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The purpose of this paper is to examine the kinds of 

data and usage of scientific databases and to identify 

common characteristics among the diierent disciplines. 

Most scientific databases do not use general purpose 

database management systems (DBMS). The main rea- 

son is that they have; data structures and usage pat- 

terns that cannot be easily accommodated by existing 

DBNSs. It is the purpose of this paper to identify the 

special database management needs of scientific data- 

bases, and to point out directions for further research 

specifically oriented to these needs. 

We discuss the different types of scientific data- 

bases, and lit the properties identified for them. 

Examples applications are then analyzed with respect to 

the types of data and their characteristics, and sum- 

marized in two tables. Conclusions are drawn as to the 

preferable data management methods needed in sup- 

port of scientific databases. 

1. IWON 

This document is a result of numerous interviews 

with scientists, mostly from Lawrence Berkeley habora- 

tory, spanning several different scientific disciplines. 

The purpose of these interviews was to examine the 

kinds of data and usage of scientific databases in order 

to identify common characteristics among the diierent 

disciplines. 

In the past, we have studied “statistical databases”, 

which are databases that are primarily collected for sta- 

tistical analysis purposes. A summary of work in statist- 

ical databases can be found in [Shoshani 521. We 
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expected that some of the observations and techniques 

developed for statistical databases will be useful for 

scientific databases. Indeed. we found this to be the 

case. The similarities are pointed out throughout this 

document where appropriate. It should not be surpris- 

ing that common characteristics exist, because many 

scientific databases are often subject to statistical 

analysis. However, as discussed below, scientiic data- 

bases have additional stages of data collection and 

analysis that introduce more complexity and chal- 

lenges. 

In section 2. different types of scientific databases 

are described. In order to describe the common 

properties between several example applications, a list 

of characteristics for the different types of data are 

described in section 3. In section 4. a representative 

example of a scientific application is delineated with 

respect to the list of characteristics. Additional exam- 

ples have been similarly analyzed, but because of space 

liiitations are not described in this paper. The descrip- 

tion and analysis of these example applications were 

described in [Shoshani et al 841. The characteristics of 

these example applications are summarized in two 

tables, which appear at the end of this document. In 

section 5 we discuss the implications of our observa- 

tions to desirable database techniques for scientific 

databases, and propose areas for further investigation. 

Section 6 is a short summary section. 

2. TYPES OF SCIJWIIFIC DATA 

The scientific databases described to us during the 

interviews were analyzed in order to identify similar 

data structures, data characteristics and data usage 

among different applications. We found it convenient to 

distinguish between different types of scientific data. 

The important features for each type were identified, 

and different examples of scientific data were categor- 

ized accordingly. In this section we describe the data 

types and their main features. 
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2.1. EXPERUENT DATA 

Most scientific data result from experiments and 

simulations. Data from experiments are usually meas- 

urements of some physical phenomena, such as the col- 

lision of particle beams, or the spectra generated by 

molecules in a strong magnetic field. Data from simula- 

tions typically result from complex computations 

derived by using values from the previous time interval. 

Both experiment and simulation data have similar 

characteristics, and therefore are considered jointly. In 

order to simplify the terminology used here, we refer to 

such data as “experiment data”, regardless of whether 

they are experiment or simulation data. Experiment 

data can be classified according to three characteris- 

tics: regularity, density, and time variation. 

Regvlmity refers to the pattern of the points or 

coordinates for which values are measured or com- 

puted. For example, in physics experiments, detectors 
are placed in a specific configuration. If the 
configuration describes a regular grid or some other 

geometric structure, the experiment is said to have 

(spatial) regularity. Similarly, many simulations 
assume some regular grid for which values are com- 

puted, and therefore have spatial regularity. In addi- 

tion, if values are measured or computed at regular 

time intervals, then time can be considered as another 

regular coordinate of the data. 

In general, regularity implies that a mapping 

between the coordinates of measured values and the 

storage locations of these values can be made by means 

of a computation (such as “array linearization”, which is 

simply a mapping from multi-dimensional space to 

linear space, similar to FORTRAN array mapping). 

Therefore, in such cases it is not necessary to store the 

coordinate values with each measured* data value, 

resulting in storage savings and fast random access. On 

the other hand, when spatial irregularity exists it is 

necessary to enumerate the data points, and store their 

identifiers with the data values. 

Density indicates whether all the potential data 

points have actual values associated with them. For 

example, simulation data of fluid motion computed on a 

regular grid would have data values (for velocity, direc- 

tion, etc.) computed for each point of the grid, and 

therefore the data is considered dense. On the other 

hand, in many experiments a large number of measure- 

ments that are below a certain threshold are discarded 

and never recorded. In fact, the level of sparseness can 

be quite high, i.e. only a small fraction of the potential 

data points have recorded values. For example, in phy- 

sics experiments of colliding particle beams, the meas- 

ured data is only for resulting sub-particles, which 

occur over a small portion of the detectors that are dis- 

tributed in space. 
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Spar&y implies a large number of null values 

which may be compressed out. The compression sch- 

nique chosen should depend on the access patterns to 

the data, such as whether the data are accessed sequen- 

tially or randomly. Access patterns are discussed in the 

next section. 

%ne vuri&ion refers to the change of coordinates 

over time; i.e. the points for which data values are 

measured or computed change their position from one 

time unit to another. For example, consider some 

material that is bent in the course of an experiment. 

Before the experiment starts a set of points is selected 

for measuring the material’s behavior (such as stress, 

voltage, temperature). During the experiment the 

selected points may change their position as a result of 

the bending action. Time variation is a characteristic 

found mostly in simulations where a mesh of points are 

allowed to change their position over time during ‘the 

simulation process. These simulation methods are gen- 

erally called adaptive mesh techniques. 

Time variation adds an important requirement. In 

addition to storing the coordinates of points for every 

time interval, it is necessary to maintain the relation- 

ships between the points as they existed in the original 

mesh. This is needed in order to be able to reconstruct 

the time sequence of points that correspond to the 

same original point, and in order to flnd neighboring 

points to a given point at any given time. 

