)
neff = 1.2224, the absolute power |P2| is larger in the core than power



116 Dong and Xu

Figure 3. Amplitudes of electromagnetic field components at k0d = 2
for LCP even mode when m = 0.

Figure 4. Energy flux at k0d = 2 for LCP even mode when m = 0.

P1 in the cladding, thus the total power is negative. For smaller
effective refractive index (point B2 in lower branch dispersion curve
in Fig. 2), neff = 1.0237, the absolute power |P2| is smaller in the core
than power P1 in the cladding, thus the total power is positive.

The normalized total power P versus normalized frequency k0d is
plotted in Fig. 7 for three LCP modes (bended dispersion curves). For
LCP even mode when m = 0, P decreases as k0d decreases; however,
it is always positive. It indicates that the absolute power in the core
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Figure 5. Amplitude of electromagnetic components at k0d = 5.2 for
LCP odd mode when m = 1, neff = 1.2224.

(a) (b) 

S zS z

Figure 6. Energy flux at k0d = 5.2 for LCP odd mode when m = 1,
(a) neff = 1.2224; (b) neff = 1.0237.

is always smaller than that in the cladding. For LCP odd mode when
m = 1, P is negative for upper branch dispersion curve and positive
for lower branch dispersion curve. For upper branch dispersion curve,
amplitude of P decreases from nearly −1 to 0 as k0d decreases from
10 to 5 (critical point B0 in Fig. 2). It implies that at critical point,
the waveguide cannot propagate energy. For lower branch dispersion
curve, P increases as k0d increases from critical point B0 to cutoff
frequency C2. The similar results is observed for LCP even mode when
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Figure 7. Normalized total power versus normalized frequency for (a)
LCP even mode, m = 0; (b) LCP odd mode, m = 1; (c) LCP even
mode, m = 1.

m = 1. It is noted that for RCP odd and even modes, the power both
in the core and in the cladding are positive and the total power always
positive. The reason of above results is that LCP is backward (negative
refraction) wave and RCP is forward (positive refraction) wave in the
chiral nihility meta-material, which means energy flow along the z-axis
is negative for LCP waves and positive for RCP waves.

4. GUIDED MODES IN PLANAR CHIRAL NIHILITY
CLADDING WAVEGUIDES

When the cladding is a chiral nihility meta-material and core is an
achiral medium, the above parameters become kx± = (k2

2± − β2)1/2 =
(k2

2−β2)1/2 = kx, k1± = ±κ1k0, γx± = (β2−k2
1±)1/2 = (β2−κ2

1k
2
0)

1/2 =
γx, u± = kx±d/2 = kxd/2 = u. It is also shown that both the
dispersion Equations (7) and (8) can be divided into two equations
which correspond to RCP and LCP modes, respectively. For guided
odd and even modes, the dispersion equations, normalized cutoff
frequencies, electromagnetic fields, and energy flow of RCP and LCP
modes are also obtained as follows.

4.1. Odd Mode

4.1.1. Dispersion Equation

The dispersion equation is

(k2
2−β2)1/2 d

2
=tan−1

[
k2

κ1k0

(
β2−κ2

1k
2
0

k2
2−β2

)
1/2

]
+mπ, m=0, 1, 2 . . . (26)
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for RCP odd modes, and

(k2
2−β2)1/2 d

2
=−tan−1

[
k2

κ1k0

(
β2−κ2

1k
2
0

k2
2−β2

)
1/2

]
+mπ, m=1, 2, 3 . . . (27)

for LCP odd modes, where m is mode number.

4.1.2. Normalized Cutoff Frequency

The normalized cutoff frequencies can be obtained from the dispersion
Equations (26) and (27) by setting β → κ1k0:

(k0d)c =
2mπ

(n2
2 − κ2

1)1/2
, m = 0, 1, 2 . . . (28)

for RCP odd modes, and

(k0d)c =
2mπ

(n2
2 − κ2

1)1/2
, m = 1, 2, 3 . . . (29)

for LCP odd modes.

4.1.3. Electromagnetic Field

In the core x < d/2, the electric fields are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ex = −jβ

kx
A cos(kxx)

Ey = ∓k2

kx
A cos(kxx)

Ez = A sin(kxx)

(30)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.
In the cladding x > d/2, the electric fields for both RCP and LCP

odd modes are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ex = −jβ

γx
A sin(u)e−γx(x−d/2)

Ey = −κ1k0

γx
A sin(u)e−γx(x−d/2)

Ez = A sin(u)e−γx(x−d/2)

(31)

where A is a arbitrary constant.
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The magnetic fields in the core and cladding are:{
Hx

Hy

Hz

}
= ± j

η2

{
Ex

Ey

Ez

}
(32)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.

4.1.4. Energy Flow

In the core x < d/2, energy flow is:

Sz =
βk2

η2k2
x

|A|2 cos2(kxx) (33)

for both RCP and LCP odd modes.
In the cladding x > d/2, energy flow is:

Sz = ±βκ1k0

η2γ2
x

|A|2 sin2(u)e−2γx(x−d/2) (34)

for RCP (upper sign) and LCP (lower sign) odd modes, respectively.
It is obvious from formulas (33), (34) that Sz is positive for both

RCP and LCP modes in the core, and positive for RCP odd modes
and negative for LCP odd modes in the cladding. It also indicates
that energy flow of LCP modes is in opposite directions in the core
and cladding.

