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Abstract. This paper shows that the continuous shearlet transform, a novel directional mul-
tiscale transform recently introduced by the authors and their collaborators, provides a precise ge-
ometrical characterization for the boundary curves of very general planar regions. This study is
motivated by imaging applications, where such boundary curves represent edges of images. The
shearlet approach is able to characterize both locations and orientations of the edge points, including
corner points and junctions, where the edge curves exhibit abrupt changes in tangent or curvature.
Our results encompass and greatly extend previous results based on the shearlet and curvelet trans-
forms which were limited to very special cases such as polygons and smooth boundary curves with
nonvanishing curvature.
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1. Introduction. Consider a function f(x, y), on a bounded subset of R2, which
is smooth apart from singularities along the curves γ1, . . . , γn. Our goal is to exactly
identify the curves γ1, . . . , γn and analyze their geometrical properties. This setting
provides an idealized model for a large class of images f where the singularity curves
γ1, . . . , γn represent the edges of the images. Since edges are the most prominent
features in images, their detection and analysis is a major task in several applications
from image processing and computer vision [3].

In this paper, we show that the shearlet transform, a novel multiscale directional
transform introduced by the authors and their collaborators, provides a most powerful
tool for the precise geometrical characterization of the edges of f . Our results encom-
pass, extend and refine a number of observations appeared recently in the literature,
which use the continuous wavelet transform and their generalizations to resolve the
singularities of functions and distributions.

It is well-known that the continuous wavelet transform, which maps a function f
into a transform Wψf(a, t) depending on the scales a > 0 and the locations t, has the
ability to identify the set of singularities f . If f is smooth apart from a discontinuity
at a point x0, then the continuous transformWψf(a, t) decays rapidly as a approaches
0 (fine scales), unless t is near x0 [10, 13]. Thus, the locations for the slow decay of
Wψf(a, t), as a → 0, can be used to resolve the singular support of f , that is, the set of
points where f is not regular. However, this standard multiscale approach is unable to
provide additional information about the geometry of the set of singularities of f . In
many situations, including the study of propagation of singularities in PDE problems
or in imaging applications where one is concerned with the analysis and detection
of edges, it is useful to not only identify their locations, but also their geometrical
properties, such as tangent vectors and curvature.

Very recently, starting with the seminal work by Candès and Donoho on the
curvelet transform [2] and later using our approach based on the shearlet transform [6,
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11], it was shown that, by appropriately combining the multiscale framework with the
ability to capture anisotropic and directional features, it is possible to describe both
the location and geometry of the set of singularities of functions and distributions. For
example, the continuous curvelet and shearlet transforms are useful to characterize the
wavefront set of a distribution [2, 11]. Other results show that, for some special regions
such as polygons and convex sets with boundary having non-vanishing curvature,
the continuous shearlet transform precisely capture the geometric information of the
boundary curves through its decay at fine scales [8]. Specifically, the transform decays
rapidly at fine scales everywhere, except on the edge points, for normal orientation, in
which case the decay is ‘slow’. Notice that it was previoulsy observed in [1] that the
curvelet transform of a function f decays rapidly for locations t where f is regular; for
t on a singularity and normal orientation θ, the (discrete) curvelet transform satisfies
|〈f, ψj,θ,t〉| ≤ C 2−

3
4 j , at fine scales (see also [7]). This upper bound estimate, however,

does not guarantee that the decay is necessarily as slow as 2−
3
4 j at t. To effectively

“detect” the discontinuity, an appropriate lower bound estimate is needed. This issue
was addressed in [8].

In this paper, we extend the observations above to a much more general and
“realistic” setting, by showing that the continuous shearlet transform is useful to
characterize the boundary curves of very general planar regions. This includes not
only smooth edge points, but also edge points with abrupt changes in the tangent
or curvature. Indeed such points (frequently indicated as corner points or junctions)
usually provide the most conspicuous and useful features for many algorithms of edge
analysis and feature extraction [17, 12].
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Fig. 1.1. Asymptotic decay of the continuous shearlet transform of the B(x) = χS(x). At the

regular points p ∈ ∂S, for normal orientation, the shearlet transform decays as O(a
3
4 ). For all

other values of s, the decay is as fast as O(aN ), for any N ∈ N. At the corner points, the shearlet

transform decays as O(a
3
4 ) for both normal orientations.

To illustrate our results, let S ⊂ R2 and suppose that its boundary ∂S is a
piecewise smooth curve. Let B = χS , and consider the continuous shearlet transform
of B:

SHψB(a, s, p) = 〈B,ψasp〉, a > 0, s ∈ R, p ∈ R2.

This transform is mapping B ∈ L2(R2) into a collection of coefficients 〈B, ψasp〉
associated with scales a > 0, orientations s ∈ R and locations p ∈ R2. This approach
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is a truly multidimensional extension of the classical continuous wavelet transform,
providing a unique ability to capture the geometric information of multidimensional
functions. Specifically, we will show that the asymptotic decay of SHψB(a, s, p), at
fine scale a → 0, signals both the location and the orientation of the boundary curve
∂S. The decay properties of the continuous shearlet transform are illustrated in
Figure 1.1, which shows that:

• If p /∈ ∂S, then |SHψB(a, s, p)| decays rapidly, as a → 0, for each s ∈ R.
• If p ∈ ∂S and ∂S is smooth near p, then |SHψB(a, s, p)| decays rapidly, as

a → 0, for each s ∈ R unless s = s0 is the normal orientation to ∂S at p. In
this last case, |SHψB(a, s0, p)| ∼ a

3
4 , as a → 0.

• If p is a corner point of ∂S and s = s0, s = s1 are the normal orientations
to ∂S at p, then |SHψB(a, s0, p)|, |SHψB(a, s1, p)| ∼ a

3
4 , as a → 0. For all

other orientations, the asymptotic decay of |SHψB(a, s, p)| is faster (even if
not necessarily “rapid”).

Notice that, by “rapid decay”, we mean that, given any N ∈ N, there is a CN > 0
such that |SHψB(a, s, p)| ≤ CaN , as a → 0. The more precise statements of these
results, including the discussion of the corner points, will be given in Section 3.

Supported by the theoretical results presented in this paper, numerical algorithms
for edge detection and identification of corner points have been developed by the
authors and other collaborators and presented in a separate paper. The numerical
tests clearly indicate that the shearlet approach outperforms wavelet-based and other
traditional methods which do not have the same ability to extract the directional
information of edges. We refer to [16] for extensive numerical demonstrations of the
application of the shearlet transform to problems of edge analysis and detection.

The paper is organized as follows. In Section 2, we recall the definition of the
continuous shearlet transform. Our main results are stated in Section 3. In Section 4
we develop some technical tools with are used in the proofs of our main theorems,
presented in Section 5. Finally, in Section 6, we briefly describe a shearlet-based
approach for the classification of some geometrical features in planar shapes.

2. The shearlet transform. We start by recalling the basic properties of the
continuous shearlet transform, which was introduced in [6, 11]. Consider the subspace
of L2(R2) given by L2(C)∨ = {f ∈ L2(R2) : supp f̂ ⊂ C}, where C is the “horizontal
cone” in the frequency plane:

C = {(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
| ≤ 1}.

The following proposition, which is a simple generalization of a result from [11], pro-
vides sufficient conditions on the function ψ for obtaining a reproducing system of
continuous shearlets on L2(C)∨.

Proposition 2.1. Consider the shearlet group Λ(h) = {(Mas, p) : 0 < a ≤
1
4 , − 3

2 ≤ s ≤ 3
2 , p ∈ R2}, where Mas =

(
a −a1/2 s

0 a1/2

)
. For ξ = (ξ1, ξ2) ∈ R2, ξ2 6= 0, let

ψ(h) be defined by

ψ̂(h)(ξ) = ψ̂(h)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

),

where:
(i) ψ1 ∈ L2(R) satisfies the (generalized) Calderòn condition

∫ ∞

0

|ψ̂1(aξ)|2 da

a
= 1 for a.e. ξ ∈ R,
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and supp ψ̂1 ⊂ [−2,− 1
2 ] ∪ [ 12 , 2];

(ii) ‖ψ2‖L2 = 1 and supp ψ̂2 ⊂ [−1, 1].
Then, for all f ∈ L2(C)∨, we have

f(x) =
∫

R2

∫ 3
2

− 3
2

∫ 1
4

0

〈f, ψ(h)
asp〉ψ(h)

asp(x)
da

a3
ds dp,

where ψ
(h)
asp(x) = |detMas|− 1

2 ψ(h)(M−1
as (x− p)), with convergence in the L2 sense.

If the assumptions of Proposition 2.1 are satisfied, we say that the functions

Ψ(h) = {ψ(h)
asp : 0 < a ≤ 1

4 , − 3
2 ≤ s ≤ 3

2 , p ∈ R2} (2.1)

are continuous shearlets for L2(C)∨ and that the corresponding mapping from f ∈
L2(C)∨ into SH(h)f(a, s, p) = 〈f, ψ

(h)
asp〉 is the continuous shearlet transform on L2(C)∨

with respect to Λ(h). The index label (h) used in the notation of the shearlet system
Ψ(h) (and the corresponding shearlet transform) indicates that the system (2.1) has
frequency support in the horizontal cone C; a second shearlet system will be defined
below with support in the complementary vertical cone.

Observe that, in the frequency domain, a shearlet ψ
(h)
asp ∈ Ψ(h) has the form:

ψ̂(h)
asp(ξ1, ξ2) = a

3
4 ψ̂1(a ξ1) ψ̂2(a−

1
2 ( ξ2

ξ1
− s)) e−2πiξp.

Thus, each function ψ̂
(h)
asp has support:

supp ψ̂(h)
asp ⊂ {(ξ1, ξ2) : ξ1 ∈ [− 2

a ,− 1
2a ] ∪ [ 1

2a , 2
a ], | ξ2

ξ1
− s| ≤ a

1
2 }.

That is, its frequency support is a pair of trapezoids, symmetric with respect to the
origin, oriented along a line of slope s. The support becomes increasingly elongated
as a → 0. This is illustrated in Figure 1.

HHY
(a, s) = ( 1

32 , 1)@
@@R

(a, s) = ( 1
4
, 0)
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32 , 0)
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ξ2

Fig. 2.1. Support of the shearlets ψ̂asp (in the frequency domain) for different values of a and s.

There are a variety of examples of functions ψ1 and ψ2 satisfying the assumptions
of Proposition 2.1. In particular, one can find a number of such examples with the
additional property that ψ̂1, ψ̂2 ∈ C∞0 [6, 11]. For the kind of applications which will
be described in this paper, some further additional properties are needed. In particu-
lar, we will require that ψ̂1 is a smooth odd function, and that ψ̂2 is an even smooth
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function which is decreasing on [0, 1). We refer to [8] for details about their construc-
tions. In the following, throughout the paper, we will assume that the functions ψ1

and ψ2 satisfy these assumptions.
As shown by Proposition 2.1, the continuous shearlet transform SH(h)

ψ provides
a reproducing formula only for functions in a proper subspace of L2(R2). To extend
the transform to all f ∈ L2(R2), we can introduce a similar transform to deal with
the functions supported on the “vertical cone”:

C(v) = {(ξ1, ξ2) ∈ R2 : |ξ2| ≥ 2 and | ξ2
ξ1
| > 1}.

Specifically, let

ψ̂(v)(ξ) = ψ̂(v)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2( ξ1
ξ2

),

where ψ̂1, ψ̂2 satisfy the same assumptions as in Proposition 2.1, and consider the
shearlet group Λ(v) = {(Nas, p) : 0 < a ≤ 1, − 3

2 ≤ s ≤ 3
2 , p ∈ R2}, where Nas =(

a1/2 0

−a1/2 s a

)
. Then it is easy to verify that the functions

Ψ(v) = {ψ(v)
asp = |det Nas|− 1

2 ψ(v)(N−1
as (x− p)) : 0 < a ≤ 1

4 , − 3
2 ≤ s ≤ 3

2 , p ∈ R2}
are continuous shearlets for L2(C(v))∨. The corresponding transform SH(v)

ψ f(a, s, p) =

〈f, ψ
(v)
asp〉 is the continuous shearlet transform on L2(C)∨ with respect to Λ(v). Finally,

by introducing an appropriate window function W , we can represent the functions
with frequency support on the set [−2, 2]2 as

f =
∫

R2
〈f, Wp〉Wp dp,

where Wp(x) = W (x−p). As a result, we can represent any function f ∈ L2(R2) with
respect of the full system of shearlets, which includes the set of horizontal shearlets
ψ

(h)
asp, vertical shearlets ψ

(v)
asp and coarse-scale isotropic functions Wp. We refer to [11]

for more details about this representation. For our purposes, it is only the behavior
of the fine-scale shearlets that matters. In this paper, we will apply the continuous
shearlet transforms SH(h)

ψ and SH(v)
ψ , at fine scales (a → 0), to resolve and precisely

describe the boundaries of certain planar regions. Hence, it will be convenient to
re-define the “fine-scale” shearlet transform as follows. For 0 < a ≤ 1/4, s ∈ R,
t ∈ R2, the (fine-scale) continuous shearlet transform is the mapping from f ∈ L2(R2\
[−2, 2]2)∨ into SHψf which is defined by:

SHψf(a, s, p) =

{
SH(h)

ψ (a, s, p) if |s| ≤ 1
SH(v)

ψ (a, 1
s , p) if |s| > 1.

Remark. One can define a more general family of shearlet groups, associated
with a parameter 0 < α < 1. They are defined by Λα = {(Mas, t) : 0 < a ≤ 1

4 , − 3
2 ≤

s ≤ 3
2 , t ∈ R2}, where Mas =

(
a −aα s

0 aα

)
. Corresponding to these groups, one can

define a family of Continuous α-Shearlet Transforms SH(α)
ψ f with properties similar

to those of the one we defined above (case α = 1/2). For simplicity of notation, in the
following we will only consider the case α = 1/2. Our results presented below can be
easily extended to the other values of α ∈ (0, 1) (see [8], where the transform SH(α)

ψ f
is applied to characterize the boundaries of convex boundaries with non-vanishing
curvature).
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3. Main results. The main goal of this paper is to characterize the boundaries
of bounded planar regions S ⊂ R2 by applying the continuous shearlet transform.

We assume that the boundary set of S, denoted by ∂S, is a simple curve, of finite
length L, and is smooth except for finitely many ‘corner points’. To precisely define
such corner points, it is useful to introduce a parametrization of ∂S. Hence, let ~α(t)
be the parametrization of ∂S with respect to the arc length parameter t. For any t0 ∈
(0, L) and any j ≥ 0, we assume that limt→t−0

~α(j)(t) = ~α(j)(t−0 ) and limt→t+0
~α(j)(t) =

~α(j)(t+0 ) exist. Also, let ~n(t−), ~n(t+) be the outer normal direction(s) of ∂S at ~α(t)
from the left and right, respectively; if these two are equal, we will write them as ~n(t).
Similarly, for the curvature of ∂S, we use notations κ(t−), κ(t+) and κ(t).

We say that p = ~α(t0) is a corner point of ∂S if either (i) ~α′(t−0 ) 6= ±~α′(t+0 ) or
(ii) ~α′(t−0 ) = ±~α′(t+0 ), but κ(t−0 ) 6= κ(t+0 ). When (i) holds, we say that p is a corner
point of first type, while when (ii) holds, we say that p is a corner point of second
type. On the other hand, if ~α(t) is infinitely many times differentiable at t0, we say
that ~α(t0) is a regular point of ∂S. Finally, we say that the boundary curve ~α(t) is
piecewise smooth if the values ~α(t) are regular points for all 0 ≤ t ≤ L, except for
finitely many corner points.

The above definition of piecewise smooth boundary curve can be modified by
assuming that the regular points of ∂S are M times differentiable, for M ∈ N, rather
than infinitely differentiable. All the results presented below can be adapted to the
case of piecewise CM boundary curves, for M ≥ 3.

Let p = ~α(t0) be a regular point and let s = tan(θ0) with θ0 ∈ (−π
2 , π

2 ). Let
Θ(θ0) = (cos θ0, sin θ0). We say that s corresponds to the normal direction of ∂S at
p if Θ(θ0) = ±~n(t0). We can proceed similarly when ~α(t0) is a corner point. In this
case, however, there are two outer normal directions ~n(t−0 ) and ~n(t+0 ).

We are now ready to state our results.
If p /∈ ∂S, it was shown in [8] that the continuous shearlet transform SHψB(a, s, p)

decays rapidly, asymptotically for a → 0. That is, for any s ∈ R,

lim
a→0+

a−N SHψB(a, s0, p) = 0, for all N > 0.

On the other hand, if p ∈ ∂S the asymptotic decay of the continuous shearlet trans-
form SHψB(a, s, p), as a → 0, we have the following facts.

Theorem 3.1. Let p ∈ ∂S be a regular point.
(i) If s = s0 does not correspond to the normal direction of ∂S at p then

lim
a→0+

a−N SHψB(a, s0, p) = 0, for all N > 0. (3.1)

(ii) If s = s0 corresponds to the normal direction of ∂S at p then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, p)| < ∞. (3.2)

Theorem 3.2. Let p ∈ ∂S be a corner point.
(i) If p is a corner point of the first type and s = s0 does not correspond to any

of the normal directions of ∂S at p, then

lim
a→0+

a−
9
4 |SHψB(a, s0, p)| < ∞. (3.3)
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(ii) If p is a corner point of the second type and s = s0 does not correspond to
any of the normal directions of ∂S at p, then

0 < lim
a→0+

a−
9
4 |SHψB(a, s0, p)| < ∞. (3.4)

(iii) If s = s0 corresponds to one of the normal directions of ∂S at p then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, p)| < ∞. (3.5)

Theorem 3.1 shows that, for p ∈ ∂S, the continuous shearlet transform decays
rapidly, asymptotically for a → 0, unless s = s0 corresponds to the normal direction
of ∂S at p, in which case

|SHψB(a, s0, p)| ∼ O(a
3
4 ), as a → 0.

This generalizes the results found in [8, 11], which were limited to the case where
B = χS was a disc or a convex set with non-vanishing curvature. In the case of
the disc, a similar result, with the same decay rate, holds for the continuous curvelet
transform [2].

Theorem 3.2 shows that, at a corner points p, the asymptotic decay of the con-
tinuous shearlet transform depends both on the tangent and the curvature at p. If
s = s0 corresponds to one of the normal directions of ∂S at p, then the continuous
shearlet transform decays as

|SHψB(a, s0, p)| ∼ O(a
3
4 ), as a → 0.

This is the same decay rate as for regular points, when s0 corresponds to the normal
direction (but now there are two normal directions). If p is a corner point of the
second type and s does not correspond to any of the normal directions, then

|SHψB(a, s0, p)| ∼ O(a
9
4 ), as a → 0,

which is a faster decay rate than in the normal-orientation case. Finally, if p is a corner
point of the first type and s0 does not correspond to any of the normal directions,
then, by the theorem, we only know that the asymptotic decay of |SHψB(a, s0, p)| is
not slower than O(a

9
4 ); however the decay could be faster than O(a

9
4 ). For example,

the following result shows what happens under certain special assumptions on the
curvature κ(t) at p.

Proposition 3.3. Let p = ~α(t0) ∈ ∂S be a corner point of the first type and
suppose that s = s0 does not correspond to any of the normal direction of ∂S at p.

(i) If κ(t−0 )κ(t+0 ) = 0 and κ(t−0 ) + κ(t+0 ) > 0, then

0 < lim
a→0+

a−
9
4 |SHψB(a, s0, p)| < ∞.

(ii) Assume that ~α(j)(t0) = ~0 for all j ≥ 2, then

lim
a→0+

a−N SHψB(a, s0, p) = 0, for all N > 0.

By Proposition 3.3, the asymptotic decay of SHψB(a, s0, p), as a → 0, at a corner
p is very different when S is a half disk or S is a polygon. In the case when p is



8 K. GUO AND D. LABATE

a corner point of a half disk (which satisfies the assumptions of Proposition 3.3(i)),
when s0 does not correspond to the normal directions, we have that

|SHψB(a, s0, p)| ∼ O(a
9
4 ), as a → 0.

However, when S is p is corner point of a polygon (which satisfies the assumptions
of Proposition 3.3(ii)), when s0 does not correspond to the normal directions, for any
N ∈ N there is a constant CN > 0 such that

|SHψB(a, s0, p)| ≤ CN aN , as a → 0.

We want to point out that, for the continuous curvelet transform, when s0 does
not correspond to the normal directions, the corner points of either the half disk or the
polygon have the same decay rate O(a

5
4 ) as a → 0. The reason behind this difference

is that the affine-like structure of the shearlet transform yields some useful cancelation
properties (see the remark made in the proof of Theorem 3.2); these properties do
not hold for the curvelet transform.

4. Localization lemmata and other useful results. We will now establish a
number of results providing the essential analytical tools to prove the main theorems
of this paper. Lemmata 4.1 and 4.2, in particular, show that the continuous shearlet
transform exhibits precisely those localization properties which are needed to analyze
the geometry of edges.

Let S be a bounded planar regions whose boundary is smooth except for finitely
many corner points, according to the definition in Section 3. Let B = χS .

By the divergence theorem, we can write the Fourier transform of B as

B̂(ξ) = χ̂S(ξ) = − 1
2πi|ξ|

∫

∂S

e−2πiξx Θ(θ) · ~n(x) dσ(x)

= − 1
2πiρ

∫ L

0

e−2πiρ Θ(θ)·~α(t) Θ(θ) · ~n(t) dt (4.1)

where ξ = ρΘ(θ), Θ(θ) = (cos θ, sin θ). (Notice that this is the same approach which
is used, for example, in [9]).

Using the expression above, we have that

SHψB(a, s, p)
= 〈B,ψasp〉

=
∫ 2π

0

∫ ∞

0

B̂(ρ, θ) ψ̂
(d)
asp(ρ, θ) ρ dρ dθ

= − 1
2πi

∫ 2π

0

∫ ∞

0

∫ L

0

ψ̂
(d)
asp(ρ, θ)e−2πiρ Θ(θ)·~α(t) Θ(θ) · ~n(t) dt dρ dθ, (4.2)

where the upper-script in ψ
(d)
asp is either d = h, when |s| ≤ 1, or d = v, when |s| > 1.

For ε > 0, let D(ε, p) be the ball in R2 of radius ε and center p, and Dc(ε, p) =
R2 \D(ε, p). Hence, using (4.2), we can write the shearlet transform of B as

SHψB(a, s, p) = I1(a, s, p) + I2(a, s, p),
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where

I1(a, s, p)

= − 1
2πi

∫ 2π

0

∫ ∞

0

∫

∂S∩D(ε,p)

ψ̂
(d)
asp(ρ, θ)e−2πiρ Θ(θ)·~α(t) Θ(θ) · ~n(t) dt dρ dθ (4.3)

I2(a, s, p)

= − 1
2πi

∫ 2π

0

∫ ∞

0

∫

∂S∩Dc(ε,p)

ψ̂
(d)
asp(ρ, θ)e−2πiρ Θ(θ)·~α(t) Θ(θ) · ~n(t) dt dρ dθ. (4.4)

The following lemma shows that the asymptotic decay of the shearlet transform
SHψB(a, s, p), as a → 0, is only determined by the values of the boundary ∂S which
are “close” to p.

Lemma 4.1. Let I2(a, s, p) be given by (4.4). For any N >, there is a constant
CN > 0 such that

|I2(a, s, p)| ≤ CN aN ,

asymptotically as a → 0, uniformly for all s ∈ R.
Proof. We will only examine the behavior of I2(a, s, p) for |s| ≤ 1 (in which case

we use the ‘horizontal’ shearlet transform). The case where |s| > 1 is similar. We
have:

I2(a, s, p) = − 1
2πi

∫

∂S∩Dc(ε,p)

∫ 2π

0

∫ ∞

0

ψ̂
(h)
asp(ρ, θ)e−2πiρ Θ(θ)·~α(t) Θ(θ) · ~n(t) dt dρ dθ

=
−a3/4

2πi

∫

∂S∩Dc(ε,p)

∫ 2π

0

∫ ∞

0

ψ̂1(aρ cos θ) ψ̂2(a−1/2(tan θ − s))

×e2πiρ Θ(θ) p dρ dθe−2πiρ Θ(θ)·~α(t) Θ(θ) · ~n(t) dt

=
−a−1/4

2πi

∫

∂S∩Dc(ε,p)

∫ 2π

0

∫ ∞

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − s))

×e2πi ρ
a Θ(θ)·(p−~α(t)) Θ(θ) · ~n(t) dρ dθ dt.

By assumption, ‖p − ~α(t)‖ ≥ ε for all ~α(t) ∈ ∂S ∩ Dc(ε, p). Hence, there is a
constant Cp such that infx∈∂S∩Dc(ε,p) |p − x| = Cp. Let I = {θ : | tan θ − s| ≤ a

1
2 },

I1 = {θ : |Θ(θ)·(p−x)| ≥ Cp√
2
}⋂ I, and I2 = I\I1. Since the vectors Θ(θ),Θ′(θ) form

an orthonormal basis in R2, it follows that, on the set I2, we have |Θ′(θ)·(p−x)| ≥ Cp√
2
.

Hence we can express each one of the integrals I21 as a sum of a term where θ ∈ I1 and
another term where θ ∈ I2, and integrate by parts as follows. On I1, we integrate
by parts with respect to the variable ρ; on I2 we integrate by parts with respect
to the variable θ. Doing this repeatedly, it yields that, for any positive integer n,
|I2| ≤ Cn a

n
2 . This finishes the proof of lemma 4.1.

When p is a corner point of ∂S and s corresponds to one of the normal directions
of ∂S at p, it will be useful to replace a tiny portion of ∂S around p by appropriate line
segments and arcs of circles. This is the motivation of Lemma 4.2. Before presenting
this lemma, we need some notations.

Let ~α(t) be the boundary curve ∂S, with 0 ≤ t ≤ L. We may assume that L > 1
and p = (0, 0) = ~α(1). We can write

C = ∂S ∩D(ε, (0, 0)) = C− ∪ C+,
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where

C− = {~α(t) : 1− ε ≤ t ≤ 1}, C+ = {~α(t) : 1 ≤ t ≤ 1 + ε}. (4.5)

According to the definition given above, if ~α(m)(1−) 6= ± ~α(m)(1+) for some m ≥ 1,
then p = (0, 0) is a m-corner point. Otherwise, if ~α(t) is continuously differentiable
at t = 1, then p is a regular point.

Let κ(1−), κ(1+) be the curvature of ∂S at p from the left and right respectively.
If κ(1−) > 0, let C̃− = {~β(t) : 1− ε ≤ t ≤ 1} be an arc of the unique osculating circle
of ∂S at p from the left. If, on the other hand, κ(1−) = 0, then let C̃− = {~β(t) :
1− ε ≤ t ≤ 1} be a segment of the tangent line of ∂S at p from the left. In the proof
of Lemma 4.2, we will use the fact that ‖~α(t)− ~β(t)‖ ≤ C(1− t)3 for all t ∈ [1− ε, 1].
Also let M̃− to be the line segment connecting ~α(1 − ε) to ~β(1 − ε). Similarly, we
define the curve C̃+ = {~β(t) : 1 ≤ t ≤ 1 + ε} and the line segment M̃+ which are
associated with the curve C+. Finally, we set C̃ = C̃− ∪ C̃+ and M̃ = M̃− ∪ M̃+ and
we denote by S̃ the planar region whose boundary is S̃ = (∂S \ C) ∪ (C̃ ∪ M̃), and
B̃ = χS̃ . That is, in a neighborhood of (0, 0), we have replaced the boundary ∂S,
with unions of arcs and/or segments, depending on the values of the curvature of ∂S.

The following lemma adapts some ideas from the proof of Theorem 4.1 in [8].
Lemma 4.2. Let B̃ = χS̃, where S̃ is defined above. For any s ∈ R, we have

lim
a→0+

a−
3
4

∣∣∣SHψB(a, s, (0, 0))− SHψB̃(a, s, (0, 0))
∣∣∣ = 0.

Proof. Without loss of generality, we may assume s = 0. Let γ be chosen such
that 3

8 < γ < 1
2 . Also one can assume that aγ < ε, so that D(aγ , (0, 0)) ⊂ D(ε, (0, 0))

(and, hence, Lemma 4.1 applies).
A direct calculation shows that
∣∣∣SHψB(a, 0, (0, 0))− SHψB̃(a, 0, (0, 0))

∣∣∣ ≤
∫

R2
|ψa00(x)| |χS(x)− χS̃(x)| dx

= T1(a) + T2(a),

where, for x = (x1, x2), we have:

T1(a) = a−
3
4

∫

D(aγ ,(0,0))

|ψ(a−1x1, a
− 1

2 x2)| |χS(x1, x2)− χS̃(x1, x2)| dx1 dx2

T2(a) = a−
3
4

∫

Dc(aγ ,(0,0))

|ψ(a−1x1, a
− 1

2 x2)| |χS(x1, x2)− χS̃(x1, x2)| dx1 dx2.

Observe that:

T1(a) ≤ C a−
3
4

∫

D(aγ ,(0,0))

|χS(x1, x2)− χS̃(x1, x2)| dx1 dx2.

To estimate the above quantity, it is enough to compute the area between S and S̃.
From the construction of C̃, we have

T1(a) ≤ C a−
3
4

∫ 1+aγ

1−aγ

‖~α(t)− ~β(t)‖dt

≤ C a−
3
4

∫ 1+aγ

1−aγ

|1− t|3dt

= C a4γ− 3
4 .
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Since γ > 3
8 , the above estimate shows that T1(a) = o(a

3
4 ).

The assumptions on ψ imply that, for each N > 0, there is a constant CN > 0
such that |ψ(x)| ≤ CN (1 + |x|2)−N . Thus, for a < 1, we can estimate T2(a) as:

T2(a) ≤ C a−
3
4

∫

Dc(aγ ,(0,0))

|ψ(a−1x1, a
− 1

2 x2)| dx1 dx2

≤ CN a−
3
4

∫

Dc(aγ ,(0,0))

(
1 + (a−1x1)2 + (a−

1
2 x2)2

)−N

dx1 dx2

≤ CN a−
3
4

∫

Dc(aγ ,(0,0))

(
(a−1/2x1)2 + (a−

1
2 x2)2

)−N

dx1 dx2

= CN aN− 3
4

∫

Dc(aγ ,(0,0))

(
x2

1 + x2
2

)−N
dx1 dx2

= CN aN− 3
4

∫ ∞

aγ

r−1−2N dr

= CN a2N( 1
2−γ)+2γ− 3

4 .

Since γ < 1
2 and N can be chosen arbitrarily large, then T2(a) = o(a

3
4 ).

The following result is a special case of the method of stationary phase (Proposi-
tion 8.3 from [14]).

Lemma 4.3. Let φ and ψ be smooth functions. Suppose φ′(x0) = 0 and φ′′(x0) 6=
0. If ψ is supported in a sufficiently small neighborhood of x0, then

J(λ) =
∫

Rn

ei λ φ(x) ψ(x) dx = a0e
i φ(x0) λ−1/2 + O(λ−1),

as λ →∞, where

a0 =
(

2πi

φ′′(x0)

) 1
2

ψ(x0).

Finally, the following technical result follows by adapting an argument from [8].
For completeness, its proof is reported in Appendix A.

Lemma 4.4. Let ψ2 ∈ L2(R) be such that ‖ψ2‖2 = 1, supp ψ̂2 ⊂ [−1, 1] and ψ̂2 is
even and decreasing on [0, 1]. Then, for each ρ > 0, one has

∫ 1

0

ψ̂2(u)
(
sin(πρu2) + cos(πρu2)

)
du > 0.

Notice that the assumptions above on ψ2 are the same as those we made in
Section 2.

5. Proofs of Main Theorems. We start by proving Theorem 3.2.

5.1. Proof of Theorem 3.2. (Part (i)). Assume that s = s0 does not corre-
spond to any of the normal directions of ∂S at p = (0, 0). Let s0 = tan θ0. In the
following, we will assume that |θ0| ≤ π

4 . Otherwise, for the case π
4 < |θ0| ≤ π

2 , we
can proceed very similarly, after replacing the “horizontal” shearlet transform, with
the “vertical” shearlet transform. Since the analysis of this situation is very similar,
it will be omitted.
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Cutting [−π
2 , 3π

2 ] into [−π
2 , π

2 ] and [π
2 , 3π

2 ], and changing the variable θ = θ′ + π
for the integral on [π

2 , 3π
2 ], we can write I1, given by (4.3), as

I1(a, s0, (0, 0)) = I11(a, s0, (0, 0)) + I12(a, s0, (0, 0)),

where, for j = 1, 2,

I1j(a, s0, (0, 0))

= −a−
1
4

2πi

∫ ∞

0

∫ π
2

−π
2

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − tan θ0)) Kj(a, ρ, θ) dθ dρ,

and

Kj(a, ρ, θ) = Kj1(a, ρ, θ) + Kj2(a, ρ, θ),

with

K11(a, ρ, θ) =
∫ 1

1−ε

e−2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t) dt,

K12(a, ρ, θ) =
∫ 1+ε

1

e−2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t) dt,

K21(a, ρ, θ) =
∫ 1

1−ε

e2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t) dt,

K22(a, ρ, θ) =
∫ 1+ε

1

e2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t) dt.

By the support condition on ψ̂2, we have that θ → θ0 as a → 0. Since s0 = tan θ0

does not correspond to any of the normal directions of ∂S at (0, 0), it follows that
Θ(θ0)·~α′(1) 6= 0. Hence, for a sufficiently small (in which case θ is near θ0), there is an
ε > 0 sufficiently small, such that Θ(θ) ·~α′(t) 6= 0 for all θ neat θ0 and t ∈ [1− ε, 1+ ε].

Writing

e−2πi ρ
a Θ(θ)·~α(t) =

−a

2πiρ Θ(θ) · ~α′(t)
(
e−2πi ρ

a Θ(θ)·~α(t)
)′

,

and then integrating by parts twice the integral K11, with respect to t, we obtain

K11(a, ρ, θ) = − a

2πiρ

∫ 1

1−ε

(
e−2πi ρ

a Θ(θ)·~α(t)
)′ Θ(θ) · ~n(t)

Θ(θ) · ~α′(t) dt

= K111(a, ρ, θ) + K112(a, ρ, θ) + K113(a, ρ, θ) + O(a3),

where

K111(a, ρ, θ) = − a

2πiρ
e−2πi ρ

a Θ(θ)·~α(1−) Θ(θ) · ~n(1−)
Θ(θ) · ~α′(1−)

K112(a, ρ, θ) =
a

2πiρ
e−2πi ρ

a Θ(θ)·~α(1−ε) Θ(θ) · ~n(1− ε)
Θ(θ) · ~α′(1− ε)

K113(a, ρ, θ) =
a2

(2πiρ)2

(
e−2πi ρ

a Θ(θ)·~α(t) 1
Θ(θ) · ~α′(t) (

Θ(θ) · ~n(t)
Θ(θ) · ~α′(t) )′

)∣∣∣∣
1

1−ε

.
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Similarly, one can write

K12(a, ρ, θ) = K121(a, ρ, θ) + K122(a, ρ, θ) + K123(a, ρ, θ) + O(a3).

Accordingly, we can write

I11(a, s0, p) = I111(a, s0, p) + I112(a, s0, p) + I113(a, s0, p) + O(a3),

where, for l = 1, 2, 3,

I11l(a, s0, p) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − tan θ0))×
× (K11l(a, ρ, θ) + K12l(a, ρ, θ)) dθ dρ.

Similarly for the integral I12, we can write

I12(a, s0, p) = I121(a, s0, p) + I122(a, s0, p) + I123(a, s0, p) + O(a3),

where, for l = 1, 2, 3,

I12l(a, s0, p) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − tan θ0))×
× (K21l(a, ρ, θ) + K22l(a, ρ, θ)) dθ dρ,

and the terms K21l,K22l are constructed as the corresponding terms K11l,K12l. It is
easy to see that

K111(a, ρ, θ) + K121(a, ρ, θ) + K211(a, ρ, θ) + K221(a, ρ, θ) = 0;

hence it follows that1

I111(a, s0, p) + I121(a, s0, p) = 0.

Since ∂S is simple, it follows that ~α(1−ε) 6= (0, 0) and ~α(1+ε) 6= (0, 0). Therefore,
by the argument in Lemma 4.1, we have that, for any N > 0,

|I112(a, s0, p)| ≤ CN aN , as a → 0.

similarly one has

|I122(a, s0, p)| ≤ CN aN , as a → 0.

It only remains to analyze the terms I113, I123. To do that, notice that each one of
the elements K113, K123, K213, K223, is made out of two terms, one at t = 1±ε and one
at t = 1. Similarly to I112(a, s0, p) and I122(a, s0, p), the terms evaluated at t = 1± ε
have fast asymptotic decay as a → 0, and can be included in negligible part O(a3).
Thus, in order to determine the asymptotic decay rate for I113(a, s0, p)+I123(a, s0, p),
one only needs to analyze the corresponding Kijk terms at t = 1.

1Here the the assumption that ψ̂1 is odd makes this cancelation possible. Notice that the cor-
responding generating function in the curvelet system is only defined in the radial direction and,
hence, does not have the same cancelation property.



14 K. GUO AND D. LABATE

Let κ(t) be the curvature of ∂S at ~α(t). According to the Frenet formulas [4], we
have that ~α′′(t) = κ(t)~n(t) and ~n′(t) = −κ(t) ~α′(t). Hence, using these formulas and
the fact that the pair {~α′(t), ~n(t)} is an orthonormal basis in R2, we have:

(
Θ(θ) · ~n(t)
Θ(θ) · ~α′(t)

)′

=
(Θ(θ) · ~n′(t)) (Θ(θ) · ~α′(t))− (Θ(θ) · ~α′′(t)) (Θ(θ) · ~n(t))

(Θ(θ) · ~α′(t))2

= −κ(t) ((Θ(θ) · ~α′(t)) (Θ(θ) · ~α′(t)) + (Θ(θ) · ~n(t)) (Θ(θ) · ~n(t)))
(Θ(θ) · ~α′(t))2

= − κ(t) |Θ(θ)|2
(Θ(θ) · ~α′(t))2 = − κ(t)

(Θ(θ) · ~α′(t))2

It follows from the above observations that

lim
a→0+

(ρ

a

)2

(K−
113(a, s0, p) + K+

123(a, s0, p))

=
1

(2πi)2

(
κ(1+)

(Θ(θ0) · ~α′(1+))3
− κ(1−)

(Θ(θ0) · ~α′(1−))3

)
. (5.1)

Similarly one has

lim
a→0+

(ρ

a

)2

(K−
213(a, s0, p) + K+

223(a, s0, p))

=
1

(2πi)2

(
κ(1+)

(Θ(θ0) · ~α′(1+))3
− κ(1−)

(Θ(θ0) · ~α′(1−))3

)
. (5.2)

Now by making the change of variables u = a−
1
2 (tan θ − tan θ0) in I113 and I123,

and applying (5.1) and (5.2), we obtain

lim
a→0+

a−( 1
4+2) (I113(a, s0, p) + I123(a, s0, p)) = −A,

where

A =
cos2 θ0

2π2

(
κ(1+)

(Θ(θ0) · ~α′(1+))3
− κ(1−)

(Θ(θ0) · ~α′(1−))3

)

×
∫ ∞

0

ψ̂1(ρ cos θ0) dρ

∫ 1

−1

ψ̂2(u) du. (5.3)

This completes the proof of part (i) of Theorem 3.2.

(Part (ii)) It is enough for us to show that A 6= 0, where A is given by (5.3).
In this case, we have that

~α′(1+) = ~α′(1−) or ~α′(1+) = −~α′(1−).

If ~α′(1+) = ~α′(1−), from κ(1+) 6= κ(1−), we have

A =
cos2 θ0

2π2

κ(1+)− κ(1−)
(Θ(θ0) · ~α′(1))3

∫ ∞

0

ψ̂1(ρ cos θ0) dρ

∫ 1

−1

ψ̂2(u) du 6= 0.
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If on the other hand, ~α′(1+) = −~α′(1−), then it follows that ~n(1+) = −~n(1−).
Since ~α′′(1+) = −κ(1+)~n(1−) and ~α′′(1−) = κ(1−)~n(1−), and since κ(1+) 6= κ(1−),
we see that it is not possible to have κ(1+) = κ(1−) = 0. Since we know κ(1+) ≥ 0,
and κ(1−) ≥ 0, it follows that κ(1+) + κ(1−) > 0.

Thus we have

A =
cos2 θ0

2π2
(

κ(1+) + κ(1−)
(Θ(θ0) · ~α′(1+))3

∫ ∞

0

ψ̂1(ρ cos θ0) dρ

∫ 1

−1

ψ̂2(u) du 6= 0.

This completes the proof for (ii) of the theorem.

(Part (iii)). By the assumptions on the corner points, we see that if s corresponds
to the normal orientation to C− at p, then it cannot correspond to the normal ori-
entation to C+ at p. By part (i), it is enough to consider C− or C+. Thus, we may
assume that s corresponds to the outer normal direction to C− at p = ~α(1) = (0, 0).
Without loss of generality, one may assume that ~α′(1−) = (1, 0) so that ~n(1−) = (0, 1)
(by rotating the coordinates if necessary).

Case 1: κ(1−) > 0.
According to Lemma 4.2, we may replace C− with ~β(t), a tiny arc of the osculating

circle of C− at p = ~α(1) = (0, 0). We observe that in this setting, ~n(t) = Θ(φ),
dt = 1

κ(1) dφ and ~β(φ) = (0, 1
κ(1−) ) + 1

κ(1−)Θ(φ) with φ ∈ [−π/2 − δ,−π/2], where
δ = arcsin(ε κ(1)). Omitting faster decaying terms, we can write:

K−(a, ρ, θ) =
∫ −π/2

−π/2−δ

e−2πi ρ
a Θ(θ)·(x0+

1
κ(1) Θ(φ)) Θ(θ) ·Θ(φ)

1
κ(1)

dφ,

=
1

κ(1)
e−2πi ρ

a
1

κ(1) sin θ

∫ −π/2

−π/2−δ

e−2πi ρ
a

1
κ(1) cos(θ−φ) cos(θ − φ) dφ,

=
1

κ(1)
e−2πi ρ

a
1

κ(1) sin θ

∫ π/2+θ+δ

π/2+θ

e−2πi ρ
a

1
κ(1) cos(φ) cos(φ) dφ.

Let

I−1 (a,∞, 0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ sin θ) ψ̂2(a−1/2 cot θ)K−(a, ρ, θ) dθ dρ.

Thus, using the expression of K−(a, ρ, θ), and the change of variable θ → θ+π/2,
one obtains:

I−1 (a,∞, 0) = − a−
1
4

2πiκ(1−)

∫ ∞

0

∫ 2π

0

ψ̂1(ρ sin θ) ψ̂2(a−1/2 cot θ) e
−2πi ρ

a
1

κ(1−)
sin θ

×
∫ π/2+θ+δ

π/2+θ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ dθ dρ

= − a−
1
4

2πiκ(1−)

∫ ∞

0

∫ 2π

0

ψ̂1(−ρ cos θ) ψ̂2(−a−1/2 tan θ) e
2πi ρ

a
1

κ(1−)
cos θ

×
∫ θ+δ

θ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ dθ dρ

= T1(a,∞, 0) + T2(a,∞, 0),
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where

T1(a,∞, 0) =
a−

1
4

2πiκ(1−)

∫ ∞

0

∫ π/2

−π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ) e
2πi ρ

a
1

κ(1−)
cos θ

×
∫ θ+δ

θ

e
−2πi ρ

a
1

κ(1−)
cos(φ)) cos(φ) dφ dθ dρ

T2(a,∞, 0) =
a−

1
4

2πiκ(1−)

∫ ∞

0

∫ 3π/2

π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ) e
2πi ρ

a
1

κ(1−)
cos θ

×
∫ θ+δ

θ

e
−2πi ρ

a
1

κ(1−)
cos(φ)) cos(φ) dφ dθ dρ.

We can break up the integral with respect to the variable φ which appears in T1

and T2 as

H(a, ρ, θ) =
∫ θ+δ

θ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ

= H1(a, ρ) + H2(a, ρ, θ) + H3(a, ρ, θ),

where

H1(a, ρ) =
∫ δ

0

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ

H2(a, ρ, θ) =
∫ δ+θ

δ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ

H3(a, ρ, θ) = −
∫ θ

0

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ.

Hence, we can break up T1 as T1 = T11 + T12 + T13, where, for j = 1, 2, 3, we have:

T1j(a,∞, 0) =
a−

1
4

2πiκ(1−)

∫ ∞

0

∫ π/2

−π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ) e
2πi ρ

a
1

κ(1−)
cos θ

×Hj(a, ρ, θ) dθ dρ.

For the T12 term, notice first that the support condition on ψ̂2 implies that |θ| ≤
a1/2; hence the integral H2 is supported on an interval of size |θ| ≤ a1/2. In addition,
(cos φ)′ = sin φ 6= 0 for φ ∈ [δ, δ + θ]. Thus, one can integrate by parts the integral
H2 repeatedly. By doing this, one shows that the integral T1j(a,∞, 0) exhibits fast
asymptotic decay as a → 0.

To analyze T13, we start applying the change of variable φ(α) = a1/2α to the
integral H3:

H3(a, ρ, θ) = −
∫ a−1/2θ

0

e
−2πi ρ

a
1

κ(1−)
cos(a1/2α) cos(a1/2α) a1/2dα.

Hence, the corresponding integral T13 can be expressed as

T13(a,∞, 0) = − a
1
4

2πiκ(1−)

∫ ∞

0

∫ π/2

−π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ) e
2πi ρ

a
1

κ(1−)
(cos θ−1)

×
∫ a−1/2θ

0

e
−2πi ρ

a
1

κ(1−) (cos(a1/2α)−1) cos(a1/2α)dα dθ dρ.
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Using the change of variables u = a−1/2 tan θ (from which: θa(u) = arctan(a1/2u),
dθ = a1/2du

1+au2 , cos θ = 1√
1+au2 ), we obtain:

T13(a,∞, 0) = − a
3
4

2πiκ(1−)

∫ ∞

0

∫ 1

−1

ψ̂1(ρ cos θa(u)) ψ̂2(u) e
2πi ρ

a
1

κ(1−)

(
1√

1+au2
−1

)

×
∫ a−1/2θ

0

e
−2πi ρ

a
1

κ(1−) (cos(a1/2α)−1) cos(a1/2α)dα
du

1 + au2
dρ.

Notice that lima→0 a−1/2θ(u) = lima→0 a−1/2 arctan(a1/2u) = u, lima→0
cos(a1/2α)−1

a =

− 1
2α2 and lima→0

1− 1√
1+au2

a = 1
2u2. Hence:

lim
a→0

a−3/4T13(a,∞, 0) = − 1
2πiκ(1−)

∫ ∞

0

ψ̂1(ρ)
∫ 1

−1

(∫ u

0

e
πi ρ

κ(1−)
α2

dα

)
ψ̂2(u) e

−πi ρ

κ(1−)
u2

du dρ.

Since
∫ u

0
eπi ρ

κ(1) α2

dα is an odd function for the variable u, and ψ̂2 is even, then the
above quantity is 0. This implies that T13(a,∞, 0) is a o(a3/4).

Concerning T11, notice first that

H1(a, ρ) =
∫ δ

0

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ

=
1
2

∫ δ

−δ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ.

Let G ∈ C∞0 (R) be a such that G(t) = 1 for |t| ≤ 1
2δ and G(t) = 0 for |t| > 3

4δ, and
write

1
2

∫ δ

−δ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) dφ = J1(a, ρ) + J2(a, ρ),

where

J1(a, ρ) =
1
2

∫ δ

−δ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ)G(φ)dφ

J2(a, ρ) =
1
2

∫ δ

−δ

e
−2πi ρ

a
1

κ(1−)
cos(φ) cos(φ) (1−G(φ))dφ.

By Lemma 4.1, it follows that J2(a, ρ) = O(aN ) as a → 0 for any N > 0. For
J1(a, ρ), one can use Lemma.4.3 to show that

J1(a, ρ) =
1
2
e

3π
4 e−2πi ρ

a
1

κ(1) (
ρ

a
)−1/2 + O

((ρ

a

)−3/2
)

.

Thus, we may write T11 (again omitting the higher order decay term) as

T11(a,∞, 0) =
a

1
4 e

3π
4 i

4πi(κ(1−))
1
2

∫ ∞

0

∫ π/2

−π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ) e2πi ρ
a

1
κ(1) (cos θ−1)dθρ−

1
2 dρ

It follows from the argument for T13 that

lim
a→0

a−3/4T11(a,∞, 0) =
e

3π
4 i

4πi(κ(1−))
1
2

∫ ∞

0

ψ̂1(ρ)
∫ 1

−1

ψ̂2(u) e
−πi ρ

κ(1−)
u2

du ρ−
1
2 dρ.
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Similarly one has

lim
a→0

a−3/4T21(a,∞, 0) =
e

π
4 i

4πi(κ(1−))
1
2

∫ ∞

0

ψ̂1(ρ)
∫ 1

−1

ψ̂2(u) e
πi ρ

κ(1−)
u2

du ρ−
1
2 dρ.

Thus

lim
a→0+

a−
3
4 SHψB(a,∞, 0)

= lim
a→0+

a−
3
4 (T11(a,∞, 0) + T21(a,∞, 0))

=
1

4πi(κ(1−))
1
2

∫ ∞

0

ψ̂1(ρ)
∫ 1

−1

ψ̂2(u)[e
3π
4 ie

−πi ρ

κ(1−)
u2

+ e
π
4 ie

πi ρ

κ(1−)
u2

] du ρ−
1
2 dρ

=
√

2
4π(κ(1−))

1
2

∫ ∞

0

ψ̂1(ρ)
∫ 1

−1

ψ̂2(u)[cos(
πρ

κ(1−)
u2) + sin(

πρ

(κ(1−)
u2)] du ρ−

1
2 dρ

=
√

2
4π

∫ ∞

0

ψ̂1(κ(1−))ρ)
∫ 1

−1

ψ̂2(u)[cos(πρu2) + sin(πρu2)] du ρ−
1
2 dρ

Now it follows from Lemma 4.4 that

lim
a→0

a−3/4SHψB(a,∞, 0) > 0.

Case 2: κ(1) = 0.
By Lemma 4.2, we may assume that C− is a segment of the tangent line of ∂S at

(0, 0). Thus, omitting faster asymptotic decay terms, we can write

I−1 (a,∞, 0)

= −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ sin θ) ψ̂2(a−1/2 cot θ)
∫ 0

−ε

e−2πi ρ
a Θ(θ)·(x1,0) Θ(θ) · (0,−1) dx1 dθ dρ

= −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ sin θ) ψ̂2(a−1/2 cot θ)
∫ 0

−ε

e−2πi ρ
a x1 cos θ sin θ dx1 dθ dρ

=
a−

1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ)
∫ 0

−ε

e2πi ρ
a x1 sin θ cos θ dx1 dθ dρ,

where, in the last equation, we have used the change of variable θ → θ +π/2. Finally,
similarly to Case 1, we write I−1 (a,∞, 0) = T1(a,∞, 0) + T2(a,∞, 0), where

T1(a,∞, 0) =
a−

1
4

2πi

∫ ∞

0

∫ π/2

−π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ)
∫ 0

−ε

e2πi ρ
a x1 sin θ cos θ dx1 dθ dρ,

T2(a,∞, 0) =
a−

1
4

2πi

∫ ∞

0

∫ 3π/2

π/2

ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ)
∫ 0

−ε

e2πi ρ
a x1 sin θ cos θ dx1 dθ dρ,

To analyze T1(a,∞, 0), it will be useful to introduce

T̃1(a,∞, 0) =
a−

1
4

2πi

∫ ∞

0

∫ π/2

−π/2

ψ̂1(ρ) ψ̂2(a−1/2 sin θ)
∫ 0

−ε

e2πi ρ
a x1 sin θ cos θ dx1 dθ dρ.
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For |θ| ≤ C a1/2, we have

|ψ̂1(ρ cos θ) ψ̂2(a−1/2 tan θ)− ψ̂1(ρ) ψ̂2(a−1/2 sin θ)|
≤ |ψ̂1(ρ cos θ)− ψ̂1(ρ)| |ψ̂2(a−1/2 tan θ)|+ |ψ̂1(ρ)| |ψ̂2(a−1/2 tan θ)− ψ̂2(a−1/2 sin θ)|
≤ C

(
| cos θ − 1|+ a−1/2| tan θ − sin θ|

)

≤ C
(
θ2 + a−1/2| tan θ||1− cos θ|

)

≤ C
(
θ2 + a−1/2|θ| θ2

)
≤ C a.

Hence, noticing that the integration with respect to θ yields a term C a1/2, we obtain
∣∣∣T1(a,∞, 0)− T̃1(a,∞, 0)

∣∣∣ ≤ C a−1/4a1/2a = C a5/4.

Using the change of variables u(θ) = a−1/2 sin θ, we have:

T̃1(a,∞, 0) =
a

1
4

2πi

∫ ∞

0

∫ 1

−1

ψ̂1(ρ) ψ̂2(u)
∫ 0

−ε

e
2πi ρ√

a
u x1 dx1 du dρ

=
a

1
4

2πi

∫ ∞

0

ψ̂1(ρ)
∫ 0

−ε

∫ 1

−1

ψ̂2(u) e
2πi ρ√

a
u x1 du dx1 dρ

=
a

1
4

2πi

∫ ∞

0

ψ̂1(ρ)
∫ 0

−ε

ψ2(
ρx1√

a
) dx1 dρ

=
a

3
4

2πi

∫ ∞

0

ψ̂1(ρ)
∫ 0

− ρε√
a

ψ2(x) dx
dρ

ρ
,

where, in the last equality, we have used the change of variable x = ρ√
a
x1. Hence

lim
a→0

a−
3
4 T1(a,∞, 0) = (2πi)−1

∫ ∞

0

ψ̂1(ρ)
dρ

ρ

∫ 0

−∞
ψ2(x) dx.

Similarly one has

lim
a→0

a−
3
4 T2(a,∞, 0) = (2πi)−1

∫ ∞

0

ψ̂1(ρ)
dρ

ρ

∫ ∞

0

ψ2(x) dx.

Thus

lim
a→0

a−3/4SHψB(a,∞, 0) = (2πi)−1

∫ ∞

0

ψ̂1(ρ)
dρ

ρ

∫ ∞

−∞
ψ2(x) dx

= (2πi)−1ψ̂2(0)
∫ ∞

0

ψ̂1(ρ)
dρ

ρ
6= 0.

This finishes the proof of Theorem 3.2.

5.2. Proof of Theorem 3.1. (Part (i)) Since p = (0, 0) is a regular point,
there is no need to split C as C− and C+. Thus, as in the proof of (i) of Theorem 3.2,
we let

I1(a, s0, 0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − tan θ0))K(a, ρ, θ) dθ dρ,
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where

K(a, ρ, θ) =
∫ 1+ε

1−ε

e−2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t) dt.

Let G(t) ∈ C∞0 (R) with G(t) = 1 for |t−1| ≤ ε
4 and G(t) = 0 for |t−1| > 3ε

4 . Let

K1(a, ρ, θ) =
∫ 1+ε

1−ε

e−2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t)G(t) dt

K2(a, ρ, θ) =
∫ 1+ε

1−ε

e−2πi ρ
a Θ(θ)·~α(t) Θ(θ) · n(t) (1−G(t)) dt

I11(a, s0, 0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − tan θ0))K1(a, ρ, θ) dθ dρ,

I12(a, s0, 0) = −a−
1
4

2πi

∫ ∞

0

∫ 2π

0

ψ̂1(ρ cos θ) ψ̂2(a−1/2(tan θ − tan θ0))K2(a, ρ, θ) dθ dρ,

such that I1(a, s0, 0) = I11(a, s0, 0) + I12(a, s0, 0).
Applying Lemma 4.1 to I12(a, s0, 0), it follows that |I12(a, s0, 0)| ≤ CNaN for

any N > 0. Since s0 does not correspond to the normal direction at p, we see that
Θ(θ) · ~α′(t) 6= 0 for t near 1 and θ near θ0. It follows from repeated integration by
parts that |I11(a, s0, 0)| ≤ CNaN .

Part (ii)) This can be proved by following the argument for (iii) of Theorem 3.2
with C− replaced by C.

This finishes the proof of Theorem 3.1.

Finally, notice that the proof of Proposition 3.3 follows easily from a closer ex-
amination of the arguments of parts (i) and (ii) of Theorem 3.2.

6. Algorithms for edge analysis. To demonstrate the potential of the shearlet
framework in the analysis of edges, we will now briefly illustrate how the properties
of the shearlet transform can be exploited to identify smooth regions and edges,
and to distinguish regular edge points from different kind of junctions and corner
points. Let us consider the simple image u, in Figure 6.1(a), containing edges and
smooth regions. Figure 6.1(b) shows several plots of the discrete shearlet transform
SHu[j, `, k], at a fixed scale ‘fine’ j0, for some representative locations k0. Notice that
the discrete shearlet transform maps the image u into coefficients depending on the
discrete scales 2−j , j ∈ Z, orientations 1 ≤ ` ≤ 2j+1, and locations k ∈ Z2. We
refer to [5, 16] for details about the discrete shearlet transform and its numerical
implementation. As Figure 6.1 indicates, we can recognize four classes of points from
the plot of Sk0(`) = |SHu[j0, `, k0]|. Namely, at the junction point k0 = A, SA(`)
exhibit three peaks corresponding to the three normal orientations to the three edge
segments converging into A; at the point k0 = B on a smooth edge, SB(`) has a single
peak; at a point k = C in a smooth region, SC(`) is essentially flat; finally, at a point
k0 = C “close” to an edge, SD(`) exhibits two peaks but they are much smaller in
amplitude than those for the points A and B. The same behavior holds, essentially,
for more general images. In particular, in the presence of a corner point, the behavior
is similar to point A, with the plot of the shearlet transform showing two main peaks
corresponding to the orientations of the two normal orientations at the corner point.

Based on these observations, one can design simple algorithms for classifying
regular edge points, corner points and different kind of junctions points based on
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their geometrical properties. We refer to [15, 16] for additional details about this
and other algorithms for edge analysis and detection, and for extensive numerical
demonstrations.
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(a) (b)
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?
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D

?
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`

Fig. 6.1. (a) Test image and representative points A (junction), B (regular edge point), C
(smooth region), D (near edge). (b) Magnitude of the Discrete Shearlet Transform Sk(`), as a
function of the orientation parameter ` for the points k indicated in (a). Notice the different scaling
factor used in the y-axis, for the plots of points C and D.

Appendix A. Proof of Lemma 4.4.
Here is the proof of Lemma 4.4.
Proof. Let g(ρ) =

∫ 1

0
ψ̂2(u)

(
sin(πρu2) + cos(πρu2)

)
du. By a change of variable,

we obtain:

g(ρ)=
∫ ρ

0

v−
1
2 ψ̂2(

√
v
ρ ) (sin(πv) + cos(πv)) dv = g1(ρ) + g2(ρ),

where

g1(ρ) =
∫ ρ

0

v−
1
2 ψ̂2(

√
v
ρ ) sin(πv) dv

g2(ρ) =
∫ ρ

0

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv.

If ρ ≤ 1, it is trivial to see that g1(ρ) > 0 since ψ̂2(0) ≥ 1
2 , ψ̂2(x) ≥ 0 on [0, 1]

and sin(πx) > 0 on (0, 1). Now assume that 1 < ρ ≤ 2. Since ψ̂2(x) is decreasing on
(0, 1), we have

g1(ρ) =
∫ 1

0

v−
1
2 ψ̂2(

√
v
ρ ) sin(πv) dv +

∫ ρ

1

v−
1
2 ψ̂2(

√
v
ρ ) sin(πv) dv

=
∫ 1

0

v−
1
2 ψ̂2(

√
v
ρ ) sin(πv) dv −

∫ ρ−1

0

(v + 1)−
1
2 ψ̂2(

√
v+1

ρ ) sin(πv) dv

≥
∫ 1

0

(
v−

1
2 ψ̂2(

√
v
ρ )− (v + 1)−

1
2 ψ̂2(

√
v+1

ρ )
)

sin(πv) dv > 0.
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For ρ > 2, one can find k ≥ 1 and 0 < ζ ≤ 2 such that ρ = 2k + ζ. In this case,
we have:

g1(ρ) =
∫ 2k

0

v−
1
2 ψ̂2(

√
v
ρ ) sin(πv) dv +

∫ ρ

2k

v−
1
2 ψ̂2(

√
v
ρ ) sin(πv) dv

= g0(ρ) + gζ(ρ),

where

g0(ρ) =
k−1∑

j=0

∫ 1

0

(
(v + 2j)−

1
2 ψ̂2(

√
v+2j

ρ )+

− (v + 2j + 1)−
1
2 ψ̂2(

√
v+2j+1

ρ )
)

sin(πv) dv;

gζ(ρ) =
∫ ζ

0

(v + 2k)−
1
2 ψ̂2(

√
v+2k

ρ ) sin(πv) dv.

It is easy to verify that g0 > 0 and gζ ≥ 0 and hence g1 > 0.

Next we consider g2(ρ). If ρ ≤ 1
2 , it is trivial to see that g2(ρ) > 0 since cos(πx) >

0 on (0, 1
2 ). Now assume that 1

2 < ρ ≤ 3
2 . Since cos(πv) < 0 on ( 1

2 , 3
2 ), we have

g2(ρ) =
∫ 1

2

0

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv +

∫ ρ

1
2

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv

≥
∫ 1

2

0

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv +

∫ 3
2

0

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρ ),

where c0 =
∫ 3

2
0

v−
1
2 cos(πv) dv. Since

∫√ 3π
2

0
cosu2du ≥ 0.4 > 0, it follows that c0 > 0.

For 3
2 < ρ ≤ 5

2 , since cos(πv) > 0 on ( 3
2 , 5

2 ) , we have:

g2(ρ) =
∫ 1

2

0

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv +

∫ 3
2

1
2

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv

+
∫ ρ

3
2

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv

≥
∫ 1

2

0

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv +

∫ 3
2

1
2

v−
1
2 ψ̂2(

√
v
ρ ) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρ ) > 0.

For ρ > 5
2 , one can find n ≥ 1 and 0 ≤ ζ < 1 such that ρ = 3

2 + n + ζ. Let us
examine the cases where n is even and odd separately. If n = 2k, for some k ≥ 1, we
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have

g2(ρ)

≥ ψ̂2(
√

1
2ρR )

∫ 3
2

0

v−
1
2 cos(πv) dv

+
k−1∑

j=0

∫ 5
2

3
2

(
(v + 2j)−

1
2 ψ̂2(

√
v+2j

ρ )− (v + 2j + 1)−
1
2 ψ̂2(

√
v+2j+1

ρ )
)

cos(πv) dv

+
∫ 3

2+ζ

3
2

(v + 2k)−
1
2 ψ̂2(

√
v+2k

ρ ) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρ ) > 0.

If n = 2k + 1, for some k ≥ 1, we have

g2(ρ)

≥ ψ̂2(
√

1
2ρ )

∫ 3
2

0

v−
1
2 cos(πv) dv

+
k−1∑

j=0

∫ 5
2

3
2

(
(v + 2j)−

1
2 ψ̂2(

√
v+2j

ρ )− (v + 2j + 1)−
1
2 ψ̂2(

√
v+2j+1

ρR )
)

cos(πv) dv

+
∫ 5

2

3
2

(v + 2k)−
1
2 ψ̂2(

√
v+2k

ρ ) cos(πv) dv +

−
∫ 3

2+ζ

3
2

(v + 2k + 1)−
1
2 ψ̂2(

√
v+2k+1

ρ ) cos(πv) dv

≥ c0 ψ̂2(
√

1
2ρ ) > 0.

This completes the proof.
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