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ABSTRACT
Scalability is a desirable attribute of a network, system, or
process. Poor scalability can result in poor system performance,
necessitating the reengineering or duplication of systems. While
scalability is valued, its characteristics and the characteristics
that undermine it are usually only apparent from the context.
Here, we attempt to define different aspects of scalability, such
as structural scalability and load scalability. Structural scalability
is the ability of a system to expand in a chosen dimension
without major modifications to its architecture. Load scalability
is the ability of a system to perform gracefully as the offered
traffic increases. It is argued that systems with poor load
scalability may exhibit it because they repeatedly engage in
wasteful activity, because they are encumbered with poor
scheduling algorithms, because they cannot fully take advantage
of parallelism, or because they are algorithmically inefficient.
We qualitatively illustrate these concepts with classical examples
from the literature of operating systems and local area networks,
as well as an example of our own. Some of these are
accompanied by rudimentary delay analysis.
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1. INTRODUCTION
Scalability is a desirable attribute of a network, system, or
process. The concept connotes the ability of a system to
accommodate an increasing number of elements or objects, to
process growing volumes of work gracefully, and/or to be
susceptible to enlargement. When procuring or designing a
system, we often require that it be scalable. The requirement may
even be mentioned in a contract with a vendor.

When we say that a system is unscalable, we usually mean that

the additional cost of coping with a given increase in traffic or
size is excessive, or that it cannot cope at this increased level at
all. Cost may be quantified in many ways, including but not
limited to response time, processing overhead, space, memory, or
even money. A system that does not scale well adds to labour
costs or harms the quality of service. It can delay or deprive the
user of revenue opportunities. Eventually, it must be replaced.

The scalability of a system subject to growing demand is crucial
to its long-term success. At the same time, the concept of
scalability and our understanding of the factors that improve or
diminish it are vague and even subjective. Many systems
designers and performance analysts have an intuitive feel for
scalability, but the determining factors are not always clear. They
may vary from one system to another.

In this paper, we attempt to define attributes that make a system
scalable. This is a first step towards identifying those factors that
typically impede scalability. Once that has been done, the factors
may be recognised early in the design phase of a project. Then,
bounds on the scalability of a proposed or existing system may be
more easily understood.

An unidentified author recently placed a definition of scalability
at the URL http://www.whatis.com/scalabil.htm. Two usages are
cited: (1) the ability of a computer application or product
(hardware of software) to function well as it (or its context) is
changed in size or volume in order to meet a user need; and (2)
the ability not only to function well in the rescaled situation, but
to actually take full advantage of it, for example if it were moved
from a smaller to a larger operating system or from a
uniprocessor to a mulitprocessor environment. Jogalekar and
Woodside define a metric to evaluate the scalability of a
distributed system from one system to another, but do not
attempt to classify attributes of or impediments to scalability
[13]. Without explicitly attempting to define scalability,
Hennessy cites an observation by Greg Papadopoulos of SUN
that the amount of online storage on servers is currently
expanding faster than Moore’s law [11]. Hennessy also suggests
that scalability is an aspect of research that should receive more
emphasis in the future than performance. The work in this paper
and in [13] suggests that performance and scalability need not be
decoupled; indeed, they may be very closely intertwined.

The ability to scale up a system or system component may
depend on the types of data structures and algorithms used to
implement it or the mechanisms its components use to
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communicate with one another. The data structures support
particular functions of a system. The algorithms may be used to
search these structures, to schedule activities or access to
resources, to coordinate interactions between processes, or to
update multiple copies of data at different places. The data
structures affect not only the amount of space required to perform
a particular function, but also the time. These observations give
rise to notions of space scalability and space-time scalability,
which we shall formally define later. In addition, the fixed size of
some data structures, such as arrays or address fields, may
inherently limit the growth in the number of objects they track.
We call the absence of this type of limitation structural
scalability.

