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ABSTRACT

The interaction of free electrons with intense laser beams in vacuum is studied using a

3D test particle simulation model that solves the relativistic Newton-Lorentz equations of

motion in analytically specified laser fields. Recently, a group of solutions was found for

very intense laser fields that show interesting and unusual characteristics. In particular, it

was found that an electron can be captured within the high-intensity laser region, rather

than expelled from it, and the captured electron can be accelerated to GeV energies with

acceleration gradients on the order of tens of GeV/cm. This phenomenon is termed the

capture and acceleration scenario (CAS) and is studied in detail in this paper. The maximum

net energy exchange by the CAS mechanism is found to be approximately proportional to

a2
0, in the regime where a0 � 100, where a0 = eE0/meωc is a dimensionless parameter

specifying the magnitude of the laser field. The accelerated GeV electron bunch is a macro-

pulse, with duration equal or less than that of the laser pulse, which is composed of many

micro-pulses that are periodic at the laser frequency. The energy spectrum of the CAS
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electron bunch is presented. The dependence of the energy exchange in the CAS on various

parameters, e.g., a2
0 (laser intensity), w0 (laser radius at focus), τ (laser pulse duration), b0

(the impact parameter), and θi (the injection angle with respect to the laser propagation

direction), are explored in detail. A comparison with diverse theoretical models is also

presented, including a classical model based on phase velocities and a quantum model based

on nonlinear Compton scattering.

PACS number(s): 42.62.-b, 42.90.+m, 41.75.-i

a)Author to whom correspondence should be addressed. Address correspondence to

Institute of Modern Physics, Fudan University, Shanghai 200433, China. FAX: +86-21-
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I. INTRODUCTION

Recent advances in laser technology have yielded light intensities as high as Iλ2 = 1020

W/cm2 · µm2, where I and λ are the laser intensity and wavelength in units of W/cm2 and

µm, respectively. Consequently, there have emerged many new frontier research areas in both

applied and fundamental physics [1]. Among these, the development of laser-driven electron

acceleration mechanisms is a fast advancing area of scientific research [2]. Compared with

the 20 MV/m acceleration gradient provided by contemporary linear accelerators, the 107

MV/m electric field gradients of the laser field have made laser acceleration a very promis-

ing candidate for the development of compact high-energy accelerators. But laser acceler-

ation has several technological difficulties. For instance, most of the reported acceleration

mechanisms have involved plasma [3], [4]. To avoid the problems inherent in laser-plasma

interaction such as plasma instabilities, the far-field laser acceleration of free electrons in

vacuum has received new attention. In this research area, there is a long-standing question

of whether or not an electron can get a net energy gain, assuming an unlimited interaction

length, from a laser beam in free space. According to the Lawson-Woodward Theorem, the

electron can get no net energy gain through the entire interaction [5], [6], [7], [8], [9]. But

this conclusion is only confined to low intensity laser fields, i.e., energy gains that are lin-

early proportional to the laser field. Malka et al. [10] reported the observation of electrons

accelerated to MeV energy in vacuum by intense lasers with a0 = 3, where a0 ≡ eE0/meωc

is a dimensionless parameter specifying the magnitude of the laser field, −e and me are the

electron charge and mass, respectively, c the speed of light in vacuum, and ω the angular

frequency of the electromagnetic wave. In terms of the peak laser intensity and wavelength,

a0 = 0.85× 10−9λ[µm](I [W/cm2])1/2. Earlier, electrons accelerated to a fraction of eV [11]

or a few keV [12] at low intensity and 100 KeV [13] at higher intensity had been observed.

To give a more exact answer to the above question, we devised a model to study the

interaction of electrons with a laser field based upon a 3D computer simulation code to solve

the relativistic Newton-Lorentz equations of motion [14]. The results show that a large net
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energy gain is possible [14]. In this model, electrons were injected at a specified angle into

a continuous laser beam. For a0 � 0.1, there is no noticeable energy transfer between the

electron and the laser beam. As a0 increases from 0.1 to more than 10, the electron begins to

obtain more and more net energy, which is of several MeV magnitude when a0 nears 10. The

most surprising and meaningful result is that as a0 approaches or exceeds 100 (a0 � 100),

the electron can be captured and violently accelerated to GeV energy by either continuous

or sufficiently long-pulsed laser beams with acceleration gradients on the order of tens of

GeV/cm. We refer to electron acceleration in this regime as the capture and acceleration

scenario (CAS).

The main purpose of this paper is to study the characteristics of electron scattering by

intense pulsed laser beams and to determine the dependence of the net energy exchange on

various parameters such as the laser intensity. Special attention has been paid to exploring

the physics of the CAS, such as determining the conditions under which a capture trajectory

emerges, and finding the scaling of the maximum energy gain of the accelerated electrons

with respect to laser intensity. The numerical results are compared to various theoretical

models. Some of these results have been recently and breifly presented in Ref. [15], and in this

paper these results, as well as additional aspects of CAS, are studied in detail. This study

has significance in determining parameters for experimentally testing laser-driven electron

acceleration in vacuum.

Theoretical models based upon classical physics that we consider are the ponderomotive

potential model (PPM) and a phase velocity synchronization model. The PPM is a classical

description in which the time-averaged electron motion is modeled by assuming that the

electron moves in an effective ponderomotive potential, which is obtained by averaging the

Newton-Lorentz equations of motion over the fast quiver oscillation of the electron in the

laser field [3], [16], [17], [18], [19], [20], [21]. Such quivering motion is argued [11] to be

analogous to a kind of stimulated scattering process. At low laser field intensities (a0 � 0.1)

PPM stands well in describing the electron averaged motion in the electromagnetic field

[22]. In this paper we will extend the PPM to the high laser intensity region and compare
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its results with that obtained from the full Newton-Lorentz equations of motion.

Phase velocity synchronization plays an important role in the CAS. For an electron

moving near the speed of light c in a straight line along the axis, the phase velocity of the

laser field is greater than c. In this case phase synchronism and, hence, a significant energy

gain does not occur. However, for an electron moving in a curved trajectory, as is the case

in the CAS, the effective phase velocity can be � c over a sufficiently long distance so as to

result in a large energy gain.

Although the numerical model discussed in this paper is entirely classical, it is insightful

to make some comparisons with quantum electro-dynamics (QED). According to QED, there

are three fundamentally different energy-exchange mechanisms between free electrons and

lasers in vacuum: normal Compton scattering (NCS), stimulated Compton scattering (SCS),

and nonlinear Compton scattering (NLCS), which is a multi-photon exchange process in

which an electron absorbs simultaneously many photons with emission of one high-frequency

photon. These mechanisms play different roles in the laser acceleration of electrons at

different laser intensities [18]. Furthermore, we will examine the connection between the

NLCS effect and the validity of the PPM, as well as to explain the violent acceleration law

based on the NLCS effect.

