SASTAd OICVY GHL HO SDILSI\&GLOVY甘HD

A. G. Lyne, F. G. Smith and D. A. Graham

(Received 197I March 13)

 have been studied at frequencies of $151,240,408$ and 610 MHz , using

 individual beams of radiation. The changes of position angle within the profile suggest that the magnetic field has a simple configuration in the emitting region, and that it may resemble the equatorial part of a dipole
field.

New measurements of the rotation measures of five pulsars are presented together with a compilation of nine previous results. Some new measurements
I. INTRODUCTION

The radio pulses from the pulsars exhibit many complex characteristics, which vary both between successive pulses and from one pulsar to another. It has been

 constructing models of the emitting regions of pulsars. The individual pulses

 individual pulses are highly polarized, and their state of polarization varies through

 tion both within the pulse and from pulse to pulse.
 integrated profiles. Individual pulses were recorded photographically, using a polarimeter receiver which measured the four Stokes parameters I, V, Q, U ре рәqıวsәр әq К

 four receiver outputs were also integrated digitally in an on-line computer to give the integrated profiles.

The most comprehensive set of observations was made at 408 MHz , but

 4 : i frequency range.
Vol. 153
 single frequency feeds consisted of orthogonal dipoles with dipole reflectors.
 two squares of dipoles each one half wavelength on the side for the two lower
 connected in parallel. A ground plane reflector was used for the combined feed. For each frequency the signals from the two plane polarized feeds were connected
 voltages X, Y in the orthogonal dipoles were combined in quadrature as $(X+i Y)$,
 one receiver only, while a linearly polarized signal appeared in both with a phase difference depending on its position angle.
Calibration signals could be radiated into the polarimeter feed from dipoles mounted 3 m in front of the feed, where the four support legs of the focus cabin
 noise generator which could be pulsed so as to simulate a linearly polarized pulsar
The alignment of the dipoles, the adjustment of cable lengths, and the match of impedance to the hybrid circuits, were all sufficiently accurate that crosscoupling between different modes of polarization was less than I per cent. There
 the receiving apparatus: these were investigated in calibrations of the complete system, as described in Section 2.4.

2.2 Receiver systems

The two receivers consisted of low-noise amplifiers (varactor diode parametric amplifiers at 610 and 408 MHz , F.E.T. amplifiers at 240 and $I_{51} \mathrm{MHz}$), followed by mixers fed from a common local oscillator, and I.F. amplifiers at 30 MHz .
 where the detectors were located. The RF and IF amplifiers had comparatively
 characteristics were practically independent of frequency. Bandwidths of 100 kHz , 330 kHz , or a MHz were used for most observations.
The total intensity (I) was obtained from the sum of the detected outputs of the two channels, and the circularly polarized component (V) from the difference.
 in-phase and quadrature components. This was achieved by combining the two

 calibration dipole then gave outputs proportional to $p \cos 2 \phi$ and $p \sin 2 \phi$.

cent for signals up to four times the system noise level. (Some observations reported
$6 \varepsilon \varepsilon$
in this paper were, however, made at earlier observing sessions when the accuracy was rather worse, especially in the measurement of V; a special note is made of any results affected by this.)

2.3 Recording systems

The detector outputs were amplified and displayed on a four-trace oscilloscope which was triggered synchronously with the pulsar. The outputs were also connected to voltage-to-frequency converters which
fed a pulse averaging system. This was an adaption of the digital correlator described by Davies, R. D. et al. (1969). Signal sampling was achieved in the multiplier circuits of this apparatus by sending a logical ' I ' down the shift register

 proportional to the signal voltage at a particular phase of the pulsar period. The

The digital correlator contains 256 channels, all of which could be used to provide high resolution on an integrated pulse profile. For most of our observations,
however, they were divided into four independent sections of 64 channels, each section integrating one of the four Stokes parameters.
The integrated data so obtained was read into the on-line ARGUS 400 computer which presented the data on a curve plotter and stored the data on paper tape for later analysis.
The computer program which controlled the observations contained an ephemeris to correct pulsar periods for the motion of the observatory in the
Solar System, so that integrations could be continued without any adjustment

 pulses, observed as individuals on the oscilloscope, and the recordings of integrated Stokes parameters from the on-line computer. The computer also controlled
 polarization. These calibrations were therefore available in the integrated data.