The scalability of a system may be impaired by inherent
wastefulness in frequently repeated actions. It may also be
impaired by the presence of access algorithms that lead to
deadlock or that result in suboptimal scheduling of resources.
Such systems may function well when the load is light, but suffer
substantial performance degradation as the load increases. We
call systems that do not suffer from such impairments load
scalable. Classical examples of poor load scalability include
Ethernet bus contention and busy waiting on locks in
multiprocessor systems. We note in passing that systems with
poor load scalability can be hard to model, because they may
migrate from a state of graceful function to overload, and perhaps
from there into deadlock.

The improvement of structural, space, and space-time scalability
depends on the judicious choice of algorithms and data
structures, and synchronization mechanisms. Since algorithmic
analysis, programming techniques, and synchronization are well
documented elsewhere [1, 19, 10], we shall not dwell on them
further here. Nor shall we consider scalability aspects of parallel
computation or connectivity. In the present paper, our focus shall
be on load scalability.

In the next section, we elaborate on scalability concepts we
described above. We then look at some examples. These
examples will be used to illustrate the notion of unproductive
cycles as well as instances in which scalability is undermined by
one or more scheduling rules.

2. TYPES OF SCALABILITY
2.1 General Types of Scalability
We consider four types of scalability here: load scalability, space
scalability, space-time scalability, and structural scalability. A
system or system component may have more than one of these
attributes. Moreover, two or more types of scalability may
mutually interact.

• Load scalability. We say that a system has load scalability if
it has the ability to function gracefully, i.e., without undue
delay and without unproductive resource consumption or
resource contention at light, moderate, or heavy loads while
making good use of available resources.  Some of the factors
that can undermine load scalability include (1) the
scheduling of a shared resource,  (2) the scheduling of a
class of resources in a manner that increases its own usage
(self-expansion), and (3) inadequate exploitation of
parallelism.

The Ethernet does not have load scalability, because the high
collision rate at heavy loads prevents bandwidth from being used
effectively. The token ring with nonexhaustive service does have
load scalability, because every packet is served within a bounded
amount of time.

A scheduling rule may or may not have load scalability,
depending on its properties. For example, the Berkeley UNIX
4.2BSD operating system gives higher CPU priority to the first
stage of processing inbound packets than to either the second
stage or to the first stage of processing outbound packets. This in
turn has higher priority than I/O, which in turn has higher
priority than user activity. This means that sustained intense
inbound traffic can starve the outbound traffic or prevent the
processing of packets that have already arrived. This scenario is
quite likely at a web server [16]. This situation can also lead to
livelock, a form of blocking from which recovery is possible once
the intense packet traffic abates. Inbound packets cannot be
processed and therefore are unacknowledged. This eventually
causes the TCP sliding window to shut, while triggering
retransmissions. Network goodput then drops to zero. Even if
acknowledgments could be generated for inbound packets, it
would not be possible to transmit them, because of the starvation
of outbound transmission.  It is also worth noting that if I/O
interrupts and interrupts triggered by inbound packets are
handled at the same level of CPU priority, heavy inbound packet
traffic will delay I/O handling as well. This delays information
delivery from web servers.

A system may also have poor load scalability because one of the
resources it contains has a performance measure that is self-
expanding, i.e., its expectation is an increasing function of itself.
This may occur in queueing systems in which a common FCFS
work queue is used by processes wishing to acquire resources or
wishing to return them to a free pool. This is because the holding
time of a resource is increased by contention for a like resource,
whose holding time is increased by the delay incurred by the
customer wishing to free it. Self-expansion diminishes scalability
by reducing the traffic volume at which saturation occurs. In
some cases, it might be detected when performance models of the
system in question based on fixed-point approximations predict
that performance measures will increase without bound, rather
than converging. In some cases, the presence self-expansion may
make the performance of the system unpredictable when the
system is heavily loaded. Despite this, the operating region in
which self-expansion is likely to have the biggest impact may be
readily identifiable: it is likely to be close to the point at which
the loading of an active or passive resource begins to steeply
increase delays.