2.2. -DATA 

In addition to the experiment data discussed above, 

there exist data in support of the experiments, and data 

that are generated from the experiment data. Support 

data fall into two types which we call configuration data 

and instrumentation data. Similarly, generated data 

fall into three types: analyzed data, summary data, and 

property data. These types are discussed below. To dis- 

tinguish these additional data types from the experi- 

ment data, we refer to them collectively as “associated 

data”. 

2.2 1. conaguration data 

Configuration data are data that describe the initial 

structure of an experiment or simulation. For example, 

in simulating heat transfer through buildings, the build- 

ing layout has to be described. Similarly, the 

conflguration of an experiment describes t& position of 

different devices and detectors. The configuration lay- 

out actually determines the regularity (or irregularity) 

of the experiment data mentioned above. Usually, it 

does not change in the course of the experiment or 

simulation. However, it can change between experi- 

ments or simulations. It is important to keep track of 

these changes and to associate the correct 
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confIguration data with the corresponding experiment 

data. 

2.2.2. In8trumentationdata 

Instrumentation data consists of descriptions of the 

different instruments and substances used in an experi- 

ment, and their changes over time. This data is crucial 

for the correct analysis of the experiment data. It 

includes information such as the pressure and tempera- 

ture of a gas used in an experiment and their changes 

over time, drift of voltage over time, and the charac- 

teristics of detectors and devices as measured before 

each experiment or a series of experiments. It also 

includes the log of experiment operations, such as the 

time that a defective analog-to-digital converter was 

replaced, and who was in charge of it. Unfortunately, 

some of this information is collected into unrelated files 

and log books, thus making their association with the 

experiment data a tedious task that is prone to errors. 

22.3. Analyzeiddata 

The previous two data types are essential in order 

to support the analysis of experiment data. The 

analysis process produces many databases that also 

need to be managed along with their relationships to the 

experiment data they were derived from and to each 

other. The analysis process may require several steps. 

For example, in physics experiments of colliding parti- 

cle beams, a preliminary histogram over the experi- 

ment data can be done in order to estimate parameters 

that are later used to interpret the calibration data of 

detectors in the next step of the analysis. For each colli- 

sion, called an event, the tracks of sub-particles pro- 

duced are reconstructed and kept in a database. From 

the track data, another database for the event data can 

be derived, describing the kind of sub-particles pro- 

duced and their characteristics. Additional steps use 

databases from this and earlier stages to generate yet 

more data. It is important to capture the analysis pro- 

cess, the input and output databases of each step, and 

the relationships between the steps. 

2.2.4. Summery data 

Similar to “statistical” databases, which deal with 

statistical summaries (aggregations) of data sets, 

scientific databases are often aggregated. For example, 

in experiments of heat transfer in buildings, the amount 

of heat lost or gained can be averaged over several 

points of a wall, summed over entire rooms, or aggre- 

gated over days into months. Another example, is the 

generation of histograms from many experiments to 

determine the likelihood of a certain phenomenon. As 

in the case of statistical databases, there is a need to 

organize, search and browse collections of summary 
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data, and to preserve their relationship to lower level 

data from which they were derived. 

2.25. F'rojx?ttydaf.a 

In any scientific field, the summary of information 

learned over the years is useful to the community at 

large. There is a substantial amount of work devoted to 

the organization and classification of properties of 

materials, substances, and particles. For example, 

there are several systems devoted to the storage and 

retrieval of chemical substance properties. Many pro- 

perty databases cannot now be accessed on-line. The 

data is only available in periodically published books, 

and may not be up-to-date. Property data is non- 

uniform: it contains numeric, text, and bibliographic 

data, as well as images and graphs. This is one of the 

reasons that for each scientific area special purpose 

systems have been developed. Data management sys- 

tems that can deal with such diversity of data types are 

not generally available. In addition, because of the com- 

plex terminology involved with such data, sophisticated 

search and browsing capabilities are needed. 

3. -CSIDENTIHEDHIRscIENTIHCDATA 

Using the classifications of data types described in 

the previous section, it was easier to identify common 

characteristics and usage of the data. For each 

classification we have looked for certain characteristics 

that seem to exist across scientific applications. These 

characteristics are described in this section. Since the 

characteristics of experiment data are not necessarily 

the same as those of associated data, they are 

described separately. In the next section, we describe 

example applications in terms of these characteristics. 

The terms that are used for each characteristic are 

shown in tialics in the text below. The reader may refer 

to the leftmost columns of table 1 and table 2 for the 

list of characteristics of experiment data and associated 

data, respectively. 

3.1. CHARA~SIICSOF-DATA 

1) Identifier 

The identifier is that part of the data that identifies 

each data point uniquely (also called a key). In the case 

of experiment data the identifier is usually a composite 

key of spatial coordinates and a time coordinate. Since 

the identifier has multiple dimensions, the characteris- 

tics of regularity, sparsity. and time variation, discussed 

in the previous section, apply naturally. The concept of 

a multi-dimensional identifier is similar to that of 

category attributes in statistical databases [Shoshani 

821. This concept is quite dominant in experiment data 

(as was the case with statistical databases) because the 
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data is mostly accessed with respect to its identifier. 

We expand on this point below in the section on access 

patterns. 

The identifier is said to be regular if each of its 

dimensions are ordered in regular intervals. It is sparse 

if only a fraction of the points in the cross product of 

the dimensions have data associated with them; other- 

wise it is dense. lPime variation implies that the coordi- 

nates of the identifier, regardless whether it is regular 

or irregular. vary over time. 

2) Access pattern 

Access pattern refers to the most typical forms of 

data access. For example, an analysis program may fol- 

low a track of a sub-particle, or a simulation program 

may need its nearest neighbors in order to calculate the 

next data point. Note that in these examples the access 

of points is relative to the (spatial) identifier coordi- 

nates, and not the measured or calculated data values. 

This is typical of the access pattern of experiment data. 

The reason for distinguishing between the diierent 

types of access patterns is that they imply ditrerent 

requirements for physical data base organizations, as 

discussed below in the implications section. 

We distinguish between two aspects of the access 

pattern. The access type is the type of access of a sin- 

gle query (or a step of the computation). The access 

sequence refers to the relationship between queries, i.e. 

whether the selection of a query depends on previous 

queries. 