2.4 System accuracy

Although the separate parts of the polarimeter receiving system were set up to sufficient accuracy, it remained to check the complete system, including the
effects of the feed support. This was achieved by observing unpolarized discrete sources such as Taurus A, together with the linearly polarized calibration signal. The feed could be rotated, and it was found that asymmetries in the feed supports ұนәว дəd 9 от . Su!
 all less than 3 per cent.
The two separate sources of spurious linear polarization, from the telescope and from the correlation receiver, may combine vectorially to produce an error
up to 6 per cent. For most observations, however, this error was reduced to 3 per cent either by adjustment or by using the calibrations to produce suitable correction
 between the sensitivities of two receiver channels and errors of up to 10 per cent
$340 \quad$ A. G. Lyne, F.G. Smith and D. A. Graham Vol. 53
may occur. Again, by adjustment or through calibration, this error could be reduced
to below 5 per cent.
Values of percentage polarizations depend on the relative sensitivity of the
output channels; errors here were usually less than so per cent of the values
quoted in our results. The final accuracy of most results was set by the available
signal to noise ratio, and special efforts to improve calibration accuracies were
only made for a few pulsars.
2.5 The effect of dispersion
 by appreciably different times across the receiver bandwidth, so that the pulse is artificially lengthened. (For very distant pulsars there is also a lengthening due to multi-path propagation which occurs even with a very narrow bandwidth
(Davies, J. G., Large \& Pickwick 1970); we note separately the few situations where this may affect our observations.) The dispersion delay at frequency $\nu(\mathrm{MHz})$ of a pulse with dispersion measure D (in $\mathrm{pc} \mathrm{cm}{ }^{-3}$) is $4^{\circ} \mathrm{I} \times \mathrm{IO}^{6} D \nu^{-2} \mathrm{~ms}$;
 :sənfea ßulм

 at the lower frequencies.

$$
\downarrow S+6 z \mathcal{E} \text { о षSd но saidals } \cdot \mathcal{E}
$$

 frequencies. The results illustrate well the relation between individual pulses and the integrated profile, and we present them separately so as to bring out some points which seem to apply generally to all pulsars.

3.2 The identification of individual pulses

Fig. I shows a tracing of a photographic recording of a sequence of pulses

 by any receiver time constant; nevertheless they show generally the same shape
and width at all pulse phases. Fig. I also shows the central part of the integrated

 again the pulse has the same typical shape and width.
 usually to an earlier phase (Drake $\&$ Craft 1968). The integrated profile then appears to be a modulation envelope, which determines the relative strength of วप+ jo saxd

No. 3, 1971 Characteristics of radio pulses from the pulsars 341

 profle obtained by addition of the intensity I of several hundred pulses.

343
Characteristics of radio pulses from the pulsars
profile is not obviously correlated, so that the integrated profile appears to represent
the probability that a pulse will appear at any pulse phase.
The individual pulses are very highly polarized (Clark \& Smith 1968). When-
 иоп̣еz!̣е is generally elliptical. In Fig. 2 the polarization ellipse throughout several pulses
 in these plots; V has been normalized so that a completely circular polarization would be plotted as $V= \pm \mathrm{x}$ according to the hand.
The polarization ellipse changes smoothly during a single pulse. The position angle may change by any amount up to 90°, but no more. The value of V may иоџ̣วәг!

 of a great circle which extends more than 180° but which can run at any orientation. (Fig. 2 is in fact a Mercator projection of the Poincaré sphere.)

 It is therefore very remarkable that the width and polarization characteristics are not markedly dependent on frequency, as noted by Smith (1969, 1970a). At
240,408 and 610 MHz we find that the characteristic width of pulses from PSR $0329+54$ is within the range $4.5 \pm 0.5 \mathrm{~ms}$. At ${ }_{151} \mathrm{MHz}$ the measured width is increased by dispersion, but there still appears to be no change in the intrinsic width. The plane of polarization does, of course, depend on frequency on account

 and 408 MHz , when the width and reversing pattern of V were found to be identical (Smith 1970b).
The rather small amount of evidence on pulses from other pulsars supports the conclusion that the pulse width and the polarization do not depend markedly on frequency.
The variability of the individual pulses in pulse phase and in polarization

 can occur; equally the existence of finite integrated polarization shows that the variable polarization of the individual pulses is not completely random. Figs i
and 2 show that the polarization does vary through the individual pulses in variety of ways. There seems to be no ordering of this variation other than that which appears in the integrated polarization.
 pulses, and the pulse phase of this reversal is variable. This variation appears to
344
be responsible for the large reduction of the circular component on integration
There is, nevertheless, a definite value for the integrated V, amounting to io per
cent and reversing during the profile (Graham i97I).
We conclude that for each part of the integrated profile there is a preferred
state of polarization; individual pulses differ from this state in a random way.
Again illustrating states of polarization as points on a Poincaré sphere, it seems
that a single typical point can be assigned to each pulse phase, but that the polariza-
tion at that phase within any individual pulse can be represented by a point lying
within a defined area around that typical point.