Load scalability may be undermined by inadequate parallelism.
A quantitative method for describing parallelism is given in [15].
Parallelism may be regarded as inadequate if system structure
prevents the use of multiple processors for tasks that could be
executed asynchronously. For example, a transaction processing
(TP) monitor might handle multiple tasks that must all be
executed within the context of a single process. These tasks can
only be executed on one processor in a multiprocessor system,
because the operating system only sees the registers for the TP
monitor, not for the individual tasks. Such a system is said to be
single-threaded.



• Space scalability. A system or application is regarded as
having space scalability if its memory requirements do not
grow to intolerable levels as the number of items it supports
increases. Of course, intolerable is a relative term. We
might say that a particular application or data structure is
space scalable if its memory requirements increase at most
sublinearly with the number of items in question. Various
programming techniques might be used to achieve space
scalability, such as sparse matrix methods or compression.
Because compression takes time, it is possible that space
scalability may only be achieved at the expense of load
scalability.

• Space-time scalability.  We regard a system as having
space-time scalability if it continues to function gracefully
as the number of objects it encompasses increases by orders
of magnitude. A system may be space-time scalable if the
data structures and algorithms used to implement it are
conducive to smooth and speedy operation whether the
system is of moderate size or large. For example, a search
engine that is based on a linear search would not be space-
time scalable, while one based on an indexed or sorted data
structure such as a hash table or balanced tree could be.
Notice that this may be a driver of load scalability for the
following reasons:

1. The presence of a large number of objects may
lead to the presence of a heavier load.

2. The ability to perform a quick search may be
affected by the size of a data structure and how it
is organised.

3. A system or application that occupies a large
amount of memory may incur considerable paging
overhead.

Space scalability is a necessary condition for space-time
scalability in most systems, because excessive storage
requirements could lead to memory management problems and/or
increased search times.

• Structural scalability.  We think of a system as being
structurally scalable if its implementation or standards do
not impede the growth of the number of objects it
encompasses, or at least will not do so within a chosen time
frame. This is a relative term, because scalability depends
on the number of objects of interest now relative to the
number of objects later. Any system with a finite address
space has limits on its scalability. The limits are inherent in
the addressing scheme. For instance, a packet header field
typically contains a fixed number of bits. If the field is an
address field, the number of addressable nodes is limited. If
the field is a window size, the amount of unacknowledged
data is limited. A telephone numbering scheme with a fixed
number of digits, such as the North American Numbering
Plan, is scalable only to the extent that the maximum
quantity of distinct numbers is significantly greater than the
set of numbers to be assigned before the number of digits is
expanded.

Load scalability may be improved by modifying scheduling rules,
avoiding self-expansion, or exploiting parallelism. By contrast,
the other forms of scalability we have described are inherent in

architectural characteristics (such as word length or the choice of
data structures) or standards (such as the number of bits in
certain fields) that may be difficult or impossible to change.

2.2 Scalability over Long Distances
• Distance Scalability. An algorithm or protocol is distance

scalable if it works well over long distances as well as short
distances.

• Speed/Distance Scalability. An algorithm or protocol is
speed/distance scalable if it works well over long distances
as well as short distances at high and low speeds.

The motivation for these types of scalability is TCP/IP. Its sliding
window protocol shows poor speed/distance scalability in its
original form. Protocols in which bit status maps are periodically
sent from the destination to the source, such as SSCOP [8] are
intended to overcome this shortcoming. This is  the subject of
future work and will not be considered further here.

3. INDEPENDENCE AND OVERLAP
BETWEEN SCALABILITY TYPES
When exploring taxonomy of defining characteristics, it is
natural to ask whether they are independent of one another or
whether they overlap. The examples presented here show that
there are cases where load scalability is not undermined by poor
space scalability or structural scalability. Systems with poor
space scalability or space-time scalability might have poor load
scalability because of the attendant memory management
overhead or search costs. Systems with good space-time
scalability because their data structures are well engineered
might have poor load scalability because of poor decisions about
scheduling or parallelism that have nothing to do with memory
management.