In Section II, we discuss the analytical expressions for the laser fields used in the simu-

lations. In Section III, we present various theoretical models and results, both classical and

quantum in nature. Our numerical simulation results are presented and discussed in Section

IV. A brief summary will be given at the end.

II. FIELD EQUATIONS

In our consideration of relativistic electrons interacting with intense laser fields, the

following inequalities are assumed to be satisfied [23],

�ω << mec
2 and

√
E0

Ec
=

√
a0�ω

mec2
<< γ <<

Ec

E0
=

mec
2

a0�ω
, (1)

5



where Ec = m2
ec

3/(e�) � 1.3×1016 V/cm is the so-called critical field strength for production

of e+e− pairs, E0 is the peak amplitude of the laser field, and γ is the Lorentz factor repre-

senting the electron energy. The maximum field strength E0[V/cm] = 3.21× 1010a0/λ[µm]

used in the examples given below is E0 = 9.63 × 1012 V/cm << Ec for a0 = 300 and

λ = 1µm. Hence, a classical description of the radiation field and electron is adequate.

Numerical simulation methods used here are similar to those we used previously [14].

The configuration of the laser-electron interaction is shown in Fig. 1. The laser beam

we adopted is the lowest-order Hermite-Gaussian (0,0) mode and it is polarized in the x-

direction and propagating along the z-axis. The transverse component of the vacuum wave

equation describing the evolution of the slowly varying amplitude of the laser field Êx(r, ζ, z),

where Ex = (Êx/2) exp(ikζ)+ complex conjugate, can be written as [24],

[
∇2

⊥ − 2

(
ik +

∂

∂ζ

)
∂

∂z
+

∂2

∂z2

]
Êx = 0, (2)

where ζ = ct − z and k = 2πc/λ. Typically, the operators in the above equation scale as

∇⊥ ∼ 1/w0, ∂/∂ζ ∼ 1/L, and ∂/∂z ∼ 1/ZR , where w0 is the laser radius at focus, L is the

laser pulse length, and ZR = kw2
0/2 is the Rayleigh length [24]. The well-known paraxial

approximation to the wave equation involves neglecting the terms ∂2/∂ζ∂z and ∂2/∂z2 in

Eq. (2). For a continuous laser beam (L = ∞), Êx(r, z) is independent of ζ and ∂2/∂ζ∂z

is set to zero in Eq. (2). For a continuous laser beam, analytical expressions for the fields

beyond the paraxial approximation have been derived by Davis [25] by retaining the term

∂2/∂z2 in Eq. (2) and expanding the solutions in terms of the small parameter ε, where

ε2 = 1/(2kZR) = 1/(kw0)
2. Later, Barton [26] extended this procedure to obtain symmetric

fifth-order corrected formulae for the electromagnetic field components. The non-paraxial

solutions for a continuous laser beam can be expressed as follows [26],

Ex = E0{1 + ε2(−ρ2Θ2 + iρ4Θ3 − 2Θ2ξ2)

+ε4[2ρ4Θ4 − 3iρ6Θ5 − 0.5ρ8Θ6 + (8ρ2Θ4 − 2iρ4Θ5)]ξ2}ψ0 exp (−iα/ε2), (3)

Ey = E0{ε2(−2Θ2) + ε4(8ρ2Θ4 − 2iρ4Θ5)}ξηψ0 exp (−iα/ε2), (4)
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Ez = E0{ε(−2Θ) + ε3(6ρ2Θ3 − 2iρ4Θ4)

+ε5(−20ρ4Θ5 + 10iρ6Θ6 + ρ8Θ7)}ξψ0 exp (−iα/ε2), (5)

cBx = E0{ε2(−2Θ2) + ε4(8ρ2Θ4 − 2iρ4Θ5)}ξηψ0 exp (−iα/ε2), (6)

cBy = E0{1 + ε2(−ρ2Θ2 + iρ4Θ3 − 2Θ2η2)

+ε4[2ρ4Θ4 − 3iρ6Θ5 − 0.5ρ8Θ6 + (8ρ2Θ4 − 2iρ4Θ5)η2]}ψ0 exp (−iα/ε2), (7)

cBz = E0{ε(−2Θ) + ε3(6ρ2Θ3 − 2iρ4Θ4)

+ε5(−20ρ4Θ5 + 10iρ6Θ6 + ρ8Θ7)}ηψ0 exp (−iα/ε2), (8)

ξ =
x

w0
, η =

y

w0
, α =

z

kw2
0

, ρ =
√
ξ2 + η2, (9)

Θ =
1

i+ 2α
, ψ0 = iΘexp(−iρ2Θ+ iωt+ iφ0). (10)

where E0 is the reference electric field strength and φ0 the initial phase. In the usual paraxial

solutions, electromagnetic field components of the laser are given by

Ex = E0ψ0 exp (−iα/ε2)

=
E0w0

w
exp

[
i(ωt− kz + φ0)−

(
1 + i

z

ZR

)
r2

w2
+ i tan−1 z

ZR

]
, (11)

Ez = − i

k

∂Ex

∂x
, (12)

B =
i

ω
∇×E, (13)

where w = w0(1 + z2/Z2
R)

1/2. According to the discussions of Barton [26], the fifth-order

corrected field equations are of high accuracy. Our studies indicate that when kw0 � 60, as

in most of the cases of interest, the paraxial expressions can be readily regarded to be very

good approximations to the actual fields.

For the case of laser pulses with a finite pulse length L, the term ∂2/∂ζ∂z can be

important in Eq. (2). Solutions to Eq. (2) describing ultra-short pulses with L � 2ZR have

been derived by Esarey et al. [24] by retaining the term ∂2/∂ζ∂z while neglecting the term

∂2/∂z2. However, for sufficiently long pulses, L � 2ZR, the term ∂2/∂ζ∂z can be neglected

compared to ∂2/∂z2. Hence, for long pulses with L � 2ZR, the field components can be
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approximated by multiplying the continuous pulse solutions, Eqs. (3)-(8), by a time envelope

function f(ζ), which is assumed to be Gaussian,

f(ζ) = exp

[
−(t− z/c)

2

τ 2

]
, (14)

where τ = L/c is the pulse duration (τ → ∞ corresponds to a continuous beam). Recall

that since the fields must satisfy ∇ ·E = ∇ ·B = 0, simply multiplying Eqs. (3)-(8) by f(ζ)

implies that terms of order 1/kL have been neglected to these expressions. Furthermore,

Esarey et al. [24] point out that the envelope of a finite duration laser pulse travels at a group

velocity vg ≤ c, i.e., the axial profile is of the form f(vgt − z), where vg/c = 1− 2/(k2w2
0)

near the laser focus. This effect can be neglected, however, provided that the envelope

slippage length ∆L = z(1 − vg/c) is small compared to the pulse length L = cτ over the

interaction distance z. This implies kL � |z|/ZR. Note that this inequality is typically

not as constraining as the inequality that must be satisfied to be in the long pulse regime,

L � 2ZR, which implies kL � k2w2
0 or kL � 1/ε2.