> 3.6 The integrated profile as a function of frequency
 including the linear polarization in the form of an intensity P and a position angle ϕ. The intensity P is obtained from the averaged values of the Stokes parameters Q and U, combined to provide $P=\left(Q^{2}+U^{2}\right)^{1 / 2}$ and $\phi=\frac{1}{2} \tan ^{-1} U / Q$. The angle ϕ is presented only where the r.m.s. error is less than 20°. Adjacent
data points are completely independent. data points are completely independent.
The three profiles are generally very similar. Two differences in detail appear
in the position of the leading 'outrider' component, and in the intensity between
 leading outrider and the main component is approximately equal to
where ν is the frequency in MHz . Similar variations in spacing have been found for PSR $1133+16$ (Craft \& Comella 1968) and other pulsars; details will be found
The position angle ϕ varies in a similar way through the profile at all three frequencies. (The absolute values of ϕ have not been calculated: they depend on a precise knowledge of the Faraday rotation in the ionosphere and in interstellar space.) It is notable that the variation is continuous through the whole

 three frequencies despite the different positions of the early outrider.

 an hour at intervals of a few hours a different profile occurs, with the leading

4. individual pulse shapes and polarizations

 has been possible to photograph individual pulses, it has again been found that these generally are considerably narrower than the integrated profile; they are
also highly polarized, and they have a width which is typical for each pulsar.

A. G. Lyne, F. G. Smith and D. A. Graham Vol. I53 pulses from PSR $1642-03$ and PSR $1749-28$ are nearly as wide as the profile itself, and the time of occurrence varies only slightly; at the other extreme the
pulses from PSR $1133+16$ are only about 4 ms wide compared with the double pulses from PSR ri33 +16 are only about 4 ms wide compared with the double
humped integrated profile which covers over 40 ms . In the latter case, as with humped integrated profile which covers over 40 ms . In the latter case, as with
other pulsars with complex integrated profiles, the pulses seem to arrive independently of one another, although two may happen to arrive together, one in each part of the double profile.
There is in some pulsars a tendency for two or more pulses to appear together,
at a fairly well-defined separation. Pulses are often related from one period to the next, appearing with a slow variation of pulse phase. Both phenomena are displayed by PSR 2016 +28 . Studies of this 'pulse drift' have been made by Drake $\&$ Craft (1968), Cole (1970), Sutton et al. (1970), Backer (1970a, b) and others whose work is referred to in those papers.

[^0]I§ \mathcal{E}

 5 ms wide inside which the polarization varies only slowly, and remains very high,
 be seen in some pulses from PSR $1133+16$.
We have attempted to find for each pulsar a typical pulse, which corresponds to the typical pulse from PSR $0329+54$. This is roughly Gaussian in profile, and
 in Table I, both in milliseconds and as a range of pulse phase. The following are some detailed notes on individual pulsars.
PSR 003I-07. The work of Sutton et al. (1970) shows that individual pulses are not greater than 10 ms wide.
PSR $053 I+2 I$. Although highly polarized individual pulses from the Crab \& Rankin 1970), it is impossible to resolve the pulse structure with a single receiver

 individual pulses have been detected.
PSR 0809 +74 . Uncertain measurement of only two pulses at 240 MHz , (bandwidth 350 kHz), pulse width $\sim 3 \mathrm{~ms}$, linearly polarized with little swing of position angle.

 or less.
$P S R$ 0834+06. Recordings at 240 MHz (bandwidth 300 kHz) show pulses of which those in Fig. 4 are typical. The pulses show predominantly plane polarization with little swing of position angle. The pulse width corrected for bandwidth $(2.5 \mathrm{~ms})$ and time constant (3 ms) is approximately 4 ms .

 structure finer than about 2 ms in width which is not attributable to random

 suggests that they are made up of components about 2 ms long. These more

352 G. Lyne, F. G. Smith and D. A. Graham
by the superposition of individual pulses, although it must be remembered that
the complex pulses with consistent polarization might equally well represent an
intensity modulation acting on a longer basic pulse.
Observations by Ekers \& Moffet (ig68) at 2295 MHz show structure with a
time scale less than i ms.
$P S R$ II33 $+I 6$. The four pulses shown in Fig. 5 occurred within one minute.
The structure seems to be fully resolved, using an effective time constant of
$0 \cdot 5 \mathrm{~ms}$ at 408 MHz (bandwidth 330 kHz . Single pulses, about 4 ms wide, are
seen to occur either as groups or as simple individuals at times corresponding
to the two peaks in the integrated profile. In some complex pulses there are
fluctuations which are more marked in intensity than in polarization: these may

FIG. 5. Individual pulses from two pulsars: (a) PSR 0950 +o8, (b) PSR 1133+16, recorded with a polarimeter at 408 MHz . The four traces show the Stokes parameters I, V, Q, U. The pulses from $P S R$ o950 +08 were sequential: those from $P S R 1 I 33+16$
were recorded within one minute.
No. 3, 1971 Characteristics of radio pulses from the pulsars 353
represent an intensity modulation of a broader source, but it remains the simplest interpretation to regard them as the sum of a number of separate individuals, like those which stand out in Fig. 5.
The position angle of polarization in pulses occurring in the earlier component
 another. This behaviour accounts for the low integrated polarization in the first component. Variable circular polarization can be seen in both components.
 There is a high correlation between the pulse shapes, states of polarization, and pulse widths, at these two frequencies. at two main pulse phases, corresponding to the peaks at the extremes of the integrated profile; a few pulses have also been recorded at an intermediate pulse phase. All pulses have a simple profile, with half-width 6 ms , practically fully linearly polarized. Circular components are seen, sometimes reversing during
 MHz ; they have a consistent half-width of 4 ms . The intensity varies only slowly from pulse to pulse. All peaks occur within 3 ms , so that the integrated profile is

