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Abstract

Analog-to-digital conversion and quantization constitute the topic of this thesis. Post-
correction of analog-to-digital converters (ADCs) is considered in particular. ADCs usu-
ally exhibit non-ideal behavior in practice. These non-idealities spawn distortions in the
converters output. Whenever the errors are systematic, it is possible to mitigate them
by mapping the output into a corrected value. The work herein is focused on problems
associated with post-correction using look-up tables. All results presented are supported
by experiments or simulations.

The first problem considered is characterization of the ADC. This is in fact an esti-
mation problem, where the transfer function of the converter should be determined. This
thesis deals with estimation of quantization region midpoints, aided by a reference signal.
A novel estimator based on order statistics is proposed, and is shown to have superior
performance compared with the sample mean traditionally used.

The second major area deals with predicting the performance of an ADC after post-
correction. A converter with static differential nonlinearities and random input noise is
considered. A post-correction is applied, but with limited (fixed-point) resolution in the
corrected values. An expression for the signal-to-noise and distortion ratio after post-
correction is provided. It is shown that the performance is dependent on the variance
of the differential nonlinearity, the variance of the random noise, the resolution of the
converter and the precision of the correction values.

Finally, the problem of addressing, or indexing, the correction look-up table is dealt
with. The indexing method determines both the memory requirements of the table and
the ability to describe and correct dynamically dependent error effects. The work here
is devoted to state-space–type indexing schemes, which determine the index from a num-
ber of consecutive samples. There is a tradeoff between table size and dynamics: more
samples used for indexing gives a higher dependence on dynamic, but also a larger ta-
ble. An indexing scheme that uses only a subset of the bits in each sample is proposed.
It is shown how the selection of bits can be optimized, and the exemplary results show
that a substantial reduction in memory size is possible with only marginal reduction of
performance.



iv

Sammanfattning

Denna avhandling behandlar analog–digitalomvandling. I synnerhet behandlas post-
korrektion av analog–digitalomvandlare (A/D-omvandlare). A/D-omvandlare är i prak-
tiken behäftade med vissa fel som i sin tur ger upphov till distorsion i omvandlarens
utsignal. Om felen har ett systematiskt samband med utsignalen kan de avhjälpas genom
att korrigera utsignalen i efterhand. Detta verk behandlar den form av postkorrektion som
implementeras med hjälp av en tabell ur vilken korrektionsvärden hämtas.

Innan en A/D-omvandlare kan korrigeras måste felen i den mätas upp. Detta görs
genom att estimera omvandlarens överföringsfunktion. I detta arbete behandlas speciellt
problemet att skatta kvantiseringsintervallens mittpunkter. Det antas härvid att en refe-
renssignal finns tillgänglig som grund för skattningen. En skattare som baseras på sorterade
data visas vara bättre än den vanligtvis använda skattaren baserad på sampelmedelvärde.

Nästa huvudbidrag visar hur resultatet efter korrigering av en A/D-omvandlare kan
predikteras. Omvandlaren antas här ha en viss differentiell olinjäritet och insignalen antas
påverkad av ett slumpmässigt brus. Ett postkorrektionssystem, implementerat med be-
gränsad precision, korrigerar utsignalen från A/D-omvandlaren. Ett utryck härleds som
beskriver signal–brusförhållandet efter postkorrektion. Förhållandet visar sig bero på den
differentiella olinjäritetens varians, det slumpmässiga brusets varians, omvandlarens upp-
lösning samt precisionen med vilken korrektionstermerna beskrivs.

Till sist behandlas indexering av korrektionstabeller. Valet av metod för att indexera en
korrektionstabell påverkar såväl tabellens storlek som förmågan att beskriva och korrigera
dynamiska fel. I avhandlingen behandlas i synnerhet tillståndsmodellbaserade metoder,
det vill säga metoder där tabellindex bildas som en funktion utav flera på varandra föl-
jande sampel. Allmänt gäller att ju fler sampel som används för att bilda ett tabellindex,
desto större blir tabellen, samtidigt som förmågan att beskriva dynamiska fel ökar. En in-
dexeringsmetod som endast använder en delmängd av bitarna i varje sampel föreslås här.
Vidare så påvisas hur valet av indexeringsbitar kan göras optimalt, och experimentella
utvärderingar åskådliggör att tabellstorleken kan reduceras avsevärt utan att fördenskull
minska prestanda mer än marginellt.

De teorier och resultat som framförs här har utvärderats med experimentella A/D-
omvandlardata eller genom datorsimuleringar.
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Chapter 1

Introduction

This thesis deals with the subject of digital post-correction of analog-to-digital con-
verters. The fundamental observation, upon which the work is motivated, is that
practical analog-to-digital converters are prone to exhibit errors. To be more pre-
cise, we say that a practical converter is likely to exhibit deviations from the ideal
operation of sample, hold and quantization. The term ‘post-correction’ indicates
that the correction methods considered are applied after the converter, thus op-
erating on the digital signal provided from the output. One of the fundamental
constraints within this work is therefore that the internal signals and states of the
analog-to-digital converter under consideration are unavailable to us. The goal of
the correction is, naturally, to make the corrected output from the converter more
true to the ideal output, in some sense; as we will see later on, there are many ways
to measure the performance of a converter. Further background and motivation to
using post-correction is provided in Section 1.1.

This chapter introduces the analog-to-digital converter, henceforth also referred
to as A/D converter or simply ADC. The properties and theory of operation of the
ideal ADC are introduced in Section 1.2, where also some common non-idealities
encountered in practical ADCs are discussed. In Section 1.3, three frequently used
ADC implementations are briefly described; these are (pipelined) flash, successive
approximation and sigma-delta type ADCs. In Section 1.4, some performance mea-
sures that will be used throughout this thesis are defined.

Section 1.5 gives a short introduction to the problems associated with post-
correction. The specific problems where this thesis provides contributions are
pointed out in particular.

The remaining parts of the thesis are outlined in Section 1.6. Finally, Sec-
tions 1.7 and 1.8 list some of the notations and acronyms used in this work.

1
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1.1 Background

Today, ADCs are widely used in many different applications. Analog-to-digital con-
version in radio receivers, for instance, impose special demands on the converter,
and a trend in receiver design has been to move the digitization closer to the receiv-
ing antenna. Flexibility in configuration and lower cost are two reasons for striving
in this direction. Meanwhile, the carrier frequency as well as the bandwidth are
increasing, calling for higher sampling rates and increasing analog input bandwidth.
The linearity of the ADC is also a key characteristic, and the specifications of the
system in which the ADC is a part, e.g., required signal-to-noise ratio, impose
requirements on linearity of the converter (see for example [SNM99]). Currently
the performance of all-digital receivers, also known as software radio receivers, is
limited by the distortion produced by the ADC, and typical dynamic range require-
ments are hard to meet – if at all possible – with present commercially available
converters [Hum02]. This is one application where digital post-correction can be
beneficial, simply because there is no product available that meets the demands of
a certain application.

Another rationale for applying post-correction is that in some applications it
can be beneficial, or even unavoidable, to use a converter with inferior charac-
teristics (e.g., a less expensive ADC). Digital post-correction can then be used to
compensate for the shortcomings of the selected converter. A similar case arises
when integrating many functions on one chip. An example can be where a sensor
(e.g., pressure or acceleration) is to be integrated on the same chip as an ADC,
converting the sensor output into digital form. It is not far fetched that the ADC
will face design constraints that restrict the performance—supply voltage, power
consumption and even choice of manufacturing process can be such factors. The
converter is then designed at a non-optimum design point, and post-correction can
be applied to mitigate the errors associated with the design. Another example,
which is far more common, is where an ADC is integrated on the same chip as a
digital signal processor (DSP). In this case there is often a tradeoff between what is
good for the performance of the DSP and for the ADC. The DSP would typically be
manufactured using a chip process with smaller geometry an lower supply voltage
than what is beneficial for the ADC, mainly in order to keep down power con-
sumption and facilitate higher computational power. The ADC would then, again,
suffer from manufacturing parameters that are less suited for high-precision analog
design—post-correction could also here be a measure to reduce the distortions of
the converter.

Looking at an ADC in a larger system perspective, we can regard one or several
sensors, the analog signal conditioning and the digitization as one system, where
the physical quantities to be measured are input signals and the digital signal from
the converter is the output. The distortions introduced in any of the components
in the measurement chain will of course affect the output signal, and can be seen
as a non-ideality in the path from physical input to digital output. Again, a digital
post-correction after the ADC can be a feasible solution to reduce the errors in the
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ADC

{Sj} {xj}
s(t) s(n) i(n)

fs

x(n)

quantizer

Figure 1.1: A model for the ideal AD converter with the quantization represented
as a two-step operation.

measurement system. Thus, even if the ADC as such is without considerable flaws,
a digital correction scheme can be beneficial to apply anyway.

1.2 The Analog-to-Digital Converter

In this section, the theory of operation of an ADC is described, starting with the
ideal ADC.

Ideal Converter

An A/D-converter is an intricate electronic device. The theory of operation for
an ideal b-bit converter is nevertheless straightforward to explain. The converter
has a continuous-time input signal, say s(t). This signal can assume any real
value, possibly confined to be within some limits, i.e., s(t) is continuous both in
amplitude and in time. The analog-to-digital conversion is then a quantization in
time and amplitude, such that for every time instant nTs, where Ts is the sampling
period and n is the running sample index (integer), an output xi from a finite set
{xj}M−1

j=0 is produced. Here, M = 2b is the number of quantization levels or possible
output codes. The A/D-converted version of the input s(t) can be represented with
the discrete-time signal x(n) ∈ {xj}M−1

j=0 . It is common to divide the ideal ADC
device into two parts: an ideal sample-and-hold device and an ideal quantizer,
see Figure 1.1. This structure is not only mathematically convenient, it is also
consistent with some practical ADC architectures (cf. Section 1.3).

The ideal sample-and-hold (S/H) device is merely a device that samples the
input signal at given time instants. Usually these time instants occur periodically
at rate fs, corresponding to a sampling period Ts = 1/fs, thus sampling the input
at time nTs for all integers n. The output from the S/H is s(nTs) for nTs ≤
t < (n + 1)Ts, until the next sampling instant, when it changes to the new value
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s((n + 1)Ts). The output can be represented by a discrete-time signal1 s(n) ,
s(nTs). The operation of an ideal S/H is illustrated in Figure 1.2. The well-known
mathematical theory of sampling (e.g., [PM96,OWN97]), including the sampling
theorem and the concept of aliasing, applies to the ideal S/H device.

t
(a)

n
(b)

Figure 1.2: The operation of an ideal S/H device (left). The value of the input
signal s(t) (dashed) at the sampling instant is held until the next sampling instant,
producing a piecewise constant output signal (solid). The output signal can be
represented with a discrete-time signal s(n) (right).
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Figure 1.3: Ideal 3-bit quantizer.

1It can be argued that this notation is ambiguous; does ‘s(n)’ mean s(t) for t = n Ts or t = n?
Alternative notations exist, including square brackets or subscript indices for discrete-time signals.
However, throughout this thesis we will use the notation introduced here, and it should be clear
from the context whether continuous-time or discrete-time signals are considered.
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Figure 1.3 illustrates the operation of a quantizer, in this case a 3-bit quantizer.
In general, b-bit quantization is often represented as a two-step mapping, as shown
in Figure 1.1. In the first step the sampled signal value s(n) is mapped through a
noninvertible mapping into an index i ∈ {0, 1, . . . , M − 1}. The index production
is defined by a partition of the real line into disjoint sets {Sj}M−1

j=0 , or quantization
regions. A quantization region is defined by two neighboring transition levels as

Si = {s : Ti ≤ s < Ti+1}, (1.1)

where T0 = −∞, TM = +∞ and Ti−1 < Ti for all i. If the input signal s(nTs)
falls into the region Si, then the index i is produced. The vast majority of practical
ADCs are designed to have quantization regions of equal size, save the semi-infinite
end regions, as in Figure 1.3. These quantizers are referred to as uniform or linear.
The difference between two neighboring code transition levels is denoted the code
bin width ∆. That is, Tk is the code transition level between codes k − 1 and k,
and Wk = Tk − Tk−1 is the width of the k-th bin. In the second step the index i is
mapped through a (possibly invertible) mapping to an output value xi ∈ {xj}M−1

j=0 ,
where {xj}M−1

j=0 is the set of all possible output values. Sometimes the output value
xi is denoted reconstruction level and {xj} the codebook.

It is convenient to denote the b-bit quantization operation with the operator
Qb[·]. The operator can be defined as s ∈ Si ⇒ Qb[s] = xi, with the notation
introduced above. Using this operator, the ADC output signal can be written in a
compact manner as x(n) = Qb[s(nTs)].

Quantization Error

In an ideal A/D converter, the only “error”2 in the output signal is the quantization
error, here denoted eq(n). The quantization error is defined as

eq(n) = x(n) − s(n) = Qb[s(n)] − s(n). (1.2)

When analyzing the quantization error it is common to regard the error as ran-
dom [PM96,WKL96,Wal99,Gra90]. In general the quantization error is correlated
with the quantizer input s(n), especially when s(n) is constant or slowly varying.
However, under certain conditions eq(n) will assume more tractable properties.

In [PM96] it is claimed (but not proved) that when the code bin width is small
and when the input sequence s(n) traverses several transition levels between two
successive samples, then the following properties apply:

1. Each sample of eq(n) is uniformly distributed over (−∆/2, ∆/2), thus having
zero mean and variance ∆2/12.

2It has been argued that the quantization error should not be denoted ‘error’, since the ideal
quantizer is intentionally designed to have this discrepancy between the input and the output.
Hence, it is not an error.
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2. The error sequence {eq(n)} is a stationary white sequence, that is, the auto-
correlation E{eq(n) eq(m)} = 0 for n 6= m.

3. The error eq(n) is uncorrelated with the signal s(n).

On the other hand, in [Gra90] it is argued that, for a random input s(n) with
probability density function (PDF) fs(s), the approximation that eq(n) is uniform
and white is valid only when all of the following conditions are fulfilled:

1. The signal is uniformly distributed.

2. The signal is kept within the full-scale range of the quantizer.

3. The number of quantization levels is large.

4. The code bin width is small.

5. The PDF fs(s) is smooth.

In [WKL96], yet alternative conditions are stated. These conditions are based
on the PDF fs(s) of the input s(n) and the characteristic function (CF) Φs(u) =
F{fs(s)}, where F{·} denotes the Fourier transform, in this case with respect to s.
It is shown3 that the quantization noise eq(n) is exactly uniform, with zero mean
and variance ∆2/12, if the CF is ‘band-limited’ so that Φs(u) = 0 for u > π/∆.
Also, when the same condition is met, the quantization noise is uncorrelated with
the input. The results are further developed to a pseudo quantization noise model,
where quantization is approximated with addition of an independent uniformly
distributed noise epqn(n) (again with zero mean and variance ∆2/12); these two
models are not equal, but under the above condition it can be shown that all
moments and joint moments correspond exactly for Qb[s(n)] and s(n) + epqn(n).
The ideal b-bit quantizer is contrasted with the pseudo quantization noise model in
Figure 1.4.

Regarding the whiteness of the quantization error it is shown in [WKL96] that
when the joint CF of s(0), s(1), . . . , s(N − 1),

Φs(0), s(1), ..., s(N−1)(s0, s1, . . . , sN−1),

is ‘band-limited’, i.e., zero when |sk| > π/∆ for all 0 ≤ k ≤ N − 1, the samples of
eq(n) are independent of each other over time. Hence, the quantization error is a
uniformly distributed, white, random process with zero mean and variance ∆2/12,
independent of the input process.

The quantization noise eq(n) is in general not statistically independent of the
input signal s(n), since the (ideal) quantizer provides a deterministic mapping from
s(n) to x(n), and thus also to eq(n). However, in [Gra90] it is proved that when an

3An alternative, but closely related, condition is also given in [WKL96].
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s(n)

Qb

Qb[s(n)]

(a) Quantizer

s(n)

epqn(n)

s(n) + epqn(n)

(b) Pseudo quantization
noise model

Figure 1.4: A statistical model for quantization. The ideal b-bit quantizer (top
figure) is contrasted with the pseudo quantization noise model (bottom figure).
The noise epqn(n) is uniformly distributed, white and zero-mean with variance
∆2/12, and is independent of s(n). The two models are not equal, but under some
conditions all moments and joint moments correspond exactly.

independent, identically distributed process w(n) is added to a quasi-stationary4

input process before quantization, then the error eq(n) is indeed independent of the
input signal s(n).

The matters of statistical quantization error and dithering are discussed in more
depth in Chapter 4.

In addition to the approaches mentioned above, a deterministic derivation is
possible [PM96], at least for sinusoidal inputs. The calculations conclude that the
mean-square error power of the quantization error is ∆2/12, which is consistent
with the probabilistic results above.

Coding

In practical A/D converters, the output from the quantizer, xi, is coded in some
way. The process of coding assigns a unique binary number to each possible output
state of the quantizer. It is in the coding process that the actual ‘bits’ of the
converter comes in. For a converter with M = 2b quantization levels, we need (at
least) a b-bit binary number to associate each level with a unique code. A number
of different binary coding systems exists [PM96], e.g., sign-magnitude, one’s and
two’s complement. In this thesis we will not deal with coding of the quantized
samples, except for Chapter 10 where bit-allocation is analyzed and binary coding

4See e.g., [Gra90] or [Lju99] for definition. The class of quasi-stationary processes includes
both deterministic processes with convergent and bounded sample means and autocorrelations, as
well as stationary random processes.
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and bits comes in naturally. Elsewhere it suffices for our purposes to consider the
quantized values (reconstruction levels) {xj}.

Non-Ideal Converters

Practical converters are of course impaired by various types of errors and flaws.
The sources of errors are numerous, and only a subset is mentioned here.

The first, and perhaps most obvious error is erroneous code transition levels, e.g.,
when a quantizer designed to be uniform becomes non-uniform. This is illustrated
in Figure 1.5. Transition level errors often occur in converters utilizing a resistance
ladder (e.g., flash converters, see Section 1.3) when the resistances are mismatched.

For converters incorporating an S/H device, this can be an origin of errors.
The ideal S/H device is assumed to have zero switching time, so that the signal
is sampled during an infinitely short sampling instant. However, practical circuits
always have a certain switching time, over which the input signal is averaged. This
is referred to as the aperture time. Also related to the S/H device is the aperture
uncertainty, or timing jitter. This is the random deviation of the sampling instant
from the nominal time. Let us assume that a certain sampling instant deviates from
the nominal instant ts by some (small) time δ, and that we are sampling a sinewave
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Figure 1.5: A 3-bit quantizer with non-uniform code bins.
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with amplitude A and frequency f . Then, our sample, before quantization, will be

s = A sin(2πf(ts + δ)) = A sin(2πfts) cos(2πfδ)︸ ︷︷ ︸
≈1

+A cos(2πfts) sin(2πfδ)︸ ︷︷ ︸
≈2πfδ

≈ A sin(2πfts) + 2πfδA cos(2πfts)︸ ︷︷ ︸
jitter induced error

.
(1.3)

The approximations sin(x) ≈ x and cos(x) ≈ 1 for small x were used here. Thus,
the effect of timing jitter will be a signal dependent noise, increasing in amplitude
with the signal frequency f .

Other examples of error sources in A/D converters are distortion in the analog
signal path, charge injection from the switch transistors [Jes01] and comparator
thermal storage of signal history [WKN75].

Another way of classifying errors in the ADC output is to designate them as
either systematic or random. Systematic errors are those that are deterministic or
deterministically correlated to, for instance, the input signal, while an example of
random errors is thermal noise.

1.3 ADC Architectures

In this section a brief description of three widespread ADC types is given. These
are the flash, the successive approximation and the sigma-delta converters. The
following descriptions are only intended as introductory examples to the field of
A/D converters, and are in no way comprehensive; the reader should turn to the
literature for an exhaustive theory, e.g., [Jes01,PM96, vdP94, Jon00,NST97]. The
theory given here is however more than sufficient for the material to be presented
in the following chapters. The theories for ADC correction in this work are in fact
applicable to any ADC architecture, although the level of success will probably vary
depending on converter type.