We use a four-dimensional energy-momentum configuration to specify the electron state

(γ, Px, Py, Pz), where the Lorentz factor γ, the momentum P are normalized in the units

of mec
2 and mec, respectively. Besides, for simplicity, throughout the paper, time and

length are normalized by 1/ω and 1/k. The electron dynamics are governed by the following

relativistic Newton-Lorentz equations.

dP

dt
= −e(E+ v × B), (15)

P = γv, γ =
1√

1− v2
, (16)

where v is the electron velocity normalized to c.

Without losing generality, we assume that the pulsed beam center reaches the point

x = y = z = 0 at t = 0, and that the electron is incident in the x− z plane (b0 = 0) with the

initial time chosen such that the electron arrives at x = y = z = 0 at time t = −∆td under

the condition of free motion, i.e., without the influence of the laser fields. Thus, ∆td specifies

the relative delay between the laser pulse and the electron. Here, we take the sign of ∆td
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such that when ∆td < 0, the laser pulse propagates ahead of the electron and the electron

may mainly interact with the trailing temporary edge of the pulse, while for ∆td > 0, the

electron may interact with the leading edge of the pulse.

Except specification, all the results in this paper were obtained by numerical integration

of the full Newton-Lorentz force equations, Eqs. (15)-(16), with the fields given by Eqs.

(3)-(10) and (14).

III. THEORETICAL MODELS

A. One-Dimensional Theory

Assuming that the laser field is a one-dimensional (1D) plane wave of the form a =

a(z − ct), the electron orbits can be calculated exactly [27], [28], [29]. For example, the

normalized energy γ and axial momentum Pz are given by

γ =
(1 + β0)γ0

2

[
(1 + a2) +

1

(1 + β0)2γ2
0

]
, (17)

Pz =
(1 + β0)γ0

2

[
(1 + a2)− 1

(1 + β0)2γ2
0

]
, (18)

and the transverse momentum is Px = ax, where β0 is the initial normalized velocity in

the z-direction and γ0 = (1 − β2
0)

−1/2. For an initially stationary electron, Pz = a2/2 and

γ = 1 + a2/2. Notice that the electron only gains energy while it is inside the laser pulse.

Physically, as the laser pulse impinges upon the electron, the nonlinear ponderomotive force

associated with the front (rise) of the laser pulse accelerates the electron. Eventually, the

laser pulse outruns the electron and the electron is decelerated by ponderomotive force on

the back of the pulse. Once the electron exits the back of the pulse, there is no net energy

gain. A finite energy gain can result, however, if the electron leaves the vicinity of the laser

pulse before it has a chance to be decelerated by the back of the pulse. In 3D, this can

occur by transverse scattering of the electrons, as discussed in Refs. [10], [21], or by the

pulse diffracting, as is discussed in the following.
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Kaw and Kulsrud [28] analyzed electron motion in a 1D model of a laser pulse with

a slowly varying amplitude of the form a = â(z)Φ(z − ct), where Φ is a function of only

z − ct and includes the fast varying phase function and â(z) is the slowly varying envelope.

The scale length for variations in â is assumed to be on the order of the Rayleigh length,

|dâ/dz| ∼ |â|/ZR, and thus approximately account for the effects of diffraction within a 1D

model. In the adiabatic limit, in which the quiver oscillation time is short compared to the

diffraction time, the final electron energy is given by [28]

γ � a2
0(fk − 1)/f2

k � (1− ZR/a
2
0L)ZR/L, (19)

where fk � a2
0L/ZR with L the laser pulse length, along with the initial conditions of a

particle at rest at the focal position, and the assumptions of fk > 1, (fk − 1) not too small,

and a0 � 1. For a fixed laser pulse energy, the energy gain is optimized for fk � 3, which

physically states that the time it takes the electron to slip relative to the laser pulse by the

pulse length, L/(c − vz) � a2
0L/2, is approximately equal to the diffraction time ZR/c. As

an example, a laser pulse with a0 = 4.2, kL = 1000, and kZR = 5800 can accelerate an

electron from rest to γ � 10.

The above results assumed 1D and an adiabatic approximation (many quiver oscillations

per Rayleigh length). For a laser pulse of the form a = a0(z − ct) cos k(z − ct), where

k = 2π/λ, the amplitude of the transverse quiver oscillation xq and the time required to

complete this quiver oscillation tq are given by

xq = (1 + β0)γ0a0(λ/2π), (20)

ctq =
[
1 + (1 + β0)

2γ2
0(1 + a2

0/2)
]
λ/2. (21)

The higher the initial energy, the larger the quiver orbit and period, since the electron

is moving closer to synchronism with the laser field. One would expect that these 1D orbits

would be an approximately valid description of the dynamics near the focus of a 3D laser

field provided that (i) the quiver amplitude remain small compared to the laser spot size,

xq � w0, and (ii) the quiver period remain small compared to the diffraction time, ctq � ZR.

These two conditions imply, respectively,
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w0/λ � (1 + β0)γ0a0/2π, (22)

w2
0/λ

2 �
[
1 + (1 + β0)

2γ2
0(1 + a2

0/2)
]
/2π, (23)

These conditions become more difficult to satisfy at high values of a0 and γ0. For the

parameters of the CAS regime, these two conditions are generally violated, and the energy

gain characteristic of the CAS regime cannot be described by 1D or adiabatic (i.e., time-

averaged over the quiver motion) theories.

Nevertheless, it is interesting to note that if one were to terminate the interaction when

the electron has slipped to the center of laser pulse, such that the electron resides at the peak

of the laser intensity, the exact 1D orbits given by Eqs. (17) and (18) predict an energy gain

that scales as γ ∼ a2. In the CAS mechanism, the laser-electron interaction is terminated,

in effect, by diffraction. The scaling γ ∼ a2 is in approximate agreement with that observed

in the CAS simulations discuss in the following sections.