No polarimeter records were obtained.
$P S R \quad$ I749-28. Three individual puls
PSR $I 749-28$. Three individual pulses have been recorded on 408 MHz ,
bandwidth 300 kHz , using a RH circularly polarized antenna feed. The measured bandwidth 300 kHz , using a RHE circularly polarized antenna feed. The measured
half-width was $6-7 \mathrm{~ms}$. Allowing for dispersion, we assign a width of 6 ms to these pulses.

[^1]
354

A. G. Lyne, F. G. Smith and D. A. Graham Vol. 153
$P S R$ 19I9 +2 . Individual pulses have only been recorded in total intensity
PSR I9I9+2I. Individual pulses have only been recorded in total intensity
(I) at 408 MHz . The typical width is 6 ms .

No. $3, \mathrm{I} 97 \mathrm{I} \quad$ Characteristics of radio pulses from the pulsars 355
shows an analysis of two recordings, one with a single pulse and the other with
shows an analysis of two recordings, one with a single pulse and the other with
two, showing $I, V, P=\left(Q^{2}+U^{2}\right)^{1 / 2}$ and position angle The individual pulses show the usual independent patterns of polarization, although the continuity of position angle across the pair of pulses is similar to that seen in the integrated profile. PSR 2045-16. Recordings of intensity (I) at 408 MHz show isolated pulses
4 ms wide occurring at two locations, corresponding to the main peaks of the profile. 1749-28 coses)

integrated Stokes parameter I for as many pulsars as possible at 408 MHz . On a 6ro MHz.

The results at 408 MHz are shown in Fig. 7 in which the sources are arranged in order of increasing right ascension. A number of sources have been omitted have been omitted because of severe broadening attributed to multipath propagation in the interstellar medium (Davies et al. 1970; Drake 1971; Lyne 1971a). The profile for PSR $1946+35$ is also affected by this at 408 MHz ; the profile presented was obtained at 610 MHz and is almost free from this form of broadening. Each integration was made over at least 10 min . Over this period of time, the pulse to pulse variations no longer affect the profile in a random way, and the
profile is usually stable from one integration to the next. Two exceptions should be noted in that PSR $1237+25$ and PSR $0329+54$ both display a ' switching, phenomenon in which the pulse changes shape suddenly for some hundreds of
 1971b). The more usual configurations are shown.

The noise level in the diagrams varies considerably from one to the next and can usually be estimated from the ripple outside the region of the pulse.
 resolution, which itself is usually much finer than any structure in the profiles.
 pulse components have already been shown to vary with frequency (Craft \& Comella 1968; Komesaroff, Morris \& Cooke 1970). For PSR 2045+16 we now see that both the front component and trailing component move inwards towards the centre one, at increasing frequencies. While the amplitude of the leading

 at 2650 MHz , may not have resolved the trailing component.)

әomnos s!
 in a very similar fashion.
 with frequency. At low frequencies, the component at the front of the main pulse

 a factor of two between 408 MHz and $1_{5} \mathrm{I} \mathrm{MHz}$.

The presently available information on the spectral variation of the separation
 9(a). The quoted separations are the intervals between the peaks of the com-

 pulsars in which the separation decreases roughly as a low power of the frequency. In PSR $0834+06$ and PSR 1919 +2 1, however, the separation actually increases

$$
\begin{aligned}
& 357 \\
& \text { at higher frequencies. Fig. } 9(b) \text { shows the distribution of the indices, } \alpha \text {, of the }
\end{aligned}
$$

(Kouәnbәгу
form of equivalent widths, in which the area of the profle has been

$$
\text { a) PSR } 0329+54
$$

孔u！

	81．0－	ヤ．0干て．E	ع．о干ع． \mathcal{E}	－	2．0干\％．t	z．0耳9．t	z．0干6．t	E．O耳t．S	991－Stoz
	01．0－	ヤ．0戸1．L	$\varepsilon . о \mp \mathcal{E} . L$	－	2．0干1．8	と．0干9．8	と．0戸マ． 6	E．O耳 6.6	e91－Stoz
－	$81.0+$	－	†．0于¢．9	－	－	t．0干\％．S	－－	t．0干0．t	$1 z+6161$
	SI．O－	－	－	－	－	2．0干L．11	2．0干L．zI	2．0干L． E_{1}	
－＿－	Li．0－	t．0干E．S	E．०干E．S	－	2．0干\％．9	z．0于9．9	2．0干L．L	2．0干 4.8	$9 \mathrm{I}+\mathcal{E} \mathcal{E}_{11}$
	11．0＋	－	E．O干ャ．S	－	－	z．0耳9．t	－	2．0干口．も	$90+\downarrow \varepsilon_{8} 0$
	oz．0－	－	－	9．0干I．1I	－	－	－	－	$1 z+5 z S_{0}$
	80．0－	－	－	－	z．0干L．6	2．0干o．0r	2．0¢¢．01	－	$q \pm S+6 z \mathcal{E V O}_{0}$
	LI．O－	－	－	S．0干口．11	†．0¢ع．zi	†．0¢G．EI	t．07L．ti	＋．0¢8． S $_{\text {I }}$	et ¢ $+6 z \varepsilon \bigcirc$
səı0	∞	S69z	S6zz	ozti	019 HW）Кəuәn	8ㅎ	otz	${ }_{15} \mathrm{I}_{1}$	$\mathrm{res}_{[} \mathrm{n}_{\mathrm{d}}$
			suoqupa	рфәз ұиวиофи II $\begin{aligned} & \text { atav．L }\end{aligned}$					