Let us now consider the relationship between structural
scalability and load scalability. Clearly, the latter is not a driver
of the former, though the reverse could be true. For example, the
inability to exploit parallelism and make use of such resources as
multiple processors undermines load scalability, but could be
attributed to a choice of implementation that is structurally
unscalable.

The foregoing discussion shows that the types of scalability
presented here are not entirely independent of one another,
although many aspects of each type are. Therefore, though they
provide a broad basis for a discussion of scalability, that basis is
not orthogonal in the sense that a suitable set of base vectors
could be. Nor is it clear that an attempt at orthogonalization, i.e.,
an attempt to provide a characterisation of scalability consisting
only of independent components, would be useful to the software
practitioner, because the areas of overlap between our aspects of
scalability are a reflection of the sorts of design choices a
practitioner might face.

4. QUALITATIVE ANALYSIS OF LOAD
SCALABILITY AND EXAMPLES
In this section, we illustrate the analysis of load scalability. Our
examples fall into two categories: systems with repeated
unproductive cycling through finite state machines, and systems
whose poor load scalability can be overcome with the judicious
choice of a job scheduling rule. Of course, the use of finite state



machines to characterise system behaviour is not new [17]. In the
context of software performance engineering, small finite state
machines have been used to depict the behaviour of embedded
components [18]. Concurrently interacting finite state machines
have been studied by Kurshan and coworkers [14].

By an unproductive cycle, we mean a repeated sequence of states
in which a process spends an undesirable amount of time using
resources without actually accomplishing the goals of the user or
programmer. Classical examples include busy waiting on locks in
multiprocessor systems, Ethernet bus contention, and solutions to
the dining philosophers problem that do not have controls for
admission to the dining room [12, 7]. Other examples include
systems whose performance does not degrade gracefully as the
load on them increases beyond their rated capacity. Some
systems or procedures that are perceived as scaling poorly use
resources inefficiently. They may hold one or more resources
while being in an idle or waiting state, or they may incur
overheads or delays that are tolerable at low volumes of activity
but not at high volumes.

We now turn to examples that suggest how load scalability might
be improved by reducing the occurrence of unproductive cycles
or by modifying a job scheduling rule.

4.1 Busy Waiting on Locks
In the early days of multiprogrammed computing, contention for
shared objects was arbitrated solely with the aid of hardware
locks in memory. The lock is set by the first process that finds it
unset; this process then unsets it when it has finished with the
object protected by the lock. Other processes must repeatedly
check it to see if it is unset. This repeated checking steals
processing and memory cycles that could otherwise be used for
useful work. Repeated cycle stealing, especially in a
multiprocessor environment, degrades performance.
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Figure 1: Busy waiting on locks.

Figure 1 shows a state transition diagram for this concurrency
control mechanism.  The first directed graph represents the states
of the memory bus, the second the states of a process trying to
access the lock. Each attempt to access a lock corresponds to a
complete cycle through the memory bus state transition diagram,
as well as through a loop consisting of the three states Get
memory, Read memory, Free memory in that order. Each process

trying to access the lock corresponds to an instance of the second
directed graph. Although one cannot break these cycles, one can
reduce the frequency with which they are traversed by
implementing mutual exclusion with a semaphore [10, 7]. By
putting a process to sleep until the object to which it seeks access
becomes available, the semaphore mechanism simultaneously
reduces lock contention, memory bus contention, and the
unproductive consumption of CPU cycles. However, frequent
context switching in a multiprocessor system with shared
memory will still cause heavy memory bus usage, because of
contention for the ready list lock [6]. Thus, the locking
mechanism is not load scalable. However, minimizing the use of
locks does ameliorate the problem by reducing the occurrence of
unproductive cycles spent busy waiting.

