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Abstract 

Earthquake-triggered landslides are common disasters of active mountain belts. Due to the lack of earthquake-
triggered landslide inventory in Taiwan, it is not intuitive to observe spatial relationships and discover unique patterns 
between landslides and essential triggers. We examined strong earthquake events in Taiwan after the 1999 Mw7.6 
Chi-Chi earthquake and targeted the 2013 ML6.5 Nantou earthquake to create the landslide inventory. We adopted 
two Landsat-8 satellite images before and after the event to detect landslides, and incorporated a 20-m DEM and rock 
type data of Taiwan to represent key factors triggering earthquake-induced landslides such as peak ground accelera‑
tion (PGA), lithology, slope roughness, slope, and aspect. Based on the analysis of the density of landslides, there are 
strong correlations between the landslide occurrence and seismic and geomorphic factors. Furthermore, we noticed 
that the landslide aspects have a systematic tendency towards the northeast, which is not correlated with the dip 
directions and wave propagation directions. Instead, we found that the northeastward landslide aspect is more asso‑
ciated with the westward–southwestward surface movement at the landslides. We found that the included angles 
between the landslide aspects and the displacement directions for all the landslides are  ~ 100°–180°. The relationship 
indicated that the coseismic deformation of the Nantou earthquake may play a role in the landslide distribution.
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Introduction
Earthquake-triggered landslides are important disasters, 
which can cause fatalities (Marano et  al. 2009; Daniell 
et  al. 2017; Nowicki Jessee et  al. 2020) and further sur-
face processes influencing geomorphic evolution (e.g., 
Chuang et  al. 2020; Fan et  al. 2019). In order to under-
stand driving factors of earthquake-triggered landslides 
(e.g. Keefer 1984, 2002; Khazai and Sitar 2004; Meunier 
et al. 2007; Tibaldi et al. 1995), it is essential to have the 
inventories of earthquake-triggered landslides for the 
analyses (Harp et  al. 2011; van Westen et  al. 2006). The 
landslide datasets can be used to analyze the relation-
ship between the landslide occurrence and the seismic 
and geologic factors. In addition, the landslide datasets 
can serve as the training data for susceptibility assess-
ments and real-time prediction (e.g., Chuang et al. 2021; 
Budimir et  al. 2015; Nowicki Jessee et  al. 2018). The 
inventories rely on mapping results for individual seismic 
events, and global inventories have been progressively 
compiled (Keefer 1984; Rodriguez et  al. 1999; Schimitt 
et  al. 2017; Tanyaş et  al. 2017). It is important to keep 
generating such inventories to have a more comprehen-
sive database of earthquake-triggered landslides.

Among landslide hotspots in the world (Nadim et  al. 
2006), the island of Taiwan is subject to abundant earth-
quakes and heavy rainfalls. Accordingly, landslides occur 
frequently in Taiwan, and it is critical to map landslides 
in Taiwan after large seismic or rainfall events. Especially, 
the Taiwan orogenic belt is formed under the strong 
plate convergence between the Eurasian and Philippine 
Sea plates with numerous seismogenic structures (e.g., 
Shyu et  al. 2005, 2020) and frequent earthquakes (e.g., 
Wu et  al. 2008) across the orogenic belt, causing high 
seismic potential (Chan et al. 2020; Shyu et al. 2005). In 
the recent 2  decades, several M  > 6 earthquakes in Tai-
wan occurred in the mountain belt and indeed caused 
significant hazards and distributed landslides. Compared 
to rainfall-induced landslides (Lee and Fei 2015; Lin et al. 
2017), however, earthquake-induced landslides in Taiwan 
are less mapped and analyzed. To date, only a couple of 
earthquake events, the 1998 ML6.2 Jueili earthquake and 
the 1999 Mw7.6 Chi-Chi earthquake, have comprehen-
sive landslide inventories (Huang and Lee 1999; Liao and 
Lee 2000). The Chi-Chi earthquake generated more than 
9000 landslides (Liao and Lee 2000). Therefore, we exam-
ined all the M  > 6 on-land earthquakes after the Chi-Chi 
earthquake and targeted the 2013 ML6.5 Nantou earth-
quake to analyze its earthquake-triggered landslides.