No. 3, 1971

-

Fig. 10. (a) The equivalent pulse width (s) as a function of period (s). The straight widths in degrees of longitude.
four radio frequencies, attempting in particular to obtain a complete set at 408 MHz . The integrations were extended over periods of between 2 and 60 min , according to the strength of the pulses; repeated observations were made to

$$
\text { Vol. } 153
$$

$$
L X-S_{I} \text { 'II } \because I H
$$

(c) Royal Astronomical Society • Provided by the NASA Astrophysics Data System

CTLEE

[^2]linearly polarized component $P=\left(Q^{2}+U^{2}\right)^{1 / 2}$, and the position angle of polarization (ϕ). This position angle is measured according to the usual astronomical convention. No correction for ionospheric Faraday rotation has been made, and
 have been normalized to $I=100$ at maximum.
The salient characteristics of pulse widths and polarization for all the observed
pulsars are presented in Table I. The equivalent widths of the integrated profiles
 of the individual pulses was found from direct measurement of photographs; the only problem in interpretation here was found for PSR 0950+08, as already noted in Section 4.
The tabulated percentage linear polarizations are from ratios of the area
under the curves of P and I. Peaks of polarization are often well above this value. The integrated circular polarization is usually smaller than the noise level, and
iLE

7. PULSAR PERIODS and positions

 declinations were measured at 408 MHz by a series of scans with the Mark
 made at such a speed that the telescope beam crossed the pulsar in a time short spoụวd әч，
 they were corrected for the Earth＇s motion and reduced to the corresponding periods at the barycentre of the solar system．
Measured declinations and barycentric periods
\[

$$
\begin{aligned}
& 0 \cdot 5489349 \pm 5 \\
& 1 \cdot 238 \mathrm{I} 245 \pm 4 \\
& 0 \cdot 4128164 \pm 2 \\
& 0 \cdot 6122083 \pm 5
\end{aligned}
$$
\]

Table III

ががが

HSd

N
1
1
in
7
1
:---
0
1
1
4

$944+17$

$$
\int N_{e} H_{\mathrm{II}} d l m^{-2}
$$

where N_{e} is the electron density $\left(\mathrm{cm}^{-3}\right), H_{\text {II }}$ is the line-of-sight component of the magnetic field (microgauss), and the distance l is measured in parsecs. Since the dispersion measure D is $\int N_{e} d l$ (in the same units), the ratio $\mathrm{I} \cdot 24 R / D$ gives a mean field \bar{H}, which is the mean field component along the line of sight weighted according to the electron density.
By observing a pulsar with considerable linear polarization successively at two or more adjacent frequencies the rotation measure can be obtained, and a mean field can be calculated (Smith 1968). At frequency $\nu(\mathrm{MHz})$ the difference $\Delta \theta$ is related to the frequency difference $\Delta \nu$ by:

$$
\Delta \theta=-2 R\left(\frac{300}{\nu}\right)^{2} \frac{\Delta \nu}{\nu}
$$

 of R. For some pulsars it is sufficient to measure θ for the average polarization over the whole integrated profile; the results of Section 6 show that for most

 for a good measurement. Even then the rapid swing of position angle within the pulse may make the measurement difficult and dependent on accurate knowledge of dispersions. Our results are therefore rather limited, although the way now seems open to a more comprehensive set of measurements.

 too few for a detailed investigation of the Galactic magnetic field, but it is already

Rotation measures (new determinations)

$$
\begin{aligned}
& \text { es (new determinations) } \\
& \bar{H}
\end{aligned}
$$

$$
\begin{gathered}
\bar{H} \\
\mu \mathrm{G}
\end{gathered}
$$

$$
\begin{aligned}
& \text { The rapid swing of p.a. within } \\
& \text { the pulse makes the measure- }
\end{aligned}
$$

An ambiguity in the measure-

$$
\begin{aligned}
& \text { An ambiguity in the measure- } \\
& \text { ments allows also a value } \\
& R \sim+\infty
\end{aligned}
$$