B. Ponderomotive Potential Model

It is of interest to compare the solutions of the full Newton-Lorentz equations of motion

with that of a simplified equation of motion, the so-called ponderomotive potential model

(PPM), which is often used to describe the interaction of intense lasers fields with electrons.

The PPM is typically valid in cases in which an electron experiences many quiver oscillations

in the laser field such that a time-averaging over the fast quiver motion can be justified.

Furthermore, in the PPM, the canonical momentum is approximately conserved, i.e., p⊥ −

A⊥ � constant. These assumptions are generally not valid for the capture and acceleration

scenario (CAS). Nevertheless, it is of interest to explore the differences between the numerical

solutions of the full Lorentz equations of motion and the PPM. In the PPM, the time-

averaged equation of motion is given by

dP(t)

dt
= Fpond(t) = −∇Vpond(r, z, t), (24)

where Vpond is the ponderomotive potential given by [3], [16], [17], [18], [19], [20], [21],
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Vpond(r, z, t) =
(√

1 + a2(r, z, t)/2− 1
)
mec

2. (25)

Here, a2/2 is the normalized time-averaged laser intensity profile, which in the paraxial

approximation is given by

a2(r, z, t) = a2
0

w2
0

w2(z)
f2(ct− z) exp

(
− 2r2

w2(z)

)
. (26)

C. Phase Velocity Synchronization

To explain the mechanism leading to the large electron energy gains in the CAS, it is

instructive to observe the phase variation experienced by the electron in the laser field. As

we know, the phase slippage velocity of an electron (relative the laser field phase fronts) in

a vacuum electromagnetic plane wave can be approximately estimated by c/(2γ2
q
), where

γq = (1 − v2
q
/c2)1/2 and vq is the electron velocity along the wave propagation direction.

Thus it would be expected that when γ
q is not large, as in the early acceleration stage, there

should be noticeable phase slippage. To study the physical reason of this phenomenon, we

note that the laser field concerned is not a plane wave, but a Gaussian beam in which the

radius of the curvature varies due to the diffraction effect of the optical beam. The phase

of a Gaussian beam is given by [30]

ϕ = kz − ωt− φ(z)− φ0 +
kr2

2R(z)
, (27)

where φ(z) = tan−1(z/ZR) is the Gouy phase shift and R(z) = z(1 + Z2
R/z

2) is the radius

of the curvature. Note that R(z) first decreases from z = 0 to ZR, the Rayleigh range, and

then increases from ZR to the infinity.

The phase velocity of the wave along a particle trajectory can be calculated by the

equation

∂ϕ/∂t+ (Vϕ)J (∇ϕ)J = 0, (28)

where (Vϕ)J is the phase velocity of the wave along the trajectory and (∇ϕ)J is the gradient

of the phase along the trajectory. In particular, denoting the unit vector along the electron
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trajectory as ee = (vr/v0)er + (vz/v0)ez, where v0 = (v2
r + v2

z)
1/2 is the magnitude of the

electron velocity, the magnitude of the phase velocity along the electron trajectory is Vϕe =

ck/(ee · ∇ϕ), which can be written as

Vϕe = ck

(
vz

v0

∂ϕ

∂z
+

vr

v0

∂ϕ

∂r

)−1

, (29)

where

∂ϕ

∂z
= k

[
1− (1− fϕ)

kZR(1 + z2/Z2
R)

]
, (30)

∂ϕ

∂r
=

krz

Z2
R(1 + z2/Z2

R)
, (31)

with

fϕ =
r2(1− z2/Z2

R)

w2
0(1 + z2/Z2

R)
. (32)

The above expressions give magnitude of the phase velociy along the electron trajectory Vϕe

as a function of the electron velocity (vr, vz) and position (r, z). Note that the minimum

value of the phase velocity occurs for an electron trajectory angle of

tan θmin =
vr

vz
=

∂ϕ/∂r

∂ϕ/∂z
(33)

and is given by Vϕ,min = ck/|∇ϕ|.

Consider an electron propagating at a small angle θe with respect to the z-axis, where

vr = v0 sin θe and vz = v0 cos θe. The phase velocity along the trajectory is given by

Vϕe � c

[
1 +

(1− fϕ)

kZR(1 + z2/Z2
R)

− rzθe

Z2
R(1 + z2/Z2

R)
+

θ2
e

2

]
(34)

assuming θ2
e � 1, (1 − k−1∂ϕ/∂z)2 � 1 and (θek

−1∂ϕ/∂r)2 � 1, i.e., the last three terms

on the right side of the above equation are assumed to be small compared to unity. For an

electron moving parallel to the z-axis (θe = 0), subluminous phase velocities Vϕe < c require

fϕ > 1, which can only occur in the region |z| < ZR and at z = 0 only for r > w0. The

phase velocity is minimum at the angle
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θmin � rz

Z2
R(1 + z2/Z2

R)
(35)

and is given by

Vϕ,min � c

[
1 +

(1 + z2/Z2
R − r2/w2

0)

kZR(1 + z2/Z2
R)

2

]
. (36)

The condition Vϕ,min < c requires r2/w2
0 > 1 + z2/Z2

R.

For example, an electron moving along the z-axis (r = 0) with a velocity vz � c has the

phase velocity Vϕ0 approximately given by

Vϕ0 � c

[
1 +

1

kZR(1 + z2/Z2
R)

]
. (37)

Consequently, the distance it takes for this electron to phase slip with respect to the laser field

by an amount λ/2 is z � ZR. This is a result of the Gouy phase factor φ(z) = tan−1(z/ZR).

Furthermore, this forms the basis of the Lawson-Woodward theorem, as applied to an elec-

tron moving with vz � c in a straight line that experiences only a linear acceleration force

(proportional to the electric field of the laser). Integrating this force along the straight line

trajectory from −∞ < z < ∞ yields zero net energy gain. This is a consequence of vp0 > c

and phase slippage.

This is not the case, however, for an electron undergoing a general nonlinear, curved

trajectory for which the velocity is not constant. As the laser field acts upon the electron and

alters its velocity, the term v×B in the Lorentz force can become important. Furthermore,

the effective phase velocity along the nonlinear electron trajectory can be less than the speed

of light in vacuum. It then becomes possible for the electron to be phase synchronous with

the laser field over a significant distance, which can lead to a substantial net energy gain.

We find this to be the case in the simulations of the CAS trajectories, and the numerical

simulation results will be presented in the following.