In this study, we aimed to map earthquake-triggered 
landslides of the Nantou earthquake and to analyze the 
relationship between the landslide distribution and seis-
mic and environmental factors. The 2013 ML6.5 Nantou 
earthquake is one of the strong earthquakes after the 

Chi-Chi earthquake that has reported coseismic land-
slides. The Nantou earthquake occurred in the most 
active part of the Taiwan orogen, which also lies within 
the damaged area of the Chi-Chi earthquake. Therefore, 
the analysis will help us to better understand the charac-
teristics of earthquake-triggered landslides of the active 
Taiwan orogenic belt.

Study area
The study area of this research is at the Nantou County, 
the central part of Taiwan, which is also the center of the 
Taiwan mountain belt (Fig. 1). The epicenter of the 2013 
ML6.5 Nantou earthquake is close to the Lishan fault, a 
boundary between the Central Range to the east and 
Hsuenshan Range to the west. The Nantou area experi-
enced severe damage during the 1916 Nantou earthquake 
sequence (Cheng et al. 1999). Almost a century later, the 
Mw7.6 Chi-Chi earthquake struck central Taiwan with 
widespread coseismic landslides (Liao and Lee 2000). 
Especially, there were several Mw  > 5.8 aftershocks of the 
Chi-Chi earthquake that occurred in the study area. The 
landslides transiently increased landslide rates (Chang 
et al. 2007) and sediment discharge (Dadson et al. 2004; 
Hovius et al. 2011) around central Taiwan for  ~ 6 years. 
After the increased landslides and sediment delivery were 
diminished, two strong earthquakes in 2013, the ML6.2 
Nantou earthquake in March and the ML6.5 Nantou 
earthquake in June, occurred to the east of the Chi-Chi 
earthquake in the study area (Fig. 1). The two earthquakes 
had no surface rupture, but the second earthquake pro-
duced larger surface displacements (Chuang et al. 2013) 
and ground shaking with scattered landslides. Geodetic 
inversions suggested that the two earthquakes occurred 
on the same east-dipping mid-crust fault (Chuang et al. 
2013). Source inversions showed that the earthquakes 
had distinct directivity effects, indicating stress heteroge-
neity in this area (Lee et al. 2015; Wen et al. 2014). The 
ML6.5 Nantou earthquake with the landslides occurred 
within the damaged area of the Chi-Chi earthquake and 
drew local people’s attention. Therefore, in this study, we 
used satellite imagery to map the landslides induced by 
the earthquake and analyzed what controlled the land-
slides of this seismic event.

Material and methods
This study focused on the use of remote sensing data for 
mapping earthquake-triggered landslides and the spatial 
relationship between landslides and key triggers. First, 
we screened earthquake events that have high magnitude 
and impacts on the Taiwan island followed the criteria 
below: (1) it happened after the Chi-Chi earthquake on 
September 21, 1999. (2) The magnitude of this event was 
larger than ML6.0. (3) The epicenter was located on the 
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island of Taiwan. (4) Landsat images before and after 2 
or 3 months of an earthquake with cloud cover less than 
10% could be identified. Based on these criteria, we chose 
the 2013 ML6.5 Nantou earthquake in this study.

We used satellite imagery before and after the earth-
quake to map large earthquake-triggered landslides of the 
Nantou earthquake. The earthquake took place on June 2, 
2013, and caused landslides and loss of human lives. The 
epicenter was 23.86°N, 120.97°E and the depth of the epi-
center was 14.5 km. Since there is no landslide inventory 

for the 2013 Nantou earthquake, we conducted landslide 
detection through the use of remote sensing technolo-
gies. Two Landsat-8 images acquired on April 16, 2013, 
and July 5, 2013, were cloud-free, and we searched for 
large landslides within a 100-km radius of the epicenter. 
There was no heavy rainfall before the earthquake, so we 
excluded the influence of rainfall on the landslides (Addi-
tional file 1: Figure S1). The advantage of using Landsat 
imagery is twofold: (1) it is free-access open data, and (2) 
it has been broadly used in landslide detection for a large 