4.2 Ethernet and Token Ring: a Comparison
The delay and throughput of the Ethernet and token ring with
cyclic nonexhaustive service were compared in [5]. Here, we
consider their performance with the aid of state transition
diagrams. Figure 2 shows state transition diagrams for an
Ethernet bus and for a single packet awaiting transmission. The
bus repeatedly goes through the unproductive cycle (Busy,
Collision, Idle, Busy, Collision, … ) when more than one
workstation attempts to transmit simultaneously. Similarly, a
station attempting to transmit a packet could repeatedly go
through the cycle (Silent, Backoff, Silent, Backoff,… ) before
finally being sent successfully. It is well known that the
performance of the Ethernet does not degrade gracefully as it
approaches saturation [2]. Repeated traversals of these cycles
help explain why. Introducing a bus with higher bandwidth only
defers the onset of the problem. Thus, the CSMA/CD protocol is
not load scalable.
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Figure 2: Transition diagram for Ethernet.



Let us now examine the token ring. The state transition diagrams
for the token and for a workstation attempting transmission of a
single packet are shown in Figure 3. We see that the token moves
between available states cyclically, and that it suffers increased
delay in moving from one station to the next only if it is doing
useful work, i.e. if it is in use. A station attempting to transmit a
packet is silent until the token becomes available to it. It then
sends the packet without the need for backoff. Notice that the
state transition graph for the LAN card contains no cycles. This
helps to explain the graceful performance degradation of the
token ring as it approaches saturation. The contrast with the
Ethernet’s cyclic behaviour is clear.

4.3 Museum Checkroom
This is a simplification of a problem occurring in replicated
database systems [4]. At a museum checkroom, visitors are
required to join a common FCFS queue to deposit and collect
their coats. The scarce resources are coat hangers (passive) and
attendants (active). Coats are placed on hangers, which are hung
on carousels, each of which is maintained by a dedicated
attendant. An attendant taking a coat performs a linear search on
the assigned carousel to find an empty hanger, or to find the
visitor’s coat. Our objective is to maximise the time the customer
can spend looking at exhibits and spending money in the
museum restaurant and gift shop.

The performance of this system degrades badly under heavy
loads. First, the service time increases with the occupancy of the
hangers, because it takes longer to find free ones. Second, the
system is prone to deadlock at heavy loads, e.g., during the

winter holiday season. In the morning most visitors are leaving
their coats; in the evening they are all picking them up. The
deadlock problem arises at midday or in the early afternoon,
when many might be doing either. Deadlock occurs when the
hangers have run out, and visitors wishing to collect coats are
stuck in the queue behind those wishing to leave them.
Attendants can break the deadlock by asking those who wish to
collect coats to come forward. This amounts to the resolution of
deadlock by timeout, which is inefficient.

With its original service rules, the museum checkroom will
function adequately at light loads and with low hanger
occupancy, but will almost certainly deadlock at some point
otherwise. Regardless of the number of attendants and the
number of coat hangers, the system is likely to go into deadlock

if the volume of traffic is heavy enough. Increasing the number of
hangers only defers the onset of deadlock; it does not eliminate
the possibility. Load scalability is further undermined because
the holding time of a currently occupied hanger is increased in
two ways:

1. The search time for unused hangers increases as the
hanger occupancy increases.

2. A customer arriving to collect a coat (and thus free a
hanger) must wait behind all other waiting customers,
including those wishing to leave coats. This increases
the time to free a hanger.

Both of these factors make the hanger holding time self-
expanding. If the holding time is self-expanding, the product of
the customer arrival rate and the hanger holding time, i.e., the
expected number of occupied hangers, will increase to exceed the
total number of hangers even if the customer arrival rate does not
increase. This is a sure sign of saturation.

Notice that the impediments to the scalability of this system vary
with the time of day.  In the morning, when almost all visitors
are leaving coats, the impediments are the number of attendants
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Figure 3: Transition diagrams for token ring.



and the somewhat confined space in which they work.  The same
is true at the end of the day, when all visitors must pick up their
coasts by closing time.  At midday, the principal impediment is
the FCFS queueing rule, which leads to deadlock.

For this system, load scalability can be increased with the
following modifications.

1. There should be separate queues for those collecting and
leaving coats, with (nonpreemptive) priority being given
to the former so as to free the hangers as quickly as
possible. This priority ordering reduces the tendency of
the holding time to be self-expanding. Deadlock is
avoided because the priority rule guarantees that a
hanger will be freed if someone arrives to collect a coat.

