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Abstract. Vertical air velocities were estimated from drop

size and fall velocity spectra observed by Parsivel disdrome-

ters during intensive field observations from 13 June to 3 Au-

gust 2016 around Mt. Jiri (1915 m a.s.l.) in the southern Ko-

rean Peninsula. Rainfall and wind velocity data measured by

Parsivel disdrometers and ultrasonic anemometers, respec-

tively, were analyzed for an orographic rainfall event associ-

ated with a stationary front over Mt. Jiri on 1 July 2016. In

this study, a new technique was developed to estimate ver-

tical air velocities from drop size and fall velocity spectra

measured by the Parsivel disdrometers and investigate char-

acteristics of up-/downdrafts and related microphysics on the

windward and leeward sides of the mountain.

To validate results from this technique, vertical air ve-

locities between the Parsivel disdrometers and anemometers

were compared at different locations and were shown in quite

good agreement with each other. It was shown that upward

motion was relatively more dominant on the windward side

and even during periods of heavy rainfall. In contrast, down-

ward motion was more dominant on the leeward side dur-

ing nearly the same periods of heavy rainfall. Occurrences

of upward and downward motion were digitized as percent-

age values as they are divided by a total count of occurrences

during the entire period. On the windward (leeward) side, the

percentages of upward (downward) motion were much larger

than those of downward (upward) motion. The mean rainfall

intensity on the leeward side was stronger than on the wind-

ward side, suggesting that most of the rainfall on the leeward

side was relatively more affected by the downward motion.

With the estimated vertical air velocities, histogram charac-

teristics of rainfall parameters were also examined between

the windward and leeward sides.

1 Introduction

Drop size distribution (DSD) and related rain parameters

from surface disdrometer measurements or indirectly re-

trieved from remote sensing measurements such as radars,

wind profilers, or satellites provide key information for a bet-

ter understanding of rain microphysics that accounts for drop

growth and precipitation processes. Nevertheless, DSD un-

certainties always exist as its retrieval is vulnerable to vari-

ous factors such as measurement errors, sampling difference

in volume and height, strong winds, up-/downdrafts, turbu-

lence, and so on as has been reported in many previous stud-

ies (Jameson and Kostinski, 1998; Cao et al., 2008; Tokay

et al., 2009; Thurai et al., 2012). Thus, a validation of such

retrieved DSDs by comparing with those from surface dis-

drometers is not straightforward (Williams et al., 2000) due

to their different environment, although minimizing a sam-

pling difference as much as possible is needed. Even if DSDs

are accurately obtained, their characteristics, particularly be-

tween convective and stratiform rain, can vary largely from

small areas on a short-time scale to climatic regimes in the

long term.

Ground-based classifications of convective, mixed, or

stratiform rain types have been performed in various ways

such as characteristics in integral DSD parameters (i.e., rain

rate, mean drop diameter, etc.), bright band signature, ver-

tical gradients in Doppler velocity and reflectivity, vertical

draft magnitude, and so on (Atlas et al., 2000; Cifelli et al.,

2000; Thompson et al., 2015; Tokay and Short, 1996; Tokay

et al., 1999; Thurai et al., 2016; Williams et al., 1995). Tokay

et al. (1999) classified rainfall types from collocated dis-

drometer and 915 MHz profiler observations in tropical rain

events and indicated that compared to profiler classifications

that utilize vertical gradients in Doppler velocity, a disdrom-
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eter is relatively more feasible to misclassify stratiform rain

as convective, or vice versa, due to time–height ambiguity

mostly associated with advection of drops while falling to

the ground.