2a) Access type 

There are three access types that we found useful 

to identify. tin ezact match means that the identifier of 

a point was specified precisely in the query. A ran#z 

type implies that a range of possible points were 

identified. Since the identifier is multi-dimensional, 

each dimension is involved in the specification of the 

range. A proximity type indicates that the neighboring 

points around a given point are desired. 

2b) Access sequence 

Given a query of a particular type, the aocess 

sequence indicates whether the identifier(s) of the next 

query relate to the identifier(s) of the previous query. A 

local access sequence implies that the identifier(s) of 

the current query are close to the identifier(s) of the 

previous query. For example, following a particle track 

involves a local access sequence, since each successive 

point is close to the previous point. A non-local access 

sequence means that there is no relationship between 

the identifiers of successive queries. In a litneaT access 

sequence, the sequence of the identifiers of successive 

queries follows successive intervals of the dimensions of 
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the identifier. For example, following the points of a 

mesh according to the regular intervals of the dimen- 

sions of the mesh is considered a linear access. An o&i- 

trary access sequence indicates that the order of pro- 

cessing the data points is unimportant. Such access is 

usually used when the entire data set (or some large 

subset) need to be processed for analysis or sumWy 

statistics. 

Access sequence should be thought of in conjunc- 

tion with access type. For example, searching for a par- 

ticular point in space where this point is not related to 

points of the previous query, implies an exact access 

type and a non-local access sequence. However, search- 

ing for a collection of points in the same neighborhood 

while following a certain path, implies a proximity 

access type and a local access sequence. 

3) Database size 

Experiments are often repeated in order to verify a 

certain phenomena, to determine the statistical 

behavior of the experiment, or to discover a rare event 

that occurs only in a small fraction of the experiments. 

In many cases the results of each experiment can be 

processed independently. We call each independent 

part of an experiment a unti. An example of an 

independent unit is a single collision (event) in particle 

physics, or a single time step calculation of a simula- 

tion. It is important to identify such units and to deter- 

mine their size because they can be processed indepen- 

dently of other units and often in parallel. In addition, if 

units are small enough they can be processed entirely 

in main memory, rather than brought piecewise from 

secondary storage. 

Analysis and summarization of experiment data is 

usually performed over a collection of experimental 

units. The size of a collection is significant because it 

refers to the quantity of data that analysis queries may 

need to access. Such queries may select a portion of 

the collection, or may process the entire set to derive 

summaries or statistics. A collection may be very large, 

as is the case with experiments that are run over a 

period of months because the desired event is rare, 

because a large number of runs is desirable for statisti- 

cal analysis, or because extensive parametric studies 

are desirable. 

There is no logical limit to the total amount of data 

that can be collected by repeating experiments and 
simulations. The limitations are usually cost and 

resources. Nevertheless, it is interesting to identify the 

total amount of data that scientists keep active and 

available. This category is simply referred to as total 

size. All size figures shown in table 1 are only intended 

to show order of magnitude. 
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4)AllBOCitiaata 

The diierent categories of associated data shown in 

Table 1: con&ur&rm, instru?nenta&ien., anal~zad, and 

w, simply indicate whether such data exists for 

the different example applications. Note that property 

data is not mentioned since property data is not usually 

associated with a single experiment, but rather sum- 

marizes data over many experiments. 

22 -moF -TED DATA 

We chose to emphasize somewhat different charac- 

teristics for associated data, because their structure 

and usage is different from experiment data. The 

access pattern end size characteristics are similar to 

those of experiment data, but the identifier characteris- 

tics are more diverse. They are described as part of the 

data modelling characteristics. We also added usage 

characteristics and non-standard data types. 

I) Accegl pattern 

The access pattern characteristics of associated 

data fall into similar categories as those of experiment 

data. However, while acc$ss patterns of experiment 

data refer to accessing data points with respect to their 

identifiers, the access patterns of associated data are 

with respect to any attributes, whether they are thought 

of as identifiers or measured data. The reason is that in 

associated data the concept of an identifIer(or category 

attributes) is not so dominant. For example, when the 

experiment data of a particle physics experiment are 

analyzed, the resulting database represents tracks and 

events rather than the individual data points. The 

identifiers of the original data points no longer exist in 

the analyzed data. Instead the tracks and events may 

be given an identifying number or some combination of 

the measured values (such as mass and momentum) 

may be thought of as the identifier. 

The categories assigned to access patterns of 

experiment data above apply to access patterns of asso- 

ciated data as well. However, we found it necessary to 

add a partial access type, because it is common to 

access associated data (especially analyzed and sum- 

mary data) by specifying predicates (selection criteria) 

only on part of the attributes. For example, Andiig all 

particles with a mass in a certain range that generated 

a certain number of sub-particles. 

2) Ihtamodelbg 

The data modelling capabilities chosen here are 

either common to many examples of associated data, or 

are included because of their importance. Geometric 

modelling is the capability to describe the geometry of 

an object (such as an airplane wing), or a collection of 

objects (such as the position of detectors). The term 
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ISI 

entities refers to the need to distinguish between multi- 

ple entities, which is a basic assumption in all database 

models (such as relational, hierarchical, etc.). There 

are situations where the concepts of entities are not 

naturally applicable. such as with summary data (e.g., a 

co-variance matrix). 

The terms hierarchical and ?WtWOTkS refer to rela- 

tionships between entities. A hierarchical characteris- 

tic obviously implies a one-to-many relationship 

between entities of successive levels of the hierarchy, 

but also implies the possibility that the identifiers 

(keys) of higher levels propagate down to lower levels. 

For example, a particle identifier usually propagates 

down to its sub-particles level, and is concatenated with 

the sub-particle identifler to form a unique key. A net- 

work characteristic indicates the existence of a many- 

to-many relationship between entities. 

We use the term general&a&ion in the sense 

described in [Smith & Smith 771. Briefly, it is the capa- 

bility of describing generically the properties that apply 

to an entire set of objects. For example, the common 

properties that describe all analog-to-digital converters 

of a certain type used in a certain experiment should be 

described only once. Each individual converter can 

have its own specific properties, but the generalization 

capability allows the common properties to be “inher- 

ited’ by each individual converter. 

The existence of multi-dimensional data was 

explained before in the context of the identifier of 

experiment data. Although not as common in associ- 

ated data, the capability to support multi-dimensional 

data is nevertheless important, especially for analyzed 

and summary data. We refer to this characteristic as 

N-d~nuL Meta-dda refers to the information 

necessary to describe the data. However, the intent 

here is to emphasize the information that is beyond the 

usual data defmition capability provided by most data 

management systems. An example of such additional 

information is the source from which an analyzed data- 

base was derived, and the person who derived it. 

S) Usage 

It is often necessary in the analysis process to 

change the deAnition of the database schema, such as 

to add new attributes (columns) or to calculate new 

attributes from previous attributes. The ability to sup- 

port such changes dynamically is referred to here as 
SChawLa v&h. Supporting historical data implies 

the maintenance of the history of changes made to the 

database (not only the latest updated version.) In the 

implications section we discuss the different aspects of 

historical data needed for associated data. An impor- 

tant characteristic of a database is its stability, i.e. 

infrequent updates. In physical database design there is 
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usually a trade off between the efficiency of retrieval 

and the efficiency of updating. One can take advantage 

of stable databases to employ more efficient retrieval 

algorithms in exchange for slower updating. 

4)Non-standarddata types 

The results of the analysis of scientific data are 

often presented as graphs. By tezt we mean not only 

the usual ability to support character strings of limited 

size, but also support of unlimited text, such as article 

abstracts or manual information. The ti711B series data 

type is important in scientific databases (as it is for sta- 

tistical databases) because special statistical analysis 

techniques can be applied to time series. The ability to 

represent the moleczllaT structure of materials is a spe- 

cial requirement of scientific data. It cannot be thought 

of as graphs or images, because it is necessary to be 

able to refer to the details of the structure, such as 

“double bonds between certain atoms”. We did not 

include this category in Table 2 because our examples 

did not have such a requirement, but it is a well known 

requirement for chemical property data as can be found 

in many chemical property publications (e.g. The Jour- 

nal of Chemical Information and Computer Sciences). 

There is also a need to represent special symbols which 

requires the support of a large character set. By non- 

ScukZT data type we mean vectors, matrices, and combi- 

nations of these. The ability to refer to such objects by 

name, to refer to particular elements of the objects 

(such as the i,j element), and to store newly generated 

non-scalar objects as part of the database is an essen- 

tial capability for scientific data. 

Non-standard data types are discussed in [Hampel 

& Ries 751. 

5) Database size 

The size Agures shown in Table 2 are intended to 

show the amount of associated data that is required to 

support or is generated from a collection (described in 

section 3.1, part 3) above) of experiment data. The 

bytes figures represent an approximate upper bound, 

and the percentage figures show the approximate size 

percentage relative to the size of the experiment data 

collection. 

4. EXAMPWOF SclENTmCDAT- 

In this section we describe a representative 

scientific application with respect to its characteristics 

as defined in the previous section. Altogether, we 

analyzed ten example applications, but because of 

space limitations they are described elsewhere 

[Shoshani et al 841. We have tried to select these exam- 

ples so that they cover a diverse range of applications. 
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They include simulations, experiments, as well as pro- 

perty data. 

In order to have an idea of the kind of applications 

we analyzed, we describe them briefly below. Then one 

representative application is described in detail. 

The Time Projection Chamber application is 

designed to record the tracks of sub-particles that 

result from particle beam collisions. The Limited Track 

Reconstruction application also deals with sub-particles, 

but it is designed to collect high resolution measure- 

ments on their properties, rather than record their 

tracks. Hydrodynamics applications are concerned with 

modelling the flow of fluids, usually using grid methods. 

Nuclear Magnetic Resonance (NMR) spectroscopy exper- 

iments are used to investigate chemical structures. The 

Heavy Ion Spectrometer application studies the break 

up process in catastrophic collision involving heavy ions. 

The passive solar experiment involves the simulation of 

heat transfer to study the sun energy performance in 

residence and industry buildings. Turbulent flow studies 

is another example of hydrodynamics modelling, but 

rather than using grid methods which require a large 

number of data points, particle methods are used to 

model the vorticity of the turbulence. The purpose of 

the Laser Isotope Separation experiment is to develop a 

technique for recovering the reusable isotopes from 

nuclear waste materials. 

In addition to the these experiments and simula- 

tions applications, two examples of property data were 

also examined. The function of the Particle Data Group 

project is to compile particle properties data in a highly 

evaluated and summarized form. The Nuclear Structure 

Data project is concerned with recording, evaluating, 

and tabulating data about the structure of atomic 

nuclei, and the reactions by which nuclei decay from 

one state to another. 

Next, we describe the Time Projection Chamber 
application with respect to the characteristics 

described in section 3. 

4.1. Time Projection Chamber 

1) Description 

The Time Projection Chamber (TPC) is a device 

used in high energy physics experiments to record the 

behavior of sub-particles resulting from particle beam 

collisions. In a typical experiment, two particle beams 

collide after they are accelerated to very high speeds. 

Each such collision, called an event, may produce sub- 

particles that scatter in different directions at diierent 

speeds. Often the particles only graze each other and 

do not produce the sub-particles desired. Because 

some events are very rare, and because of the need to 
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be statistically accurate, collision experiments are 

repeated millions of times. 

It is not important here to describe the details of 

the TPC device, but it is important to understand its 

operation in order to describe the data generated by it. 

The TPC’ is essentially a large cylinder Blled with a cer- 

tain gas. The collisions occur in the center of the 

cylinder. When particle (or sub-particles) travel 

through the gas they ionize the gas, leaving “tracks” 

where they pass. In order to distinguish between posi- 

tive, negative, and neutral particles, the TPC is sub- 

jected to a magnetic fleld which causes the charged par- 

ticles to travel in circular patterns which depend on 

their charge. At the two ends of the cylinder electros- 

tatic fields are applied and cause the ionized tracks to 

drift to the ends. Special detectors detect the position 

and time of the drifting tracks, and measure the charge 

of ions reaching them From the position of the detec- 

tor, the x and y coordinates are determined. From the 

recorded drift time, the z coordinate can later be calcu- 

lated. The data is collected through special hardware ln 

a bii form onto tapes. 