2. To prevent attendants from jostling each other in peak
periods, there should also be more than one place at
which they can serve museum visitors, regardless of the
carousel on which the coat is kept.

3. To prevent visitors from jostling one another, there must
be a wide aisle between the queue and the counter.

4. A sorted list of free hangers could be maintained for
each carousel, to reduce the time to search for one.

The first and second modifications are cheap, the third and fourth
less so. The first alone would yield substantial benefits by
eliminating the risk of deadlock and reducing hanger occupancy.
The usefulness of the second depends on the patience of
attendants and visitors alike, especially as closing time
approaches. The cost of the fourth modification must be weighed
against the reduced cost of keeping fewer attendants around.

Analogy of this Problem with Computer Systems. The visitors
correspond to processes. The carousels and hangers respectively
correspond to memory banks and memory partitions. The
attendants correspond to processors. Finally, the corridor
between the carousels and the counter at which visitors arrive
collectively correspond to a shared memory bus via which all
memory banks are accessed. This is an example in which the
main (and most easily surmounted) impediment to scalability lies
in the mechanism for scheduling service, rather than in the
unproductive consumption of cycles. The corridor (memory bus)
is a secondary impediment, because attendants bump into each
other while hanging or fetching coats during peak periods, unless
each attendant is assigned to one carousel only. In a computing
environment, this would be analogous to having a single bus for
each memory bank. Finally, scalability is impeded by the narrow
doorway between the head of the queue and the counter. This is
analogous to there being a unique path from the CPU to the
entire set of memory banks, i.e., the bus.

For performance analysis of an open arrival system in which jobs
queue for a memory partition before processing and I/O may
begin, the reader is referred to [15, 3].

5. IMPROVING LOAD SCALABILITY
Our examples of poor load scalability show that it can have a
variety of causes, ranging from access policies that are
repetitively wasteful of active resources (e.g., busy waiting) to
assignment policies that undermine the “common good” of the
system by  causing passive resources (e.g., coat hangers) to be
held longer than is necessary to accomplish specific tasks.

One way to improve the scalability of a system is to reduce the
amount of time it spends in unproductive cycles. This can be
done by modifying the implementation so that the time spent
cycling is reduced, or by eliminating the cycle altogether through
a structural change or a scheduling change.

If a system is not structurally unscalable, e.g., if its scalability is
not limited by its address space, its load scalability might be
improved by mitigating the factors that prevent it from being load
scalable, space-scalable, or space-time scalable. The first steps to
improvement are:

• identification of unproductive execution cycles and
their root causes, as well as means of breaking them.

• understanding the sojourn time in the cycles, and
means of shortening them,

• understanding how and whether a system could migrate
into an undesirable absorbing state (such as deadlock)
as the load increases, and devising scheduling rules
and/or access control mechanisms to prevent this from
happening,

• identifying system characteristics that make
performance measures self-expanding, and finding
ways to eliminate or circumvent them,

• determining whether scalability is impeded by a
scheduling rule, and altering the rule,

• understanding whether asynchronicity can be exploited
to allow parallel execution, and modifying the system
accordingly. Notice that when evaluating the increased
benefit of parallelism, one must also account for the
additional cost of controlling interprocess
communication.

Not all of these steps are applicable to all situations. Nor can we
be certain that this list is complete. But, once these steps have
been taken, one may attempt to identify design changes and/or
system improvements that either reduce the sojourn times in the
cycles or break the cycles altogether. This must be done with
care, because any design change could (a) result in the creation
of a new set of cycles, and/or (b) result in a the creation of a new
scheduling rule that induces anomalies of its own. Moreover, a
modification might simply reveal the existence of another
bottleneck that was concealed by the first one. On the other hand,
modifications may well lead to unintended beneficial side effects
such as reducing resource holding times and delays.

Let us reconsider the load scalability examples in the light of the
foregoing.