This low ve

$$
\begin{aligned}
& \text { due to a } \\
& \text { distance. }
\end{aligned}
$$

may be
Table IV

$$
\begin{aligned}
& \text { may de } \\
& \text { r a large }
\end{aligned}
$$

$$
B
$$

 The two smallest values of D show low values of \bar{H}, possibly indicating a
low field in the solar neighbourhood. If the line of sight to PSR $0950+08$ is
accidentally perpendicular to the local field, then that to PSR 1929+10 would

 about 50 units of D, i.e. about Ikpc if the electron density is $0.05 \mathrm{~cm}^{-3}$. The
 plane.
Such conclusions must be treated with great caution. There is no reason for
expecting to find the same value of magnetic field or the same size of structure
 argument depends are necessarily confined to low Galactic latitudes. There may

$$
\begin{gathered}
\text { Table } \mathrm{V} \\
\text { Rotation measures (previous determinations) }
\end{gathered}
$$

(see Note I)
Staelin \& Reifenstein (1969) Manchester (1971)
$\left\{\begin{array}{l}\text { Vitkevich \& Shitov (1970b) }\end{array}\right.$ Schwarz \& Morris (1971)

Schwarz \& Morris (1971)

(I) We adopt the numerical value from Staelin and Reifenstein, and the sign from
Smith.
 8 890 ySd IOf Se Кем әures әчt u!

FIG. 12. The mean field \bar{H} (microgauss), obtained from the rotation measures, plotted against the dispersion measure $D\left(p c \mathrm{~cm}^{-3}\right)$
A. G. Lyne, F. G. Smith and D. A. Graham Vol. I53
also be serious selection effects: other pulsars with large values of D are needed
at other Galactic longitudes before the present values of \bar{H} can be accepted as
typical.
Finally we note that PSR 2113 +46 , with $R=-182$, is only 3° from the
extragalactic source 3C 43I, with $R=+62$ (Berge \& Seielstad 1967). This
suggests that both results should be checked, although the fact that three other
extragalactic sources, 3C 430, 3C 433 and 3C 452 lying within 20° of the same
point all have large negative values of R tends to support the pulsar result. A
comparison of values between PSR 1933 $(R=-36)$ and three adjacent sources
is not so clear cut; the sources are 3C 410 $(R=-216), 3 \mathrm{C} 386(R=+79)$,
$3^{C} 403(R=-34)$, all about 15° from the pulsar.
9. I The individual pulses
9. DISCUSSION
Our observations have led us consistently to the view that the radio emission
 'window' defined by the integrated profile. The elementary pulses typically have a symmetric shape, like a Gaussian curve, and a width which is characteristic

 lapping. This situation has been described by other authors in terms of a 'pulse',
 which form the structure we have just described. We have avoided this nomen-

It has been suggested (Smith 1970a) that these individual pulses represent the -еz!ив

 'velocity of light cylinder'.

9.2 The integrated profiles

 provides the shape of the profiles. There is a tendency towards symmetry in these profiles, which are generally of the following types:
(i) A smooth single hump, e.g. PSR 1642-03. (ii) A double hump, e.g. PSR $1133+16$.
(iii) A single hump with extensions or outriders, e.g. PSR $0329+54$.
(iv) Double humps with structure between, e.g. PSR $1237+25$.

No. 3, 1971 Characteristics of radio pulses from the pulsars 375

 also have ' interpulses'.

 'иоп̣еz! which usually occurs where the linear component is small and where the position angle is changing fastest. A histogram of the linear polarization averaged through the profile is presented in Fig. I3. Although the polarization is for most pulsars seanos 10 on
Fig. I3. Histogram of the percentage polarization at 408 MHz , obtained from the areas
under the integrated profles of I and P. very similar over a wide range of frequencies, some pulsars show changes which are usually associated with changes in the intensity profiles. For example, PSR $0950+08$ and $1642-03$ show a fall of polarization with increasing frequency, together with a narrowing of the profile, while PSR $1508+55,1237+25$ and $2045-16$ show an increase of polarization with increasing frequency.

 way to a defined direction rotating with the pulsar. For example, that direction

 'phase rate' $d \phi \mid d l$ is related to θ by

$\sin D$

 phase rate does not depend critically on D, provided that D is not near zero, it is convenient to put $D=90^{\circ}$ and evaluate θ from

[^3]A. G. Lyne, F. G. Smith and D. A. Graham Vol. I 53
The interpretation in this way of the whole of the observed swing of position

 would be minimum at the time of most rapid sweep.

For each pulsar we have chosen a single phase rate, which represents the
 plotted as a histogram in Fig. 14. The phase rates have been converted into inclina-
 of θ greater than about 30° obtained in this way have little meaning, on account
of the assumption that $D=90^{\circ}$) of the assumption that $D=90^{\circ}$.)