Fig. 1  Landslide areas for the 2013 ML6.5 Nantou earthquake. Square A: the main extent of landslides. Square B: landslides might be triggered by 
the earthquake
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area (e.g., Barlow et al. 2003; Deijns et al. 2020; Manto-
vani et  al. 1996; Marcelino et  al. 2009; Yu et  al. 2020). 
Due to the spatial resolution of Landsat images, we did 
not identify landslide areas under 3600 m2 (4 pixels) and 
focused on large landslides. We projected the pre- and 
post-earthquake images to the TWD97 projected coordi-
nate system, which is the Taiwan datum defined in 1997 
based on the GRS80 reference ellipsoid with respect to 
the ITRF94 at the epoch of the beginning of 1997 (Yang 
et  al. 2001). The extraction of landslide areas required 
three types of spectrum bands from Landsat images: vis-
ible bands, infrared radiation bands, and Landsat Col-
lection 1 Level-1 Quality Assessment Band. After the 
preparation of all images, we detected changes from both 
pre- and post-earthquake images to identify landslide 
areas and converted all the landslide areas to polygons 
data. All the vector-based landslide areas are converted 
to 20-m-resolution raster data for further analysis.

After we mapped landslides, we calculated the areas 
and volume of all landslides and analyzed the relation-
ship between landslides and key factors that cause earth-
quake-triggered landslides. The relationship between 
area (A) and volume (V) of landslides is:

Since we cannot well distinguish the type of landslides 
from remote sensing imagery, we adopted the parameters 
of α  = 0.146 and γ  = 1.332 ± 0.005 for all landslide types 
from Larsen et al. (2010). After the detection of landslide 
areas, we examined the spatial relationship between the 
locations of landslides and key factors that caused earth-
quake-triggered landslides. Based on the statistical model 
for earthquake-triggered landslides in Taiwan (Chuang 
et al. 2021), key factors selected in this study were peak 
ground acceleration (PGA), lithology, slope roughness, 
slope, and aspect. PGA represents the seismic shaking 
of the earthquake. We accessed PGA data from the Cen-
tral Weather Bureau (CWB), Taiwan and interpolated 
the point-based data to represent the degree of ground 
motion of the 2013 ML6.5 Nantou earthquake. One seis-
mic station MTN167 shows very high PGA over 1  g in 
the horizontal direction. Compared with the PGA values 
with other surrounding stations, the data of MTN167 
may be an outlier. Therefore, we interpolated PGA based 
on the method of Hsiao (2007). Slope, slope roughness, 
and aspect are the topographic properties of the study 
area. Lithology is the rock type in Taiwan. We generated 
lithological data based on the classification of rock types 
based on the geologic map of Taiwan from the Central 
Geological Survey (CGS) (Central Geological Survey 
2000). We used the 20-m digital elevation model (DEM) 
of Taiwan in ArcGIS 10.6 to calculate aspect and slope 
angle. We adopted the slope dataset for the calculation 

V = α × A
γ
.

of slope roughness. Following previous studies (Budimir 
et al. 2015; Chuang et al. 2021), the value of slope rough-
ness of each cell is calculated by the standard deviation of 
the slope with surrounding 8 cells (a 3 × 3 moving win-
dow). We categorized all data into different classes and 
overlaid landslide areas with each classified dataset to 
calculate the density of landslides. The density of land-
slides is the ratio between the total landslide area in one 
class and the total area of that class. We drew a chart to 
represent the density of landslides in each class from one 
dataset. The overlaid datasets and the statistical results 
were listed together to observe the spatial correlation of 
landslides and those triggering factors.

Results
We classified two Landsat images for the 2013 ML6.5 
Nantou earthquake and extracted 30 large earthquake-
triggered landslides (Fig.  1). The total area of triggered 
landslide is 2.1353 km2 and the total volume of landslide 
mass is 0.1728 ± 0.0007  km3. We examined the mapped 
landslides of the 2013 Nantou earthquake and the land-
slide inventory of the 1999 Chi-Chi earthquake (Liao 
and Lee 2000), and we found that most of the mapped 
landslides are newly formed and only 10% of the mapped 
landslides are partially overlapped with the Chi-Chi 
earthquake landslides. In addition, since the increased 
landslide rate of the Chi-Chi earthquake is transient and 
decays to the background value in 4  years (Marc et  al. 
2015), we ignored the influence of the Chi-Chi earth-
quake on the mapped landslides.

The seismogenic fault of the Nantou earthquake is an 
east-dipping thrust fault (Chuang et  al. 2013) and all of 
the mapped landslides are located in the hanging-wall 
area (Fig.  1), consistent with the observation that most 
landslides occur in the hanging-wall area for thrust-fault-
ing earthquakes (Dai et al. 2011; Khazai and Sitar 2004; 
Sato et  al. 2007; Yagi et  al. 2009; Zhao et  al. 2019). The 
number of the mapped large landslides in this study is 
small because the focal depth of the Nantou earthquake 
is deep and has no surface rupture, similar to the finding 
in previous studies that the number of landslides for such 
earthquakes can be significantly smaller than the one for 
shallow earthquakes with surface ruptures (e.g., Kargel 
et al. 2016).

We overlaid the landslides with each triggering factor 
and analyzed the spatial relationship between the land-
slides and these factors. Figure  2 shows the statistical 
results and spatial distribution of landslides. Firstly, as we 
stated in the previous section, we conducted spatial inter-
polation of PGA data based on a 0.1g interval (Fig.  2a). 
The mapped landslides occurred at places with PGA val-
ues greater than 0.2, which is reasonable for the threshold 
for earthquake-triggered landslides (e.g., Liao and Lee 
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Fig. 2  Spatial correlations and bar charts between landslide densities and triggering factors: a PGA, b lithology, c slope roughness, d slope angle, 
and e aspect. Slope roughness: the standard deviation of the slope within a 3 × 3 cell window, SLS Szeleng Sandstone and Paileng Formation; HT 
Hsitsun Formation; NK Nankang Formation; KCL Kueichulin Formation; TKS Toukoshan Formation; LS Lushan Formation; PLS Pilushan Formation; TC 
Tachien Sandstone; TNA Tananao Schist; AL alluvium
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2000; Tanyaş and Lombardo 2019). The statistical results 
also reflected high PGA values between 0.35g and 0.5g 
had a high density of landslides, which is consistent with 
a high correlation between ground shaking and landslide 
occurrence (e.g., Chuang et al. 2021; Meunier et al. 2007; 
Nowicki et al. 2014).

Secondly, we generated the lithological data to ten rock 
types (Fig.  2b): Szeleng Sandstone and Paileng Forma-
tion (SLS), Hsitsun Formation (HT), Nankang Formation 
(NK), Kueichulin Formation (KCL), Toukoshan Forma-
tion (TKS), Lushan Formation (LS), Pilushan Formation 
(PLS), Tachien Sandstone (TC), Tananao Schist (TNA), 
and alluvium (AL). The landslide occurred within the 
formations around the epicenter, but did not show clear 
correlation with the specific formation. SLS and NK have 

higher landslide density, and TNA and AL have lower 
landslide density.

Thirdly, we classified the slope roughness layer and 
noticed a spatial pattern that landslides were mostly 
located at pixels with high values of slope and slope 
roughness (Fig.  2c, d). From the statistical analysis of 
slope roughness, a high density of landslides was found 
at slope roughness values greater than 40. The positive 
correlation between the landslide occurrence and slope 
roughness is consistent with the influence of high slope 
variations suggested by previous studies (Budimir et  al. 
2015; Chuang et  al. 2021). Another factor, slope, also 
indicates a similar pattern. The high density of landslides 
is located at the slope between 35 and 50 degrees, which 
is similar to the analysis of the landslides of the Chi-Chi 

Fig. 2  continued
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earthquake (Khazai and Sitar 2004; Meunier et al. 2008). 
The slope below 30 degrees had a low density of land-
slides. The correlation between the landslides and high 
slope angles is also consistent with previous studies 
(Huang and Montgomery 2014; Huang et al. 2017).