Semaphores reduce the occurrence of unproductive busy waiting
and hence memory cycle stealing in multiprocessor systems with
shared memory. Thus, systems that use semaphores rather than
locks are likely to perform better under heavy loads. However,
the solution comes with a cost, the overhead of managing
semaphores. The use of semaphores might also expose a
previously hidden bottleneck, namely lock contention for the
head and tail of the CPU run queue (ready list) in the presence of
too many processors. This is not an argument against the
introduction of semaphores, merely a warning about the next
bottleneck that might arise.



Eliminating collisions in an unswitched Ethernet LAN clearly
increases capacity for a given bandwidth. Unlike the Ethernet,
the token ring provides an upper bound on packet transmission
time, albeit at the cost of waiting ones turn as the token moves
from one node to the next.

The museum checkroom example illustrates many facets of
scalability. Giving priority to customers collecting coats in the
museum checkroom reduces the average number of occupied
hangers. This contributes to the reduction of delay by reducing
the time to free a hanger, thus making it available to an arriving
visitor. This in turn reduces the time the checkroom attendants
spend on each visitor, and maybe even the number of attendants
required to maintain a given level of service quality. It also
prevents deadlock. Indexing the free and occupied hangers
reduces search time, though not retrieval time, since the desired
hanger is always brought to the front for access. Deploying
attendants to the carousel where they are needed instead of
assigning them to particular ones increases their utilization.
Allowing them enough space to move around freely also reduces
customer service time. Dedicating one attendant to coat retrievals
reduces hanger occupancy while making scarce hangers available
sooner. All of these modifications improve the ability of the
system to function properly at increased loads, either by cutting
down on active processing time or by reducing the holding times
of passive resources.

6. SOME MATHEMATICAL ANALYSES
6.1 Comparison of Semaphores and Locks for

Implementing Mutual Exclusion
In this section, we propose a framework for analysing the relative
performance impacts of different mechanisms for implementing
mutual exclusion. In particular, we shall compare locks and
semaphores, as in our previous example. A semaphore does not
eliminate lock contention entirely: it simply focuses lock
contention on the shared data structures accessed by its
primitives while preparing to put a process to sleep until a
critical section becomes available. This mechanism could be
applied to protect data in shared memory, or, as might be the
case with a database record, on disc. Let L be the lock used to
implement mutual exclusion without semaphores, and S be a lock
that is used to impose mutual exclusion on the data structures
used to implement a semaphore operation. In the database
example, L could reside on disc before being loaded into memory
as part of a record. The lock used by the semaphore might protect
a ready list or queue: in any case it is only accessed by
designated primitive operations that are part of the kernel of the
host operating system.

Let ip denote the probability that a lock of type  i  (=L,S) is

accessed and set (or reset) successfully on the current attempt.
Let ia denote the number of successful attempts that must be

made to acquire and relinquish control of a critical section. For a
simple lock, La =2 since a test-and-set or a test-and-reset would
be required for acquisition and release respectively. We make the
simplifying assumption that the probabilities of success on each
attempt to access the lock are identical, and that successive
attempts are independent. The probability of success depends on

how the lock is used, the number of processors, their loads, and
on how much context switching is occurring at the time. The
need to make at least one attempt, and the assumption that
successes are i.i.d. give the number of attempts needed for
success a displaced geometric distribution with mean 1/ ip . If

we assume that costs of accessing locks S and L are the same,
and that some constant overhead k is associated with the
semaphore mechanism, the ratio of the costs of the simple
locking mechanism to that of the semaphore mechanism is given
by

f ( Lp , Sp ) =  ( La / Lp ) / [ k + La  / Sp ]

We use semaphores because we expect Sp to be a good deal

larger than Lp , but we do not know what values these
probabilities take in practice. Therefore, we have evaluated f
over a large subset of the unit square, (0,0.95]x(0,0.95], for