We comment generally on this interpretation of the phase rates in Section 9.4 , but we suggest here that only the low values of phase rate should be used in such an analysis, since the five pulsars with the largest phase rates ($>_{15}$ in Fig. 14) all show complex profiles which could contain overlapping components. Further-
more, none of these profiles shows a high degree of polarization, even though more, none of these profiles shows a high degree of polarization, even though
the individual pulses of two of them have been observed to be fully polarized. At the lower end of the histogram of phase rates, the profiles are generally

FIG. 14. Histogram of the rate of swing of polarization position angle, expressed as a phase
rate $d \phi / d l$.

Fig. 15. Histogram of the minimum angle θ between the observer's line of sight and the
magnetic field axis, according to the interpretation of Section 9.3.1.

 ви! әq I!!

 distorted by plasma flowing out from the star, and there may be sufficient local distortions of the field to obscure the underlying monotonic sweep of position angle.

9.4 Comparisons with the observed sweep of position angle

9.4.1 The simplest pulsars. The clearest comparisons between theory and observation must concern the pulsars with simple profiles and high degrees of polarization, i.e. PSR 0628-28, 0833-45 and 1929+10. These have swings
The simple vector approach of Section 9.3.I leads to inclinations θ of 24° 122° and 50° respectively. This large range makes it difficult to construct a model

In the alternative approach of Section 9.3 .2 the beam is formed by the relativistic motion of the source, and the sweep of position angle reflects the
 pulsars under discussion the position angle varies smoothly through the profile. This suggests that the field has a simple configuration at the emitting region.

On rial much distorted by the flow of plasma from the star.
9.4.2 PSR $0950+08$ and other pulsars with interpulses. The swing of position

 the relativistic process, the observer's line of sight must be within about 25°
 is inclined less than 25° to the equatorial plane.
PSR $0950+08$ is also important because of the existence of the interpulse which is almost, but not exactly, halfway between successive main pulses. Only two other pulsars, PSR $053 \mathrm{I}+10$ and $1929+10$, are known to have interpulses, although the present observational accuracies still allow their existence at a level

 has so far been assumed to be symmetrical, even if not dipolar.

H ()
380 A. G. Lyne, F. G. Smith and D. A. Graham Vol. 53
crosses the line of sight of the observer. If this were so, then to account for the
interpulse in PSR o950 + o8 one must suppose that both poles in turn approach
the line of sight. In such a configuration, however, the position angle would
swing rapidly both during the main pulse and the interpulse, which does not
occur. Evidently the asymmetry must be of another kind.
There are two further observed asymmetries to be accounted for. First, the
phase rate is smaller in the interpulse than in the main pulse. Second, the interpulse
is not symmetrically placed. The second can be accounted for in terms of the
difference of light travel time from two separate locations on a light cylinder
which is inclined to the line of sight. The asymmetry in the phase rates seems,
however, to indicate a real asymmetry in the configuration of the field; presumably
the asymmetry in the emissivity is closely related to this.

9.5 The sense of rotation of the pulsars

 of rotation of the position angle relative to the rotating magnetic field. If the emission is related to a vector rotating with the star, then the position angle rotates
 crossing a location which is fixed relative to the observer, then the rotation is opposite. It seems possible that the observed rotations could be associated with either
 Suppose that the emitting region was confined to a very small range of longitude,
so that the width of the profile was determined only by the width of the superposed individual pulses. Then the plane of polarization would be determined by the

There are possibly two examples of pulsars with phase rates that are opposite

 differ sufficiently for the same geometrical difference to apply.

3^{81}
No. 3, 1971 Characteristics of radio pulses from the pulsars much longer than the length of an individual pulse. It is suggested that at this much longer than the length of an individual pulse. It is suggested that at this ұи!̣od әчł $\mathfrak{7}$ әu!

 suggestion.

9.6 The pulse profiles and the emission spectrum

The association of a definite longitude with each point on a pulse profile provides a satisfactory explanation of the general independence of the shape and width of the profiles on frequency. The changes that have been noted in Section 5 are, however, well organized and very similar over a number of pulsars, and they merit some further discussion. Movements in longitude of components of the

 field lines were similar for several pulsars, then their changes of profile would also be similar.

A relation of this sort would, of course, only apply if the field configuration
 the profile for many pulsars suggests that this is indeed the case. The field may nevertheless be considerably distorted from a pure dipolar configuration; for Allen (1970). Illen (1970).
For those For those pulsars where there is little or no change of profile with frequency
the position of the emitting regions may still vary, provided that it does not vary over a large range of longitude. The gradient of field may then be more nearly parallel to the rotation axis, rather than in the equatorial plane.
 mechanism is not as wide-band as had previously been suggested (Lyne \& Rickett 1968). Recent observations of intense individual pulses from the Crab Nebula pulsar at frequencies near 100 MHz (Heiles \& Rankin 1971) suggest that their
spectrum covers a range $\Delta f / f \sim 0.3$. Some further observations of individual pulses over a wide frequency range in other pulsars would clearly be of value in establishing the bandwidth of the fundamental emission process.
ACKNOWLEDGMENTS

 graphic technique was developed and used first by Dr R. R. Clark. The most
important contribution has been made by Professor J. G. Davies, who provided the excellent facilities for the on-line computations.