In measuring and validating surface DSDs, there is no such

handy, transportable, and low-cost instrument like a disdrom-

eter that has long been used as a ground truth, although it has

inherent problems mentioned above as exposed to different

environments. The Parsivel disdrometer (hereafter Parsivel)

is one of disdrometers widely used for DSD studies all over

the world. As deduced from its name, par-si-vel (particle size

and velocity), this disdrometer measures sizes, fall velocities,

and number counts of liquid and ice particles falling into 32

(size) × 32 (fall velocity) bins. Parsivel has been used at ob-

servatories or in numerous field experiments to examine and

validate microphysical properties by comparing DSDs and

integral DSD parameters with those from other types of dis-

drometers, the two-dimensional video disdrometer (2-DVD),

wind profiler, and radar observations for various events of

precipitation (Jaffrain and Berne, 2011; Kim et al., 2016;

Thurai et al., 2011, 2016; Tokay et al., 2013).

A Parsivel-measured fall velocity of a raindrop is the sum

of a raindrop terminal fall speed (in stagnant air) and verti-

cal air motion. Thus, when there are updrafts or downdrafts,

the Parsivel-measured fall velocity deviates from the termi-

nal fall speed even if drop sizes are identical. On top of this,

strong horizontal winds, vertical shear, or turbulence can dis-

perse the distribution of drop size and fall velocity, leading

to a change (or bias) in the Parsivel-measured fall velocity

averaged over the distribution. Consequently, all these fac-

tors would affect DSD integral parameters such as rain rate,

although the effects of the factors on DSD are complicated

and hardly discriminated (Niu et al., 2010). Ulbrich (1992)

examined errors in rain rate that result from inaccuracies in

fall speeds of raindrops (i.e., inaccurate estimation of verti-

cal air motion) and indicated that updraft will result in larger

rain rate at a given reflectivity than when there are no vertical

winds. Niu et al. (2010) investigated differences in distribu-

tions of drop sizes and fall velocities between convective and

stratiform rain and ascribed different deviations in Parsivel-

measured fall velocities between small and large drops to

vertical air motion and turbulence. Parsivel is prone to mea-

surement errors particularly when there are strong winds and

turbulence, leading to discrepancies in comparison with other

measurements in the same locations. Friedrich et al. (2013)

investigated the influence of strong winds on particle size

distributions measured by Parsivel disdrometers deployed in

Hurricane Ike in 2008 and convective storms, and noted that

misclassification can occur by particles not falling perpen-

dicular to the sampling area at high wind speed and/or heavy

rainfall. Tokay et al. (2009, 2014) indicated that the old ver-

sion of Parsivel tends to underestimate the number of small

drops and overestimate drop size larger than 2.0 mm in heavy

rain as well as in windy conditions. When they compared

each old and new version of Parsivel with Joss–Waldvogel

Figure 1. Picture of a Parsivel disdrometer and an ultrasonic

anemometer that were installed at an observation site around Mt. Jiri

during the intensive observation period.

disdrometer and rain gauge measurements, the new version

of Parsivel (referred to as Parsivel2 in their paper) appeared

to have a noticeable improvement over the old one for mea-

suring drop size and rainfall rate.

To our knowledge, no studies of vertical air velocities re-

trieved from Parsivel-measured drop size – fall velocity spec-

tra have been documented or reported yet. In this study we

utilize Parsivel and anemometer data collected during inten-

sive field observations that targeted investigating orographic

rainfall mechanisms around mountain areas in the southern

region of South Korea. A simple technique to retrieve vertical

air velocities from Parsivel measurements is developed and

first applied to an orographic heavy rain event. This paper is

organized as follows. In Sect. 2, the retrieval technique and

instruments used in this study are introduced. A case descrip-

tion about the rain event is followed in Sect. 3. Results about

characteristics of up-/downward motion and related micro-

physics on the windward and leeward sides are presented in

Sect. 4. A summary and conclusions follow in Sect. 5.

2 Instrumentation and method

Two main instruments used in this study are the Parsivel dis-

drometer and ultrasonic anemometer collocated at three dif-

ferent sites around Mt. Jiri (see Fig. 1). Their data were col-

lected during the intensive observation period from 13 June

to 3 August 2016 to cover a summer rainy season which is

called “Changma” in South Korea. The Parsivel disdrome-

ter (Parsivel), manufactured by OTT (Germany), uses laser-

optical properties to measure both sizes and fall velocities of

precipitation particles and derives quantities of radar reflec-

tivity, precipitation intensity, etc. from measured drop size

spectra. Time resolution is 1 min. For more details about

Parsivel, please see Löffler-Mang and Joss (2000). The ul-
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trasonic anemometer (the Young Model 81000, hereafter

UVW) measures east–west (u), north–south (v), and verti-

cal (w) components of winds by using the speed of sound

moving along winds between the three non-orthogonal sonic

axes and generates wind speed and direction at a 1 min in-

terval. The accuracies are ±0.05 m s−1 for wind speed (0 to

30 m s−1) and ±2◦ for wind direction (0 to 30 m s−1), respec-

tively. The w component observed by UVW is referred to as

wUVW.

In this study, a simple, new scheme to derive vertical ve-

locity (w) from Parsivel measurements is developed by using

a relationship of Atlas et al. (1973) between terminal fall ve-

locities and drop diameters in still air as shown by

Vf = 9.65 − 10.43 × exp(−0.6D), (1)

where D is drop diameter (mm) and Vf is terminal fall veloc-

ity (m s−1), and the vertical relation of air as shown below

w = Vp − Vf, (2)

where Vp is Parsivel-measured fall velocity (m s−1) averaged

over 32 diameter × 32 velocity classes in a size and velocity

spectrum. Altitudes of D1, D2, and D4 are 105, 280, and

313 m a.s.l., respectively. Due to the very low altitudes of

these observation sites, change in atmospheric density with

height is negligible, and thus the atmospheric density correc-

tion (Beard, 1985) on Vf is ignored. In all the terms, negative

means downward. A mean w value at 1 min interval is finally

estimated by subtracting Vp from Vf, also averaged follow-

ing the flowchart in Fig. 2. The final w estimate is hereafter

called wpar. For more details, please see the flowchart that

shows how w is estimated from a 1 min drop size (D) and

fall velocity (Vp) spectrum of Parsivel. Figure 3 illustrates

three conditions of determining zero w, upward w, or down-

ward w value for a given D vs. Vp spectrum. For case 1, w

would be zero since the D-Vp distribution closely follows the

Vf line. Upward w value is determined for case 2 such that Vp

is smaller than Vf (i.e., the distribution is towards below the

Vf line). For case 3, downward w value is determined since

Vp is larger than Vf. For wpar validation, wpar is compared

with wUVW and its result is described in Sect. 4.

3 Case description

During a summer rainy season usually from late June to

mid-July in South Korea, severe weather phenomena ac-

companied by heavy rainfall often occur in the southern

region of the Korean Peninsula mostly covered by com-

plex high mountains. In association with terrain-induced up-

/downdrafts, mountainous areas can play an important role

in controlling formation, amount, and distribution of rainfall.

As precipitation systems move over these areas, they tend

to develop rapidly and produce localized heavy rainfall. Ob-

servational analysis from radar and surface measurements in

these areas is necessary to understand terrain effects on rain-

fall development and microphysics. Thus, we performed in-

tensive field observations around Mt. Jiri (1915 m a.s.l.) in

the southern Korean Peninsula during the summertime in

2016.

During the observation period of 13 June–3 August 2016,

several rain events were observed. On 1 July 2016, a rainfall

system associated with a Changma front developed over the

Yellow Sea and moved towards Mt. Jiri. As it passed over

the mountain from the east, heavy rainfall was produced and

observed by Parsivel disdrometers and UVWs from 12:00

to 22:00 LST. Figure 4 shows a distribution of accumulated

rainfall on 1 July and the enlarged topography of Mt. Jiri

with locations of observations. Large rainfall up to 90 mm

was seen around the top and south of Mt. Jiri in relation to

moist upwind flows on the windward side close to the ocean.

4 Results

4.1 w comparison in time series

For the wpar validation, the observed wUVW is compared in a

time series. Time series of radar reflectivity (Z), rain rate (R),

mass-weighted mean diameter (Dm) measured from Parsivel

are also examined together. Three observation sites of D1,

D2, and D4 where both the Parsivel and UVW data are avail-

able were selected out of nine sites (Fig. 4b). D1 and D2 are

windward and D4 is leeward of Mt. Jiri. Figure 5 shows the

time series of Z, R, and Dm (top), and w (bottom) between

the Parsivel and UVW observed at D1, D2, and D4. At D1

and D2, high Z > 40 dBZ and R > 20 mm h−1 are observed

during the 12:30–13:30 LST period and at around 17:30 LST

in Fig. 5a and c. Correspondingly, large Dm values reaching

2 mm were analyzed in these periods. In Fig. 5e, high Z and

R were also observed on the leeward side but showed a little

time lag compared to those in Fig. 5a and c.

It is shown in Fig. 5b, d, and f that wpar matches quite well

with wUVW. On the windward side (D1, D2), they both show

mostly upward motion and, importantly, larger upward mo-

tion during periods of heavy rainfall (i.e., 12:30–13:30 LST

and around 17:30 LST). In contrast, downward motion is

mostly observed on the leeward side (D4). It is noted in

Fig. 5f that there existed a relatively large difference between

wpar and wUVW during these high R periods. We found that

the difference is related to a decrease of Vp in these periods.

For a given Vf, a mean Vp became smaller in Eq. (2) due

to an increase of the number of small drops at a range of

1–2 mm or a spread of small drops below the Vf line in the

D-Vp distribution (more like case 2 illustrated in Fig. 3). A

physical reason for this is not clear yet, but it probably re-

sulted from strong winds and turbulence during this high R

period. In other periods, they showed quite good agreement.

Also, the maximum and minimum values of wpar and wUVW

hardly exceed ±0.5 m−1, almost one-fifth of horizontal wind
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Figure 2. Flowchart for estimating w from a diameter – fall velocity spectrum of Parsivel (1 min interval). See text for more details.

Figure 3. Schematic of Parsivel-measured diameter and fall veloc-

ity distributions for the three cases of determining zero w, upward

w, and downward w. Solid line curve indicates terminal fall ve-

locities (Vf) computed from Eq. (1). Contours show drop number

concentrations. See text for more information.

magnitudes (not shown), suggesting that winds are almost

horizontal during the whole period and they point upward or

downward slightly with the w signs. At D1 and D2, the rel-

atively large wpar and wUVW were found during heavy rain

with R > 20 mm h−1 around 13:00 and 17:40 LST (Fig. 5b

and d), indicating that updrafts contributed more to the sub-

stantial R increase on the windward side. In Fig. 5f, negative

wUVW values were found on the leeward side most of the

time including during the heavy rain period (R > 20 mm h−1),

suggesting that most of the rainfall on the leeward side oc-

curred in more association with downward w motion.

Figure 6 shows characteristics of Z–R relations at D1,

D2, and D4. Upward wpar values are colored in red and

downward wpar in blue. They were changed to percent-

ages by dividing by the total of counts in each class with

R > 0.5 mm h−1. At D1 and D2, the percentages for the up-

ward wpar class are 61 and 71 %, much larger than 39 and

29 % for the downward wpar class, respectively. In contrast,

the upward wpar percentage at D4 is 31 %, about a half of or

less than those at D1 and D2 as found in Fig. 5, and the down-

ward wpar percentage is 69 %. Power–law Z–R relations in

a form of Z = αRβ are compared between the observation

sites in Fig. 6. There was a decrease in the coefficient α from

D1 and D2 (250, 252) on the windward side to D4 (226)

on the leeward side. The exponent β did not show notable

change between the sides. The noticeable decrease in α sug-

gests that for a given Z, R is larger at D4 than D1 and D2.

This is consistent with histograms of DSD parameters in the

later section showing the larger mean R and Dm at D4.

4.2 Histogram analyses

4.2.1 Characteristics of w histograms with regard to R

The wpar and wUVW time series discussed in Sect. 4.1 are

examined in their histograms of frequency with regard to

R. In this study, a simple R threshold, R < 10 mm h−1 and

R > 10 mm h−1 (Leary and Houze, 1979; Testud et al., 2001),

Atmos. Meas. Tech., 11, 3851–3860, 2018 www.atmos-meas-tech.net/11/3851/2018/
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Figure 4. (a) Distribution of an accumulated rainfall (mm) on 1 July over contours of altitude at 300 m interval and (b) the enlarged

topography of Mt. Jiri with contours of altitude at 200 m interval, showing nine observation sites. Three sites in red are where the Parsivel

and UVW measurements were analyzed in this study. R1 and R2 show sites with a rain gauge only.

Figure 5. Time series of radar reflectivity (dBZ) in red line, rain rate (mm h−1) in blue, and mass-weighted mean diameter (Dm, mm) in

black at D1, D2, and D4 (a, c, e), and the time series of wpar (m s−1) in red and wUVW (m s−1) in black at the same sites (b, d, f). LST

stands for local standard time. A five-point running mean was applied.

www.atmos-meas-tech.net/11/3851/2018/ Atmos. Meas. Tech., 11, 3851–3860, 2018
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Figure 6. Z–R scatterplots at the three sites. Red dots indicate upward w and blue indicate downward w. Numbers on the top show percent-

ages of frequency of occurrence in each w category.

Figure 7. Frequency histograms of w (m s−1) with regard to the two R groups (a, b, c) and those with percentages in the upward and

downward w groups at the three sites (d, e, f).

to discriminate stratiform and convective rain was used, al-

though there have been plenty of other methods based on

DSDs and vertical profiles to discriminate stratiform and

convective rain (Bringi et al., 2003; Caracciolo et al., 2006;

Thompson et al., 2015; Thurai et al., 2016; Tokay and Short,

1996; Tokay et al., 1999; Ulbrich and Atlas, 2002; Williams

et al., 1995). Occurrences of upward and downward motion

were changed to percentage values as they are divided by a

total count of upward and downward w during the entire pe-

riod. A bin size for these histograms is 0.05 m s−1.

In Fig. 7a, b, c, on the whole, the wpar histograms

are in good agreement with the wUVW at all three sites,

showing the much better agreement in the stratiform class

(R < 10 mm h−1) than the convective class. The relatively

larger difference between the wpar and wUVW histograms is

found in the convective class of D1 and this is likely due

to strong wind speeds that tend to make a downward spread

in measured D vs. Vp spectra of Parsivel. Mathematically,

this downward spread decreases Parsivel-measured drop fall

velocities (i.e., decrease in Vp in Eq. 2), and thus wpar be-

comes more positive, making a larger difference with wUVW.

Compared to D4, the similar histograms of wpar are shown

between D1 and D2. That is, convective rain has occurred

almost in association with upward motion, while for strati-
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Figure 8. Frequency histograms of Z with regard to w, R, and these in the four groups with percentages at D1 and D4.

form rain, it occurred with both upward and downward mo-

tion (Fig. 7a and b). At D4, in contrast, most of stratiform

rain was associated with downward motion and convective

rain was associated with both upward and downward mo-

tion (Fig. 7c). Therefore, both convective and stratiform rain

were relatively more associated with downward motion on

the leeward side than on the windward side. Figure 7d, e,

f show the areas occupied by the upward and downward w

motion in percentage at each site, same as those in the Z–R

scatterplots shown in Fig. 6. The colored areas with the per-

centages show readily which w group is far more dominant.

As noted, upward motion was dominant at D1 and D2, while

downward motion was dominant at D4. However, they did

not show large percentage differences at all the sites, suggest-

ing that either upward or downward motion has not happened

overwhelmingly on each side in this event.

4.2.2 Characteristics of Z histograms with regard to w

and R

The wpar properties discussed in Sect. 4.1 are examined

by frequency histograms of Z with regard to w and R. In

Fig. 8a, a much larger percentage (61 %) in the upward w

group is found at D1 showing a relatively wider Z distri-

bution compared to that at D4 in Fig. 8d. In Fig. 8b, the R

percentage classified as convective was 9 %, much smaller

than 61 % in the upward w group in Fig. 8a, suggesting that

52 % of the upward w group was associated with stratiform

rain. In order to study such relationships between w and

R, histograms were split by four conditions in the upper-

right corner shown in Fig. 8c and f. That is, each group

of R > 10 mm h−1 and R < 10 mm h−1, which is regarded as

convective and stratiform rain, respectively, is separated by

upward and downward w. Therefore, for instance, 91 % of

the group R > 10 mm h−1 in Fig. 8c is equal to the sum

of 52 % of the upward w and 39 % of the downward w

group. Likewise, the upward and downward w groups are

also split by the two R conditions. Unlike D4 in Fig. 8f,

there was no thick blue line at D1 in Fig. 8c because there

were no data that fell into the category of the downward w

and R > 10 mm h−1 as shown in Fig. 7a.

In Fig. 8c, convective rain (R >10 mm h−1) with the largest

mean Z occurred solely in association with upward w motion

(thick red line). Among the four categories, the majority per-

centage of 52 % was found in the category of the upward w

and R < 10 mm h−1 at D1 but 65 % was found in the category

of the downward w and R < 10 mm h−1 at D4. The widest Z

distributions were shown in these categories. In Fig. 8d, a

much larger percentage is found in the downward w group

as noted previously. In Fig. 8e, a larger percentage of 18 % is

found in the group R > 10 mm h−1, compared to the counter-

part (9 %) at D1, indicating that, on average, rain intensity

was stronger at D4 (leeward). It is noted that at D4, con-

vective rain occurred in association with both upward (14 %)

and downward motion (4 %) although the latter showed a bit

smaller Z values than those in the upward w and convec-

tive rain category (thick red line). It is thus suggested that

downward w motion can play a significant role in increas-

ing R, even larger than 10 mm h−1, although the strongest R

was related to upward motion rather than downward. Most of

www.atmos-meas-tech.net/11/3851/2018/ Atmos. Meas. Tech., 11, 3851–3860, 2018
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Figure 9. Frequency histograms of retrieved DSD parameters with regard to the upward (red line) and downward w (blue): (a) radar reflec-

tivity (dBZ), (b) Dm (mm), (c) rain rate (mm h−1), and (d) N0 (m−3 mm−1−µ) in log scale at D1 (top four panels) and same as these but for

D4 (bottom four panels).

stratiform rain (< 10 mm h−1) was associated with downward

motion (65 %).

4.2.3 Histogram characteristics of DSD parameters

with regard to wpar

In Fig. 9, we analyze histograms of DSD parameters that

are obtained with additional w information from Parsivel,

which is the first time ever, compared to conventional DSD

studies. In this study, two histograms separated by the up-

ward and downward w were obtained per each parameter. In

Fig. 9e, the Z histograms at D4 show higher Z distributions

with mean values of 34.8 and 25.6 dBZ in the upward and

downward w categories, respectively, are shown, compared

to those (25.2 and 18.2 dBZ) at D1 in Fig. 9a. At both D1

and D4, the mean Z, R, and Dm values in the upward w cat-

egory were higher than those in the downward w category.

Between D1 and D4, the mean Z, R, and Dm over the entire

data set were higher at D4, indicating that rainfall intensity

was somewhat stronger than D1, although the maximum Z

(∼ 50 dBZ) and R (near 60 mm h−1) were quite similar to

each other (see the time series of Z and R in Fig. 5). The

mean R of 15.1 mm h−1 was higher in the upward w cate-

gory of D4 than 6.22 mm h−1 in that of D1 (Fig. 9c and g).

The total mean R was 7.2 mm h−1 at D4, also larger than

4.3 mm h−1 at D1. The mean Dm was largest at 1.37 mm

in the upward w category of D4 in Fig. 9f and smallest at

0.86 mm in the downward w category of D1 in Fig. 9b. Thus,

the mean Dm (1.03 mm) in the downward w category of D4

was greater than the one (0.86 mm) in that of D1. This indi-

cates that there was a comparatively larger number of large

drops at D4 in association with downward motion which was

dominant during the entire period. Thus, it is stressed that,

relative to the windward side, downward motion has more

influenced the growth in drop size and increase in R inten-

sity on the leeward side.

Atmos. Meas. Tech., 11, 3851–3860, 2018 www.atmos-meas-tech.net/11/3851/2018/



D.-K. Kim and C.-K. Song: Characteristics of vertical velocities 3859

5 Summary and conclusions

Intensive field observations for orographic rainfall around

Mt. Jiri in the southern regions of South Korea were con-

ducted during summertime in 2016. In order to examine up-

/downward w properties on the windward and leeward sides

of the mountain, a simple technique was newly developed to

retrieve vertical velocities (w) from drop size and fall veloc-

ity spectra of Parsivel. Their comparison with the w compo-

nents observed by UVW showed quite good agreement with

each other, producing the similar w histograms between the

two instruments. On the windward side (D1 and D2), upward

motion was more frequently observed, and particularly larger

upward motion was found during convective rain. For the lee-

ward side (D4), downward motion was more dominant even

during the large R periods (> 10 mm h−1) as on the wind-

ward side, and most of stratiform rain was associated with

downward motion. Thus, it is speculated that downward mo-

tion has contributed more to drop growth and R increase on

the leeward side. It is important to note that as the rain sys-

tem moves over the mountain, upward and downward motion

have occurred on both sides of the mountain, although there

existed the difference in their frequencies of occurrence.

Eventually, the newly developed technique that estimates

w values from Parsivel drop size and fall velocity spec-

tra is found physically meaningful and promising, although

it needs to be further tested in other places and events. It

would be applicable to w retrieval and comparison studies

near the surface to investigate rain microphysics associated

with up-/downward motion. The different properties of up-

/downward motion in different locations stress their depen-

dence on observed D-Vp distributions which vary largely

as a result of complex factors such as rainfall intensity, up-

/downdrafts, wind speed, turbulence, and so on.

In this study, both the observed and estimated w values

were very small in magnitude mostly between −0.5 and

+0.5 m s−1, about one-fifth of the measured horizontal wind

speeds. As known, the w values are just a vertical compo-

nent of winds. Thus, the low w values indicate that winds

blow almost horizontally and point up-/downward slightly

with the w signs. During the high R periods, the estimated

w values were larger in a positive sign (windward side), sug-

gesting that there were more upward-pointing flows around

the mountain. Probably this produces a large-scale environ-

ment of converging-upward air and helps to intensify the oro-

graphic rain system, increasing Z and R.

The relatively large difference between wpar and wUVW

was found on the leeward side during the high R periods

(Fig. 5f). This is probably associated with strong winds

and turbulence that can spread the D-Vp distribution of

drops down below the Vf line (particularly small drops) and

further bias w magnitudes. Hence, w retrievals using the

disdrometer-based technique are also not free from environ-

mental conditions. Since the effects of winds and turbulence

were not analyzed in this study, we will soon investigate

their effects on D-Vp distributions and resultant w biases in

a quantitative way as a subsequent work.
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