La = La = 2 and k=0,5,10 as shown in Figure 4. The scale of
probabilities on the long horizontal axis is repeated to allow the
simultaneous display of three surfaces, one for each value of the
semaphore overhead examined.
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Figure 4: Ratios of the expected number of  lock attempts
with straight locking and semaphores

As one might expect, when the probability of successfully
obtaining a lock is high for both locking mechanisms, there is not
much to choose between them. As Lp tends to zero, the cost of
the simple locking mechanism is many times that of the
semaphore mechanism. This means that the onset of problems
with load scalability is much less likely when a semaphore
mechanism is used than when a straight locking mechanism is
used, and that the performance of an implementation using the
former is much more robust than that of a system using the latter.
To enhance scalability, we would choose the mechanism whose
performance is least sensitive to a change in the operating load.



In this instance, the semaphore mechanism is the better
candidate, as prior literature has led us to expect [6].

6.2 Museum Checkroom
We have argued that the average delay in queueing for a coat
hanger will be minimised if those collecting coats are given head
of the line (HOL) priority over those leaving their coats, because
this minimises the average hanger holding time.  This is also the
only discipline that avoids self-expansion of queueing delay with
respect to hanger holding time.

Recall that our objective is to maximise the time available to
look at exhibitions while avoiding deadlock on contention for
hangers.  The sojourn time in the museum may be decomposed
into time spent waiting to deposit a coat D, exhibit viewing time
V, and coat pickup time T. The hanger holding time H is given by

H = T + V
and the sojourn time in the museum is given by

S = D + T + V.
Since the museum is only open for a finite time each day, M say,
we immediately have

S, H ≤  M.
Since we cannot control the behaviour or preferences of visitors,
we cannot control V.  Still, one should allow V to be as large as
possible by reducing at least one or both of D and T, because this
is what the visitor came to do, and because it allows more time to
visit gift shops, coffee bars, etc. within the museum.

Because increased hanger holding time H increases the risk of
deadlock while increasing both D and T, the queueing times to
leave and collect coats respectively, we should first focus on
reducing T in order to reduce H, and hence eliminate self-
expansion. Under FCFS scheduling,  customers collecting coats
and leaving them delay each other. This increases H by
increasing T. If N denotes the number of maximum number of
hangers  and λ the visitor throughput, we must have λH<N for
the checkroom queue to be in equilibrium. Hence, increasing T
tends to make the queue unstable by increasing H. Of course, T
could also be reduced by speeding up service, but that would
only increase the value of λ for which saturation might occur; it
cannot prevent deadlock altogether.

Let c denote the customers in queue to collect a coat, and a the
number of customers in queue to leave a coat at the time the next
customer arrives to pick one up. Let s denote the service time. If
the queue is FCFS and there is only one attendant,  the latest
customer must wait

T = (c + a +1)s
to obtain a coat. This is an upper bound on T if more than one
attendant is present. If those collecting coats are given HOL
priority, we have T ≤ (c+1) s. This clearly reduces the upward
pressure on H, and hence D and T. This shows that using HOL
eliminates self-expansion and hence reduces the tendency to
saturate the hangers. This policy is optimal with respect to the
average waiting time of all customers, regardless of whether they
are collecting or leaving coats, because it reduces to shortest
hanger holding time next.

Not all customers may understand the optimality of this policy. If
customers collecting coats temporarily outnumber customers

leaving them or vice versa at certain times of the day, it may be
worthwhile to convince the minority that they are not being
ignored by ensuring that they are served one of every k times.
This rule must be applied judiciously, because it allows self-
expansion. Hence,  k must be chosen with care. If too many
customers leaving coats are served ahead of those collecting
them, the resulting self-expansion in the hanger holding time
could lead to deadlock, or at the very least, an increase in the
average values of D and T, as well as of H. A policy for
determining k in response to changing conditions is beyond the
scope of this paper.

7. CONCLUSIONS
The foregoing represents a first attempt to classify the aspects of
a system that fundamentally affect its scalability. By
distinguishing between structural scalability and load scalability,
we can distinguish between those aspects that limit growth
because of space and/or structural considerations alone and those
that affect performance.
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