Flash and Pipelined Flash Converters

The flash converter is the only converter described here that truly operates in one
sample clock cycle. In Figure 1.6 a fully parallel flash converter structure is shown.
The converter consists of a resistance ladder, an array of 2b−1 comparators and an
encoder. The endpoints of the resistance ladder defines the input range of the ADC,
while the intermediate points define the code transition levels. The input voltage
Vin is simultaneously compared with all code transition levels in the comparators
array. If Vin exceeds the k-th transition level, the k-th comparator output will be
‘1’ (high, set, etc.), else it will be ‘0’. In the ideal case, i.e., when the resistance
ladder and comparators array is without flaws, the output from the comparators
will be thermometer-coded [Jes01] in 2b bits. Finally, the encoder maps the highly
redundant thermometer code to a b-bit binary-coded word.
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Figure 1.6: Flash converter.

Flash converters can be made to work very fast; sample rates up to 24 giga-
samples per second (GSPS) and 3 bits have been reported [GDG04, N+04]. The
major drawback, on the other hand, is that the number of comparators grow ex-
ponentially with the number of bits b. This implies an exponential growth on both
chip area and power consumption, putting a practical constraint on pure flash con-
verters at about 10 bits, although most contemporary constructions typically have
5 or fewer bits.

Several ways to mitigate this problem have been proposed, of which probably
the most common is the pipelined flash architecture, depicted in Figure 1.7. The
pipelined flash ADC is formed by several flash ADCs in cascade, each having a
rather low resolution. The quantized output from each stage is digital-to-analog
converted back to an analog voltage, and the residue is formed. This residue is
amplified and passed on to the next pipeline stage. Since each stage begins with
an S/H device the data is propagated one stage every clock period. Hence, the
conversion time is longer than for a fully parallel flash, but, the sample rate is the
same; every clock cycle a new sample is produced. Pipeline converters of 16 bits
and 100 MSPS (e.g., [AD9446]) are commercially available today.

In the non-ideal case, imperfections in the internal ADC stages, DAC stages
or interstage gain will result in different kinds of error characteristics. Due to
the recursive structure of a pipelined converter, the transfer function can display
repetitive error patterns and shifted regions. It is common to implement pipelined
converters with internal correction. By extending the range of the internal ADCs
and DACs, mismatch errors in the ADC stages are intercepted. The output bits
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Figure 1.7: A K-stage pipelined flash converter with correction logic.

of the internal stages are augmented with overlapping bits; a 10-bit converter can
for example be implemented as 4–3–3–3, i.e., using four stages with four bits in the
first and three bits in the subsequent stages. Refer to [Jes01] for an elucidating
discussion on error behavior and internal correction strategies.

Successive Approximation

Successive approximation converters (SA-ADC) determine the digital output by
the successive approximation algorithm. Figure 1.8 shows the layout of an SA-ADC
consisting of a sample-and-hold circuit, a comparator, a slave D/A converter and
control logic. The control logic alters the output code, starting with the most
significant bit (MSB) and continuing through to the least significant bit (LSB), so
that the difference between the output of the slave DAC and the analog input is
minimized. In each clock cycle one more output bit is determined. Thus, a b-bit
SA-ADC requires b clock cycles to complete the conversion. Under the assumption
of an ideal comparator, the performances of the SA-ADC are identical to those of
the DAC [Jes01].

Variations of the successive approximation converter exists, including the sub-
ranging SA-ADC and pipelined SA-ADC [Elb01].

Sigma-Delta Converters

A special form of ADC converters are sigma-delta converters. Figure 1.9 shows
an outline of a generic sigma-delta converter. This special type of ADCs work
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Figure 1.8: Typical successive approximation ADC.
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Figure 1.9: A generic sigma-delta ADC. The A/D and D/A converters are in the
simplest form of sigma-delta converters implemented as one-bit converters.

with oversampling so that the bandwidth of the input signal is (much) less than
fs/2. In its most basic form, the sigma-delta converter contains a one-bit ADC
and DAC. The decimator then produces a higher-resolution digital output word by
averaging several one-bit samples, in addition to reducing the data rate. The loop
filter provides ‘noise shaping’ and can be used to improve stability of the feedback
loop. Thorough descriptions and analyses are found in the literature, e.g., [NST97]
and [Jes01].

Sigma-delta converters are highly linear converters but applications are limited
to rather narrow-band signals, owing to the oversampling.

1.4 Describing A/D Converter Performance

In order to be able to tell how “good” an ADC is, we must have measures and
figures of merit. We are mainly concerned with the linearity of the ADC. At first
glance it seems reasonable to believe that it suffices to consider the error introduced
by the sampling and quantization, i.e., to look at x(n) − s(nTs), or some function
thereof. This is the case when calculating the signal-to-noise and distortion ratio
(SINAD). However, other characteristics can be more important, depending on the
application, converter architecture, etc.
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The IEEE Standard 1241, “Standard for Terminology and Test Methods for
Analog-to-Digital Converters”, [Std1241], provides a consistent set of terms, defi-
nitions and test methods for ADCs. The standard is intended to be applied when
specifying, characterizing and evaluating ADCs. The measures below are all defined
in the standard.

In the definitions below we will use the following notation:

s(t) Continuous-time input to the ADC. This will typically be a spectrally pure,
large amplitude (near full-scale) sinewave, s(t) = A sin(2πf0t + φ) + C, with
C and A chosen so that the signal is centered within and spans a major part
of the ADC input range (FSR). The phase φ is arbitrary.

x(n) The output sequence from the ADC under test. This sequence will often be as-
sumed to be of finite length N , so that we have a batch of data x(0), x(1), . . . ,
x(N − 1).

š(n) A least-squares sinewave fit to the data x(n). This is our estimate of the
actual input signal. (Standardized sinewave fitting methods are described in
the literature [Std1241,Std1057,Hän00,And05].)

X(fd) The discrete Fourier transform (DFT) of the ADC output x(n) for n =
0, 1, . . . , N − 1. 5

Figure 1.10 shows a typical ADC output power spectral density (PSD). The PSD
is based on experimental data from an Analog Devices AD9430, 12-bit, 210 MSPS
pipelined flash converter [AD9430], exercised with a 60.12 MHz sinewave input. (See
Appendix B.3 for a detailed description of the experimental data.) The measures
pointed out in the figure, and some additional measures, will be described below.

Integral Nonlinearity (INL)

The standard [Std1241] states that “the integral nonlinearity is the difference be-
tween the ideal and measured code transition levels after correcting for static gain
and offset.” If T o

k , k = 1, 2, ..., M − 1, are the ideal transition levels and Tk,
k = 1, 2, ..., M − 1, are the actual code transition levels, then

INLk =
GTk + O − T o

k

∆
(1.4)

is the INL for the k-th transition level in least significant bits. Here, G and O are
the static gain and offset, respectively, and they are found by fitting a straight line
to the actual transfer curve; cf. [Std1241] for the procedure. Two different versions
are defined in the standard: independently based and terminal based INL. They
differ in how the parameters G and O are found.

5In [Std1241] the quantity Xavm(fd) is used, and denotes the average magnitude of the DFT
at the discrete frequency fd. The averaging is performed by taking several N -point data records,
under the same test conditions, and taking the average of the magnitude of the DFT at fd, that
is |X(fd)|.
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Figure 1.10: Typical output power spectral density of an ADC, this being from
an Analog Devices AD9430. The fundamental frequency f0 and the nine first
harmonics (after aliasing) are labeled. Various performance measures are also stated
in the figure.

Differential Nonlinearity (DNL)

Differential nonlinearity is defined as

DNLk =
Tk+1 − Tk − ∆

∆
(1.5)

for k = 1, . . . , M − 2 (the semi-infinite end regions are omitted). That is, it is
the difference between the actual and the ideal code bin width, expressed in least
significant bits. For an ideal converter, DNL is zero. A DNL of −1 implies a missing
code, i.e., the upper and lower transition level of a quantization region coincide, so
that the width of the region is zero, and the corresponding output can never be
produced—the code is missing.

Signal-to-Noise and Distortion Ratio (SINAD)

The signal-to-noise and distortion ratio is the ratio of the root-mean-square (rms)
signal amplitude of the sinusoid test signal to the rms noise. Thus, with

Pnoise =

(
1

N

N−1∑

n=0

(x(n) − š(n))2

)1/2

(1.6)
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being the rms noise, we have

SINAD = 20 log10

A√
2Pnoise

[dB]. (1.7)

For an ideal ADC, the only origin of noise is the amplitude quantization. We
saw in Section 1.2 that for a uniform quantizer the quantization noise can (under
certain conditions) be modeled as a uniformly distributed random process with
power ∆2/12, so that the ideal rms quantization error is ∆/

√
12. Inserting this

into (1.7), the SINAD for an ideal uniform ADC is

SINADideal = 20 log10

√
6A

∆
= 20 log10

√
6A 2b

FSR
[dB]. (1.8)

In the last equality, the relation ∆ = FSR/2b was used, where FSR denotes the
full-scale range of the ADC. From (1.8) it is apparent that every additional bit
increases the SINAD of an ideal ADC by 20 log10 2 ≈ 6 dB, which is a well known
rule of thumb [Wal99,Wep95] (see also Section 4.1 and (4.2)).

Effective Number of Bits (ENOB)

The effective number of bits is related to the SINAD of the ADC. In (1.8) the
relation between the number of bits b and the SINAD of an ideal ADC was given.
For a practical converter the SINAD will be lower. Thus, by solving for b in (1.8),
we get

ENOB =
log2 10

20
SINAD + log2

FSR√
6A

. (1.9)

The effective number of bits should be interpreted as the number of bits required
in an ideal converter to achieve a certain SINAD.

Spurious Free Dynamic Range (SFDR)

While the first two performance measures have been related to the total noise, the
last two will be related to certain spectral components of the ADC output signal.
The converter under test is still supposed to be exercised with a spectrally pure,
large amplitude sinewave. Furthermore, the fundamental frequency f0 of the test
signal is now supposed to align with a DFT bin frequency and to be concurrent
with the conditions for coherent sampling, as defined in [Std1241]. These are given
in [Std1241, §4.1.4.5] as

f0 =
J

N
fs, (1.10)

where J is an integer which is relatively prime to the record size N . The condition
of J and N being relatively prime means that J and N have no common factors;
when N is a power of 2, then any odd J meets this condition.
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The spurious free dynamic range is the ratio of the magnitude of the DFT at
the fundamental signal frequency and the magnitude of the DFT at the largest
harmonic or spurious signal component observed over the full Nyquist range, that
is,

SFDR = 20 log10

|X(f0/fs)|
max

fd 6=f0/fs

|X(fd)|
[dB]. (1.11)

The SFDR is in most practical cases dependent on both signal frequency and ampli-
tude as well as sampling frequency. Therefore, these parameters should be specified
along with the SFDR. In most cases the amplitude of the test signal is near full-
scale, typically around −0.5 dBFS.

Spurious free dynamic range indicates the usable dynamic range of an ADC. In
the likely scenario of detecting two (or more) separate signals of different ampli-
tude, the SFDR indicates the maximum feasible ratio between the stronger and the
weaker signal; with a ratio grater than the SFDR the weaker signal will probably
be lost in the spurs generated by the converter itself from the stronger signal.

Total Harmonic Distortion (THD)

The total harmonic distortion is defined as

THD =
1

N

√ ∑

f∈{fk}

|X(f)|2 (1.12)

where {fk} is the set of the H first harmonics to f0. The harmonic frequencies
should be aliased so that fk ∈ [0, 0.5], which is described in [Std1241]. As with
SFDR, the THD is dependent on the input signal parameters and possibly also on
the sampling frequency, wherefore these should be specified. Like SFDR, THD is
usually tested using a near full-scale sinewave.

1.5 The Post-correction Problem

This thesis is – as was stated already in the beginning of this chapter – dedicated
to correction techniques for A/D converters. The contributions made are for the
specific case of post-correction using look-up tables. Chapter 3 starts out by dis-
secting look-up table methods, but we will anticipate events and list a few specific
problems of interest.

What is a good correction? This question is directly linked to what distortion
measure that is being used. The vast majority of the results in this work are
based on the mean-squared error criterion. Chapter 6 discusses this criterion,
and a few other, and the implications of the criterions are stated.

How can the correction value be obtained? Knowing the optimal correction
value in theory is one thing – obtaining a good set of correction values for a
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practical ADC is a different matter. In Chapter 7 this problem is dealt with
from an estimation point of view.

Which value in the table should be used? Or, if each entry has a unique in-
dex (address), how shall the index corresponding to a certain ADC output be
determined? This is determined by something that is defined as an indexing
scheme in Chapter 3. The indexing scheme determines the dynamic behavior
– if any – of the post-correction system. The state of the art is reviewed in
Chapter 3, and novel contributions are made in Chapter 9.

How can the memory requirements be reduced? One frequent problem in
look-up table based post-correction systems is that they can be quite memory
consuming. That is, the number of table entries and the (word) length of
each entry simply amounts to a too large memory size. The contributions of
Part III aim at reducing the number of entries, while theories presented in
Chapter 8 analyzes the effects of reducing the word length.

1.6 Outline and Contributions

This thesis is organized into three parts, which are here briefly summarized.

Part I: ADC Correction Methods: An Overview The first part of the the-
sis provides an overview to the art of ADC correction. This part does not only
deal with post-correction, but also discusses the concept of dithering, a technique
where random noise is added to the input of the converter in order to obtain better
quantization results.

After a short introduction in Chapter 2, Chapter 3 provides an overview to
the art of look-up table based correction, considering indexing schemes, correction
values and calibration. Chapter 4 deals with different forms of dithering. The
key results within statistical quantization theory are reviewed, and the dithering
theories based upon these results are given. Dithering for slowly varying signals
and dithering for non-ideal quantizers is also considered. The last chapter in Part I,
Chapter 5, deals with correction methods based on a mathematical model describing
the ADC. The correction is found by inverting the model and connecting the ADC
to be corrected and the model inverse in tandem, hopefully producing a system
which cancels out the non-idealities.

Part II: Signal Processing in ADC Post-correction In the second part, the
results akin to signal processing and information theory are given.

Chapter 6 provides different distortion measures that can be used when as-
sessing the performance of systems in general, and quantizers in particular. Dif-
ferent choices of distortion measure yield different strategies for choosing the re-
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construction levels of a quantizer. These theories provide the foundation for which
values are considered good correction values in a post-correction system.

Chapter 7 addresses the problem of estimating the correction values for a
practical ADC. The results presented are based on a calibration scheme where
some kind of reference signal is obtained during a calibration phase. The reference
is assumed to be the true input perturbed by some noise. Two different scenarios
are considered and they result in two different estimators. In the first scenario,
a mathematically tractable Gaussian assumption is made. The optimal estimator
in the mean squared sense is shown to be the sample mean. The second scenario
conforms with the classical staircase quantizer transfer function, and a non-linear
estimator base on order statistics is found to be better than the sample mean. Also,
the Cramér–Rao bound for the estimation problem at hand is derived.

Chapter 8 elaborates on the theoretical performance limits of an ADC after
post-correction. In particular, the effect of using limited-resolution correction terms
is investigated. A prediction of the resulting SINAD and ENOB after correction
is provided. The prediction is based on four parameters: the number of bits, the
variance of the random ADC input noise, the variance of the intrinsic DNL and the
precision with which the correction terms are represented.

Part III: Generalized Look-Up Table Post-correction In the last part of
this work, a generalized indexing scheme for look-up table based ADC correction
is proposed and analyzed.

Chapter 9 defines the novel multidimensional look-up table correction strat-
egy. In the context of the proposed method, the concept of bit-masking is intro-
duced; bit masks are fundamental for the subsequent analysis of correction results.
The performance of the method is illustrated with experimental ADC data for a
few exemplary cases.

Chapter 10 is dedicated to the derivation of an analysis framework for the
generalized correction method proposed in Chapter 9. The derivations are based on
the Hadamard transform, which is also described in the chapter. It is shown that
the outcome of many different correction schemes can be compared through matrix
relations. In particular, a special reduction matrix is introduced in the chapter.

Chapter 11 illustrates the applicability of the analysis framework – in par-
ticular the reduction matrix – derived in the preceding chapter. The reduction
matrix is employed in an optimization problem where the objective is to find the
best allocation of a limited number of bits in the bit mask associated with an ADC
correction system. Two different criterions are applied, viz. SINAD and THD.
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Chapter 12 gives a suboptimal method for finding a solution to the rather
complex optimization problems arrived upon in Chapter 11. The algorithm is a
type of deflation algorithm.

Chapter 13 proposes another structure for look-up table correction schemes.
In the proposed method, the frequency of a supposedly narrow-band signal is esti-
mated using a frequency estimator based on look-up tables. The estimate is then
used to decide which correction table to use to correct an ADC.
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test-bed. In The European DSP Education and Research Symposium EDERS,
November 2004.

[DVLR05b] L. De Vito, H. Lundin, and S. Rapuano. A Bayesian filtering-
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2002.

[LHS04] H. Lundin, P. Händel, and M. Skoglund. Adaptively calibrating analog-
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1.7 Notation

R The real numbers.

R
k The k-dimensional real space.

B
k = {0, 1}k The k-dimensional binary space.

Z The integer numbers.

Z
k The k-dimensional integer space.
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j The imaginary unit, defined through j2 = −1.

A A matrix.

a A column vector.

ai The i-th element of the vector a. The notation [a]i is used to avoid ambiguities.

AT, aT The transpose of a matrix and a vector, respectively.

A∗, a∗ The complex conjugate transpose, or Hermitian adjoint, of a matrix and a
vector, respectively.

A−1 The matrix inverse of A.

diag{A} The vector consisting of the main diagonal elements of the matrix A.

diag{a} The diagonal matrix with the elements of the vector a on the main diag-
onal.

Tr{A} The trace of a matrix, i.e., the sum of the elements on the main diagonal.

vec{A} The columns of A stacked in a vector.

A ⊗ B The Kronecker matrix product (see Section 10.1 for a definition).

A ◦ B The Hadamard (entrywise) matrix product (see Appendix 11.A).

IN The N -by-N identity matrix.

1, 1k A column vector of all ones, in the second case with length k specified.

0, 0k A column vector of all zeros, in the second case with length k specified.

∆ The code bin width of the quantizer. For a uniform quantizer the relation
∆ = FSR/2b holds, i.e., the full range of the ADC is divided into 2b bins of
equal width.

I
q−→ J Mapping of an integer I through a ‘bit mask’ q to produce the integer J

(see Section 9.1 and Definition 2 on page 117).

F The Fourier transform operator.

arg minx f(x) The value of x for which f(x) is minimized.

δi The Kronecker delta function, defined for all integers i as

δi ,

{
1, i = 0,

0, i 6= 0.

Also, δij , δi−j .
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abcd2 = (a, b, c, d)2 Binary representation where a and d are the most and least
significant bits, respectively.

E The expected value of a stochastic variable or function of a stochastic variable.

EX The expected value taken with respect to the PDF of the stochastic variable
X.

var The variance of a stochastic variable or function of a stochastic variable.

N (m, σ2) The Gaussian or normal distribution with mean m and variance σ2 (stan-
dard deviation σ).

{xi}N
i=1 A set with members x1, x2, . . . , xN .

1.8 Abbreviations

ADC Analog-to-digital converter.

CF Characteristic function. The Fourier transform of a PDF.

DAC Digital-to-analog converter.

dBFS dB ratio with respect to full scale.

DNL Differential nonlinearity.

ENOB Effective number of bits.

GSPS Giga-samples per second; billion samples per second.

FSR Full-scale range. The difference between the most positive and most negative
analog inputs of a converter’s operating range.

i.i.d. Independent identically distributed.

IMD Intermodulation distortion.

INL Integral nonlinearity.

LSB Least significant bit.

MAE Mean absolute error.

MLE Maximum likelihood estimator.

MMAE Minimum mean absolute error.

MMSE Minimum mean squared error.

MSB Most significant bit.
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MSE Mean squared error.

MSPS Mega-samples per second; million samples per second.

MVU Minimum variance unbiased (estimator).

NPR Noise power ratio.

PDF Probability density function.

PMF Probability mass function.

PSD Power spectral density.

rms Root-mean-square.

SFDR Spurious free dynamic range.

SINAD Signal-to-noise and distortion ratio.

s.v. Stochastic variable.

THD Total harmonic distortion.
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ADC Correction Methods

An Overview
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Chapter 2

Introduction to Part I

This part gives an introduction to correction methods for analog-to-digital convert-
ers. The material is mainly intended to provide an overview, and the motivated
reader is encouraged to pursue deeper knowledge in the references given herein. The
work is divided into three chapters, each covering a special form of ADC correction.
The classification into different families of methods follows that of [BDR05] to a
large extent.

In Chapter 3, methods that are implemented using look-up tables are reviewed.
Post-correction using look-up tables is a very common way of diminishing ADC
errors, and extensive research has been conducted within this field. As a natural
consequence, Chapter 3 only gives a brief summary of some of the most common
methods, and should not in any way be seen as a complete description of the subject.

Chapter 4 covers the method known as dithering. The word dithering is used
for a group of methods that all add noise to the input signal, prior to sampling and
quantization. Chapter 4 starts with the fundamental theories of (ideal) quantization
in order to facilitate the understanding of how additional noise can be beneficial. In
addition to improving ideal quantizers, dithering can also be useful in randomizing
the error patterns of non-ideal converters, as well as providing increased resolution
(through averaging) for slowly varying signals.

In Chapter 5 methods that are based on a mathematical model of the ADC are
presented. In particular, the chapter is focused on inverting Volterra models.
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Chapter 3

Look-Up Table Based Methods

ADC post-correction using look-up tables (LUTs) is probably the most frequently
proposed method for ADC correction in the literature, and is the post-correction
method that was first introduced.1 The outline of a generic LUT correction system
is shown in Figure 3.1. The basic idea of the method is that the output samples
from the ADC are used as index, or address, into the table – possibly using some
indexing function. The index points out a specific entry value in the table, and the
value is either added to or used to replace the current ADC output sample.

In theory, any post-correction methods that operate on a finite sequence of
ADC output samples can be represented as an LUT. However, implementation
issues limit the feasible methods to those of limited dynamic dependence, that
is, only those methods that directly use a few subsequent samples for indexing
can be successfully implemented as LUTs. Methods targeted at mitigating highly
dynamic error effects must be implemented using some kind of arithmetic on-line
computation of the correction values (cf. Chapter 5).

3.1 Classification of LUT Methods

Returning to Figure 3.1, we will in this chapter classify various LUT methods
depending on how they implement the various blocks of the figure. In particular,
we will address the following parts:

Indexing scheme Determines how the table index I is generated from the se-
quence of output samples {x(n)}. Static, state-space, and phase-plane cor-
rection methods can all be incorporated into this framework through proper
design of the indexing function.

Correction vs. replacement The look-up table can either be used to store cor-
rection values to be added to the ADC output sample (ŝ(n) = x(n) + eI), or

1Dithering methods were proposed earlier, but they do not fall into the class of post-correction
methods.
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x(n)s(t) ŝ(n)

I eI

sref(n)

ADC

indexing LUT

est.

add/replace

Figure 3.1: A generic look-up table correction system.

replacement values so that the output is simply replaced with a value from
the table (ŝ(n) = eI).

Nominal value An obvious question when considering ADC post-correction is
with what values the table should be loaded. Different views on this issue
results in slightly different strategies.

Reference signal Calibration of the LUT is a nontrivial task indeed, and the
choice of calibration signal has proven to be of paramount importance. Dif-
ferent choices of calibration signal also give different possibilities of how to
obtain a reference signal sref(n) in the digital domain, which is needed for
calibration of the LUT. (The definitions of calibration and reference signals
are provided in Section 3.4 below.)

Estimation methods Different strategies on how to obtain the table values from
the reference signal have been proposed in the literature.

The above issues are all treated in the following sections.

3.2 Indexing Schemes

The indexing scheme is perhaps the most significant part of the LUT system, and
also the part that determines the size and structure of the actual table. Gen-
erally speaking, the indexing function operates on a vector of output samples[
x(n − Ka) x(n − K + 1) . . . x(n) . . . x(n + Kb)

]T
(·T denotes the trans-

pose of a vector) and produces a nonnegative integer index I associated with sam-
ple index n. The indexing function is in most cases causal, so that Kb = 0 and
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s(t) x(n)

xi1

x(n − 1)

xi2

ŝ(n)
ADC

Delay

{εj1, j2}

εi1, i2

Figure 3.2: Two-dimensional state-space correction table.

K , Ka ≥ 0. How the available input samples are mapped to an index is what
differs from one indexing scheme to another.

The size of the table is determined by the range of possible indices I ∈ {0, 1, . . . ,
Imax}. In the vast majority of the cases, the size of the table is a power of 2, say
2B with B being a positive integer, implying that the index I can be represented
in a binary format using B bits, and Imax = 2B − 1.

In the following we will give a short résumé of the most commonly used indexing
schemes.

Static Indexing

A static look-up table correction scheme maps the present sample x(n) into an
index I,

x(n) → I, (3.1)

that is, the index depends neither on past nor on future samples. In its most
basic form, the index I is simply the binary b-bit word given by the ADC, so that
I = x(n) where x(n) is in binary format. It is also possible to reduce the index
space by further quantizing the ADC output, i.e., discarding one or several of the
least significant bits (LSBs) in x(n) providing an index of B < b bits, as proposed
for instance in [DC90].

It is obvious that this scheme will produce the same index I for a given ADC
output regardless of the signal dynamics (e.g., regardless of signal history). Thus,
it is of significant importance that the errors of the ADC stay constant in the
intended range of operating signals for the ADC, and do not change depending on
which input signal is being applied.

This is the method proposed, for example, in [Iro86] and [HSP00]. In the lat-
ter it was demonstrated that static correction may improve performance for some
frequencies, while deteriorating it for other frequencies—this is a typical indication
that the ADC possesses some significant dynamic error mechanism.
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State-Space Indexing

One way to introduce dynamics into the correction scheme is to adopt a state-space
structure. The current sample x(n) and the previous sample x(n − 1) are used to
build the index:

(x(n), x(n − 1)) → I. (3.2)

This method is referred to as state-space indexing, and is illustrated in Figure 3.2.
The basic form is when the b bits from x(n) and x(n−1) are concatenated to form an
index of B = 2b bits. The indexing is undoubtedly dependent on signal dynamics,
since the index for a sample x(n) = xi is potentially different for different values of
the previous sample x(n− 1). This scheme can be equivalently described as a two-
dimensional LUT where x(n) and x(n − 1) are used to index the two dimensions,
respectively. State-space ADC correction is proposed in, for example, [IHK91]
and [TL97].

The two-dimensional state-space method generalizes to an indexing scheme uti-
lizing K delayed samples in conjunction with the present sample for indexing:

(x(n), x(n − 1), . . . , x(n − K)) → I. (3.3)

Again, the basic form would just take all the samples and concatenate all the bits
into an index of B = (K + 1)b bits. This extended scheme was alluded to by
Tsimbinos in [Tsi95].

An immediate problem with extending the dimension of the table is that the
memory required to store the table becomes unwieldy very fast. The number of
table entries is M , 2B = 2(K+1)b and we see that it grows exponentially in K. The
number of ADC bits, b, of course comes in to the equation, but it is reasonable to
say that for resolutions common in high-speed ADCs – some 8 to 14 bits in general
– it is not practical to have K greater than 2.

In order to tackle the memory problem, measures must be taken to reduce
the index space. One way to accomplish this is to apply further quantization (or
truncation) to the delayed samples, so that they are represented with less than b
bits resolution (a method used for state-space indexing in [TMBSL02], and in the
context of phase-plane correction in [RI87] and [DVBS92]). In Chapter 9 of the
present work, this approach is generalized to say that a number less than or equal
to b bits are used from the sample x(n−k) (for k ∈ {0, 1, . . . , K}). However, these
are not necessarily the most significant bits but can be selected from all b bits of
x(n − k). That is, some of the bits in the sample x(n − k) are discarded, and the
remaining bits are used for addressing.

Phase-Plane Indexing

As an alternative to state-space indexing, the phase-plane indexing, described in,
for example, [RI87], [Mou89], [Hum02], and [Ber04], may be used; sometimes the
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s(t) x(n)

xi

ˆ̇s(n)

ˆ̇sj

ŝ(n)
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Digital
filter

{εp, q}

εi, j

Figure 3.3: Two-dimensional phase-plane correction table. The filter calculates an
estimate of the signal slope for each sample. The estimate is represented with a
binary word ˆ̇sj of finite precision (say b2 bits, not necessarily equal to b) and is used
as part of the table index.

term code-slope indexing is used. The table index is constructed from the present
sample x(n) and an estimate of the slope (derivative) of the input signal ˆ̇s(n):

(
x(n), ˆ̇s(n)

)
→ I. (3.4)

The slope can either be estimated from the output samples, using for instance
the backward difference x(n) − x(n − 1) or an FIR differentiator filter [Mou89,
HICP94,TMBSL02], or using an analog differentiator and a separate (possibly low
resolution) ADC sampling the output of the differentiator [IHK91]—the former
variant is exemplified in Figure 3.3. Just as in the state-space case, the indexing
can be generalized to higher order

(
x(n), ŝ(1)(n), . . . , ŝ(K)(n)

)
→ I, (3.5)

where ŝ(k) denotes the estimate of the k-th derivative. Addressing with higher order
derivatives has been reported in [DVBS92].

3.3 Correction Values

While the indexing regime determines which table entries will be used at all times,
the actual value of the table entry is still not settled. In this section we will review
the most common approaches, and also touch upon the issue of finite precision in
the correction values.

First, however, we go back to the distinction between correction versus replace-
ment values. In the former case, the table is filled with correction terms that are
added to the output from the ADC, while the output is replaced by the LUT val-
ues in the latter case. In other words, if the ADC produces an error eI (difference
between some nominal and the actual output) for some index I, then a correction
scheme would store eI in the table, while the corresponding replacement scheme
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s(t) x(n)

xi

ŝ(n)

si
ADC {sj}

(a) Replacement correction

s(t) x(n)

xi

ŝ(n)

si
ADC {εj}

εi

(b) Additive correction

Figure 3.4: Two types of static correction tables. In 3.4(a) the ADC output x(n) =
xi is replaced by the table entry si, while in 3.4(b) the corrected output is produced
by adding a correction term εi to the ADC output xi.

would store eI + x, where x is equal to the current output of the ADC. The two
alternatives are depicted in Figure 3.4(a) and Figure 3.4(b), respectively.

From an implementation point of view, the replacement scheme is beneficial,
since no addition is needed during correction, which is not the case in the correction
approach. Any correction system implemented as a replacement system can be
equivalently replaced using a correction type system, while the converse is not true.
It is in fact only in the case when the table index I(n) is unique for distinct current
samples x(n) that the correction based system can be replaced with a replacement
system, i.e., if x(n) 6= x(m) → I(n) 6= I(m). Looking back at Section 3.2 we see
that it is only those schemes where all the bits from the current sample x(n) go
straight into the index that fulfill this criterion, e.g., the basic forms of static, state-
space and phase-plane corrections. The methods using further quantization of x(n)
mentioned at page 32 does not qualify, since if any of the bits in x(n) are omitted,
then different values of x(n) that differ only in the bits removed may give the same
index I. The same applies for the generalized scheme presented in Chapter 9.

Nominal Value

The goal with ADC post-correction is of course to produce an output that is better
than before correction. A few approaches are listed here. More detailed descriptions
are provided in Chapter 6.

Midpoint Correction The midpoint correction strategy is based on the assump-
tion that the ADC acts as a staircase quantizer with M quantization regions
{Sj}M−1

j=0 . The i-th region is delimited below and above by the transition lev-
els Ti and Ti+1, respectively (cf. Section 1.2). The table value for an additive
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b bits
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Figure 3.5: Addition of the ADC output with a correction value. The bits of the
table value are shifted in order to enhance the precision of the corrected ADC.

correction type system using midpoint correction should be

ei =
Ti + Ti+1

2
− xi. (3.6)

MMSE Correction In the minimum mean squared error approach the input s(n)
is considered to be drawn from a stochastic variable S with PDF fS(s). Then,
the MMSE correction value, i.e., the correction that minimizes E[(ŝ(n) −
s(n))2], is

ei =

∫
s∈Si

s fS(s) ds∫
s∈Si

fS(s) ds
− xi. (3.7)

Minimum Harmonic Correction A specialized method that assigns correction
values so that the harmonic distortion after correction is minimized.

Precision of Correction Values

In a practical post-correction application the correction values are stored with fixed-
point precision. This does, of course, affect the outcome of the correction.

An ADC can in general be assumed to have zero errors in a number of the most
significant bits. Hence, these bits will never be in need of correction, and if an
additive correction system is applied (cf. Figure 3.4) no memory have to be used
to store any correction for these bits. We can instead focus on the least significant
bits, and even use the excessive word length in the LUT for sub-LSB correction. For
example, if a 10-bit converter is known to have errors only in the 3 least significant
bits, then an 8-bit correction word could be shifted 5 steps so that 5 correction bits
are sub-LSB bits, or binary decimal bits. Figure 3.5 gives a graphical explanation
for this. Note that the shifting is not possible when implementing a replacement-
value correction system, since the replacement value stored in the LUT must have
all bits.



36 CHAPTER 3. LOOK-UP TABLE BASED METHODS

The choice of correction word length and number of bits to shift are both design
parameters to be fixed when implementing a post-correction system, and depend on
the ADC to be corrected. It should be noted here that if the correction value is not
shifted, so that the LSBs of the ADC and the correction align, then the correction
system can only mitigate errors that are ≥ 1/2 LSB.

In Chapter 8 of this thesis, these matters are dealt with in greater detail.

3.4 Calibration of LUTs

Prior to first use the correction table must be calibrated. The ADC under test
is calibrated experimentally, i.e., a signal is fed to the input of the ADC and the
transfer characteristics of the ADC are determined from the outcome. Many meth-
ods require that a reference signal is available in the digital domain, this being
the signal that the actual output of the ADC is compared with. This reference
signal is in the ideal case a perfect, infinite resolution, sampled version of the sig-
nal applied to the ADC under test. In a practical situation, the reference signal
must be estimated in some way. This can be accomplished by incorporating auxil-
iary devices such as a reference ADC, sampling the same signal as the ADC under
test [EM04], or a DAC feeding a digitally generated calibration signal to the ADC
under test [TL97,Hum02]. Another alternative is to estimate the reference signal
by applying signal processing methods to the output of the ADC under test. Spe-
cial cases of this exist; in [Elb01] methods for blind calibration, assuming only a
smooth but otherwise unknown probability density function for the reference sig-
nal, are presented, while [HSP00] proposes sinewave reference signals in conjunction
with optimal filtering techniques to extract an estimate of the reference signal. The
latter method was further developed in [LSH01,Lun00] to include adaptive filtering
techniques, adapting to a calibration signal that is switching between a number of
frequencies.

When the reference signal has been acquired, the table values should be esti-
mated from it. When using the MMSE approach (3.7) above, the following method
is frequently used. Since neither the regions {Sj} nor the PDF fS(s) is known in
general, we are forced to use a more practical method. Assume that the reference
samples collected during calibration results in a set C of N samples. Each sample
in C belongs to one, and only one, quantization region Sj . Hence, we can split C
into M = 2b subsets, {Cj}M−1

j=0 , such that sref(n) ∈ Ci ⇒ s(n) ∈ Si. Here, s(n),
n = 0, . . . , N − 1, are the calibration samples input to the ADC under test and
sref(n), n = 0, . . . , N − 1, are the corresponding reference samples. It is assumed
that the sample-and-hold of the ADC under test is ideal, so that the entire error
behavior is captured in the following quantizer and the discrete-time signal s(n),
n = 0, . . . , N − 1, can be considered to be the exact calibration signal.

To summarize, Ci contains all reference samples in C collected when the index i
was produced in the ADC under test. Each subset Cj has Nj samples, and naturally∑M−1

j=0 Nj = N . Since the actual PDF fS(s) is unknown, the collected reference



3.4. CALIBRATION OF LUTs 37

samples C is all information at hand. We assign to each sample in C the probability
1/N , i.e., all samples in C are equally probable, and the probabilities sum up to
one. Now we can approximate the integrals in (3.7) with

∫

s∈Sj

s fS(s) ds ≈
∑

s∈Cj

s
1

N
=

1

N

∑

s∈Cj

s =
Nj

N
C̄j (3.8)

∫

s∈Sj

fS(s) ds ≈
∑

s∈Cj

1

N
=

Nj

N
, (3.9)

so that

xj, opt ≈ C̄j , (3.10)

where C̄j is the arithmetic mean of all samples in Cj . Chapter 7 provides fur-
ther results on correction value estimation using the sample mean. Moreover, an
alternative estimator, based on order statistics, is derived and analyzed.

Calibration methods that do not rely on any digital reference signal has also
been proposed in the literature. In [EM04], a method is proposed that estimates
the integral nonlinearity (INL) from the output code histogram and subsequently
builds an LUT from the INL sequence.

Daponte et al. proposes a hybrid correction system in [DHH+02]. The correction
comprises an LUT using the minimum mean-squared approach followed by a low-
pass filter. The filtering is possible since the system is aimed at over-sampling
applications, so that the signal of interest only can reside in the lower part of
the spectrum. The LUT is calibrated using the sinewave histogram method and
Bayesian estimation.





Chapter 4

Dithering Based Methods

Distortion resulting from quantization – both ideal and non-ideal quantization –
can often be reduced using a technique called dithering. The method can be di-
vided into subtractive and non-subtractive dithering. Figure 4.1 shows the two
different structures. The somewhat counterintuitive basic idea of dithering is to
add some kind of noise to the signal prior to quantization. The same noise signal is
subsequently subtracted after quantization in the subtractive method, while this is
obviously not the case in the non-subtractive one. There are three main purposes
for adding noise to the signal:

1. Break up statistical correlations between the quantization error and the input
signal, and make the popular pseudo quantization noise model valid.

2. Randomize the DNL pattern of a non-ideal uniform quantizer.

3. Increase the resolution for slowly varying signals.

The three approaches will be briefly explained in this chapter. The basics of sta-
tistical quantization theory are given in Section 4.1 while Section 4.2 explains how
dithering can reduce the distortion by randomization. Finally, dithering in con-
junction with low-pass post-processing is dealt with in Section 4.3.

4.1 Statistical Theory of Quantization and Dithering

In this section we will give a short historical overview of the development of sta-
tistical quantization theory and provide the key results, intentionally focused on
dithering applications. The motivated reader will find a comprehensive insight into
the topic with numerous references and an exhaustive historical résumé in [GN98],
which is the main reference for the historical overview given here. We will re-
strict ourselves to fixed-rate scalar quantization, and refrain from dealing with
deeper information theoretical concepts such as variable-rate quantization and vec-
tor quantization. Following the quantization theory are the theories for dithering.
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Figure 4.1: Figures of subtractive and non-subtractive dither.

In this section we are mainly concerned with small-scale dithering for ideal uniform
quantizers; large-scale dithering and dithering intended to mitigate DNL errors is
considered in Sections 4.2 and 4.3.

Perhaps the oldest example of quantization is rounding off, first analyzed by
Sheppard [She98] in his work on histograms. The real starting point for quantiza-
tion theory, however, was the invention of pulse-code modulation (PCM), patented
by Reeves in 1938 and accurately predicted to become a ubiquitous part of commu-
nication, both for audio and video. Oliver, Pierce and Shannon [OPS48] provided
the first general contribution to statistical quantization theory in their analysis of
PCM for communications. One of their contributions is the classical result that for
a high resolution quantizer the average distortion, in terms of squared-error (i.e.,
quantization noise power), is

σ2
Q ≈ ∆2

12
, (4.1)

where ∆ is the width of the quantization regions. A uniform quantizer with M = 2b

quantization regions and an input range V would then have ∆ = V/2b and (4.1)
can be applied to yield the classical “6-dB-per-bit” result for the signal-to-noise and
distortion ratio (SINAD)

SINAD = 10 log10

signal power
V 2

22b 12

≈ 6.02b + constant. (4.2)

In response to the need for a simple linear model for the effects of quantization,
the pseudo quantization noise model was introduced. The model replaces a quan-
tizer with an additive noise source, independent of the input signal – see Figure 1.4
on page 7. The model was popularized by Widrow [Wid56,Wid61,WKL96], who
also gave conditions for when it is valid.

The pioneering work on dithering was carried out by Roberts in his work on
image quantization [Rob62]. Roberts argued that adding noise to an image before
quantization and subtracting it before reconstruction could mitigate the quantiza-
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Figure 4.2: The input–output transfer function of a uniform, scalar, mid-tread
quantizer with quantization step size ∆.

tion effects on the image, seen as regular, signal dependent, patterns. The general
theory of dithering was then further developed by Schuchman [Sch64].

Quantization Theory

The following results, many of them originally due to Widrow, give the amplitude
quantization counterpart to the widespread Nyquist’s sampling theorem (note that
sampling can be seen as time quantization, and conversely, amplitude quantization
can be seen as sampling the amplitude). The following results and discussion ap-
plies to uniform, scalar, mid-tread quantization with a quantization step size ∆.
Figure 4.2 shows the input–output transfer function of such a quantizer.

Assume that the input to a quantizer is a stochastic variable (s.v.) X with
probability density function (PDF) fX(x). The output from the quantizer is an
s.v. denoted Y . Figure 4.3 shows the signal relations, including the quantization
error E , Y − X. The Fourier transform of the input PDF, usually referred to as
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Figure 4.3: The quantizer Q with input X, output Y and error E defined.

the characteristic function (CF), is1

ΦX(u) =

∫ ∞

−∞

fX(x)ejux dx = E
[
ejuX

]
. (4.3)

The statistical expected value is denoted E[·]. Two quantization theorems based on
the CF were provided by Widrow, and they are recapitulated here:

Theorem 1 (QT I). If the CF of X is bandlimited, so that

ΦX(u) = 0 for |u| >
π

∆
, (4.4)

where ∆ is the width of the quantization regions, then the CF (PDF) of X can be
derived from the CF (PDF) of Y .

Theorem 2 (QT II). If the CF of X is bandlimited, so that

ΦX(u) = 0 for |u| >
2π

∆
− ε, (4.5)

with ε positive and arbitrarily small, then the moments of X can be calculated from
the moments of Y .

The proofs are for instance provided in [WKL96] and are based on impulse-train
sampling and calculation of moments from characteristic functions. Theorem 1 is
in direct analogy with Nyquist’s sampling theorem: if the Fourier transform of the
continuous-time signal is bandlimited within a maximum angular frequency ωmax,
then the continuous-time signal can be perfectly reconstructed from the sampled
signal if the samples are taken at an angular frequency at least 2ωmax. This is
because quantization is in fact a discretization in the PDF domain, just as sampling

1As usual there are different definitions of the Fourier transform and care must be taken when
interpreting results based on characteristic functions. In [WLVW00], for instance, the definition is
ΦX(u) =

R

∞

−∞
fX(x) exp{−j2πux} dx = E [exp{−j2πuX}]. The definition (4.3) is user through-

out this work, and results from sources where another definition has been used are rewritten to
match the current notation.
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is a discretization in the time domain. We see that ∆ – the distance between
two adjacent quantization points – is the quantization counterpart of the sampling
period – the distance between two adjacent samples.

It is of less importance for our purposes here to know whether we can reconstruct
the input PDF from the output PDF, which is the primary result of the quantization
theorems above. However, the theorems can be used to say when a pseudo quanti-
zation noise (PQN) model can be used with success. The PQN model (sometimes
also called the classical model of quantization) models a quantizer as an additive,
white noise source, independent of the input signal, and with a zero-mean uniform
distribution with variance ∆2/12 (i.e., uniform in [−∆/2,∆/2]). This model can
of course never hold true, since the quantization error, defined as the difference
between the output and the input of the quantizer, is a deterministic function of
the input signal. However, when the conditions for Theorem 1 or Theorem 2 are
met, all moments and joint moments correspond exactly for quantization and the
addition of said independent noise [WKL96], and the PDF of the quantization er-
ror is exactly zero-mean uniform with variance ∆2/12 [Wid56,Wid61]. Under the
same conditions it can also be shown [Wid56,Wid61] that the quantization error is
uncorrelated with the input to the quantizer.

Sripad and Snyder [SS77] gave a weaker sufficient and necessary condition for
the quantization error:

Theorem 3. The PDF of the quantization error is uniform in [−∆/2,∆/2] if and
only if the CF of the input satisfies

ΦX

(
2πn

∆

)
= 0 for all integers n 6= 0. (4.6)

It is obvious that this condition is milder than that of Theorem 2. In particular,
this is no longer a band-limiting constraint. In the same paper it is also shown that
under the condition (4.6), the correlation between the input X and the quantization
error E is

E[X · E] =
∆

2π

∑

k 6=0

(−1)k

k

∂

∂u
ΦX(u)

∣∣∣∣
u=2πk/∆

. (4.7)

A sufficient condition for (4.7) to equate to zero is ∂
∂uΦX(u)

∣∣
u=2πk/∆

= 0 for all
integers k 6= 0.

The above results have only considered the case of quantizing one s.v., that is,
one single sample, and does not provide any temporal information such as the color
of the quantization noise. Corresponding results for quantization of a sequence of
samples were derived by Widrow [WKL96] using joint PDFs and CFs, and again a
milder sufficient and necessary condition was provided by Sripad and Snyder [SS77].
We only provide the latter:
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Theorem 4. The joint PDF of two quantization errors E1 and E2 is uniform, i.e.,

fE1 E2
(e1, e2) =





1

∆2
, |e1| <

∆

2
, |e2| <

∆

2
,

0, otherwise,
(4.8)

if and only if the joint CF of the two input stochastic variables X1 and X2 satisfies

ΦX1 X2

(
2πk

∆
,

2πℓ

∆

)
= 0 for all k 6= 0 and ℓ 6= 0. (4.9)

The proof is outlined in [SS77]. An important implication follows from the
results given so far. When (4.9) is satisfied, the covariance of the quantization
noise process e(n) is E [e(n) e(m)] = δm n∆2/12 (δm n is the Kronecker δ-function).
That is, the quantization error is indeed white under Theorem 4. Next, we will
see how the input signal to the quantizer can be forced to fulfill some or all of the
conditions in the preceding theorems.

Dithering Theory

We have now established conditions under which the quantization noise is uniform,
zero mean, white and uncorrelated with the input. In this section we will see how
the input to the quantizer can be manipulated so that certain conditions are met.
The material presented here is to a large extent compiled from [WLVW00]. As
before, we consider a uniform, scalar, mid-tread quantizer with quantization step
size ∆ (cf. Figure 4.2). The quantizer is assumed to be infinite, but the practical
implication is that the input should be such that the quantizer never saturates. The
theoretical results of dithering – both subtractive and non-subtractive – applied to
such a quantizer are provided in the sequel.

The general framework for both cases is shown in Figure 4.1. The input to the
system is an s.v. X to which a dither V is added forming the quantizer input W .
In the non-subtractive case, the output Y = Q(W ) from the quantizer is also the
system output, while Y = Q(W ) − V is the system output in the subtractive case.
In both cases, the total error E is defined as

E = Y − X =

{
Q(X + V ) − X non-subtractive dithering;
Q(X + V ) − (X + V ) subtractive dithering.

(4.10)

The two different topologies are now treated separately.

Subtractive Dither

It can be argued that subtractive dithering is more powerful in some sense than non-
subtractive dithering. The main results of subtractive dithering are summarized in
the following theorem [WLVW00]:
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Theorem 5 (Subtractive dithering). The total error E induced by a subtractive
dithering system can be made uniformly distributed in [−∆/2, ∆/2] for arbitrary
input distributions if and only if the CF ΦV (u) of the dither obeys

ΦV

(
2πk

∆

)
= 0 for all integers k 6= 0. (4.11)

Moreover, the total error E is statistically independent of the system input X if and
only if the same condition (4.11) holds. Finally, two total error samples, E1 and
E2 say, with a non-zero separation in time, will be statistically independent of each
other if and only if the joint CF ΦV1 V2

(v1, v2) of the dither satisfies

ΦV1 V2

(
2πk1

∆
,

2πk2

∆

)
= 0 for all (k1, k2) ∈ Z

2
0. (4.12)

The set Z
n
0 is defined as all integer component vectors of length n with the

exception of the vector of all zeros, i.e., Z
n
0 = Z

n \ 0n. The first part of the the-
orem (uniform distribution) was proven by Schuchman [Sch64], and the condition
(4.11) is also referred to as Schuchman’s condition. The second and third parts
(independence and temporal characteristics) have been shown in various publica-
tions, e.g., [SS77]. Note that Schuchman’s condition is satisfied if V is an s.v. with
uniform density in [−∆/2, ∆/2], and (4.12) is satisfied for any independent identi-
cally distributed (i.i.d.) dither sequence satisfying Schuchman’s condition. That is,
selecting the dither to be white and uniform in [−∆/2, ∆/2] renders a total error
that is white, uniform and statistically independent of the system input.

A final remark on subtractive dithering is that when the dithering is selected as
stipulated in Therorem 5, the quantization noise power equals ∆2/12 and the PQN
model is in fact valid. Thus, properly designed subtractive dithering can make a
quantizer behave according to the PQN model for arbitrary (non-saturating) input
signals.

Non-subtractive Dither

Subtractive dithering has obvious advantages, being able to give an overall quan-
tization system that behaves according to the idealized PQN model. However, in
many practical cases, it is impossible to subtract the same signal that was added
prior to quantization, simply because the dither signal is not known in the digital do-
main. The following results – most of them due to Wannamaker, et al. [WLVW00],
but relying on the quantization theories presented by Widrow – summarizes the
properties of non-subtractive dithering.

The first result states the fundamental limitations of non-subtractive dithering:

Theorem 6. In a non-subtractive dithering system it is not possible to make the
total error E either statistically independent of the system input X or uniformly
distributed for arbitrary system input distributions.
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That is, we can never expect to get such good results as with a perfect subtrac-
tively dithered system. Careful design of a non-subtractive dither can nevertheless
improve a quantization system considerably. The following results tell how, and
what results can be expected.

The next theorem on non-subtractive dithering concerns the dependence be-
tween the quantization error and the input signal [LWV92,WLVW00]:

Theorem 7. The m-th moment of the total error, E[Em] is independent of the
distribution of the system input if and only if

G
(m)
V

(
2πk

∆

)
= 0 for all integers k 6= 0. (4.13)

Further, when (4.13) is fulfilled, the m-th moment is

E[Em] = (−j)mG
(m)
V (0). (4.14)

Here, the function GV (u) is

GV (u) , sinc

(
∆

2π
u

)
ΦV (u), (4.15)

the notation (m) denotes the m-th derivative, and

sinc(x) ,
sin(πx)

πx
. (4.16)

Since E[V m] = (−j)mΦm
V (0), we can use (4.14) to express the moments of E in the

moments of V ; for instance,

E[E] = E[V ] (4.17)

and

E[E2] = E[V 2] + ∆2/12 (4.18)

when (4.13) holds. An immediate result of (4.18) is that using non-subtractive
dither to make the quantization noise power independent of the input signal results
in an increase in the quantization noise power, over that of a PQN model, by an
amount equal to the dither variance. The quantization noise power can be made
smaller, but that comes at the expense of making the noise power dependent of the
input signal.

It can also be shown that when condition (4.13) in Theorem 7 is satisfied for some
m, then Em is uncorrelated with the input X. In fact, E[Em ·Xn] = E[Em] ·E[Xn]
for any positive integer n. Finally, before moving on to the temporal properties of
non-subtractive dithering, a stronger version of condition (4.13) is provided:
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Corollary 8. When using non-subtractive dithering, all moments E[Eℓ] for ℓ =
1, 2, . . . , m are independent of the distribution of the system input if and only if

Φ
(r)
V

(
2πk

∆

)
= 0 for all integers k 6= 0 and all r = 0, 1, . . . , m − 1. (4.19)

For the temporal properties of non-subtractive dithering, we give one theorem
and an important corollary:

Theorem 9. The joint moment E[Em1
1 Em1

2 ] of two total errors E1 and E2, with a
non-zero separation in time, is independent of the system input for arbitrary input
distributions if and only if

G
(m1, m2)
V1 V2

(
2πk1

∆
,

2πk2

∆

)
= 0 for all (k1, k2) ∈ Z

2
0. (4.20)

Here, the function GV1 V2
(u1, u2) is defined as

GV1 V2
(u1, u2) = sinc

(
∆

2π
u1

)
sinc

(
∆

2π
u2

)
ΦV1 V2

(u1, u2) (4.21)

and (m1, m2) denotes differentiating m1 and m2 times with respect to u1 and u2,
respectively. The proof is provided in [WLVW00]. Finally, an important implication
of Theorem 9 is pointed out:

Corollary 10. Any i.i.d. non-subtractive dither signal that satisfies (4.19) for m =
max(m1,m2) will provide

E [Em1
1 · Em2

2 ] = E [Em1
1 ] · E [Em2

2 ] (4.22)

for two error values E1 and E2 with a non-zero separation in time.

When this holds true, the moments E [Em1
1 ] and E [Em2

2 ] are given by (4.14).
From (4.17) we have that when Corollary 10 holds and the dither signal is zero-
mean, the total error signal is uncorrelated in time, i.e., E [E1E2] = 0.

In summary, non-subtractive dithering can neither make the total error statisti-
cally independent of the system input, nor ensure that the distribution of the total
error is uniform. However, clever design of the dither signal can make arbitrary
powers of the error uncorrelated with the input signal, and also make the error
signal temporally uncorrelated – in particular it can be made white.

Two Common Dither Distributions

Two very common dither distributions are rectangular and triangular distributions.
In the following, we will briefly asses their merits in the light of the theory provided
for subtractive and non-subtractive dithering.
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Rectangular Distribution

A frequently proposed dither signal is an i.i.d. uniform noise signal with a 1 LSB
range, that is producing samples uniformly in [−∆/2, ∆/2]. This dither signal is
zero-mean and has a variance ∆2/12.

As noted before, this dither satisfies all conditions of Theorem 5. Hence, a
subtractively dithered system using such a rectangular noise totally obeys the PQN
model.

In the non-subtractive case, we see that Theorem 7 is satisfied only for m = 1,
implying that the mean error E[E] = E[V ] = 0, while the noise power (and higher
moments of E) varies with the input; despite our dithering effort, we still have so
called noise modulation. From Corollary 10 we conclude that since (4.19) is satisfied
for m = 1 and since the dither is i.i.d. the error signal is temporally uncorrelated;
E[E1 · E2] = E[E1] · E[E2] = 0.

Triangular Distribution

For subtractive dithering the rectangular noise turned out to be quite sufficient,
but in the non-subtractive topology rectangular dither fell short in breaking the
correlation between the input signal and the quantization noise power. Our knowl-
edge from Theorem 7 tells us that we need a dither distributed such that (4.13) is
fulfilled for m = 1, 2.

One such distribution is the symmetric triangular distribution ranging from −∆
to ∆:

fV (v) =





∆ − |v|
∆2

|v| < ∆,

0 otherwise.
(4.23)

Triangular dither can easily be generated by adding two independent zero-mean
rectangular variables, each with variance ∆2/12. The mean of the triangular dither
is zero, and the variance is ∆2/6. This distribution satisfies Theorem 7 for both
m = 1 and m = 2 and also Corollary 8 for m = 2. Thus, E[E] = 0 from (4.17) and
var[E] = E[E2] = ∆2/4 from (4.18). Again, if the individual dither samples are
i.i.d. the error sequence is white.

4.2 Randomizing INL and DNL Patterns with Dithering

Until now, we have only discussed dithering methods aimed at mitigating the un-
wanted quantization effects of an ideal quantizer, mainly the deterministic nature
of the quantization error giving rise to phenomenons such as noise modulation.
But dithering can also be a powerful tool for diminishing the distortion induced by
quantizer non-idealities.

While the purpose of the dither investigated in Section 4.1 was to break the
statistical dependence between the input and the quantization error, we will now
see how dithering can randomize the non-linearity pattern of an ADC (or quantizer).
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Consider the INL and DNL curves in Figure 4.4, showing respectively the deviation
from an ideal transfer function and the actual bin widths’ deviation from the ideal
width (∆), as a function of input value. A given input value x will always face
the same INL and DNL – provided that these do not change – giving rise to a
deterministic distortion in the output from the ADC. The deterministic distortion
will manifest itself as unwanted spurs in the power spectral density of the output
signal. However, if we add a dithering signal v to the input x prior to quantization,
we might shift the input signal to a value that renders another INL and DNL. Hence,
if the dither is independent of the input and large enough to shift the input signal
to another quantization bin (at least occasionally), then the distortion inflicted for
a certain input value will be different from time to time. The amplitude of the
dither must typically be on the order of a few LSBs, rather than fractions of one
LSB as in Section 4.1. The result is that the deterministic nature of the distortion
is broken.

An early contribution in this direction was given by De Lotto and Paglia in
[DLP86], where the authors show how dithering can smooth out the errors of the
different quantization regions. A more recent publication – and also more rele-
vant for contemporary ADCs – is [AN410], where the basic methods of dithering
are explained. Also, exemplary results for an Analog Devices AD9042 with non-
subtractive, large-scale (> 1 LSB), Gaussian dither is given. In the same reference
the out-of-band dithering method is mentioned. In this particular method, the
dither is band-pass filtered to fit into a band which is not occupied by the signal
of interest. Two such bands are proposed, viz. near DC and near Nyquist. The
experimental results using the AD9042 12-bit converter shows that the strongest
unwanted spur is decreased from −81 dBFS to −103 dBFS using an out-of-band
dither occupying the lowest 5% (near DC) of the Nyquist range. Meanwhile, the
overall noise floor is increased by approximately 5 dB; the spurs are converted into
noncoherent noise.

4.3 Increasing the Resolution for Slowly Varying Signals

The last dithering application considered here is dithering in combination with
low-pass post-processing. Numerous aspects and versions of this has been treated
in the literature, e.g., [AH98b,AH98a,Car97,CP00, SØ05]. The fundamental idea
is the following. An ADC is sampling a slowly varying signal—the signal can be
considered constant for a number of samples, N , say. The signal falls within a
specific quantization region for all of these samples, with a resulting quantization
error dependent on where within this region the signal is situated. Averaging the
output samples will not reduce this error, because the samples are all the same.
However, if a dither signal, with large enough amplitude, is added to the input prior
to quantization, then the output will no longer be constant for all N samples, but
will fluctuate around the previously constant output. Taking the mean of the N
output samples now has a meaning, and might in fact yield a result with a higher
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Figure 4.4: INL and DNL from an Analog Devices AD9430.

resolution than that of the quantizer itself. We have thus traded bandwidth for
resolution (since the averaging in effect is an LP filter). The dither signal must
however possess certain properties for the dithering to be successful.

In [CP00], a uniform random dither is compared with a periodic, self-subtractive,
deterministic dither. Self-subtractive means that the sum of the dither samples over
one period is zero. The benefit of using this type of dither signal is that when an
N -sample average is applied, where N is the period of the dither signal, the dither
is automatically subtracted from the output, mimicking a subtractively dithered
system. The periodicity of the dither does however give rise to some spurs in the
output spectrum, but this can be mitigated using a random permutation of the
samples within each period. The simulation results in [CP00] indicate that an
increase of up to 3 effective bits can be obtained using dithering and averaging.

In [AH98b], different types of dither signals are investigated in conjunction
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with averaging. Both deterministic and stochastic uniform dithering is considered,
as well as Gaussian and mixed dither densities. For the uniform dithers it is stated
that the number of effective bits can be increased to

ENOBU determ = b + log2 N (4.24)

in the case of deterministic uniform dither in the range [−∆/2, ∆/2], and

ENOBU stoch = b +
1

2
log2

N

1 + k2
, (4.25)

when the dither is stochastic and uniform in [−k∆/2, k∆/2]. The number of sam-
ples averaged is N . Experimental results in [AH98b] indicates that the effective
number of bits for a practical 12-bit converter can be increased to 16 bits using
non-subtractive stochastic uniform dithering in [−∆, ∆] and N = 16 384, and even
further for subtractive dither.

4.A A Critical Note on Dithering and Quantization Noise

The purpose of this appendix is to refute a common misconception on dithering
and correlation between the quantization error and the quantizer input or output.
It is concluded that one possible source of confusion is an error in a frequently cited
reference on quantization theory.

Problem Formulation

We consider a b-bit quantizer Q having the stochastic variable (s.v.) X as input
and the s.v. Y as output. The quantization error is defined as

E = Y − X, (4.26)

inherently also an s.v. Figure 4.3 on page 42 shows the model. The quantization is
defined by a partition {Si} and a set of reconstruction levels {γi} as in Section 1.2.
The partition consists of M = 2b disjunct regions S0 through SM−1, which together
covers the entire input range (usually R). A quantization region is defined by two
neighboring transition levels as

Si = {x : Ti ≤ x < Ti+1}, (4.27)

where T0 = −∞, TM = +∞ and Ti−1 < Ti for all i. Each quantization region
Si is associated with one reconstruction level γi which is assumed to be fixed but
otherwise arbitrary. The quantization Q(·) is defined such that Y = γi if X ∈ Si.

Further, if we let the quantizer be uniform, we have that Ti = Ti−1 + ∆ for all
i except the end points i = 1 and i = M . Here, ∆ is the quantization step-size, or
grain-size.
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Figure 4.5: The PDF for the input X.

The problem is illustrated using a simple example. Let the quantizer be uniform.
Assume that the input X has a probability density function (PDF)

fX(x) =

{
1

L ∆ Ta ≤ x < Ta + L∆, for some integer a ∈ [0, M − L − 1];

0 otherwise.
(4.28)

In other words, the variable s is uniform over exactly L consecutive quantization
regions {Si}a+L

i=a+1. Figure 4.5 illustrates the PDF. We define the set of indices for
which the PDF is non-zero in the corresponding quantization regions as

IX = {i ∈ Z : fX(x) > 0 for all x ∈ Si}. (4.29)

We are now interested in investigating the statistical relationship, the correlation
in particular, between the quantization error E and the other two variables. Two
different approaches will be used, and these will yield two different results which in
turn implies a paradox.

Lloyd’s Resolution-Constrained Quantizer

We begin with the “source-coding approach” to the problem. Lloyd provided the op-
timal reconstruction levels {γ} for an arbitrary quantizer partition and source PDF
under a mean-squared distortion criterion. The i-th reconstruction level should
according to [Llo82] (see also Chapter 6) be

γi = E[X|X ∈ Si] =

∫
Si

x fX(x) dx∫
Si

fX(x) dx
=

Ti + Ti−1

2
, i ∈ IX , (4.30)

where the last equality comes after inserting (4.27) and (4.28). For those levels that
are outside the support of X, i.e., γi for i /∈ IX , we can set any level we want, since
they are never used. From (4.30) we can derive that

∫

Si

x fX(x) dx = γi

∫

Si

fX(x) dx, (4.31)
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which will be used below.
We are now interested in calculating the correlation between the quantization

error and the output. Straightforward calculations give

E[E Y ] = E[(Y − X)Y ] =

∫
(y(x) − x) y(x) fX(x) dx

=
∑

i

∫

Si

(y(x) − x) y(x) fX(x) dx =
∑

i

∫

Si

(γi − x) γi fX(x) dx

=
∑

i

γi

(
γi

∫

Si

fX(x) dx −
∫

Si

x fX(x) dx

)
= 0.

(4.32)

The fact that all quantization regions are disjoint was used to split the integration
into the sum of integrals, and (4.31) was used in the last equality. The conclusion
drawn is that the output and the quantization noise are uncorrelated when the
reconstruction levels are selected as in (4.30).

Sripad and Snyder’s Condition

A necessary and sufficient condition for the quantization error to be uniform and
white was presented by Sripad and Snyder in [SS77], in the present work also given
in Theorem 3. The result is valid for uniform “roundoff” quantizers and is in fact a
milder version of the sufficient condition provided by Widrow (e.g., [WKL96] and
also Theorems 1 and 2). A roundoff quantizer can be described in our framework
above as one where the reconstruction levels are situated exactly in the middle of
their corresponding quantization regions, i.e., γi = (Ti+Ti−1)/2 which is exactly the
same as (4.30) in our example (although not true in general with an arbitrary PDF
fX(x)). We refrain from dealing with the semi-infinite end regions by assuming the
rather pragmatic standpoint that we do not care about them since our signal s will
never occupy these regions.

The conditions in [SS77,WKL96] are based on the characteristic function of the
source, defined in (4.3). In [SS77] it is shown that the quantization noise is uniform
zero-mean with variance ∆2/12 if and only if

φX

(
2πn

∆

)
= 0 for all integers n 6= 0, (4.33)

as stated in Theorem 3.
More interesting for us is the statement in [SS77, prop. 4, rem. 3] that under

the same condition (4.33), the input and the quantization error are uncorrelated,
that is E[EX] = 0.

Returning to our case with the PDF (4.28), we can calculate the corresponding
characteristic function to

φs(u) = eju(Ta+ L ∆
2 ) sin

(
uL ∆

2

)

uL ∆
2

, (4.34)
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from which it is easy to see that condition (4.33) is satisfied for this PDF. Hence,
the input and the quantization noise should be uncorrelated.

The Paradox

Summarizing the results arrived upon above we know that E[E Y ] = 0 and E[E X] =
0. It is also safe to say that the variance of the quantization error must be strictly
positive for any non-zero quantization step-size ∆; it was in fact pointed out above
that the variance is ∆2/12 under the present conditions. Also, the mean of the
quantization error is zero. But then

0 < var[E] = E[(E − E[E])2] = E[E2] = E[E (Y − X)] = E[E Y ] − E[E X]

= 0 − 0 = 0.
(4.35)

This is truly a strange result.

The Explanation

The explanation to the phenomenon described above is quite simple: Sripad and
Snyder’s paper [SS77] contains an error.

It is derived in Equation (19) of [SS77] that, under condition (4.33) above, the
correlation between the input and the quantization error is2

E[XE] = − ∆

2π

∑

k 6=0

(−1)k

k
φ̇X

(
2πk

∆

)
, (4.36)

which is correct. (Here, φ̇X is the first derivative of φX(u) with respect to the
transform variable u.) However, in the succeeding lines the faulty statement that
condition (4.33) will guarantee E[XE] = 0 is made—this is simply not true.

The correct conclusion in our example above is that the output and the quanti-
zation error are indeed uncorrelated, as shown above, while the correlation between
input and quantization error equates to E[XE] = −∆2/12 from (4.36).

2The initial minus sign does not appear in the equation found in [SS77], simply because the

error is defined as E , X − Y in that paper.



Chapter 5

Model Inversion Methods

ADC nonlinearity correction through model inversion has been proposed in the
literature on several occasions (cf. [BDR05]). This family of correction schemes
is based on some mathematical system model and its inverse. Typically, a model
is identified for the ADC considered. The model gives an approximation of the
input–output signal relationship. An inverse – possibly approximate – of the model
is calculated thereafter. The model inverse is used in sequence after the ADC, hence
operating on the output samples, in order to reduce or even cancel the unwanted
distortion. Figure 5.1 shows the general concept of ADC correction with inverse
models.

x(n) y(n)

ŷ(n)

ADC

H

(a) Model identification

x(n) y(n) x̂(n)
ADC G

(b) Post-distortion

Figure 5.1: ADC correction using inverse system models. In (a) a model H for
the ADC is found by identification. In (b) the inverse G = H−1 of the identified
model is used in sequence with the ADC, applying post-distortion to reduce the
nonlinearities of the converter.

55



56 CHAPTER 5. MODEL INVERSION METHODS

The vast majority of the references proposing a model inversion method are
based on the Volterra model, but the use of other models have been reported, e.g.,
orthogonal polynomials and Wiener models in [Tsi95] and Chebyshev polynomials
in [AAGS02]. In this chapter we will concentrate on the Volterra model.

5.1 Volterra Model

The causal discrete-time M -th order Volterra model (or filter) is an extension of
the linear time-invariant discrete-time filter

y(n) =

∞∑

k=0

hk x(n − k), (5.1)

where x(n) is the input signal and y(n) is the output from the filter. The discrete-
time M -th order Volterra extension then is

y(n) = H0 + H1 (x(n)) + · · · + HM (x(n)) (5.2)

where

Hm (x(n)) =
∞∑

k1=0

∞∑

k2=k1

· · ·
∞∑

km=km−1

hm(k1, k2, . . . , km)

× x(n − k1)x(n − k2) · · · x(n − km). (5.3)

The Volterra kernels hm are assumed to be symmetric, hence the indexing in (5.3)
where subsequent summation indices start at the index of the preceding sum. Fi-
nally, the kernels are truncated to finite length sums

Hm (x(n)) =

K1∑

k1=0

K2∑

k2=k1

· · ·
Km∑

km=km−1

hm(k1, k2, . . . , km)

× x(n − k1)x(n − k2) · · · x(n − km). (5.4)

that can be implemented in practical applications.
Volterra models have long been used in general system modeling. One of the first

contributions specifically targeted at modeling and correcting ADCs with Volterra
models was made by Tsimbinos and Lever [TL93], in which they propose to use
both Volterra and Wiener models for ADC modeling. They also show how to
obtain the inverse of a fifth-order Volterra model, which is a nontrivial task. In
their subsequent publications they also determine the computational complexity of
Volterra based correction [TL96a] and make a comparison between a look-up table
correction and a Volterra based correction [TL96b]. Gao and Sun [GS94] also made
an early publication on ADC modeling using a Volterra model, although they did
not explicitly propose any correction scheme based on the model.
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5.2 Volterra Inverse

First we must ask ourselves what the inverse of a nonlinear system with memory,
such as the Volterra model, actually is. The following definition is commonly used
[Sch76,Tsi95]

Definition 1. A p-th order inverse G of a given nonlinear system H is a system
that when connected in tandem with H results in a system in which the first or-
der Volterra kernel is the unity system and the second through p-th order Volterra
kernels are zero. That is, if the H and G in tandem constitute a Volterra model
denoted F , then

F (x(n)) = x(n) +

∞∑

m=p+1

Fm(x(n)). (5.5)

In particular, we are interested in post-inverses, i.e., the inverse system G is to
be used posterior to the original system H. However, as a matter of curiosity we
note that it has been shown in [Sch76] that the p-th order post-inverse of a system
H is in fact identical to the p-th order pre-inverse; only the Volterra operators of
order higher than p of the tandem system are affected by which comes first of G
and H.

Two different techniques can be used in finding the inverse Volterra model to
be used as a correction:

1. A Volterra model H is identified for the ADC under test. From this model,
an analytical inverse G is derived and used as corrector. Figure 5.1 shows
this approach.

2. The inverse system G is identified directly as in Figure 5.2, minimizing a
suitable function of the error signal, such as the mean squared error.

When finding the analytical inverse we are of course concerned about the stabil-
ity of the inverse. It has been shown, again in [Sch76], that the p-th order inverse
of H will be stable and causal if and only if the inverse of H1 is stable and causal.
That is, we only have to check that the linear part of the system does not have any
zeros outside the unit circle.

x(n) y(n) x̂(n)
ADC G

Figure 5.2: Direct identification of the inverse system from experiments.
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The two different approaches above would typically yield slightly different re-
sults. The computational burden of the two methods when engaged in correc-
tion differ significantly. The second approach – sometimes referred to as adap-
tive Volterra inverse – is far more computationally heavy than the analytical in-
verse [TL96a]. The difference stems from the fact that the adaptively identified
inverse generates a more general inverse system while the analytical inverse gains
from the structure given by the original model H.

One of the key features of the Volterra model correction method is its abil-
ity to capture highly dynamic error effects at a moderate cost. A look-up table
can hardly be used in practice to successfully model errors that depend on more
than a few subsequent input samples—the size (memory requirements) of the table
grows exponentially in the number of samples K used for addressing. Meanwhile, a
Volterra model, or an FIR-filter in particular, can easily use tens of input samples
in the calculation of the correction values, at a moderate computational cost. Quite
opposite, the computational complexity of the Volterra model rapidly becomes too
heavy when the nonlinearity order M is increased (see [TL96a]) while a look-up
table has a very low and constant computational cost for any nonlinearity order.

Another issue for Volterra models is the identification process, both when the
system model H is identified first, and if the inverse G is identified directly. Impos-
ing further structure on the Volterra model can ease the burden of identification.
This was proposed in [MŠ02], where the Volterra model was compared with an
error model for an integrating ADC. The coefficients of the Volterra model that
are most important in modeling such a converter could thus be isolated, and the
identification process was significantly simplified.
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Chapter 6

Distortion Criteria and Optimal

Correction

Before embarking on correcting an ADC, we must decide upon a measure of error
or distortion. In other words, we must have a mechanism to judge what is good
and what is not in terms of ADC performance. Our choice of distortion criterion
will affect what correction values to use. These questions are within the topic of
this chapter.

6.1 Distortion Criteria

A distortion criterion, or distortion measure, is generally speaking a function that
given the input s and output x to a system calculates the distortion inflicted by the
system. See Figure 6.1. Most common distortion measures are based on the distance
between the output and the input, and are therefore denoted distance measures.
That is, the distortion is a function of the absolute difference between output and
input, and not of the input or output themselves. In the multi-dimensional case this
corresponds to the distortion being a function of the norm (length) of the difference
vector. Two commonly used distance measures are the absolute error

d(s, x) = |x − s| d(s, x) = ‖x − s‖ , (6.1)

and the squared error

d(s, x) = (x − s)2 d(s, x) = ‖x − s‖2
, (6.2)

s x

“system”

Figure 6.1: A system with input s and output x.
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where both the scalar and the vector notations are shown in each case.

Mean-Squared Error

The squared error criterion is by far the most popular, mainly because it (a) repre-
sents the energy in the error signal, and (b) usually yields tractable mathematical
expressions and solutions.

In many cases it is more interesting to consider the expected distortion in a
statistical sense. The mean-squared error (MSE) is then defined as

MSE(X − S) = E
[
(X − S)2

]
(6.3)

where S and X are stochastic variables. In most cases the output X is a function
of the input S, so that the expected value is taken with respect to S only.

Mean-Absolute Error

Analogously with the mean-square error above, the mean-absolute error is defined
as

MAE(X − S) = E [|X − S|] . (6.4)

Again, S and X are stochastic variables representing input and output, respectively.

ADC Specific Criteria

There are many specific measures for describing the performance of an ADC –
SINAD, SFDR, ENOB, THD, NPR and IMD, to mention a few (see Section 1.4,
Section 1.8 and [Std1241]). Since these measures are used to assess the precision
and quality of A/D converters, it would be natural to use them as optimality
criteria when designing post-correction systems. However, most of the specialized
measures result in fairly complicated expressions that do not provide results of
practical use. Exceptions are SINAD and ENOB which are both closely related to
the MSE. Therefore, most results on MSE can be transferred to results on SINAD
and ENOB.

6.2 MMSE Optimal Correction Values

In Chapter 1 a quantizer – or the quantization operation – was represented by
a two-step operation, as in Figure 1.1 on page 3. The design of such a quantizer
incorporates both defining the quantization regions {Sj}M−1

j=0 and assigning suitable
values {xj}M−1

j=0 to represent each level with – the reconstruction points. Optimal
reconstruction points1 for minimizing the mean-square error E

[
(X − S)2

]
have

been derived in [Llo82]. Since X is a function of S, E[·] is the expected value

1In [Llo82] the reconstruction values are denoted ‘quanta’.
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operator taken with respect to S. The key results in [Llo82] and their implications
are briefly reviewed here.

The scheme used here is in fact half of the popular Lloyd two-step algorithm for
optimal quantizer design; see for instance [GG92]. This algorithm iteratively trains
the transition levels and the reconstruction points until a (local) optimum in terms
of MSE has been reached. In the case of ADC correction, the transition levels are
not possible to change, wherefore only the reconstruction points are optimized. The
procedure is single-step and iteration is not needed in this case.

In [Llo82] a quantizer operating on a value s is considered; the quantization
region model of Section 1.2 is used. The value s is regarded to be drawn from
a stochastic variable S with a probability density function (PDF) fS(s). If the
quantization regions {Sj} are assumed fixed, then it is proved that the optimal
reconstruction values {xj}, in the mean-squared sense, are given by

xj, opt = arg min
x

E
[
(x − S)2

∣∣S ∈ Sj

]
=

∫
s∈Sj

s fS(s) ds
∫

s∈Sj
fS(s) ds

, (6.5)

i.e., the optimal reconstruction value for each region is the “center of mass” of the
region.

The optimal additive correction values are found directly from (6.5) as

ej = xj, opt − xj , (6.6)

where xj is the output originally produced by the quantizer.

6.3 Minimum Mean-Absolute Error Correction Values

As mentioned above, the mean-absolute error is closely related to the MSE. How-
ever, they do yield different reconstruction values when applied to the quantizer
design problem. As above, the input s is regarded to be drawn from a stochastic
variable S with a probability density function (PDF) fS(s). We consider the quan-
tization region Sj with lower and upper boundaries Tj and Tj+1, respectively. The
optimal reconstruction point is defined by

xj, opt = arg min
x

E
[
|x − S|

∣∣S ∈ Sj

]
= arg min

x

∫ Tj+1

Tj

|x − s| fS(s) ds. (6.7)

Differentiating the integral in (6.7) with respect to x and equating the result to
zero, yields that the optimal reconstruction point xj, opt should satisfy

∫ xj, opt

Tj

fS(s) ds =

∫ Tj+1

xj, opt

fS(s) ds. (6.8)

That is, the optimal reconstruction point xj, opt for the j-th quantization region in
the mean-absolute error sense is the median of the input S given that S ∈ Sj . Just
as in Section 6.2, the optimal additive corrections are found by applying (6.6).
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6.4 Other Correction Strategies

Although the MMSE correction strategy is very commonly used, especially when
considering ADC correction from a signal processing point of view, other correction
strategies can be considered. The most popular alternative is midpoint correction
described here.

Midpoint Correction

From an ADC characterization point of view one might want to consider the re-
construction levels to be an inherent parameter of the ADC under test, and not of
the input signal as was the case in the MMSE and MMAE strategies above.

The midpoint correction strategy is based on the assumption that the ADC acts
as a staircase quantizer. That is, the quantizer part acts as described in Section 1.2
with quantization regions {Sj}M−1

j=0 . The midpoint correction strategy is based on
the intuitively pleasing assumption that the reconstruction value associated with
a specific quantization region should be the midpoint of that region. That is, if
the i-th region is delimited below and above by Ti and Ti+1, respectively, then the
ideal xi should be the midpoint in between, i.e., (Ti + Ti+1)/2. If the quantization
regions should deviate from the ideal ones, then the output values should be changed
accordingly. Thus, in the case of additive midpoint correction the correction term
should nominally be

ei =
Ti + Ti+1

2
− xi. (6.9)

It is easy to see that the midpoint approach in fact is consistent with Lloyd’s
MMSE approach (6.5) and with the mimimum mean-absolute error approach (6.8)
above if the variable S is assumed to be symmetric within each quantization region.
Two such signals are the uniform noise and the deterministic ramp, which provide
symmetric PDFs within each quantization region, save the regions at the extremes
of the signal range where the signal may occupy only part of the region.

Minimum Harmonic Correction

Hummels, et al. [HICP94, Hum02] have provided a method where the correction
values are selected such that the harmonic distortion generated by the ADC is min-
imized. The method uses single sinewaves for calibration and the correction tables
are built using error basis functions, usually two-dimensional Gaussian basis func-
tions in a phase-plane indexing scheme. The basis function coefficients are selected
using minimization of the power in the H first harmonics to the test frequency.

6.5 Remarks

The two choices of reconstruction values presented in Sections 6.2–6.3 above are
evidently dependent not only on the characteristics of the ADC under test, but
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also on the test signal itself (through the PDF of the signal). Thus, we take into
account what we know about the signal as well. It is therefore of vital importance
that the calibration routine is carefully designed. It is indeed very easy to end up
with a correction system that is heavily biased towards a specific signal, since the
correction values were trained using that signal type. On the other hand, if prior
knowledge says that the ADC will be used to convert signals of a specific class, it
makes good sense to calibrate the post-correction system using the same class of
signals. Using calibration signals with a uniform PDF can be considered to yield
unbiased calibration results. We also saw that in this case, the MMSE, the MMAE
and the midpoint corrections all coincided.

In this chapter we have presented and discussed a few distortion criteria and
optimal correction values. We have not, however, touched upon how to obtain these
correction values in practice. Applying the formulae directly is in most cases impos-
sible since our knowledge is sufficient neither of the actual quantization regions nor
of the PDF of the test signal. This matter will be dealt with in depth in Chapter 7.





Chapter 7

Characterization of Quantizer

Transfer Functions

Within the art of post-correction lies an estimation problem, namely how to find
the best correction values for a specific ADC. In this chapter we will analyze this
estimation problem. The estimation is assisted by some reference signal, as was
discussed in Section 3.4. A probabilistic ADC model is used. The model was
introduced in the pioneering work of Giaquinto et al. [GST96b], in which it was
used to find the optimal correction terms in relation to the model.

The estimation problem posed here is targeted towards finding suitable correc-
tion values for an ADC post-correction system. Therefore, we will consider the
problem of estimating the optimal reconstruction points rather than finding the
transfer function in terms of identifying the transition levels, which is often the
case in ADC characterization.

Two different scenarios are investigated in this chapter, and estimators are de-
rived for them both. Also, a fundamental lower limit on the variance – the Cramér–
Rao bound – is calculated and compared with the performance of the derived esti-
mators. In particular, we show that in scenarios with a staircase transfer function
and with an accurate reference signal available, a simple estimator taking the mean
of the smallest and the largest sample significantly outperforms the traditionally
used sample mean.

7.1 Prior Art

This chapter deals with calibration of an ADC post-correction system from a refer-
ence signal. Traditionally, the reconstruction point for the k-th quantization level
is estimated as the sample mean of the reference samples that produced the k-th
output, as described for instance in [HSP00].

This chapter also presents variance expressions for the reconstruction point esti-
mation, and compares the variances with the Cramér–Rao lower bound. Some work
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ADC

s(t) s(n) x(n)

Q

Figure 7.1: A model of an ADC. The sample-and-hold is assumed to be ideal while
the quantizer Q can introduce errors.

in this direction has been presented in [CNP02], but only for the case of sinewave
histogram tests. Also, in [MCP03] and [BH04] similar results were derived for the
Gaussian and truncated Gaussian histogram tests, respectively.

7.2 Probabilistic Quantizer Model

In this chapter we model the ADC to consist of an ideal sample-and-hold circuit
followed by a non-ideal but static quantizer, see Figure 7.1. We disregard from the
sample-and-hold in the forthcoming analysis, and consider only the quantizer with
discrete-time input and output signals. The quantizer is assumed to be b-bit, hence
having M = 2b quantization levels and M possible output values {xk}M−1

k=0 . Thus
far, the model is identical to that of Chapter 1 (Figure 1.1).

The difference from the model in Chapter 1 lies in how the quantizer part Q
is modeled in this chapter. Here, the probabilistic model presented in [GST96b]
is adopted. The model for Q, henceforth denoted M, has a probabilistic transfer
function where the input and output of the quantizer are modeled as random vari-
ables S and X, respectively. The two variables are linked through the probabilistic
quantizer, resulting in a joint probability distribution fS, X(s, x). The probability
distribution captures the stochastics of both the input S and of the quantizer Q
itself. The transfer function is defined by the conditional probability mass function
(PMF) fX|S(xk|s) = Pr{X = xk|S = s}. Note that the model of Chapter 1, where
the behavior is governed by the quantization regions {Sj}, is in fact a special case
of the probabilistic model; simply let the probability distribution fS, X(s, xk) = 0
for s /∈ Sk.

7.3 Optimal Reconstruction Levels

In Chapter 6 the optimal reconstruction points were calculated in the case of mean-
squared error and mean-absolute error. In particular, we saw that when the quanti-
zation regions {Sj} are assumed fixed, then the optimal reconstruction values {γj},
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in the mean-squared sense, are given by

γk = arg min
γ

E[(γ − S)2|S ∈ Sk] =

∫
s∈Sk

s fS(s) ds∫
s∈Sk

fS(s) ds
. (7.1)

The extension of this result to the non-deterministic transfer function of model
M is that the optimal estimator is given by the conditional expectation of S given
xk, that is [GST96b]

γk =

∫ +∞

−∞

s fS|X(s|xk) ds =

∫ +∞

−∞

s
fX|S(xk|s) fS(s)

pX(xk)
ds, (7.2)

where pX(xk) is the probability mass function for the output random variable X
and the last equality is obtained using Bayes’ rule. The problem of finding the
optimal reconstruction levels for the probabilistic ADC model used here has a strong
connection to the problem of quantizer design for noisy channels, e.g., [KW69].

In this section we have formulated the exact expressions (7.1) and (7.2) for the
optimal reconstruction levels, under certain model assumptions. However, the first
expression requires that we know the PDF fS(s) of the input signal and the limits of
the quantization region Sk, and the second expression depends on exact knowledge
of the transfer statistics fX|S(xk|s) together with fS(s). Neither of these cases are
likely when characterizing an ADC. On the contrary, finding the unknown transfer
function is the goal of the characterization procedure, wherefore we must find a way
to estimate the reconstruction levels from a finite number of measurements. This
is the objective of the next section.

7.4 Estimating the Reconstruction Levels

In this section the problem of estimating the optimal reconstruction levels of a
quantizer from measurements is considered. Assume that a signal s(n) is con-
nected to the input of the quantizer under test and that Ntot output samples
x(n), n = 1, 2, . . . , Ntot are recorded. The input samples are for now assumed
to be independent and identically distributed realizations of an s.v. with PDF
fS(s). It is further assumed that a positive number Nk ≤ Ntot of samples result
in the specific ADC output x(n) = xk (the k-th output value). As a consequence,∑M−1

k=0 Nk = Ntot – typically Nk ≪ Ntot.
An estimate of the input signal s(n) is also obtained. The estimate is denoted

z(n) and is a perturbed version of the true input signal. The reference signal z(n)
can for example be an estimate based on the measured signal x(n), 1 ≤ n ≤ Ntot,
or a measurement from a reference device. The reference signal is modeled as the
true input s(n) with an additive perturbation u(n). The perturbation can then
be used to account for measurement errors, (reference device) quantization errors,
reconstruction errors or estimation errors, as appropriate.
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Figure 7.2: The probabilistic ADC setup. Figure (a) shows the original ADC
characterization problem with an input stimuli S, the resulting output X and a
reference signal Z. Figure (b) shows the equivalent estimation problem setup of
the type “DC level in noise.”

A record of Ntot samples of z(n) is taken. The subset of Nk samples for which
the output x(n) = xk is of special interest. Comparing with the sets defined in
Section 3.4, these samples form the set denoted Ck. The samples are collected in a

column vector z{k} =
[
z
{k}
1 z

{k}
2 . . . z

{k}
Nk

]T
of length Nk, where the notation {k}

denotes that the sample corresponds to an instant when the ADC produced xk as
output. In the same manner we denote the corresponding input samples in the

column vector s{k} =
[
s
{k}
1 s

{k}
2 . . . s

{k}
Nk

]T
. That is, when the sample s

{k}
n was

input, the the reference signal was estimated to be z
{k}
n . Note that s{k} is unknown

in the estimation problem.
The input to the quantizer is drawn from an s.v. S, as before (cf. Chapter 6).

Assume further that the perturbation samples are independent realizations of an
s.v. U with PDF fU (u), then the reference estimate can be modeled as an s.v.
Z = S + U . Figure 7.2(a) illustrates the signal relationship. The reference is a
sum of two independent stochastic variables. The resulting PDF of a sum of two
independent variables is the convolution of the PDFs of the two terms. Thus, the
PDF of Z is

fZ(z) = (fS ∗ fU )(z) =

∫ +∞

−∞

fS(z − ζ) fU (ζ) dζ (7.3)

if independence between S and U is assumed.
In the sequel the problem of estimating the optimal reconstruction level γk given

the observation z{k} is considered.
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fS|xk
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Figure 7.3: Illustration of the relocation of PDFs around the origin.

Reformulating the estimation problem

Since we only consider the sample instances where the quantizer output was a
specific xk, the PDF for our observation of Z can be formulated as a conditional
PDF fZ|X(z|xk). The variable Z is still the sum of S and U , but now we can
describe S using the conditional statistics fS|X(s|xk). Thus, we have

fZ|X(z|xk) = (fS|X ∗ fU )(z) =

∫ +∞

−∞

fS|X(z − ζ|xk) fU (ζ) dζ. (7.4)

Assume that the conditional PDF fZ|X(z|xk) is symmetric around a location pa-
rameter gk. That is, fZ|X(z|xk) depends on gk only as a shift with gk along the
z-axis.

Define the stochastic variable

Wk = S − gk, (7.5)

which then of course has the conditional PDF

fWk|X(w|xk) = fS|X(w + gk|xk). (7.6)

That is, the location parameter of fS|X is removed, repositioning the PDF at the
origin. Figure 7.3 illustrates this relationship. The s.v. Wk is thus independent of
gk. With these premises it is easy to see from (7.2) that γk = gk. Thus, estimating
the optimal reconstruction levels is in this case equivalent to estimating the location
parameter of fZ|X(z|xk). We can now reformulate our observation Z as a constant
(DC) level gk in two additive noises Wk and U ,

Z = gk + Wk + U, when x(n) = xk. (7.7)

Figure 7.2(b) depicts the estimation problem setup.
The problem class now arrived to – estimation of a constant (DC-level) in addi-

tive noise – is a classical estimation problem, found in the literature (e.g., [Kay93]).
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The optimal solution to the problem differs depending on (a) the optimality crite-
rion and (b) the probability distribution of the noise.

Two different assumptions for the distribution of Wk will be considered. In the
first case, Wk is assumed to be zero-mean Gaussian with variance σ2

k, and in the
second case a zero-mean uniform distribution with a width ∆k (variance ∆2

k/12)
is assumed for Wk. In both cases U is assumed to be zero-mean Gaussian with
variance σ2

U . Since we are now only considering one specific quantization level,
namely the k-th level, both the index k and the explicit conditioning of the PDFs
will be omitted for brevity. Thus, g, σ2, ∆, z and zi will in the sequel represent gk,
σ2

k, ∆k, z{k} and z
{k}
i , respectively.

Gaussian W and U

The first scenario, motivated by its simplicity, is where W ∈ N (0, σ2) and U ∈
N (0, σ2

U ). Hence, the observed variable Z = g +W +U is also Gaussian with PDF

fZ(z) =
1√

2π(σ2 + σ2
U )

exp

(
− (z − g)2

2(σ2 + σ2
U )

)
. (7.8)

We know from the literature (e.g., [Kay93]) that the sample mean is both the min-
imum variance unbiased (MVU) estimator and the maximum likelihood estimator
(MLE) of g in this case. That is,

ĝsm(z) =
1

N

N∑

i=1

zi (7.9)

is the estimator with the lowest variance and zero bias and the estimator that
minimizes the likelihood function p(z; g) =

∏N
i=1 fZ(zi) with respect to g (the

index ‘sm’ denotes sample mean). Moreover, this is the same estimator as (3.10)
devised in Section 3.4. The variance is also straightforward to calculate:

var [ĝsm(z)] =
σ2 + σ2

U

N
. (7.10)

In fact, this is the variance for the sample mean of N i.i.d. realizations of any two
independent variables with variances σ2 and σ2

U , regardless of the distributions.
In this case, the total variance σ̄2 = σ2 +σ2

U can be estimated from the recorded
data, but not the individual variances σ2 and σ2

U . From literature (e.g., [Kay93])
we find that the MVU estimator for σ̄2 is

̂̄σ2
MVU =

1

N − 1

N∑

i=1

(zi − ĝsm(z))
2
, (7.11)

with estimator variance 2σ̄4/(N − 1). Meanwhile, the MLE for the same case is

̂̄σ2
MLE =

1

N

N∑

i=1

(zi − ĝsm(z))
2
, (7.12)
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with a resulting estimator variance of 2(N − 1)σ̄4/N2, The MLE has evidently less
variance than the MVU, but at the expense of non-zero bias.

Further, one may note that superefficient estimators do exist for estimating
σ̄2 [Bey98, SO96]. (A superefficient estimator possesses a mean-square error lower
than the Cramér–Rao bound (cf. Section 7.5) at the expense of non-zero bias.)

Uniform W and Gaussian U

The second case results from modifying the model M in Section 7.2 to coincide
with the classic staircase transfer function and using an input signal whose PDF
fS(s) is uniform within each step of the transfer function1 (e.g., a ramp signal or
a uniform noise, but also when the step size is small compared with the variability
of the PDF fS(s)). In this case, the distribution of the input S given the output
X (fS|X) is uniform with some width ∆ (possibly dependent on k, again omitted
for brevity). Therefore, the PDF for W in the equivalent model of Figure 7.2(b) is
in this case

fW (w) =





1

∆
|w| ≤ ∆

2
,

0 otherwise.
(7.13)

The PDF for U is still assumed to be zero-mean Gaussian with variance σ2
U , so the

resulting PDF for W + U becomes

fW+U (v) =

∫ ∆
2

−∆
2

1

∆
√

2πσ2
U

exp

(
− (v − τ)2

2σ2
U

)
dτ. (7.14)

Define the stochastic variable V , (W + U)/∆. Straightforward derivations from
(7.14) give that the PDF for V becomes

fV (v) =

∫ 1
2

− 1
2

1√
2π σU

∆

exp

(
− (v − τ)2

2
(

σU

∆

)2

)
dτ

=
1

2
erf
(

v + 1
2√

2ρ

)
− 1

2
erf
(

v − 1
2√

2ρ

)
,

(7.15)

where
ρ ,

σU

∆
. (7.16)

We see from (7.15) that V depends on ∆ and σU only through ρ, which can be
interpreted as a shape parameter. See Figure 7.4. When ρ → 0 the distribution
for V approaches a uniform distribution with unit width, while for large ρ, V
approaches a Gaussian distribution with the variance ρ2. In fact, it has been
claimed [BNPP00] that when ρ is approximately larger than 0.35 the distribution
for V can be considered Gaussian, a claim that is further investigated at the end
of this section.

1This case can also be obtained by using the traditional deterministic staircase transfer func-
tion instead of M.
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Figure 7.4: The distribution for V for four different values of ρ.

So far, we have reformulated the estimation problem as follows: estimate g
from N independent observations of Z = ∆V + g, where the PDF of V depends on
the parameter ρ. This setting was considered in [Llo52] where an estimator for g
was derived using order statistics, i.e., an estimator working on a batch of samples
arranged by their magnitude. The theory and the resulting estimator are described
in the sequel.

Order Statistics Estimator Theory

Lloyd2 considered the use of order statistics for estimation of location and scale
parameters in [Llo52]. The setting is as follows.

A stochastic variable X has location and scale parameters g and ∆, respectively.
These are not necessarily the mean and standard deviation of X. Consider N inde-
pendent identically distributed variables X1, . . . , XN , from which our observation
is taken. The observations are arranged in ascending order. The ordered stochas-
tic variables are denoted X(1) ≤ · · · ≤ X(N). The estimator sought for should

be linear in the ordered observation y =
[
x(1) · · · x(N)

]T
. Now, introduce the

2N.B., this is E. H. Lloyd, not to be confused with Stuart P. Lloyd who has authored numerous
papers on quantization, e.g., [Llo82].
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standardized ordered stochastic variables V(1) ≤ · · · ≤ V(N), where

V(i) =
X(i) − g

∆
. (7.17)

Let m(V ) = [E[V(1)] . . . E[V(N)]]
T be the vector of expected values and R(V ) be

the covariance matrix of the ordered stochastic variables V(1), . . . , V(N). That is

R(V ) =




E[V 2
(1)] E[V(1)V(2)] · · · E[V(1)V(N)]

E[V(2)V(1)] E[V 2
(2)] · · · E[V(2)V(N)]

...
...

. . .
...

E[V(N)V(1)] E[V(N)V(2)] · · · E[V 2
(N)]


 . (7.18)

It is shown in [Llo52], that when the PDF of X is symmetric, the least-squares
estimator for the location parameter becomes

ĝ =
1TR−1

(V )y

1TR−1
(V )1

, (7.19)

where 1 is the column vector of all ones. The variance of the estimator is shown to
be

var[ĝ] =
∆2

1TR−1
(V )1

. (7.20)

It is further proven that the least-squares estimator for the scale parameter ∆ is

∆̂ =
mT

(V )R
−1
(V )y

mT
(V )R

−1
(V )m(V )

, (7.21)

with estimator variance

var[∆̂] =
∆2

mT
(V )R

−1
(V )m(V )

. (7.22)

These estimators are the estimators that provide the lowest mean-squared error out
of all estimators that are linear in the ordered observations. Note that the ordinary
sample mean belongs to this class of estimators.

Both estimators are dependent on statistical information of the ordered stochas-
tic variables. Appendix 7.A provides basic theory for order statistics. In particular,
the correlations in R(V ) are given by (7.42) and (7.43), and the expected values of
m(V ) are found in (7.40).
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The Estimator

Consider again the batch of observation samples z . Let z(i), i = 1, . . . , N be the
ordered samples with z(1) the smallest and z(N) the largest, that is z(1) ≤ · · · ≤
z(i) ≤ · · · ≤ z(N). The estimator should be linear in the ordered samples3, that is,

ĝos(z) =

N∑

i=1

αiz(i), (7.23)

where α , [α1 . . . αN ]T are the filter coefficients to be determined. Applying the
theories presented above, the best (in the mean-square sense) unbiased estimator,
linear in the ordered samples, is given by the coefficient vector

α =
R−1

(V ) 1

1T R−1
(V ) 1

, (7.24)

with a resulting variance

var[ĝos] =
∆2

1T R−1
(V ) 1

. (7.25)

The correlation matrix R(V ) is difficult to compute analytically for the PDF
(7.15). Therefore, it has been calculated numerically for some exemplary values of
ρ and N . The integrals (7.42) and (7.43) in Appendix 7.A have been solved using
a Monte–Carlo technique to obtain numerical values for R(V ). From these, the
optimal filter coefficients were calculated using (7.24). Figure 7.5 shows exemplary
solutions for N = 10 and different values of ρ.

We see that for large values of ρ all αi go to 1/N (0.1 in this case), i.e., the
ordinary sample mean. For low ρ, on the other hand, we see that the solution
approaches α1 = αN = 1/2 and the remaining coefficients zero. That is, in the
limiting case when ρ → 0 the best estimate of g based on ordered samples is simply
the mean of the smallest and the largest sample. These two asymptotic results align
perfectly with the results in [Llo52] where the limiting cases – purely uniform and
purely Gaussian distribution, respectively – were investigated. Finally, the white
line visible in the plot where the two “fins” disappear into the surface marks where
ρ = 0.35 (or 20 log10 ρ ≈ −9). We see that for ρ larger than this, the surface is
almost flat at 1/N , which supports the results from [BNPP00] that the distribution
for V is approximately Gaussian in that region, implying that the sample mean
should be optimal.

7.5 Midpoint Estimation Cramér–Rao Bound

The Cramér–Rao Bound (CRB) is a theoretical lower bound on the variance of
any unbiased estimator for the parameter of interest, given the considered problem

3Note, however, that this estimator is nonlinear in the observed samples z since determining
the sample order is a nonlinear operation.
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Figure 7.5: The filter coefficients αi as a function of ρ for N = 10.

formulation and model. In this section we will pursue the CRB for the estimation
problem described in the previous section.

Assume that the ADC under test follows the model M introduced earlier. The
observation at hand is the Nk samples of the reference signal z(n), z{k} = z =
[z1 z2 . . . zNk

]T, as described above. We seek to find the probability of this
observation z given that we are considering samples when x(n) = xk only, i.e.,
f(z|x = xk · 1). Under the model assumption M, the input S and the output
X of the ADC are related through their joint PMF, from which we can derive
the conditional PDF fS|X(s|xk). Under the assumption that the disturbance U is
independent from both S and X, the PDF f(zi|xi = xk) for the single sample zi was
given in (7.4). The total PDF for the observation z, when the samples are assumed
to be independent over time, is found by taking the product over i = 1, 2, . . . , Nk,
i.e.,

f(z|x = xk · 1) =

Nk∏

i=1

f(zi|xi = xk). (7.26)

The CRB for an unbiased estimator ĝk(z) can now be found from (7.26) as
[Kay93]

var[ĝk(z)] ≥
(

E

[
∂2 ln f(z|x = xk · 1)

∂g2
k

])−1

, (7.27)
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provided that the regularity condition

E

[
∂ ln f(z|x = xk · 1)

∂gk

]
= 0 (7.28)

holds for all values of gk. That is, an estimator that estimates gk from the obser-
vation z with zero bias can never have a variance that is lower than (7.27). An
estimator that attains the bound is referred to as efficient.

In the following two subsections the CRB for the two different cases introduced
in Section 7.4 will be investigated. In the all-Gaussian case we will obtain a closed
form analytic solution, while in the case of uniform and Gaussian distributions we
will again resort to numerical methods.

Gaussian W and U

We make the same assumptions as in Section 7.4, i.e., W ∈ N (0, σ2) and U ∈
N (0, σ2

U ). The PDF for a single observation of Z is then as in (7.8). As pointed out
earlier, this is a problem of estimating a constant in additive zero-mean Gaussian
noise with variance σ2+σ2

U . Again, this is a standard problem found in the literature
(e.g., [Kay93]) and the CRB for this problem is easily calculated using (7.27) to

var[ĝk(z)] ≥ E

(
∂2 ln f(z|x = xk · 1)

∂g2
k

)−1

=
σ2 + σ2

U

N
. (7.29)

We see that the estimator ĝsm(z) in Section 7.4 has a variance that attains the
CRB, and the sample mean is thus efficient in this case.

Uniform W and Gaussian U

The assumptions in Section 7.4 are made once more. However, because of the
rather complicated PDF for W + U in (7.14) we again have to resort to numerical
solutions.

The normalized variable V with PDF (7.15) is considered. If the CRB for a
parameter g (the index k is as before omitted for brevity) observed in the presence
of V is calculated, the CRB when V is replaced with ∆V is obtained simply by
scaling the bound by ∆2—this is in analogy with the way that the variance of a
stochastic variable changes with a scaling factor.

First, the regularity condition (7.28) is verified for this problem. The PDF for
a single observation z of Z = V + g is in this case fV (z − g), and inserting into
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(7.28) yields

E

(
∂ ln fV (z − g)

∂g

)
=

∫ ∞

−∞

∂ ln fV (z − g)

∂g
fV (z − g) dz

=

∫ ∞

−∞

fV (z − g)

fV (z − g)

∂fV (z − g)

∂g
dz

=
∂

∂g

∫ ∞

−∞

fV (z − g) dz =
∂

∂g
1 = 0,

(7.30)

since fV (z − g) > 0 for all z and ρ > 0 (otherwise the limits of integration would
depend on g and the order of integration and differentiation cannot be changed).

After verifying that the regularity condition is met, the CRB should be cal-
culated from (7.27). As mentioned above, the CRB has only been calculated nu-
merically for the PDF fV (z − g) due to the heavy integration required to solve it
analytically. The resulting CRB is presented in the next section along with the
simulation results in Figures 7.6–7.7.

7.6 Simulations

In order to verify the results obtained above some simulations have been carried
out. The purpose of the experiment was to evaluate the estimators obtained in Sec-
tion 7.4 and compare them with the Cramér–Rao bounds obtained in Section 7.5.
However, the results from the case where both W and U are Gaussian are omit-
ted, since these only verify the standard results reported numerous times in the
literature. The emphasis is instead on the scenario with uniform W and Gaussian
U .

More specifically, we are interested in assessing the difference between the sam-
ple mean (ĝsm), the order statistic estimator (ĝos) and a third estimator (ĝmm)
which is the mean of the smallest and the largest sample (equivalent to ĝos when
ρ → 0). The experiment was set up according to Figure 7.2(b), i.e., an unknown
constant g is corrupted by two independent additive white noises W and U , with
the former being uniform in [−∆/2, ∆/2] and the latter zero-mean Gaussian with
variance σ2

U . In each experiment N samples were taken and the following estimators
were calculated:

1. Order statistics estimator ĝos in (7.23) with α from (7.24).

2. Sample mean ĝsm in (7.9).

3. Min-max estimator ĝmm = (z(1) + z(N))/2.

4. Maximum likelihood estimator (MLE), calculated using numerical maximiza-
tion of the likelihood function fZ|X(z|x = xk · 1; g) with respect to g, under
the Gaussian-uniform assumption of Section 7.4.
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Figure 7.6: Mean squared error results from simulations. The performance in
terms of MSE is plotted for four estimators of g: optimized order statistics ĝos
(‘©’), sample mean ĝos (‘�’), the mean of the minimum and maximum samples
ĝmm (‘♦’), and the MLE (‘∗’). Also, the theoretical variance for ĝos and ĝsm, and
the CRB are plotted using solid, dash-dotted and dashed lines, respectively. This
plot shows the results for N = 10 samples.
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Figure 7.7: Mean squared error results from simulations. This plot shows the results
for N = 100 samples.

The parameter ρ was varied (as before ρ , σU/∆), and for each value of ρ the
experiment was repeated 10 000 times. The mean square error (MSE) between
the estimated values and the true value was calculated. The results are plotted in
Figures 7.6–7.7.

The first observation is that the order statistics estimator always has the lowest
MSE coinciding with the theoretical value (7.25) (dashed line). The maximum
likelihood estimator (MLE) of g also results in the same MSE as ĝos for all ρ.

We see that for 20 log10 ρ > −10 the MSE of the sample mean estimator (ĝsm) is
identical to that of the order statistic estimator, and also attains the CRB. Again,
this verifies the result from [BNPP00] that for ρ large enough the distribution for
V is approximately Gaussian, implying that the sample mean is optimal in the
mean-square sense for those values of ρ.

For low ρ, on the other hand, the estimator based on the largest and the smallest
samples (ĝmm) actually approaches the performance of the order statistics estima-
tor. This is not surprising, since we know from Section 7.4 that the coefficients
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of the order statistics estimator approaches α1 = αN = 1/2 (with the remaining
coefficients zero), which is equivalent to ĝmm.

Another observation is that the order statistics estimator ĝos attains the CRB
for lower ρ when N is increased from 10 to 100 (cf. Figures 7.6–7.7). Also, we know
from estimation theory (e.g., [Kay93]) that the MLE – if it exists – attains the
CRB when N → ∞. Since the numerical results indicate that the order statistics
estimator performs equally well as the MLE, we conjecture that the order statistics
estimator ĝos is asymptotically efficient (in the number of samples N). That is, it
seems reasonable to believe that the order statistics estimator attains the CRB for
all ρ > 0 when N → ∞.

7.7 Roadmap to an Order Statistics Calibration System

The foundation for a novel method for calibrating a look-up table based post-
correction system has been presented in this chapter. The method is based on
a nonlinear estimator (7.23)–(7.24) using order statistics. However, several issues
must be dealt with before a practical correction system using this technique can be
implemented. This section points out the main problems that must be solved, and
in some cases possible solutions are suggested.

Calibration Signal

It was mentioned in the preamble of Section 7.4 that the PDF of the input signal
should preferably be uniform for the uniform-Gaussian assumption to be valid.
It can of course be argued that the PDF is approximately uniform within each
quantization region if the quantization regions are “small”. This means that they
should be so small that the PDF of the input signal changes negligibly within
one quantization region; in other words, the conditions for high-rate quantization
(e.g., [Gra90]) are fulfilled.

Sinewaves have been used extensively in ADC calibration. The benefits of using
sinewave signals are several: They are (fairly) easy to generate with high purity,
and that standardized sinewave fit methods can be used to re-create the reference
signal from the recorded signal (cf. [Std1057, Std1241]). The drawback, on the
other hand, is that a single sinusoid has a PDF that is far from uniform. Another
disadvantage is that the calibration signal is narrow-banded, so that the calibration
is only valid in a narrow band close to the calibration frequency. Many applications
in which ADCs are used today are wide-band, wherefore it is of special interest to
have a calibration that excites the converter under test in a wide frequency band.
A wide-band uniform noise seems like a plausible candidate, but we then loose the
ability to estimate the reference signal from the recorded samples.

Schoukens and Dobrowiecki [SD98] presented a method to design a broadband
excitation signal, consisting of a sum of sinusoids (so called multisine), where the
amplitude distribution can be tailored to meet certain demands. This method could
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be useful in ADC calibration, since it would provide excitation in a wide frequency
range, and can be designed to have uniform PDF. A reference signal can then be
estimated from the recorded output, since we are again dealing with sinewaves. In
particular, Andersson and Händel have presented two methods for estimating the
parameters of a multisine. The two methods – suitable for instrumentation and
measurement purposes – are presented in [AH03] and [AH04], respectively, and
both are described in [And05]. Combining the design method for multisines with
multisine estimation could form a powerful tool for calibrating ADCs in a wide
frequency band.

Knowledge of the Shape Parameter ρ

The new estimator presented in this chapter cannot be fully utilized without knowl-
edge of the parameter ρ, defined in (7.16). The parameter can be interpreted as
a shape parameter, where small ρ gives an approximately rectangular PDF, while
larger ρ leads to a more Gaussian distribution.

We have not presented any methods for estimating the parameter ρ in this
chapter. One possible solution is to derive an approximate value based on prior
knowledge of the calibration system, such as (nominal) quantization bin width,
reference signal variance, etc. Another option is to devise an estimator based on
the recorded samples.

Calculating the Filter Coefficients

It was mentioned in Section 7.4 that the filter coefficients α in (7.24) were quite
difficult to calculate. The reason for this was that the integrals (7.42) and (7.43) in
Appendix 7.A are difficult to solve analytically. The results presented in Figure 7.5
and in the simulations of Section 7.6 were found by using numerical methods to
solve the integrals.

In a practical system, this problem must be overcome. One reason for this
is that it can be expected that the operating point of the estimator, in terms of
values for ρ and N , will change from one quantization level to another. This since
it is likely that (a) the reference signal has different accuracy for different levels
and/or (b) the number of samples recorded in each level vary. The best solution
is of course to find an exact, or possibly approximate, closed form solution to the
α-parameters. However, in the likely case that this is not feasible, we must resort
to other methods.

Approximating the α-coefficients

When examining the shape of Figure 7.5, it is evident that the surface can be
described as two extreme cases—viz. 1/N for large ρ and α1 = αN = 1/2 for ρ
close to zero—and a gradient region in between. One way to acquire approximate



84
CHAPTER 7. CHARACTERIZATION OF QUANTIZER

TRANSFER FUNCTIONS

coefficients in an efficient manner could be to find a mixture between these two
extreme cases, where ρ acts as a mixing parameter.

Switching Between the Extremes

Consider Figures 7.6–7.7. Besides the fact that the order statistics estimator ĝos is
best in all cases, it is interesting to note that for every value of ρ, either the sample
mean (ĝsm) or the min-max estimator (ĝsm) is very close to optimal. Thus, if we
out of these two estimators always use the one with lowest variance, the resulting
estimates will be not far from optimal.

It can be seen from Figures 7.6–7.7 that there is a ρ at which the MSEs for the
two estimators intersect. It is also clear that this point changes when the number
of samples N is changed. Thus, with knowledge of this cross-over point, the proper
selection of estimator can be made. The benefit of this approach is of course that
these two estimators are far more easier to calculate, since we no longer use the
integrals (7.42) and (7.43) in Appendix 7.A.

Now, calculating the cross-over point, that is, the point at which var[ĝsm] =
var[ĝmm], is of interest. The variance for ĝsm is

var[ĝsm] =
∆2

12 + σ2
U

N
=

∆2

12N
(1 + 12ρ2) (7.31)

when taking the mean of N samples of Z = ∆V + g. For ĝmm, the variance is

var[ĝmm] = var

[
Z(1) + Z(N)

2

]
= var

[
∆V(1) + g + ∆V(N) + g

2

]

=
∆2

4

(
E
[
V 2

(1)

]
+ E

[
V 2

(N)

]
+ 2E

[
V(1)V(N)

])
.

(7.32)

Again, the order statistics are defined in Appendix 7.A. Also this time, the integrals
are difficult to calculate analytically, and we resort to numerical methods.

The equation var[ĝsm] = var[ĝmm], i.e.,

1

12N
(1 + 12ρ2) =

1

4

(
E
[
V 2

(1)

]
+ E

[
V 2

(N)

]
+ 2E

[
V(1)V(N)

])
, (7.33)

is solved with respect ρ for different N using numerical methods. The results are
plotted in Figure 7.8. The circles mark the solutions to (7.33). Also, a least-squares
fit is shown with a solid line. The fit resulted in the function

N = 0.03839 ρ−2.868 (7.34)

which is the line in the plot. The rightmost point (20 log10 ρ ≈ −16, N = 5) was
omitted from the data while doing the fit, since this point is heavily affected by
border effects.

From the plot it is possible to tell, for a certain combination of ρ and N , whether
the sample mean or the mean of the largest and smallest sample should be used
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Figure 7.8: The circles show points in the ρ-N -plane where the equation var[ĝsm] =
var[ĝmm] holds, i.e., where ĝsm and ĝmm are equally good. Above these points, ĝsm is
better, while the opposite is true under. The solid line represents the least-squares
fit to the data points.

to estimate g. If the pair (ρ, N) is located above the line, the variance of the
sample mean is the smallest, wherefore ĝsm should be selected in favor of ĝmm. The
opposite is of course true below the line.

7.A Probability Distributions of Order Statistics

In this appendix, the fundamentals of order statistics are reviewed. The results can
be found in the literature, e.g., [AK97].

Let X1, X2, . . . , XN be i.i.d. stochastic variables with a common continuous
distribution function F (x) and a PDF f(x). The random vector X̄ , [X(1) X(2) · · ·
X(N)], where the random variables have been arranged in ascending order so that
X(1) ≤ X(2) ≤ · · · ≤ X(N), is referred to as the order statistics. The joint PDF of
X̄ is

fX̄(x(1), x(2), . . . , x(N)) = N !f(x(1))f(x(2)) . . . f(x(N)) (7.35)
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in the region −∞ < x(1) < x(2) < · · · < x(N) < ∞ and zero outside.
The PDF for the k-th element of X̄ is

fX(k)
(x(k)) =

N !

(k − 1)! (N − k)!
F (x(k))

k−1
(
1 − F (x(k))

)N−k
f(x(k)). (7.36)

Furthermore, the PDF for a subset of K elements in X̄ is

fX(k1), X(k1+k2), ..., X(k1+k2+···+kK )
(x(k1), x(k1+k2), . . . , x(k1+k2+···+kK))

=
N !

(k1 − 1)!(k2 − 1)! · · · (kK − 1)!(N − k1 − k2 − · · · − kK)!
×

F (x(k1))
k1−1

(
F (x(k1+k2)) − F (x(k1))

)k2−1 · · · ×
(
1 − F (x(k1+k2+···+kK))

)N−k1−k2−···−kK ×
f(x(k1)) · · · f(x(k1+k2+···+kK)) (7.37)

in the region −∞ < x(k1) < x(k1+k2) < · · · < x(k1+k2+···+kK) < ∞ and zero outside.
From these PDFs, we can derive different properties of the order statistics. For

instance, the PDF of the smallest element in X̄, X(1) is

fX(1)
(x(1)) = N

(
1 − F (x(1))

)N−1
f(x(1)), (7.38)

the PDF for the largest element is

fX(N)
(x(N)) = NF (x(1))

N−1f(x(1)), (7.39)

and the expected value for the k-th element is

E[X(k)] =
N !

(k − 1)! (N − k)!
×

∫ ∞

−∞

F (x(k))
k−1

(
1 − F (x(k))

)N−k
f(x(k))x(k) dx(k). (7.40)

Finally, the correlation between two elements in X̄ is of interest. The joint PDF
for the i-th and j-th elements is

fX(i)X(j)
(x(i)x(j)) =

N !

(i − 1)! (j − i − 1)! (N − j)!
×

F (x(i))
i−1
(
F (x(i)) − F (x(j))

)j−i−1 (
1 − F (x(j))

)N−j
f(x(i))f(x(j)) (7.41)

for x(i) < x(j) and zero otherwise. This gives that the correlation between two
elements is

E
[
X(i)X(j)

]
=

∫ ∞

−∞

∫ x(j)

−∞

N !

(i − 1)! (j − i − 1)! (N − j)!
×

F (x(i))
i−1
(
F (x(i)) − F (x(j))

)j−i−1 (
1 − F (x(j))

)N−j ×
f(x(i))f(x(j)) dx(i)dx(j) (7.42)
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for i 6= j, and

E
[
X2

(i)

]
=

N !

(i − 1)! (N − i)!
×

∫ ∞

−∞

F (x(i))
i−1
(
1 − F (x(i))

)N−i
f(x(i))x

2
(i) dx(i) (7.43)

for i = j.





Chapter 8

Theoretical Limits for ADC

Correction

This thesis has thus far dealt with post-correction – manly applying look-up tables
– in the optimal case. In a practical post-correction application it is very likely
that the correction values will be stored with fixed-point precision. However, most
of the evaluations and experiments reported in the literature have been conducted
with infinite precision in the representation of the correction values stored in the
LUT. One of few exceptions is [IC86], where experimental results indicated that
the precision of the correction values strongly affect the outcome of the correction.

In this chapter the relationship between the precision of the correction values
and the resulting ADC performance after correction is investigated. First, the
quantization and correction model is repeated, introducing also a few new nota-
tions. Then, the outcome of the best possible post-correction is derived, in terms
of MSE, SINAD and ENOB. Finally, the effects of nonideal correction values – due
to fixed-point precision – is investigated. The results are verified by simulations in
Section 8.6, and also using experimental ADC data in Section 8.7. The outcome of
the experiments are discussed in the concluding Section 8.8.

8.1 ADC and Correction System Model

The ADC is assumed to operate as described in Section 1.2, with an ideal sample-
and-hold circuit. Thus, the sampled signal s(n) is regarded as input to the system.
The quantizer has b bits, resulting in M = 2b quantization levels. The output,
denoted x(n), is a quantized version of s(n). The notation x(n) = Q(s(n)) is used
to denote the quantization operation. Note that Q(·) does not necessarily have to
be a uniform quantization, but represents the actual transfer function of the ADC
at hand.

It is assumed that the input value s(n) is drawn from a stochastic variable S
with probability density function (PDF) fS(s). The temporal properties for S are

89
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s(t) x(n)

xi

y(n)
ADC {ej}

ei

Figure 8.1: Additive correction system.

immaterial since the quantizer is assumed to be non-dynamic, i.e., the output of
the quantizer at time n depends only on the input at the same instant. Let MSEQ

denote the MSE for the quantizer without correction, i.e.,

MSEQ = E[(S − x)2] =

∫
(s −Q(s))2 fS(s) ds

=
∑

i

∫

s∈Si

(s − xi)
2 fS(s) ds.

(8.1)

A static additive correction as described in Chapter 3 is employed. Figure 8.1
depicts the correction system. The corrected value y is produced by adding a
correction term e(x) to the output x so that y = x + e(x). Every possible output
value x ∈ {xj}M−1

j=0 is associated with a correction term e(x) ∈ {ej}M−1
j=0 .