D. Quantum Estimation of Maximum Energy Gain

Our simulations indicate, that in the CAS regime (a0 � 100), with maximum net electron

energy gain scales as a2
0. One possible explanation for this is the following. An upper limit on
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the electron acceleration can be estimated by counting the total momentum of the optical

field shining on the effective area of an electron area per unit time. Here, we assume

that the characteristic area of an electron in the electron-photon interaction is πλ2
c , where

λc = �/(mec) is the electron Compton radius, and that the characteristic interaction length

of the electron with highly focused laser beam is the Rayleigh length ZR = kw2
0/2. This

implies

[∆Emax]up = I × πλ2
c × ZR/c (38)

where I [W/cm
2
] = 1.37× 1018a2

0/(λ[µm])
2. Also, the maximum acceleration gradient is

[∂(∆E)/∂s]up = I × πλ2
c × c−1 (39)

For kw0 = 200, λ = 1µm, and a0 = 100, the above expressions give

[∆Emax]up ∼ a2
0/2 (40)

and 14.3 GeV/cm for the acceleration gradient, which is in approximate agreement with the

simulations presented below. These simple estimates imply that the upper limit to the energy

gain ∆Emax in the CAS is proportional to a2
0, and that the relevant acceleration gradient

can reach tens of GeV/cm. It should be emphasized that since the net energy exchange is

influenced by numerous factors, the above-mentioned law is intended only an approximate

scaling relationship. This statement is also consistent with the theoretical analysis of NLCS

in a plane-wave field. Because the required laser intensity is very high, experimental research

on NLCS in the regime of CAS is beyond current technology. Nevertheless, recently C. Bula

et al. have succeeded in observing the absorption of up to four photons simultaneously

by an electron interacting with a laser field with a0 = 0.6 [31], which demonstrates that

experimental investigation of physics relevant to these processes is now possible.

E. NLCS and PPM

In the numerical simulations presented below, we find that in the regime in which the

energy gain is small, a0 < 10, PPM can provide an adequate approximation to the electron
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dynamics. However, in the regime of large energy gain of CAS, a0 � 100, PPM is a very poor

approximation, and the energy gain mechanism can be described by NLCS. We propose the

following explanations to the suggested connection between NLCS and PPM. First, if we

neglect the contribution of NCS (because the energy of a photon concerned is in the order of

an eV), the net electron energy gain from the mono-frequency continuous laser fields by the

mechanism of SCS is zero since the continuous laser beam is composed of plane waves with

the same frequency. Thus the net energy exchange between charged particle and continuous

laser beam comes chiefly from NLCS. On the other hand, we note the fact that since the

ponderomotive potential of a continuous beam is conservative, the electron scattering by

such a potential is bound to be elastic with no net energy exchange. Thus PPM cannot

describe the process dominated by NLCS. In other words, we can say that the invalidity of

PPM can be regarded as a judgment that NLCS plays a noticeable role. This statement can

also essentially be applied to the case of pulsed lasers. M.V.Fedorov et al. [32] verified that

as a0 < 1, one can use PPM to describe SCS. As for a0 > 1, however, up to now there is no

definite connection that has been identified between PPM and SCS.

Regarding a pulsed laser beam, it is possible for an electron to exchange both energy and

momentum with a pulsed field by the mechanism of SCS since the pulsed laser beam can

be Fourier decomposed into plane waves not only of different traveling directions but also

of different frequency. Likewise, Vpond of a pulsed laser beam is no longer conservative and,

hence, it is possible for an electron to gain net energy in the PPM with a pulsed laser beam.

The problem of invalidity of PPM has also been studied by Quesnel and Mora recently [21].

From the simulation results presented below, we find that when 10 < a0 � 30, NLCS begins

to play a noticeable role, and for a0 � 30, NLCS becomes dominant. When the field strength

is sufficiently strong (a0 � 100) the electron can be captured and violently accelerated by

the laser field, and this effect comes chiefly from the NLCS mechanism.
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IV. SIMULATION RESULTS AND DISCUSSION

A. Characteristics of Output Electron Bunches

Our study shows that the electron dynamic regime, CAS, emerges only when the laser

intensity is strong enough a0 � 100 and when the electron injection angle is sufficiently

small. The phase space of the electron incoming momenta required by CAS is not small and

readily achievable in experiments. Especially, the optimum incident momentum is not very

sensitive to the laser intensity, and can be in the range 10− 20 MeV .

As found in our previous studies [14], the electron final energy γf is sensitive to the

laser wave’s initial phase φ0 as well as the delay time ∆td. Figure 2 shows examples that

the electron final energy γf as a function of the initial phase φ0 when (a) a0 = 30 and (b)

a0 = 100, where γf max is the maximum γf in the whole phase range φ0 ∈ [0, 2π]. The other

parameters used in Fig. 2 are ∆td = 0, τ = 1000, w0 = 200, Pxi = 4, Pyi = 0, Pzi = 40,

and b0 = 0. In the electron capture case, we have terminated the calculation at t = 3× 105.

From Fig. 2(b), it can be seen that about 20% of electrons can be accelerated to GeV which

display typical CAS trajectories [14], if the electrons are uniformly distributed in all phase

φ0 ∈ [0, 2π].

Fig. 3 shows two typical cases of electron dynamics, i.e., the CAS trajectory and the

electron inelastic scattering (IS). They correspond to the points A and B shown in Fig.

2(b), respectively. Other parameters are the same as those in Fig. 2(b). Figure 3(a) shows

electron trajectories in the x, z plane. It clearly indicates whether the electron is captured

or reflected. In Fig. 3(b), we present the electron energy γ as a function of time. Fig.3(c)

shows the variation of the laser phase ϕ experienced by an electron during the interaction.

The most prominent feature of Fig. 3(c) is that the phase experienced by the CAS electron

varies extremely slowly even in the early acceleration stage. For the CAS, the electrons

can be captured into the intense field region rather than expelled from it and the captured

electrons can be accelerated to GeV energies with acceleration gradients of tens of GeV/cm.
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As for a real laser beam, its initial phase φ0 is fixed, but electrons with different delay time

∆td in a bunch will feel different phases. Figure 4 shows that the electron outgoing energy

γf as a function of the relative delay time ∆td. Without losing generality, we chose φ0 = 0

and other parameters are the same as those in Fig. 2(b). Figure 4 corresponds to the case of

an incident electron bunch. Obviously, the output of the acceleration mechanism is a GeV

electron macro-pulse which consists of many micro-pulses. The macro-pulse corresponds to

the duration of the laser pulse and the micro-pulse to the periodicity of the laser wave. Each

of the micro-pulses has the same shape-factor as that of Fig. 2(b). This output feature is

analogous to that of conventional linacs. By combining Fig. 2(b) and Fig. 4, we can find

that the total capture and accelerating fraction for an incident electron bunch with a length

comparable or less than that of the laser pulse is not small, in contrast to the “bucket”

phenomenon for the laser-plasma acceleration schemes [2].

The energy spread and angular spread of the accelerated electron bunches are important

research subjects for practical applications of the CAS mechanism. Fig. 5 and Fig. 6

present an example where the incoming electron bunch is assumed to be a prolate ellipsoid

with the same size as that of the laser pulse: the major axis is L0 = cτ = 500 and the minor

axis equals to w0 = 150. The momentum of all the electrons uniformly distributed in the

ellipsoid are the same with P0i = 19.544 and incident angle θi = tan−1(0.1), corresponding

to an incoming energy γi = 10 MeV. The electron bunch arrives synchronously and interacts

with the laser pulse.

Fig. 5 shows that the outgoing electrons can generally be divided into two groups. The

IS electrons correspond to the peak at larger scattering angle. This, along with the feature

of low outgoing energy, causes the IS electrons to spread greatly in space. The left peak

in Fig. 5 corresponds to the CAS electrons, which consists of more than 30% of the total

incident electrons. Due to the features of high outgoing energies and small angle spread,

the outgoing CAS electrons compose a high-energy bunch with a limited spread in space.

Fig. 6 presents the energy spectrum of the outgoing CAS electrons. It can be seen that the

energies of the CAS electrons spread widely from 0.5 to 3.5 GeV. The poor energy spread of
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the output CAS electrons can be improved by using an electron spectrometer to tailor the

electron beam.

B. Effective Phase Velocity

Figure 7(a) shows the phase velocity distribution along the z-axis. Figure 7(b) and Figure

7(c) compare the wave phase velocity along the electron trajectory (Vϕ)J with the electron

velocity for CAS and IS, respectively. From Fig.7(c) we can see the wave phase velocity

(solid line) for the IS trajectory is much faster than the electron dynamic velocity (dotted

line). Thus the electron phase slippage in the wave will be very fast as shown in Fig. 3(c)

(dotted line). As a consequence, the electron cannot get considerable net energy gain from

the laser field. In contrast to that, from Fig. 7(b), we see that in the path between 0 and

ZR, the wave phase velocity (solid line) of the CAS trajectory is even less than the electron

velocity (dotted), and in the following path, the effective phase velocity is kept very close to

the electron velocity. This is the reason that the phase slippage of the electron in the wave

field remains extremely low. Consequently, the electron can be trapped in the acceleration

phase for long times to gain considerable energy from the laser field.

When an electron is captured, due to the diffraction effect of the optical beam near

the focused region, the effective wave phase velocity along the dynamic trajectory of the

captured particle is found to be less than c, the speed of light in vacuum, or even less than

the speed of the particle. Thus the captured electron can be kept in the acceleration phase

of the wave for long times, and gain considerable energy from the laser field. It is also found

that the emergence of CAS trajectories is sensitive to the laser wave phase experienced by

the incident electron when it reaches the laser intense region.

C. Comparisons to Theory

Figure 8 shows the envelopes of the maximum outgoing energy of the electron γf max

as a function of the relative delay time ∆td for the three typical cases at a0 = 10, 30 and
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100, respectively. It can be found that there are two kinds of peaks as the delay time is

varied over the range of interest. The first type of peak occurs when the electron interacts

with the leading (∆td > 0) and trailing (∆td < 0) temporal edges of the pulse, the other

type occurs near the point ∆td = 0. The width of the former is very narrow (referred to

as a narrow peak), whereas the width of the latter is relatively wide (referred to as a wide

peak). The narrow peaks always appear near the so-called turning points where Pxi = a/
√
2,

which represents a transition between penetration and reflection [22]. At the turning point,

the time interval in which the electron moves in the strong field region is longer than the

nearby trajectories. Thus, the electron may have more net energy exchange with the laser

fields. Detailed study shows that the wide peak begins to appear only when a0 � 10, as

shown in Fig. 8(a). The value of the wide peak will be greater than that of the narrow

peak when a0 � 30, as shown in Fig. 8(b). Furthermore, the narrow peaks almost can be

neglected compared with the wide peak when a0 approaches 100, as shown in Fig. 8(c).

For the pulsed laser beam, we can only obtain the narrow peaks but not the wide peak by

using the PPM, e. g., the numerical solution to Eq. (24). However, for the continuous laser

beam, the narrow peaks are not observed for either the Lorentz force model or the PPM.

The wide peak becomes prominent only when a0 � 30, which stems chiefly from the NLCS

mechanism, i.e., numerical solution to the Lorentz equations, Eq. (15).

To explore the scaling law for the net energy gain of the electrons from the laser field in

vacuum, we use Em = mec
2γfm to represent the outgoing electrons’ maximum energy as φ0

and ∆td vary over the whole range of interest. Figure 9 shows the variation of γfm versus a0.

This figure is chiefly concerned with the laser intensity range of a0 � 100. For a comparison,

the results obtained using three models, namely (i) the continuous laser with numerical

integration of the Lorentz equations, (ii) the pulsed laser with numerical integration of the

Lorentz equations, and (iii) the pulse laser with numerical integration of the PPM, are

presented by the dot-dashed line, solid line and dotted line, respectively in the figure. From

Fig. 9, we can see that when a0 � 10, the PPM describes very well the electron motion, and

when 10 < a0 � 30, the PPM is still approximately valid. But when a0 � 30, the PPM is
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totally invalid. Furthermore, the electron energy gain increases sharply after a0 > 70 as a

consequence of the electron dynamics entering the CAS.

From Fig. 9 and many other calculation results, it seem to us that when NLCS begins to

emerge, then PPM becomes invalid. As discussed above, for continuous laser beams, energy

gain from SCS is zero, since the laser field is monochromatic. Likewise, the energy gain from

PPM is zero, since the potential is conservative. Hence, the net energy exchange between

charged particle and continuous laser beam comes chiefly from NLCS. However, for a pulsed

laser beam, it is possible for an electron to exchange both energy and momentum with a

pulsed field by the mechanism of SCS, since the pulsed field is no longer monochromatic,

and by the mechanism of PPM, since the potential is no longer conservative. In view of

the above-mentioned arguments, as well as from Fig. 8 and Fig. 9, we can say that when

10 < a0 � 30 the NLCS begins to play a noticeable role, and for a0 � 30 the NLCS becomes

dominant. When the field strength is sufficiently strong (a0 � 100) the electron can be

captured and violently accelerated by the laser field, and this effect comes chiefly from the

NLCS mechanism.

D. Scaling Laws for the CAS Mechanism

The dependence of the electron final energy γfm on the incoming energy γi is shown in Fig.

10. From Fig. 10, we can find that the general trend for CAS is that as the incoming energy

γi is increased, the electron final energy γfm will first increase rapidly and then decrease at

a much slower rate after reaching the maximum. Also, the values of the incoming energy γi

which correspond to the maximum electron final energy γfm are not sensitive to the laser

intensity, viz. 25 � γi � 35 for a0 varying in the range [70, 300]. This will be very useful

for the design of laser acceleration experiments as well as future laser-driven accelerators

because we need only a relatively low incoming energy γi ≈ 30 (∼ 15 MeV) to get the

maximum final energy γfm.

Figure 11 shows the variation of the maximum net energy exchange ∆Emax =
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mec
2c(γfm − γi)m, which is defined as the maximum value of γfm − γi, as three parame-

ters (the initial laser phase, the delay time and the incoming electron momenta) are varied

over the range of interest, as a function of the laser intensity a2
0 for a0 � 100, which corre-

sponds to the regime of CAS. The prominent feature of Fig. 11 is that the maximum net

energy gain in CAS, ∆Emax, is approximately proportional to a2
0.

E. Energy Exchange versus w0, τ, b0, and θi

The dependences of the net energy exchange on the focal spot size w0, the pulse length

τ, the impact parameter b0, and the injection angle θi = tan−1(Pxi/Pzi) were also studied,

since these parameters are important in obtaining ultra-high laser intensities and high energy

exchange.

Figure 12 shows the variation of γfm versus the beam width at fixed laser field strength.

The solid line, the crosses (×) and the circles (©) in Fig. 12 correspond to τ = 1000, 300,

and the case of continuous laser beams, respectively. These results demonstrate that γfm

decreases as w0 increases, and that γfm varies rapidly around w0 = 200. It is of interest to

see from Fig. 12 that the results are not sensitive to the pulse duration τ if τ > 300. Detailed

study shows that the electron cannot be captured even if the laser field strength is sufficiently

strong (a0 = 100) when w0 � 250 and that the smaller the beam width is, the easier the

electron trends to be captured and violently accelerated. Also, detailed study shows that as

w0 decreases, the threshold of the laser intensity for CAS will decrease, whereas the fraction

of the initial phase φ0 range for CAS will sharply increase. Obviously, this will be useful for

the design of future laser-accelerators.

This feature can be understood from the following classical explanation. For sufficiently

large values of w0, the phase velocity synchronization effect will become less prominent. This

results in a reduced energy gain, as discussed in the previous sections.

Figure 13 shows the dependence of γfm on the laser field strength for different pulse

durations τ. We find that γfm increases as τ decreases when a0 < 30, whereas γfm is

22



not sensitive to τ when a0 > 30. The former is easy to understand from the quantum-

mechanical viewpoint. We know a pulse with a Gaussian envelope will have a minimum-

duration-bandwidth product ∆ν · τ = 0.4 [1], where ∆ν is the pulse bandwidth. Hence, the

contribution to the net energy exchange by SCS will increase as τ decreases. Since SCS is

important for a0 < 30, thus γfm will increase as τ decreases for a0 < 30. On the other hand,

the contribution to the net energy exchange in a strong laser field (a0 > 30) mainly stems

from NLCS, which shows different feature compared with that of SCS.

Figure 14 shows that the electron maximum outgoing energy γf max as a function of the

impact parameter b0, where γf max is the maximum γf when φ0 varies in the whole phase

range φ0 ∈ [0, 2π]. A pulsed laser with τ = 500 and w0 = 150 is used. Three typical

cases, namely, ∆td = −250, 0, +250, are given by the dash-dotted line, the solid line and

dotted line respectively in the figure. The electron incident momentum chosen are Pxi = 2,

Pyi = 0, Pzi = 20, corresponding to the incoming energy γi ≈ 10.28 MeV and crossing

angle θi = tan−1(0.1). Other parameters are the same as those in Fig. 2(b). One may find

from Fig. 14 and Fig. 4 that electrons inside the internal region of the bunch, b0 < 1
2
w0

and ∆td < 1
2
τ , can be captured and accelerated to GeV energy under the conditions given

above. It means the output GeV electron bunch can have comparable sizes as that of the

laser pulse, provided the incident electron bunch is large enough.

Figure 15 shows the variation of γf max versus θi = tan−1(Pxi/Pzi), the electron injection

angle in the x-z plane, for the parameters Pzi = 20, Pxi = Pzi tan θi, and Pyi = 0. The solid

line is for w0 = 150, the dotted line for w0 = 200 and the dot-dashed line for w0 = 100.

A prominent feature of Fig. 15 is that the electron dynamic regime, CAS, emerges only

when the electron injection angle is sufficiently small. Furthermore, the CAS angle range is

strongly dependent on the laser beam width. Generally, the smaller w0, the wider the CAS

angle range. Still, when w0 is large enough, the lowest-order Hermite-Gaussion(0,0) mode

E-M wave tends to become a plane-wave and there would be no any CAS phenomenon.
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V. SUMMARY

Using test particle simulations of electron trajectories in analytically prescribed laser

fields, the physics of the CAS mechanism has been explored, which shows the following

characteristics.

(1) Electrons can be captured into the intense field region, rather than expelled from it;

and the captured electrons can be accelerated to GeV energies with acceleration gradients

on the order of tens of GeV/cm.

(2) The required laser intensity for CAS to emerge is extremely high. As shown in Fig.

9, the electron energy gain increases sharply after a0 > 70, and only as a0 approaches 100

will there appear typical CAS trajectories.

(3) The CAS is distinct from that predicted by PPM. We find that whenever the NLCS

effect appears to be prominent, PPM becomes invalid.

(4) For a capture electron in the CAS regime, the effective phase velocity of the laser

field can be less than c, allowing for phase synchronism with the laser field and large energy

gain.

(5) From Figs. 3 and 4, one can see that corresponding to each incident electron bunch,

the output of the laser-electron interactions in CAS is a GeV electron macro-pulse composed

of many micro-pulses.. Each of the micro-pulses corresponds to the periodicity of the laser

wave. The features in the structure of the accelerated electron bunches are analogous to

that of the conventional linacs, but with much high acceleration gradients. Furthermore,

despite the electron energy gain being sensitive to the laser wave phase, the total fraction

of electrons captured and accelerated is not small, provided the incident electron bunch

length is comparable or less than that of the laser pulse. This is in contrast to the “bucket”

phenomenon that characterizes laser-plasma acceleration schemes [2].

(6) The phase space of the incident electron momenta required by CAS is not small and

is readily achievable in experiments. Furthermore, the optimum incident momentum is not

very sensitive to the laser intensity, which is around 10-20 MeV with small crossing angle,
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as shown in Fig. 8.

(7) Within the CAS regime (a0 � 100), the maximum electron energy gain is approxi-

mately proportional to a2
0, as shown in Fig. 11.

(8) From Fig. 12, CAS is sensitive to the lateral field gradient of Gaussian beams. The

larger w0, the weaker the capture effect, resulting in less electron energy gain.

(9) The electron energy gain increases as τ decreases when a0 < 30, but is not sensitive

to τ when a0 > 30 as long as τ > 300. The contribution to the net energy exchange in a

strong laser field (a0 > 30) mainly stems from NLCS, which shows different features than

that of SCS.

(10) A possible practical application of the CAS is the acceleration to high energy of an

initially relativistic, high quality electron bunch that is injected, at a finite angle, into the

focal region of an intense laser pulse. As shown in Fig. 5 and Fig. 6, The CAS can really

generate bunches with large amount of GeV electrons and modest angle emittance. However,

the energy of the outgoing CAS electron bunches spreads in a wide (more than GeV) energy

rangy. This poor energy emittance may be improved by using electron spectrometer to tailor

the output electron beams.
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Figure Captions

FIG. 1. Schematic geometry of electron scattering by laser beam. The laser propagates

along the z-axis, w0 is the beam width at the waist. Without losing generality, we assume the

electrons are coming in from the negative-x side parallel to the x-z plane. (γi, Pxi, Pyi = 0,

Pzi) denote the incoming energy and momentum of the electron and (γf , Pxf , Pyf , Pzf ) that

of outgoing state. γ is the Lorentz factor and b0 the impact parameter. θi = tan−1(Pxi/Pzi)

is the electron injection angle in the x-z plane.

FIG. 2. The electron final energy γf as a function of initial phase φ0 when ∆td = 0. The

results of Fig. 2(a) are for a0 = 30 and Fig. 2(b) for a0 = 100. Other parameters chosen are

τ = 1000, w0 = 200, Pxi = 4, Pyi = 0, Pzi = 40, and b0 = 0. In the electron capture case,

we have terminated the calculation at t = 3× 105.

FIG. 3. Two typical cases of electron dynamics: Capture and acceleration scenario

(CAS) and inelastic scattering (IS). Other parameters are the same as those in Fig. 2(b).

(a) Electron trajectories in the x-z plane. The dot-dot-dashed lines show the spatial profile

of the focused laser beam. (b) Electron energy γ as a function of time. (c) The laser wave

phase experienced by the electron as a function of time. The solid line is for the case of

electron capture with φ0 = 2100 and the dotted line for the electron inelastic scattering with

φ0 = 00. They are respectively corresponding to the points A and B shown in Fig. 2(b).

FIG. 4. (a) Dependence of the electron final energy γf on the relative delay time ∆td

when φ0 = 0. Other parameters are the same as those in Fig. 2(b). (b) An enlargement of

the part denoted by the arrow in Fig. 4(a).

FIG. 5. Angular distribution dn/(NdΩ) ∼ θf of the outgoing electrons. The parameters

used in the calculations are τ = 500, w0 = 150, P0i = 19.544, θi = tan−1(0.1). We have

terminated the calculation at t = 3× 105.

FIG. 6. Energy spectrum of the outgoing CAS electrons. The parameters used in the

calculations are the same as those in Fig. 5.
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FIG. 7. (a) The effective phase velocity of Gaussian laser beam along z-axis. (b) Variation

of effective phase velocities of Gaussian laser waves along electron trajectories (solid line) of

CAS compared with the electron’s velocity (dotted line) (c) Same as Fig. 7(b) but for IS.

The parameters chosen are the same as those in Fig. 3.

FIG 8. Dependence of the electron final energy γf max on the relative delay time ∆td,

where the results of Fig. 8(a) are for a0 = 10, Fig. 8(b) for a0 = 30, and Fig. 8(c) for

a0 = 100. Other parameters are the same as those in Fig. 2.

FIG. 9. Dependence of the electron final maximum energy γfm on the laser field intensity

a0. The dot-dashed line is for a continuous laser beam, the solid line for a pulsed laser beam,

and the dotted line for that of a pulsed laser beam with the PPM. The maximum electron

final energy is obtained by varying φ0 and ∆td over a wide range of values. Other parameters

are the same as those in Fig. 2. The inset is an enlargement of the part denoted by the

arrow.

FIG. 10. The electron final energy γfm as a function of the incoming energy γi. The

four curves in the figure correspond to a0 = 70, 100, 200, and 300. Other parameters are the

same as those in Fig. 2.

FIG. 11. Dependence of the maximum net energy exchange ∆Emax = (γfm − γi)mmec
2

on the parameter a2
0. The solid line is for the case of a pulsed laser and the dot-dashed line

for a continuous laser. The maximum net energy exchange is obtained as φ0, ∆td and the

incoming energy γi are varied over a wide range. Other parameters are the same as those

in Fig. 2.

FIG. 12. Dependence of the electron final energy γfm on the beam width at the waist

w0. The solid line is for τ = 1000, the cross (×) for τ = 300, and the circle (©) for the case

of a continuous laser beam. Other parameters are the same as those in Fig. 2(b).

FIG. 13. The electron final energy γfm as a function of the laser field intensity a0. The

solid line is for the case when τ = 1000, the doted line is for τ = 300, and the dot-dashed

line is for the case of a continuous laser. Other parameters are the same as those in Fig. 2.
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FIG. 14. Dependence of the electron maximum outgoing energy γf max on the impact

parameter b0. The dash-dotted line, the solid line and dotted line correspond to the cases

∆td = −250, 0, +250 respectively. Other parameters are τ = 500, w0 = 150, Pxi = 2,

Pyi = 0, Pzi = 20. In the electron capture case, we have terminated the calculation at

t = 3× 105.

FIG. 15. The variation of γf max versus the electron injection angle θi in the x-z plane

when ∆td = 0. The solid line is for w0 = 150, the dotted line for w0 = 200, and the

dot-dashed line for w0 = 100. Other parameters are the same as those in Fig. 14.
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