Lastly, we used the DEM data to calculate an aspect 
layer and generated eight classes to represent eight sec-
tions of aspect directions. It was not intuitive to observe 
the spatial relationship between the aspects and land-
slides from the map. However, the statistical results 
revealed that the direction of the northeast had the high-
est density of landslides (Fig. 2e). A rose diagram further 
denotes that the main direction of the landslides is the 
northeast (Fig. 3a).

In summary, the above outcomes indicate that earth-
quake-triggered landslides had a high spatial relation-
ship with the topological and seismic factors. From the 
analysis of the density of landslides and key factors, we 
also explored a strong correlation between landslides and 
certain classes within each factor.

Discussion
Seismic and geomorphic factors are two drivers leading 
to earthquake-triggered landslides in this study. Seismic 
factors primarily control the distribution and occur-
rence of earthquake-triggered landslides. Seismic fac-
tors, which describe the intensity of ground shaking and 
earthquake behaviors at surrounding localities near epi-
centers, are the most influential in earthquake-triggered 
landslides (Keefer 1994; Malamud et  al. 2004; Meunier 
et  al. 2007). Explicit factors representing the seismic 
shaking such as PGA and Arias intensity (Arias 1970) and 
implicit factors such as the distance to the epicenter and 
to fault rupture are highly related to the number of land-
slides, which is consistent with our result (Fig. 2a).

Geomorphic factors also control the earthquake-trig-
gered landslides, and the landslide distribution shows 
a distinct pattern of the aspect directions. The slope is 
one major geomorphic factor controlling the distribu-
tion of earthquake-triggered landslides (e.g., Keefer 2002; 
Nowicki et al. 2014; Nowicki Jessee et al. 2018), and slope 

Fig. 3  Rose diagrams of a slope aspects, b dip directions, c wave propagation directions, and d surface displacement directions
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roughness is also important for earthquake-triggered 
landslides in Taiwan (Budimir et  al. 2015; Chuang et al. 
2021; Lee et  al. 2008). Based on our result, most of the 
landslides occurred on the east-facing slopes, especially 
in the northeastern direction, which means the landslides 
tend to occur in areas with higher values of slope and 
slope roughness (Fig. 2c, d).

The landslide aspects seem to be less associated with 
dip directions and seismic wave propagations. Since the 
landslides had a tendency of the aspects in the northeast 

directions (Fig.  3a), we compared this unique pattern 
with other directional factors. One possible factor is the 
dip directions of rocks because the dip slopes are prone 
to landslides (Khazai and Sitar 2004; Lin and Tung 2004). 
We obtained the dataset of the dip directions from the 
geology cloud data service at CGS (https://​geolo​gyclo​
ud.​tw/​geoho​me/​DataS​ervice) and used the nearest dip 
direction for each landslide (Fig.  3b). The result shows 
that the dip directions of the rocks at the landslides are 
in the southeast and northwest, which do not fit the 

Fig. 4  Comparison between landslide aspects (black arrows) and the azimuths of horizontal coseismic displacement (red arrows) for the landslides 
induced by the 2013 ML6.5 Nantou earthquake. White star denotes the epicenter. Small blue polygons are earthquake-triggered landslides. Black 
arrows are landslide aspects, red arrows are surface displacements at landslides, green arrows are observed coseismic displacements

https://geologycloud.tw/geohome/DataService
https://geologycloud.tw/geohome/DataService
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landslide aspects. The disagreement between the land-
slide directions and the dip directions is similar to the 
situation of the Chi-Chi earthquake landslides (Chen 
et al. 2019). Another possible factor to control the aspect 
directions of earthquake-triggered landslides is the direc-
tions of seismic wave propagation that Earthquake-trig-
gered landslides tend to occur on the slopes at the back 
sides of the wave propagation directions. (Chen et  al. 
2019; Meunier et  al. 2008; Tibaldi et  al. 1995). In this 
study, however, the seismic wave directions of the land-
slides show a radial pattern (Fig.  3c) and are not corre-
lated with the landslide aspects.