4.2. Even Mode

4.2.1. Dispersion Equation

The dispersion equations are:

(k2
2−β2)1/2 d

2
=−tan−1

[
κ1k0

k2

(
k2

2−β2

β2−κ2
1k

2
0

)
1/2

]
+mπ, m=1, 2, 3 . . . (35)

for RCP even modes, and

(k2
2−β2)1/2 d

2
=tan−1

[
κ1k0

k2

(
k2

2−β2

β2−κ2
1k

2
0

)
1/2

]
+mπ, m=0, 1, 2 . . . (36)

for LCP even modes.
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4.2.2. Normalized Cutoff Frequency

The normalized cutoff frequencies can be obtained from the dispersion
Equations (35) and (36) by setting β → κ1k0:

(k0d)c =
(2m − 1)π

(n2
2 − κ2

1)1/2
, m = 1, 2, 3 . . . (37)

for RCP even modes, and

(k0d)c =
(2m + 1)π

(n2
2 − κ2

1)1/2
, m = 0, 1, 2 . . . (38)

for LCP even modes.

4.2.3. Electromagnetic Field

In the core x < d/2, the electric fields are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ex =
jβ

kx
A sin(kxx)

Ey = ±k2

kx
A sin(kxx)

Ez = A cos(kxx)

(39)

for RCP (upper sign) and LCP (lower sign) even modes, respectively.
In the cladding x > d/2, the electric fields for both RCP and LCP

even modes are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ex = −jβ

γx
A cos(u)e−γx(x−d/2)

Ey = −κ1k0

γx
A cos(u)e−γx(x−d/2)

Ez = A cos(u)e−γx(x−d/2)

(40)

The relationship between magnetic and electric fields in the core
and cladding are also the same as those for RCP and LCP odd modes
(see Equation (32)).

4.2.4. Energy Flow

In the core x < d/2, energy flow is:

Sz =
βk2

η2k2
x

|A|2 sin2(kxx) (41)
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Figure 8. Dispersion curves of guided modes in the planar chiral
nihility cladding waveguide.

for both RCP and LCP even modes.
In the cladding x > d/2, energy flow is:

Sz = ±βκ1k0

η2γ2
x

|A|2 cos2(u)e−2γx(x−d/2) (42)

for RCP (upper sign) and LCP (lower sign) even modes, respectively.

4.3. Numerical Example

In this section, we present typical numerical results for the parameters
in the core and cladding being μ2 = μ0, ε2 = ε0, κ2 = 0 and
μ1 = ε1 = 0, κ1 = 0.1. In contrast to Section 3.3, here the chirality
parameter is smaller. This is an air-layer-open waveguide with chiral
nihility meta-material cladding and is different from the structure in
reference [23].

Figure 8 displays the dispersion curves of several low-order
guided odd and even modes in the planar chiral nihility cladding
waveguide. Dashed and solid curves correspond to the odd and even
modes, respectively. The characteristics of dispersion curves are also
anomalous and similar as Fig. 2 in Section 3.3.

The energy flux distribution at normalized frequency k0d = 0.5
(point A in dispersion curves in Fig. 8) for LCP even mode when
m = 0 is shown in Fig. 9. Sz is positive in the core and negative in
the cladding; the power P2 in the core is much smaller than absolute
power |P1| in the cladding, thus the total power is negative.
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Figure 9. Energy flux at k0d = 0.5 for LCP even mode when m = 0.

(b) (a) 

S z S z

Figure 10. Energy flux at k0d = 8 for LCP even mode when m = 1,
(a) neff = 0.5698; (b) neff = 0.1360.

Figure 10 shows the energy flux distribution at normalized
frequency k0d = 8 for LCP even mode when m = 1. Sz is positive
in the core and negative in the cladding, too. For larger effective
refractive index (point D1 in upper branch dispersion curve in Fig. 8)
neff = 0.5698, the power P2 is larger in the core than absolute power
|P1| in the cladding, thus the total power is positive. For smaller
effective refractive index (point D2 in lower branch dispersion curve in
Fig. 8), neff = 0.1360, the power P2 is smaller in the core than absolute
power |P1| in the cladding, thus the total power is negative.
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Figure 11. Total power versus normalized frequency for (a) LCP even
mode, m = 0; (b) LCP odd mode, m = 1; (c) LCP even mode, m = 1.

The normalized total power P versus normalized frequency k0d is
plotted in Fig. 11 for three LCP modes (bended dispersion curves). For
LCP even mode when m = 0, P is always near −1 as k0d decreases. It
indicates that the power P2 in the core is much smaller than absolute
power |P1| in the cladding. For LCP odd and even modes when m = 1,
the results is similar to those in Section 3.3; however, the positive and
negative are reversed.

5. CONCLUSION

The dispersion equations of general chiral planar waveguides in which
both the core and cladding are chiral materials are presented. Guided
modes in two special cases: Planar chiral nihility core or cladding
waveguides are examined in detail. It has been shown that for
guided odd and even modes in the chiral nihility waveguides, both
the dispersion equations can be divided into two equations which
correspond to RCP and LCP modes, respectively. For guided odd and
even modes, the dispersion equations, normalized cutoff frequencies,
electromagnetic fields, and energy flow of RCP and LCP modes are
derived in explicit forms. Numerical results of several low-order guided
modes are given for typical chirality parameters. Some novel features
such as anomalous dispersion curves and the power flows opposite to
the wave vector propagation direction in the chiral nihility waveguides
have been found.
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