2) The experiment data 

2a) Identifier 

Each data point of the experiment data consists of 

a pulse measurement of a certain detector at a certain 

time. The identifier of each data point consists, ,there- 

fore, of the position of the detector and the time. The 

reasons for considering the identifier as having regular- 

ity and sparsity are explained next. 

The detectors are placed on the two circles at the 

ends of the TPC cylinder on concentric circles at regu- 

lar intervals. Because the intervals are regular one can 

compute the actual x-y position of the detectors by 

knowing the concentric circle number and the ordinal 

number of the detector on the circle. The identiier 

points are said to be rs@or, because their position can 

be computed from ordinal numbers, similar to what can 

be done for a mesh of points. 

Readings exist only for the points representing the 

tracks of the event. Thus, most of the detectors read- 

ings are null (in reality, below a very low threshold). 

Only about one percent of the potential data points have 

readings. Thus, the identifier is said to be sparse. 

There are several techniques that can be used to 

store identtier data that is regular and sparse. they are 

discussed in the implications section. the most obvious 

technique is to throw away the null points and to store 

the identifier of the non-null points with the data values. 

This is indeed what is currently done for the TPC experi- 

ment. 
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2b) Access pattern 

The first step required before the data can be 

analyzed is to reconstruct the tracks from the experi- 

ment data The method used is to compute each poten- 

tial track path, and to verify that data points exist for it. 

‘he process of verification involves a search of points 

along the presumed path. For each such point, the 

neighboring points are also needed because a pulse has 

a Certain width (for each pulse about 44 neighboring 
data points exist). 

The above process exhibits the following access pat- 

tern. The access type is ezacf match and prozimity 

search, because for each pulse one looks for a particu- 

lar point and a collection of points around it. The 

access sequence is mostly nan-Cocal, because each suc- 

cessive collection of points (representing a pulse) are 

not necessarily close to the previous search. Once a few 

points are found, the rest of the points are searched 

along the presumed path. In this case. the access 

sequence is local, because each successive collection of 

points would be close to the previous collection. 

2c) Size 

In a typical six month period, data for about 4 mil- 

lion events are collected. An event is run about once 

per second, and generates an average of about 2Sk 

bytes. A (particularly interesting) large event may gen- 

erate about 120k bytes. Thus, the total volume of data 

for a six month period is about 10” bytes, which is 

stored on about 1350 magnetic tapes. The main 

difficulty in dealing with such a large volume of data is 

the mounting and management of tapes for processing. 

A mass storage system would be most useful for such an 

application. 

Since the data for every event can be analyzed 

independently from the other events, they CM be con- 

sidered a separate unit. The process of track recon- 

struction needs only a single unit at a time. However, as 

discussed later there are other processes that need to 

be run over a large number of events. 

3)Theaaaoeietaddata 

3a) Configuration data 

Although the configuration data does not exist 

explicitly as a database, it nevertheless exists in the 

programs analyzing the experiment data. This data 

corresponds to the description of the physical 

configuration of the detectors on the TPC device. It con- 

sists of mapping information between the identifiers of 

detectors as stored with each data value and their x-y 

coordinates. It also includes the mapping of the time 

measurement to the z coordinate. 
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3b) Instrumentation data 

The instrumentation data is quite extensive and has 

many components. There is calibration information for 

each of the 16,000 channels associated with each of the 

detectors. This information is used to adjust the read- 

ings of the detectors. There is other information 

representing the distortions due to imperfections in the 

magnetic field, the changes in the electric fields over 

time, etc. All this information is necessary in order to 

calibrate the experiment data. 

The total amount of instrumentation data is a few 

megabytes. It is not very large to manage, but it is 

complex since it contains many components. It is not 

obvious how to best organize such information in a data- 

base management environment. 

3c) Analyzed data 

The analysis process has many steps that necessi- 

tate a number of passes over the experiment data. 

Each step generates data files that are used in later 

steps. For example, one of the passes generates histo- 

grams over the experiment data. These histograms are 

used to determine constants for further analysis. A set 

of (multi-dimensional) histograms is taken over a collec- 

tion of about 2000 events, and occupies about 400 

kbytes. There are about 2000 such sets over the experi- 

ment data. These histograms are examples of non- 

standard data types that require the capability of 

characterizing and managing an entire data set as a sin- 

gle item. 

The flnal result of this analysis process is to pro- 

duce summaries about tracks that belong to events. 

These summaries form the databases that need to be 

searched for interesting phenomena. Typically, the 

access type is a range search over some particle meas- 

ures such as mass and momentum. The access 

sequence is non-local since there no a priori correlation 

between successive queries. 

3d) Summary data 

Further analysis over the track and event data usu- 

ally produces graphs and histograms. These data sets 

need to be managed as non-standard data types. 

5. IMPLICATIONS 

The implications derived in this section can be best 

followed by referring to Table 1 for experiment data and 

Table 2 for associated data. The organization of these 

tables was designed after the information on the 

different applications was collected in order to clarify 

its presentation. However, we believe that these table 

structures can be used to classify additional applica- 

tions. Once the appropriate entries are fllled for an 
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application, one could quickly draw conclusions on its 

requirements and the possible data management tech- 

niques to support it, along the lines discussed below. 

5.1. EXPERIMENTDATA 

We discuss the entries of table 1 by referring to its 

rows because the rows represent observations about 

each characteristic. The sections below are organized 

according to the row groups in the tables. The first row 

labeled “experiment/simulation” is merely to identify 

whether each example is an experiment or simulation. 

1) Identifier 

Identifiers in scientific databases are typically 

multi-dimensional, where the dimensions may be spatial 

coordinates. time steps, or varying experimental condi- 

tions such as temperature or magnetic fleld changes. 

An important issue is the efficient storage and access of 

identifler data which are affected by the regularity, den- 

sity, and time-variation characteristics. 

Identifiers whose dimensions have a regular struc- 

ture are quite common. The main reason is that 

simpler algorithms can be developed for them, and that 

the data can be organized in an orderly fashion. The 

simplest case exists when the configuration of the 

experiment or simulation forms a multi-dimensional 

mesh. In such a case there is no need to store the 

identifiers of the data because the position of each data 

point can be calculated using the “array linearization” 

technique mentioned in section 2. Indeed, the array 

capabilities of programming languages have been used 

extensively by scientific application. This suggests that 

an array linearization access method would be most 

desirable in a scientific data management system. The 

advantages of such an access method is that it requires 

no storage for the identifiers and provides a very 

efficient random access (a simple computation) to the 

data points. 

The situation is more complex when the 

configuration is not simple, such as representing an air- 

plane wing or the shape of a combustion chamber. In 

such cases a mesh that covers the entire configuration 

can be imposed, and all the points outside the 

configuration boundaries are considered null. This 
approach introduces a certain level of sparsity in the 

data points. We will discuss sparsity below. 

Other forms of regularity may exist. One is the reg- 

ular placement of points along some geometric shape, 

such as concentric circles. Another occurs when two 

kinds of regular structures co-exist, such as having a 

finer mesh in certain regions of the conf3guration. In 

such cases the mapping algorithm of logical points into 
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a linear sequence is more complex than array hneariza- 

tion, but they &ii provide storage savings and more 

importantly a fast random access to the data points. 

As can be seen from Table 1 there are several 

examples of *egulf~ identifiers. At first glance, it 

seems that identifiers that consist of irregular dimen- 

sions, such as the numbers identifying rooms ln a build- 

lng. have to be explicitly stored with each corresponding 

data value. Such an approach wastes space since each 

dhenSiOn value has to be repeatedly stored with the 

data. Rather, the irregular dimensions can be 

enumerated and stored only once. Thereafter, the 
identifiers can be calculated using array linearization 

over the enumerations. Irregular dimensions are most 

common in statistical databases (such as state, race, 

sex, and cause of death for mortality data), where the 

enumeration of each dimension and array linearization 

over them is a most effective method. 

Data spwsity means that only a fraction of the 

points in the full cross product of the dimensions have 

actual values associated with them. There are basically 

two options: either to store the identiiers of the valid 

data points, or to compress out the non-valid (null) data 

points. Compression methods, such as run length 

encoding (which introduce a count into the data stream 

in place of each sequence of null points) can be quite 

effective, especially when the null points are clustered 

to form long sequences. However, such compression 

methods require sequential scanning of the data in 

order to select a particular point randomly. Indexing 

methods require too much space’ for large databases 

and may be prohibitive. 

In [Eggers & Shoshani 601 a compression technique, 

called header compression, which provides fast (loga- 

rithmic) access was proposed for statistical databases. 

It basically organizes the run length counts into a 

separate header, in such a way that the header can be 

searched in logarithmic time with respect to the 

number of counts. This technique can be applicable for 

sparse scientific data as well, since it can be used 

effectively with multi-dimensional data. 

Time varying applications are not as common as 

other applications, but they represent an important 

class of modelling techniques. When the identiflers are 

t+ns vaa-ying there is no choice but to store them, since 

they change from one time step to the next. In the case 

that the data is also regular, there is an additional 

requirement that the original relationship between the 

points is maintained. To see this point, one can imagine 

a mesh of points connected by rubber strings. The 

entire structure can then be stretched and compressed 

in successive time steps. The maintenance of these 

relationships can be achieved with techniques applica- 

ble to regular data. When data is irregular and time 
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varying, the relationship between the data points 

changes from one time step to the next, and has to be 

deduced from the stored identifiers. 

2)&xesapattem 

From Table 1 it can be seen that the access types 

of ezact match and poxim~ search are important. 

Exact match implies, in general, the need to access 

specific data points randomly. To accommodate such a 

requirement some kind of indexing or hashing technique 

is required. Fortunately, one can take advantage of the 

multi-dimensionality of the data. The mapping of 

multidimensional space to linear space discussed above 

(e.g. array linearization) provides a key-to-address map- 

ping that is equivalent to hashing. In addition, some 

multi-dimensional to linear mappings provide advan- 

tages for proximity search as discussed below. 

To support proximity search it is necessary to 

preserve logical locality in physical storage. That is. 

when points are logically close to each other in the 

multi-dimensional space, it is desirable that they are 

physically close ‘in physical space, so that they can be 

brought into memory from secondary storage with a 

minimum number of accesses. This suggests the organi- 

zation of physical storage into cells along the dimen- 

sions of the identifler. The data points within a cell will 

satisfy the proximity requirement. For elements on the 

borders of cells it is necessary to access adjacent cells, 

and therefore the placement of cells in physical storage 

is also important. The mapping of multi-dimensional 

space to linear space mentioned above works well with 

such a cellular organization because it does not disturb 

the logical proximity of the data points. An arbitrary 

hash mapping would place data points into cells (buck- 

ets) which would not necessarily preserve logical prox- 

imity. The optimal partitioning of cells, especially in the 

case of sparse data, is an interesting problem that 

should be further investigated 

The nznge access type does not seem to be as 

important. Nevertheless, the cell organization should 

benefit range access on the dimensions of the cells. 

Referring again to Table 1 it seems that local 

access sequence is also important. The cell organiza- 

tion is also helpful here because local points are likely 

to be in the same cell. The question of how to organize 

the cells arises here again. If the paths of local access 

sequences are known or predictable. then the cells 

should be organized along these paths. The beneAts of 

such ideas need to be investigated. 

Non-local access sequence is not as prevalent as 

local access sequence. However, it can be supported 

well with cell organization. The reason is that it comple- 

ments the requirements of exact match, since it implies 

the need for a random access of the data points. Liner 
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access sequence conflicts with the idea of a cell organi- 

zation, because the linear sequencing of the data is bro- 

ken. However, it does not seem to be an important 

requirement. If data was organized “linearly” to accom- 

modate this requirement, then proximity search and 

local access sequence will be performed less efficiently. 

An arbitrary access sequence is quite common. It 

usually implies that the entire data set needs to be pro- 

cessed, and that the order of points is irrelevant. This 

suggests that parallel processing can be performed over 

the data. This only complements the cell organization 

approach, since the cells could be placed on parallel 

devices for parallel processing. 

In summary, it seems that the cell approach is 

most desirable since it accommodates the most impor- 

tant requirements. The organization of cells should be 

along the dimensions of the identifier, since they 

preserve logical locality. The approach of mapping the 

multi-dimensional space into linear space complements 

this cell organization. There are several papers that 

discuss the organization of data into cells [e.g. Niever- 

gelt et al 841. However, the access requirement men- 

tioned here, such as proximity search and local access 

sequence were not explicitly addressed. 

3) Size 

The most important observation that can be made 

from the size figures in Table 1, is that although 

scientific databases are large, they can often be parti- 

tioned into small independent units. The units are small 

enough that much of the processing can be done in 

main memory. In general, experimental units can be 

processed in parallel, since they are independent of 

each other. Simulation units (time steps), on the other 

hand, usually follow each other in sequence. Note that 

simulation units are typically larger than experimental 

units. 

Unit processing is only one part of the analysis pro- 

cess. Other types of processing need to search and 

access entire collections. As can be seen from the col- 

lection figures in Table 1. some collections are so large 

that they cannot be practically stored on magnetic 

disks. In such cases, the data is currently stored on 

tapes and the mounting of those tapes becomes a major 

problem. Current solutions are to process the data 

sequentially once, to collect interesting subsets, or to 

break the data into redundant smaller sections. It is 

obvious that larger secondary storage devices (such as 

optical disks) could be helpful. 

4) Associated data 

Associated data is discussed ‘in the next section. 

The different types of associated data were included in 
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Table 1 in order to point out their importance and pre- 

valence. Nearly all applications have all types of associ- 

ated data. The obvious exception is that simulations do 

not have instrumentation data. 

5.2. ASXXED DATA 

Table 2 summarizes our observations on the 

different types of associated data. We could discuss 

these observations by row for each class of characteris- 

tics or by column for each type of associated data. A 

close observation of table 2 reveals that there are many 

similarities between the configuration and instrumenta- 

tion columns, and between analyzed data and summary 

data columns. This is not very surprising since these 

two groups represent support data and generated data 

and should have similar characteristics. In fact, early 

on we did not make this finer distinction, but later we 

found that it helped sorting out the dierent aspects of 

scientific data. 

Accordingly, we will discuss characteristics in Table 

2 in three parts: the support data (configuration and 

instrumentation data), the generated data (analyzed 

and summary data), and property data. 

1) Support data 

The access type for support data is mostly exact 

match. A typical access involves finding a particular 

confIguration point and the particular instrument asso- 

ciated with it. Proximity search is sometimes needed. 

For example, if a certain instrument failed, the 

configuration data may be consulted to And the instru- 

ments in neighboring locations. The access sequence is 

mostly non-local, which indicates that successive 

queries are unrelated. Thus, the access requirement for 

support data is mainly random access. 

The data modelling requirements are fairly conven- 

tional, i.e. modelling of entities that have hierarchical or 

network relationships. The relationships between the 

different instruments and detectors are part of the 

configuration data. Generalization is an important 

modelling tool for instruments, as generic information 

can be represented once and inherited by each particu- 

lar instrument in that class. 

An important exception to the conventional model- 

liig requirements mentioned above is geometric model- 

ling of configuration data. In many examples the 

geometry is quite regular and could probably be 

modelled with simple types (points, lines, circles, etc.). 

However, geometric shapes may be complex enough to 

require special modelling techniques similar to those 

required in engineering databases [Lorie 821. 

Another major requirement is for the support of 

historical data. Instrumentation data change continu- 

ously over time, and the entire history of changes iu: bz 
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be recorded. In addition, logs of the operation, such as 

when an instrument failed who was in charge at the 

tie, etc. need also be recorded. The tie element can 

be thought of as another dimension orthogonal to the 

structure of the database. It requires special storage 

techniques and special operators such as “a&e? and 

“during”. Several recent works have dealt with this 

topic [e.g. Anderson 81, Bolour et al 821. The history of 

conflguration data changes also needs to be recorded, 

but not as often as instrumentation data because they 

usually occur only between experiments. 

Support data may have some text that describe 

procedural instructions or configuration descriptions. 

Instrument data are usually polled at regular time 

intervals, and could benefit from a time series data 

type. The size of the data is relatively small, and consti- 

tutes only about 1X of the experiment data. 

In conclusion, we believe that support data can be 

managed for the most part with conventional data 

management techniques. The databases are relatively 

small. The requirement for random access can be 

accommodated with conventional indexing or hashing 

methods. The two most important exceptions that 

require special attention are historical data support and 

geometric modellii. 

2)Ge~eratetddata 

The access pattern of generated data is similar to 

statistical databases. That is, it is mostly range and 

partial match queries. As with statistical databases, the 

generated data is repeatedly analyzed in order to dii- 

cover patterns, statistical behavior, or a rare event. 

Many subsets are generated and need to be kept track 

of. The access sequence is mostly non-looal. although 

locality exists when analysts reAne their queries. From 

tie to time an entire set of analyzed data is processed 

to generate summaries. This is indicated as an arbi- 

trary access sequence in Table 2. 

The most prominent data modelling characteristic 

is that generated data is multi-dimensional. Unlike 

experiment data where the dimensions are mostly spa- 

tial coordinates, the dimensions of generated data are 

the properties of the data (e.g. charge, temperature. 

mass). Thus, the number of dimensions can be in the 

order of ten, which presents a special challenge for its 

efficient support. In some instances it is useful to view 

analyzed data as entities and hierarchical relationships 

(for example, events and their corresponding sub- 

particles). 

Another important modelling requirement is for 

meta-data. The requirements of meta-data management 

include data detition facilities not only for fleld 

descriptors (such as type, size, and acronym), but also 
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the description of the origii of the data, how it was col- 

lected, when it was generated or modified, and the iden- 

tity of the person responsible for its collection. Facili- 

ties to describe complex data types such as times 

series, matrices, and multi-dimensional categorical data 

are also needed. 

It is necessary to organize and manage meta-data, 

just as is the case with data. One should be able to 

retrieve and search meta-data. index keywords, and 

browse through the meta-data structures. A system 

that supports such operations for statistical databases 

is described in [Chan dr Shoshani al]. 

Me&data is also necessary for keeping track of the 

different subsets produced, dates of their creation, 

methods used, etc. The management of subsets also 

requires that their historical aspects are maintained. It 

is necessary to record and maintain the ancestors of 

each subset produced The analysis process, similar to 

statistical analysis, can be modelled as a tree or a 

directed graph structure. The analyst can generate 

subsets, observe their patterns. and choose to go back 

to a previous set and follow another path of analysis. 

The above requirements are similar to many aspects of 

the meta-data management for statistical databases 

[McCarthy82]. 

It is often useful in the analysis process to add new 

fields to the database or to compute new fields from 

other fields. This is referred to in Table 2 as schema 

variation. However, except for such additions during 

the analysis process. the generated databases are quite 

stable. The support of non-standard data types is most 

important. Generated data can be expressed as graphs, 

vectors, matrices, and time series. Finally, the size of 

the data is substantial. and although it is small enough 

to fit on disks, it is sufficiently large to benefit from data 

management techniques that minimize disk storage and 

access time. The total amount of generated data may 

be of the same order of magnitude as the experiment 

data it was derived from, because a large number of 

subsets are usually produced. 

In conclusion, generated data have many charac- 

teristics in common with statistical databases. We 

believe that special techniques for the management of 

multi-dimensional data developed for statistical data- 

bases could be applied to support analyzed data. 

Since property data is a summary over many 

experiments and contain general knowledge of a subject 

area, it has characteristics more akin to bibliographic 
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databases. However, in addition to managing biblio- 

graphic data on books, articles, authors, etc. they con- 

tain summaries of information extracted from the arti- 

cles. Many property databases are presently only avail- 

able in periodic publications. 

Different access types are needed. An exact match 

may be required to locate a specific entry. A range 

query (which may be partial) could be used to find a 

desirable subset of the data. A proximity search will 

locate entries with properties as close as possible to the 

specified parameters. The access sequence is usually 

non-local. Linear access sequence is needed for gen- 

erating the periodic reports, or some other requested 

report. In the examples that we observed it is not possi- 

ble to issue ad-hoc queries or to browse the database for 

information since the databases are not available on- 

lie. An on-line version should provide such facilities. 

The databases are organized logically as entities 

and mostly hierarchical relationships between them (for 

example, particles with a certain mass at the top level 

of the hierarchy, and their derivatives at lower levels). 

There are some network relationships (permitting a 

many-to-many association between the entities) such as 

the relationship between papers and particles. A single 

paper may describe many particles and a particle may 

be described in many papers. 

Property databases contain graphs and text which 

complicate their management a great deal. They also 

have to have a representation for special symbols that 

are unique to the scientific field. The total size of the 

example databases that we observed is not very large 

and can fit on disk storage. However, property data- 

bases can be quite large, as is the case with chemical 

property databases. 

In conclusion, the main difficulties observed in pro- 

perty databases stem from the diversity of data. This is 

probably the reason that only special purpose systems 

have been developed for the dierent disciplines. Con- 

ventional data management systems do not support the 

combination of numeric, character, text, and graphs 

and image data. 

0. SUMMAKY 

In this paper we examined the data management 

requirements and typical usage of several scientific 

applications. The data used and generated by these 

applications was classified into types, and a list of pro- 

perties for describing their characteristics was 

developed. Different applications were then described 

in terms of this list of properties. A summary of proper- 

ties of the different types of scientific data provided the 

basis for inferring desirable database management 

techniques for scientific databases. 
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Some of the more important conclusions are: 

Multi-dimensional data are prevalent in scientific 

databases. Methods for efficiently managing, 

accessing, and compressing multi-dimensional data 

are desirable. 

Scientific databases are frequently accessed via 

proximity searches and successive queries often 

exhibit locality of reference. Techniques of parti- 

tioning the data into cells (or grids) along the coor- 

dinates of its dimensions seem to be the most 

promising for efficiently supporting these needs. 

Although scientitic databases are usually very 

large, they can be often partitioned into small 

independent units during early data reduction. 

This implies that parallel processing CM be 

applied. 

Scientific databases include a variety of support 

data that describe instruments and the 

configuration of experiments. Often this data is not 

explicitly organized but rather made part of appli- 

cation programs, a practice that tends to cause 

many difficulties. The requirements of such sup- 

port data can be handled for the most part with 

conventional database techniques, but need to be 

integrated with the data that result from experi- 

ments. Some configuration data need special capa- 

bilities found in engineering database systems. 

The analysis of scientific data generates many sum- 

mary data sets which need to be managed. Special 

techniques for handling analyzed data and sum- 

mary data are required in order to manage their 

metadata, to keep track of numerous data sets, 

and to handle non-scalar data types (such as vec- 

tors and matrices). 

Historical aspects of scientific databases are 

important. They range from time series of the 

measured data, to logs of instrument variation over 

time, to the historical sequence of generating 

different summaries of the data. 

There are many aspects of scientific databases that 

are similar to statistical databases; in particular, 

supporting the multi-dimensional aspects of the 

data and the handling of summary data. 
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Dense . . . . l . 

lime Variation . . 

‘IZE (bytes) II I I I I I I I I 

Per Collection 

SSOCIATED DATA 

l -applies often 
(‘) - applies sometimes 

Table2 SummuyofCharactcriaticsofAsllocia~Dah 

COIlfIg- Instru- Analyzed Summary Property 
Characteristics uration mentation Data Data Data 

I I I I I 
ACCESS PATTERN 

Access Type 
Exact 

Range 
Proximity 

Partial 

Access Sequence 
LOCd . l 1 

Non-Local l l . l . 

Linear 
l 

Arbitrary l 

DATA MODELING 

Geometric 

Entities 

Hierarchical 

Network 

Generalization 

N-Dimensional 

M&a-Data 

l 

* l l l 

l . l 

l l 

l I.\ 
I I I I \I 

l l 

. 
I 

l 

USAGE 

Schema Variation l l 

Historical l . l l 

Stability * * . 

NON-STANDARD 
DATA TYPES 

l l 
’ _I Graphs 

Text l I I*\ \ , I I I I l 

Time Series l . 
(‘) 

Special Symbols I c 

Non-Scalar . . 
I 

SIZE 

Bytes 

Percentage 

108 10’ lob-0 ld w-8 

1% 1% 50-100% l-10% 
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