University of Manchester, Nuffield Radio Astronomy Laboratories, \mathfrak{F} odrell Bank

EFERENCES
Ables, J. G., Komesaroff, M. M. \& Hamilton, P. A., 1970. Astrophys. Lett., 6, 147.
Backer, D. C., 1970a. Nature, 228, 752.
Backer, D. C., 1970b. Nature, 228, 1297.
Berge, G. L. \& Seielstad, C. A., 1967. Astrophys. F., 148, 367.
Born, M. \& Wolf, E., 1965. Principles of Optics, 3rd ed. Pergamon Press Ltd, Oxford.
Clark, R. R. \& Smith, F. G., 1969. Nature, 221, 724.
Cole, T. W., 1970. Nature, 227, 788.
Craft, H. D. \& Comella, J. M., 1968. Nature, 220, 676.
Davies, J. G., Large, M. I. \& Pickwick, A. C., 1970. Nature, 227, 1123.
Davies, R. D., Ponsonby, J. E. B., Pointon, L. \& Jager, G. de., 1969. Nature, 222, 933.
Drake, F. D. \& Craft, H. D., 1968. Nature, 220, 231.
Drake, F. D., 197ı. Proc. I.A.U. Symp. No. 46, Reidel.
Ekers, R. D. \& Moffet, A. T., 1968. Nature, 220, 756.
Ekers, R. D. \& Moffet, A. T., 1969. Astrophys. F., 158, Li.
Endean, V. G. \& Allen, J. E., 1970. Nature, 228, 348.
Gold, T., 1969. Nature, 221, 25.
Graham, D. A., Lyne, A. G. \& Smith, F. G., 1970. Nature, 225, 526.
Graham, D. A., 1971. Nature, 229, 326.
Heiles, C., Campbell, D. B. \& Rankin, J. M., 1970. Nature, 225, 526.
Heiles, C. \& Rankin, J. M., 1971. Proc. I.A.U. Symp., No. 46, Reidel.
Hunt, G. C., 1971. Mon. Not. R. astr. Soc., 153, 119.
Komesaroff, M., Morris, D. \& Cooke, D. J., 1970. Astrophys. Lett., 5, 37.
Lyne, A. G. \& Rickett, B. J., i968. Nature, 218, 326.
Lyne, A. G., i97ıa. Proc. I.A.U. Symp. No. 46, Reidel.
Lyne, A. G., 197ib. Mon. Not. R. astr. Soc., Short Communications, 153, 27P.
Manchester, R. N., 1970. Nature, 228, 264.
Manchester, R. N., 1971. Proc. I.A.U. Symp. No. 46. Reidel.
Morris, D., Schwarz, U. J. \& Cooke, D. J., 1970. Astrophys. Lett., 5, 18 I .
Radhakrishnan, V. \& Cooke, D. J., 1969. Astrophys. Lett., 3, 225.
Schonhardt, R., i971. Proc. I.A.U. Symp. No. 46. Reidel.
Schwarz, U. J. \& Morris, D., 197I. Astrophys. Lett., 7, 185.
Shitov, Yu. P., 1971. Nature, 229, 179.
Smith, F. G., 1968. Nature, 220, 891.
Smith, F. G., 1969. Nature, 223, 934.
Smith, F. G., 1970a. Mon. Not. R. astr. Soc., 149, 1.
Smith, F. G., 1970b. Nature, 228, 913.
Staelin, D. H. \& Reifenstein, E. C., i969. Astrophys. F., 156, Li21.
Sutton, J. M., Staelin, D. H., Price, R. M. \& Weimer, R., 1970. Astrophys. 7., 159, L89.
Taylor, J. H. \& Huguenin, G. R., 1969. Nature, 221, 816.
Vitkevich, V. V. \& Shitov, Yu. P., 1970a. Nature, 225, 248.
Vitkevich, V. V. \& Shitov, Yu. P., x970b. Nature, 226, 1235.
Wampler, E. J., Scargle, J. D. \& Miller, J. S., 1969. Astrophys. 7., r57, Li.
Zeissig, G. A. \& Richards, D. W., 1969. Nature, 222, 150.

[^0]: IG. 4. Individual pulses from three pulsars, observed at 240 MHz with a polarimeter ecording the four Stokes parameters I, V, Q, U. (a) PSR 0329 + 54. (b) PSR 0834+06. (c) PSR 0628-28.

[^1]: Fig. 6. Two pulses from PSR $2016+28$ recorded at 408 MHz , showing the independent Fig 7). The polarization is shown as the linear polarization, $P(---)$, the circular pig. 7). The polarization, V (-.-.-.) and the position angle ϕ.

[^2]: Fig. 11. The integrated profiles showing the intensity, 1 , the linearly polarized component
 P (broken line) and the position angle ϕ.

[^3]:

