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Abstract: In this work, the effect of thermal annealing on the characteristics of silicon homojunction 
photodetector was studied. This homojunction photodetector was fabricated by means of 
plasma-induced etching of p-type silicon substrate and plasma sputtering of n-type silicon target in 
vacuum. The electrical and spectral characteristics of this photodetector were determined and 
optimized before and after the annealing process. The maximum surface reflectance of 1.89% and 
1.81%, the maximum responsivity of 0.495 A/W and 0.55 A/W, the ideality factor of 1.80 and 1.99, 
the maximum external quantum efficiency of 76% and 83.5%, and the built-in potential of 0.79 V and 
0.72 V were obtained before and after annealing, respectively. 
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1. Introduction 

Homojunction is essentially a junction between 

the n- and p-type portions of the same material 

formed by different impurity doping. The junction is 

termed as abrupt or graded, depending upon whether 

the impurity concentration in the material changes 

abruptly or gradually at the junction region [1, 2]. 

When two layers of semiconductor materials of 

opposite carrier types are intimately joined, an 

exchange of charge carriers takes place, and the 

Fermi level becomes continuous in both layers [3]. 

Electrons from n-type portion adjacent to the 

junction flow into the p-side while holes from p-type 

to n side, and this flow is due to the density gradient. 

Then there will be some uncompensated stationary 

charges forming a dipole array, leading to the barrier 

formation. This equalizes the Fermi levels and 

prevents further flow of charges to either side [4, 5]. 

The energy band diagram of p-n homojunction is 

shown in Fig. l. 

Silicon photodiodes are responsive to 

high-energy particles and photons and operated by 

the absorption of photons or charged particles, 

generating a flow of current in an external circuit, 

which is proportional to the incident power. These 

devices can be used to detect the presence or 

absence of minute quantities of light with intensities 

in the range of 10–9
 mW/cm2 – 102

 mW/cm2 [6]. 

Silicon photodiodes are efficiently used in many 

applications, such as spectroscopy, photography, 

analytical instrumentation, optical position sensors, 

beam alignment, surface characterization, laser 

range finders, optical communications, and medical 
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imaging instruments [7, 8]. 

The photonic and optoelectronic devices based 

on silicon diodes still have their featured positions in 

their applications due to several reasons, among 

which the natural availability, ease fabrication, and 

open technology are noticeably observed [9]. 

Despite the reasonably higher efficiencies achieved 

by similar devices (e.g., solar cells and 

photodetectors) fabricated from other 

semiconducting materials, the lower values of 

silicon devices can be compensated by their lower 

costs and higher reproducibility in correlation to the 

revolution in porous and nanocrystalline silicon 

structures [10, 11]. 

p-type semiconductor n-type semiconductor
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Fig. 1 Energy band diagram of p-n homojunction. 

Compared with the avalanche photodiodes, the 

silicon junction photodetectors have no internal gain 

but they are very fast (~0.4 ns) and have very large 

bandwidths (up to 2.5 GHz) [12]. As well, silicon 

homojunctions are the fundamental structures of 

bipolar and metal-oxide-semiconductor (MOS) 

transistors, which represent the foundation of 

modern semiconductor electronics [13]. 

In the modern semiconducting materials 

technology, plasma processing techniques present 

very good candidates and alternatives for the 

conventional and expensive ones [14, 15]. 

Construction and operation of plasma systems for 

semiconductor processing applications can be 

performed and optimized to a reasonable degree. 

Such systems can be easily used for low cost and 

mass production of diverse structures and devices 

with very good quality [16, 17]. 

In this work, a silicon homojunction was 

fabricated by plasma-assisted technique and 

characterized for photodetection applications. Also, 

the effect of thermal annealing on the characteristics 

of this homojunction was studied. 

2. Experiment 

Figure 2 shows the experimental steps followed 

in this work to fabricate the silicon homojunction. A 

boron-doped p-type silicon wafer with the 

orientation of <100>, electrical resistivity of 40 cm ‒ 

50 cm, diameter of 5 cm, and thickness of 675 m was 

used for the p-type side of the proposed 

homojunction. This wafer was etched by argon 

discharge plasma for 20 min and then heat treated 

for one hour at 150 ℃ to get homogeneous rough 

layer of about 20-nm thickness. The sample was 

then placed inside the sputtering chamber to deposit 

an n-type silicon layer on its surface. This chamber 

was evacuated down to 0.001 mbar to prevent any 

active contaminants may reside inside from the 

interaction with the silicon samples. 

Discharge plasma 

p-type Si 
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p-type Si 
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Fig. 2 Fabrication stages of the Si homojunction:         

(a) plasma-induced etching, (b) formation of etched Si layer,  
(c) sputtering of n-type Si target, (d) deposition of n-type Si 
layer, and (e) thermal annealing to form n-Si/p-Si homojunction. 
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The sputtering target was a phosphorous-doped 

n-type silicon wafer with the orientation of <111>, 

electrical resistivity of 25 cm ‒ 30 cm, diameter of  

5 cm, and thickness of 675 m. The sputtering target 

was placed on the cathode while the p-type silicon 

substrate was placed on the anode and the 

inter-electrode distance was 4 cm, which was found 

to be the optimum [18]. The sputtering plasma was 

generated by the electrical discharge of argon at the 

pressure of 0.08 mbar, discharge voltage of 3.5 kV, 

and discharge current of 45 mA. The sputtering time 

was 2 hours to form a 30-nm-thickness n-type silicon 

layer over the previously formed 20-nm p-type 

silicon layer. The final sample formed on the p-type 

substrate was about 30-nm-thickness n-Si/p-Si layer. 

In order to introduce the effect of thermal annealing 

on the characteristics of the fabricated structure, the 

final sample was gradually annealed for one hour at 

20 ℃ ‒ 320 ℃ with a step of 5 ℃/min to induce 

the formation of the homogeneous structure. Figure 

3 shows the scanning electron microscopy (SEM) 

micrograph of the formed junction. 

 

Fig. 3 SEM micrograph of the junction region formed in this 
work. 

The electrical characterization of the fabricated 

homojunction includes the current-voltage and 

capacitance-voltage characteristics before and after 

the thermal annealing process and determination of 

some parameters, such as ideality factor (n) and 

built-in potential (Vbi). The electrical measurements 

were carried out using a dc power supply 0 V ‒ 30 V, 

a Keithley 616 picoammeter, and a Keithley 82 C-V 

system. 

The optical characterization of the fabricated 

homojunction includes the measurements of the 

reflectance from the surface, spectral responsivity, 

and external quantum efficiency before and after the 

thermal annealing process. The reflectance was 

measured by the specular hemispherical method, and 

the spectral responsivity was measured by using the 

pulsed xenon lamp, monochromator, bandpass filer, 

charge-coupled device (CCD) array detector, and 

data acquisition system. All optical measurements 

were carried out in the spectral range of 350 nm ‒ 

1100 nm. 

3. Results and discussion 

Figure 4 shows the current-voltage (I-V) 

characteristics of the prepared silicon homojunction 

before and after the thermal annealing process. It is 

clearly observed that these characteristics were 

slightly enhanced by thermal annealing as they were 

in accordance to the typical behavior of 

homojunction. As well, the ideality factor of the 

fabricated homojunction increased from 1.80 to 1.99 

after annealing. This enhancement can be attributed 

to the reduction in the saturation current, which is in 

turn related to the reduction in the charge carrier 

recombination. Thermal annealing of the fabricated 

device presents better properties for charge carrier 

separation as a consequence of the application of a 

potential bias. Therefore, the adequate layer 

characteristics for charge carrier transfer lead to a 

reduction in charge carrier recombination making up 

for the lack of charge carrier separation when 

applying an electric potential bias. 

Figure 5 shows the variation of inverse squared 

capacitance with the applied voltage (C–2-V) for the 

fabricated homojunction before and after thermal 

annealing. The capacitance of the depletion layer of 

this homojunction increased due to thermal 
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annealing. This increase in the capacitance could be 

attributed to a decrease in the built-in potential from 

0.79 to 0.72 as the width of the depletion layer 

decreased because of the increasing recombination 

rate on both sides of this layer. 
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Fig. 4 I-V characteristics of the fabricated homojunction 
before and after thermal annealing. 
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Fig. 5 C–2-V characteristics of the fabricated homojunction 

before and after thermal annealing (the built-in potential is 
determined to be 0.72 V before annealing and 0.79 V after 
annealing). 

Figure 6 shows the effect of thermal annealing 

on the surface reflectance of the fabricated 

homojunction as it was reduced from 1.89% to 

1.81% in the spectral range of 350 nm ‒ 1100 nm. 

Accordingly, the absorbance of this homojunction is 

supposed to increase by 0.08% due to this reduction 

in the surface reflectance, and this enhancement in 

the absorption may lead to the corresponding 

enhancement in the spectral response of the 

homojunction. 

The spectral responsivity (R) of the fabricated 

homojunction was measured in the range of 350 nm 

‒ 1100 nm and presented in Fig. 7. The thermal 

annealing caused an enhancement in the spectral 

responsivity from 0.495 A/W to 0.55 A/W as the 

annealing process made the homogeneity of the 

sensitive layer (n-Si/p-Si) structure better to respond 

to the incident radiation. 
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Fig. 6 Surface reflectance of the fabricated homojunction 

before and after thermal annealing. 
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Fig. 7 Spectral responsivity of the fabricated homojunction 

before and after thermal annealing. 

As the fabricated homojunction can be employed 
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in many applications of photonics and 

optoelectronics, the performance of this device 

should be assessed by introducing its efficiency. 

Therefore, the external quantum efficiency (EQE) of 

the fabricated homojunction was determined as a 

function of the wavelength of incident radiation 

before and after thermal annealing and was 

enhanced from 76% to 83.5%, respectively, as 

shown in Fig. 8. 
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Fig. 8 Quantum efficiency of the fabricated homojucntion 

photodetector before and after thermal annealing. 

4. Conclusions 

According to the results obtained from this work, 

the thermal annealing has reasonable effects on   

the characteristics of silicon homojunction 

photodetector fabricated by means of the plasma- 

induced etching of the p-type silicon substrate and 

plasma sputtering of the n-type silicon target in 

vacuum. Due to thermal annealing, the maximum 

surface reflectance and built-in potential of this 

photodetector noticeably decreased while the 

maximum responsivity, the ideality factor, and the 

maximum external quantum efficiency increased. 

The fabrication procedure used in this work is 

reasonably new, low-cost, easily controlled, and 

reliable. 
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