Some of the landslide aspects seem to be in the oppo-
site direction of the coseismic displacements. In addi-
tion to the seismic wave propagation, coseismic surface 
movements can be related to the landslide distributions 
(Kargel et al. 2016; Lee 2013). Because the Nantou earth-
quake occurred on a blind thrust without surface rup-
ture (Chuang et al. 2013), all the landslides basically are 
located in the hanging-wall area (Fig. 1). Considering the 
focal mechanism solution (Fig. 1), the coseismic displace-
ments should be in the west-southwest direction, which 
could be in the opposite direction with the landslide 
aspects. Therefore, we compared the landslide aspects to 
the directions of coseismic deformation. We used GPS 
observations of coseismic displacements (Chuang et  al. 
2013) to interpolate the horizontal displacement at each 
landslide location. Figures 3d, 4 show that the coseismic 
displacements are mainly towards southwest-west and 
facing away from the aspects, especially close to the epi-
center. Especially, one group of the surface displacements 
is in the exact opposite direction of the northeastward 
landslide aspect. It seems that some landslides indeed are 
in the opposite directions of the surface displacements 
(Fig.  4). We calculated the included angles between the 
aspects and the displacement directions for all the land-
slides to quantify the deviation from the landslide aspects 
and surface displacements. Then, we compared the 
included angles with the distances to the epicenter. The 
included angles are  ~ 100°–180° for all the landslides.

Coseismic displacements may affect the landslide dis-
tribution and orientation. Ground shaking due to seismic 
wave propagation can cause surface motion and result in 
slope instability. Intuitively, surface displacements due to 
coseismic deformation could be another ground motion 
source that can cause slope instability. Lee (2013) found 
that a lot of south- to southeast-facing landslides of the 
Chi-Chi earthquake may be associated with the north-
western movements on the hanging-wall area. Similar to 
Lee (2013), our result shows east-facing landslides may 
be also associated with the west–southwestward move-
ments of the hanging-wall thrust block. Some factors 

control the occurrence of earthquake-triggered land-
slides such as coseismic slip patterns (e.g., Gorum et al. 
2011; Meunier et al. 2013) and the distance to fault rup-
ture (e.g., Budimir et  al. 2014; Chigira et  al. 2010; Lee 
2013), which could be highly correlated with coseismic 
displacements, but they are interpreted to represent seis-
mic intensity or seismic directivity rather than coseismic 
deformation. The total contribution of ground motion 
due to seismic shaking and coseismic deformation needs 
more further studies, and the specific ground-motion 
process in three dimensions at each earthquake-triggered 
landslide also needs more investigation.

Conclusion
We explored the spatial relationship between earth-
quake-triggered landslides and essential driving factors 
through the integration of remote sensing images and 
topographical properties of the 2013 ML 6.5 Nantou 
earthquake. We mapped the landslides by using Land-
sat-8 images before and after the event and identified 
30 large landslides. With the analysis between the land-
slides and major driving factors, we found that most of 
the landslides occurred within the area with high PGA, 
slope, and slope roughness. In addition, we discov-
ered that the landslide aspects have a distinct pattern, 
showing a northeastward tendency. This pattern does 
not match the dip directions and seismic wave propa-
gation at the landslides. We found that the directions 
of coseismic deformation had certain correlations with 
landslide aspects, and the relationship indicated that 
the coseismic deformation may play a role in landslide 
distribution. Thus, we successfully created the landslide 
inventory of a strong earthquake event in Taiwan and 
developed the analytical process to identify the spatial 
relationship between landslides and essential triggers.
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