Optimal correction values for minimizing the mean-square error E[(S − y)2] are
used (note that y is a function of S). In Section 6.2 the MMSE optimal correction
values were derived. It was shown that if the quantization regions {Sj} are assumed
fixed, the optimal correction values are given by

ej, opt = arg min
y

E[(y − S)2|S ∈ Sj ] =

∫
s∈Sj

s fS(s) ds
∫

s∈Sj
fS(s) ds

− xj . (8.2)

When representing the correction values with infinite precision, i.e., using the
values (8.2), the resulting MSE after correction is

MSEo = E[(S − y)2] = E
[
(S − x − e(x))

2
]

= E
[
(S − x)2 − 2(S − x) e(x) + e(x)

]

= MSEQ + E
[
e(Q(S))2

]
− 2E [(S −Q(S)) e(Q(S))] ,

(8.3)

where the last equality comes from applying (8.1). In order to simplify the expres-
sion, we use (8.2) to obtain

∫

s∈Si

s fS(s) ds = (ei + xi)

∫

s∈Si

fS(s) ds, (8.4)
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and use it in the last term of the expression (8.3) above. Thus,

E[(s −Q(s)) e(Q(s))] =

∫
(s −Q(s)) e(Q(s)) fS(s) ds

=
∑

i

∫

s∈Si

(s − xi) ei fS(s) ds

=
∑

i

(
ei

∫

s∈Si

s fS(s) ds − xi ei

∫

s∈Si

fS(s) ds

)

=
∑

i

(
ei (ei + xi)

∫

s∈Si

fS(s) ds − xi ei

∫

s∈Si

fS(s) ds

)

=
∑

i

e2
i

∫

s∈Si

fS(s)ds = E
[
e(Q(S))2

]
,

(8.5)

which is in fact nothing but the variance of the correction value e. Reapplying this
in (8.3) yields

MSEo = MSEQ − E
[
e(Q(S))2

]
. (8.6)

Since E
[
e(Q(S))2

]
always is a non-negative quantity, we can immediately see that

the MSE after MMSE-optimal correction is never higher than the MSE before
correction, or MSEo ≤ MSEQ.

In the next section we will derive a more specific expression for the resulting
MSE after correction based on certain assumptions on the quantizer behavior.

8.2 Optimal Correction Results Under Random DNL

In this section we will pursue a limit on how good a quantizer can be after correction.
The nonidealities of the quantizer in terms of DNL are modeled as a random process.
The maximum achievable MSE after MMSE optimal correction is derived and found
to be dependent on the variance of the DNL process. The problem considered in
this section was also studied in [GST96a], and similar results as (8.18) were found
then.

Assume that the ADC, or quantizer, suffers from a certain differential nonlin-
earity DNL (cf. Section 1.4). We will here describe the DNL statistically in the
following way. The ideal code bin width of the quantizer is denoted ∆. The actual
code bin width for the k-th code bin is

W [k] = ∆ + d∆[k]. (8.7)

The DNL naturally becomes DNLk = d∆[k]/∆ in accordance with (1.5). The
differences d∆[k], k = 1, 2, . . . , M−2, are considered to be independent realizations
of a stochastic variable D with probability density function fD(d). It is assumed
that fD(d) is an even function – implying zero-mean – and that the variance of D
is σ2

D.
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Figure 8.2 shows a comparison between data from a real ADC and synthetic
DNL as in (8.7). The real ADC is an Analog Devices AD9430, 12-bit converter.
The simulated DNL was generated from a Gaussian random variable, having the
same variance as estimated from the measured DNL, viz. σ2

D = 0.0068. The first
row shows the DNL plots (the shaded areas of Figure (a) are omitted from the
statistics, due to poor accuracy in the estimated DNL). The second row shows
histograms over the DNLs, and the last row shows estimates of the auto-correlation
functions. It is seen that the synthetic DNL quite accurately models that of the
experimental data. The largest discrepancy is in the auto-correlations, where the
measured auto-correlation has a large negative correlation at lags –1 and 1. This
is not the case in the synthetic DNL since it is white.

The quantizer is still fed with a signal modeled as a stochastic variable S, with
a PDF fS(s). The MSE is written as

MSE = ES [(S − y)2] =

∫
(s − y)2 fS(s) ds

=
M−1∑

k=0

∫

Sk

(s − yk)2 fS(s) ds ,

M−1∑

k=0

MSE(k),

(8.8)

where yk is the corrected output for the k-th level: yk = xk +ek. The mean-squared
error in the k-th quantization region Sk as a function of d∆[k] is then

MSE(k; d∆[k]) = ES [(S − yk)2|S ∈ Sk; d∆[k]]

=

∫

Sk

(s − yk)2fS(s) ds.
(8.9)

Note that the dependence on d∆[k] is in Sk. Assume that the quantization region
Sk is sufficiently small, and that fS(s) is sufficiently smooth, so that fS(s) can be
considered a constant Ck within Sk. Then, the MSE becomes

MSE(k; d∆[k]) = Ck

∫

Sk

(s − yk)2 ds. (8.10)

We also know in this case that the MMSE-optimal yk is the midpoint of Sk (cf.
Section 6.4). With the substitution t = s − yk the integral can be written as

MSE(k; d∆[k]) = 2Ck

∫ ∆+d∆[k]

2

0

t2 dt =
Ck

12
(∆ + d∆[k])

3
. (8.11)

By taking the expected value of MSE(k; D) with respect to D, the MSE for the
k-th quantization region is:

MSE(k) = ED [MSE(k; D)] = ED

[
Ck

12
(∆ + D)

3

]

=
Ck

12

(
∆3 + 3∆E[D2] + E[D3]

)
.

(8.12)
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Figure 8.2: Comparison between the DNL of a real ADC (left column) and simu-
lated DNL (right column). The shaded areas of Figure (a) are omitted from the
statistics, due to poor accuracy in the estimated DNL.
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The fact that D is zero-mean was used in the last equality. Further, E[D3] = 0,
since fD(d) is even. Thus, the MSE becomes

MSE(k) =
Ck

12

(
∆3 + ∆σ2

D

)
=

Ck

12

(
1 +

σ2
D

∆2

)
∆3 (8.13)

Upon inserting this into (8.8) the overall MSE is obtained as

MSE(σ2
D) =

∆3

12

(
1 +

σ2
D

∆2

)M−1∑

k=0

Ck. (8.14)

It is perhaps more interesting to consider the relative MSE. In particular, we
consider the MSE related to the MSE for an ideal quantizer, fed with the same
signal. The MSE for an ideal quantizer, denoted MSEQ as before, was expressed in
(8.1). By making the smoothness assumption again, the MSE can be approximated
as

MSEQ =

M−1∑

k=0

∫

s∈S′

k

(s − xk)2 fS(s) ds ≈ 2

M−1∑

k=0

C ′
k

∫ ∆
2

0

t2 dt =
∆3

12

M−1∑

k=0

C ′
k, (8.15)

where ′ is used to denote that S ′
k and C ′

k are not necessarily equal to Sk and Ck,
respectively. The potential discrepancy between S ′

k and Sk does of course come
from the deviation d∆[k] in the regions. Since the regions may end up at different
places, the assumed constant value C ′

k for the PDF fS(s) may consequently change
to Ck.

Define the ratio between MSE(σ2
D) and MSEQ as

κ ,
MSE(σ2

D)

MSEQ
=

∆3

12

(
1 +

σ2
D

∆2

)M−1∑

k=0

Ck

∆3

12

M−1∑

k=0

C ′
k

. (8.16)

The assumption that
M−1∑

k=0

Ck ≈
M−1∑

k=0

C ′
k (8.17)

is rather reasonable—multiplying each sum by ∆ gives an approximation of the
integral

∫
fS(s) ds = 1. Under that assumption, κ simplifies to

κ ≈
(

1 +
σ2

D

∆2

)
. (8.18)

This is the increase in MSE that is inflicted by the DNL after MMSE optimal
correction is applied.
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SINAD and ENOB

The result (8.18) above can be directly translated to a degradation in SINAD and
ENOB. The SINAD is defined as (1.7)

SINAD = 20 log10

RMSsignal
RMSnoise

, (8.19)

where we can use RMSnoise =
√
MSE =

√
κMSEQ. This is of course assuming

that there are no other noise sources affecting the quantizer. Thus, the difference
between the SINAD with optimally corrected DNL errors and the SINAD of an
ideal converter is

∆SINAD = SINADκ − SINADideal = −10 log10

(
1 + 3

σ2
D

∆2

)
. (8.20)

The ENOB is directly linked with the SINAD (cf. (1.9)), and we can therefore
state the difference between the ENOB with DNL errors and the ENOB of an ideal
converter as

∆ENOB = −1

2
log2

(
1 + 3

σ2
D

∆2

)
, (8.21)

again provided that the errors are corrected using (8.2).

8.3 Fixed-Point Resolution for Correction Values

It is not always feasible, let alone practical, to implement an ADC post-correction
system, such as the one in Figure 8.1, using floating-point1 representation for the
stored correction values {ej}M−1

j=0 . It is natural to settle for a specific precision with
which the correction terms are stored, e.g., a certain number of bits. Obviously,
the performance of the corrected ADC will depend on which precision that is used.

The precision of digitally stored values is often stated as a number of bits.
Assume that the table is stored using τ bits and that the ADC to be corrected
converts the signal into b-bit values. If we know that the ADC only has error in
the lower bits, then we can “shift” the bits of the correction table and obtain a
correction with higher effective precision. For example, if the ADC has 10 bits, but
only the 2 LSBs need correction, then the remaining bits of the correction values
(minus the sign bit) can be used to get a better precision.

After the correction with a shifted correction value we have an ADC with a
b-bit resolution but a supra-b bit precision. That is, the ADC still has got 2b

quantization regions, but the reconstruction levels after correction are represented
with more than b bits.

The problem gets easier to analyze if the resolution η, being the smallest possible
difference between two different correction values, is used instead of the actual

1Floating-point representation of numbers does not have infinite precision, but it is the closest
to infinite precision we can muster in a digital implementation.
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ADC:

Corr:

b bits

δb

τ

Figure 8.3: Addition of the ADC output with a correction value. The bits of the
table value are shifted in order to enhance the precision of the corrected ADC.

number of bits τ . Moreover, we are here only interested in the number of extra bits
δb added by the correction term. See Figure 8.3 for an illustration. The relationship
between δb and η is straightforward:

η = 2−δb LSBs. (8.22)

It is assumed that the correction values never exceed the largest number that can
be represented by the τ correction bits, meaning that saturation of the correction
values does not happen.

Let ẽi be the (uniformly) quantized version of the table entry ei, i.e.,

ẽi = Qη(ei). (8.23)

This is the correction value that would be used in a post-correction system with a
fixed-point resolution η. The notation Qη is used to distinguish this quantization
from the one performed in the converter (Q). We assume that one of the quan-
tization cells is centered at zero. That is, if a certain correction term is within
the interval [−η/2, η/2] it will be quantized to zero, and, since the quantization
of correction terms is uniform (ideal round-off), all other possible quantized values
are located at an integer multiple of η. Hence, we can say that

ẽi ∈ {kη : k = . . . , −2, −1, 0, 1, 2, . . . }. (8.24)

Also let

δi = ẽi − ei (8.25)

be the difference between the fixed-point and the infinite-precision correction terms.
The notation δ(x) denotes the correction term quantization error associated with
a specific x, i.e., δ(x) = δi if x = xi.
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MSE

The MSE obtained using the quantized correction terms becomes

MSEη , E
[
(S − x − ẽ(x))2

]
= E

[
(S − x − e(x) − δ(x))2

]

= E
[
(S − x − e(x))2

]
+ E[δ(x)2] − 2E[(S − x − e(x)) δ(x)]

= MSEo + E[δ(x)2] − 2E[(S − x − e(x))δ(x)].

(8.26)

The error term δ(x) ultimately depends on the stochastic variable S. Analyze the
last term to find that

E[(S − x − e(x)) δ(x)] =
∑

i

∫

s∈Si

(s − xi − ei) δi fS(s) ds

=
∑

i

δi

(∫

s∈Si

(s − xi) fS(s) ds −
∫

s∈Si

ei fS(s) ds

)
= 0, (8.27)

where, again, the (modified) relationship in (8.4) has been used in the last term.
This results in that the MSE when using quantized correction terms is

MSEη = MSEo + E[δ(x)2]. (8.28)

The second moment of the error E[δ(x)2] can further be written as

E[δ(x)2] =

∫
δ(x)2 fS(s) ds =

∑

i

∫

s∈Si

δ2
i fS(s) ds

=
∑

i

∫

s∈Si

fS(s) ds

∫
s∈Si

δ2
i fS(s) ds∫

s∈Si
fS(s) ds

=
∑

i

∫

s∈Si

fS(s) ds E[δ2|S ∈ Si].

(8.29)

Under the assumption that the quantization error δi is uniformly distributed in
[−η/2, η/2], then each E[δ2|S ∈ Si] = η2/12 for all i, and (8.29) becomes

E[δ(x)2] =
η2

12

∑

i

∫

s∈Si

fS(s) ds =
η2

12
. (8.30)

The MSE in (8.28) then boils down to

MSEη = MSEo +
η2

12
. (8.31)

Since η is expressed in LSBs, so should also MSEo be. Alternatively, the second
term can be scaled by ∆2 to get the result in input units, e.g., V2 (volts squared).

It is reasonable to believe that the assumption leading up to (8.30) is valid for
small η, i.e., when the quantization is assumed to be “high-rate”. (See [WKL96]
or Section 4.1 for a thorough discussion and precise conditions for the uniformity
of the quantization noise.) However, as η grows large the assumption will become
invalid, motivating the asymptotic analysis.
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Asymptotic MSE

Recall that one of the quantization cells is centered at zero and that all table values
ei that fall within [−η/2, η/2] will be quantized to ẽi = 0. When we enlarge the
quantization step, i.e., when η → ∞, all ẽi will inevitably be zero, since all table
values will fall into the expanding center region at zero. Consequently, the resulting
MSE becomes

MSEη = E[(S − x − 0)2] = E[(S − x)2] = MSEQ (8.32)

when the resolution tends to zero. The interpretation is straightforward: since no
correction is effected, the MSE is that of the uncorrected quantizer. The MSE will
increase with η according to (8.31), but not any further than to MSEQ.

8.4 Random Input Noise

Errors in the transfer function that are deterministic can be compensated for. The
results of the previous sections show how successful this compensation is, taking the
DNL of the quantizer and the precision of correction values into account. One error
effect of a practical ADC that cannot be compensated for using look-up tables2 is
random noise. Since the noise is truly random, it is impossible to say anything
about it, even with knowledge of the resulting output signal. Hence, it cannot be
compensated for.

The random noise is modeled as an additive noise, with variance σ2
n, added to

the input of the quantizer. As a natural consequence, the MSE of the output is
increased by σ2

n.

8.5 Combining the Theories

The performance description provided in (8.31) above is dependent on MSEo – a
quantity that is dependent on the actual transfer characteristics of the ADC under
test, the accuracy of the calibration and correction schemes, and on the signal
considered. One way to obtain MSEo is of course to test it in practice – that is
calibrate an infinite-precision LUT and use it to evaluate the resulting MSE after
correction. This is, however, cumbersome in many situations. It would therefore
be interesting to find an expression for MSEo that could be used to estimate the
resulting performance of a post-corrected ADC before it was calibrated.

In this section, the theories presented in Sections 8.2–8.4 are combined to form
a joint formula for the resulting performance after correction, as a function of DNL,
LUT resolution and random noise.

2Random noise can be compensated using oversampling and averaging techniques, but this
limits the input frequency range.
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Random DNL

Recall from (8.18) that the MSE after correction using perfect (infinite-precision)
correction values could be expressed as

MSE(σ2
D) = κMSEQ =

(
1 + 3

σ2
D

∆2

)
MSEQ. (8.33)

Here, σ2
D was the variance of the DNL, and ∆ was the nominal quantization bin

width.
In order to get a value for MSEQ we make the assumption that the quantization

step size ∆ of the ADC is small compared with the variability of the source PDF
and that the input signal does not overload the quantizer – i.e., the requirements
for high-rate quantization are fulfilled. Then, MSEQ is the classical result

MSEQ = MSEuniform =
∆2

12
. (8.34)

Now, inserting (8.34) into (8.33), and this in turn into (8.31), gives the resulting
MSE after correction with a fixed-point LUT. We also account for a random noise
with variance σ2

n as in Section 8.4. The result is

MSEη(σ2
D, σ2

n) =

(
1 + 3

σ2
D

∆2

)
∆2

12
+

η2∆2

12
+ σ2

n

=
∆2

12
+

σ2
D

4
+

η2∆2

12
+ σ2

n.

(8.35)

The MSE consists of four terms: the first term is the MSE of the ideal uniform
quantization, the second term is the error inflicted by the DNL, the third term is
the effect of limited-resolution correction values, and the fourth term is the input
random noise. Note that the result is in squared input units, e.g., V2. The resulting
MSE in LSB2 is obtained simply by dividing the equation by ∆2.

SINAD

When characterizing ADCs the SINAD is more frequently used than the MSE. It is
therefore interesting to state the results obtained above in terms of SINAD instead
of MSE. The SINAD is defined as (1.7)

SINAD = 20 log10

RMSsignal
RMSnoise

[dB]. (8.36)

The SINAD is in most cases tested using a sinewave signal. Let the amplitude of
the test signal be AdBFS, expressed in dB relative full scale. Hence, the RMS value
is then

RMSsignal =
∆10

AdBFS
20 2b−1

√
2

. (8.37)



100 CHAPTER 8. THEORETICAL LIMITS FOR ADC CORRECTION

The RMS noise amplitude is obtained from the MSE expression (8.35) above so
that

RMSnoise =
√

MSEη(σ2
D, σ2

n). (8.38)

We obtain the expression

SINADDNL = 20 b log10 2 + 10 log10

3

2
+ AdBFS

− 10 log10

(
1 + 3

σ2
D

∆2
+ η2 + 12

σ2
n

∆2

) (8.39)

for the resulting SINAD in dB. Note that AdBFS must be negative for this expression
to be valid. If not, the quantizer is overdriven, and the MSE in (8.35) is no longer
accurate.

ENOB

The effective number of bits (ENOB) is defined in (1.9) as a function of the SINAD.
Let the amplitude A = 10AdBFS/20 FSR/2 and insert (8.39) into (1.9) to obtain

ENOBDNL = b − 1

2
log2

(
1 + 3

σ2
D

∆2
+ η2 + 12

σ2
n

∆2

)
. (8.40)

Optimal Quantization

The results above are based on the assumption that the deviations from the ideal
quantizer transfer function all deteriorate the performance. However, if we want
to be rigorous we must consider the (unlikely) possibility that the quantization
regions actually deviate from the uniform quantizer to a configuration which is
more beneficial for the considered test signal. We will therefore resort to information
theory and the results on optimal quantization to derive a true lower bound for the
MSE of a perfectly corrected ADC. We will derive a result based on the Shannon
lower bound which is a bound on the so called rate–distortion function.

From information theory (see e.g., [Gra90]) we learn that the rate–distortion
function tells us how small the resulting distortion can be when describing the
outcomes of a certain random variable with a specific rate (resolution). The inverse
distortion–rate function provides the reverse relation3. In numerous situations the
rate–distortion function is inherently difficult to calculate, therefore, the Shannon
lower bound on the rate–distortion function is frequently used. The lower bound
has the advantage that it is often easier to compute.

If we are quantizing a random variable S and using a squared-error criterion
(MSE), the Shannon lower bound is defined as

RSLB(D) = h(S) − 1

2
log2(2πeD), (8.41)

3The distortion–rate function is the inverse of the rate–distortion function whenever the latter
is strictly decreasing.
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where h(S) is the differential entropy of S, D is the squared-error distortion and
RSLB is the rate in bits. The result says that it is impossible to represent a random
variable S with less than RSLB bits if the MSE should be no more than D.

Now, since (8.41) is a lower bound on the rate–distortion function and is strictly
decreasing, the inverse of (8.41) – D as a function of R – is a lower bound on the
distortion–rate function, which is of greater interest to us. We get

D =
1

2πe
22h(S)−2R. (8.42)

The differential entropy

h(S) , −
∫

fS(s) log fS(s) ds = −E[log fS(S)] (8.43)

is a function of the distribution of S. Therefore we cannot say anything more about
the lower bound before we choose a PDF for S. In this case, we let S be a sample
function of a sinusoid with amplitude A, mainly because it is the predominant test
signal in ADC testing and because the result obtained can be compared with (8.39).
The PDF of S is then given by

fS(s) =
1

πA

√
1 −

(
s
A

)2 , |s| < A, (8.44)

and the differential entropy (in bits) can be shown to be

h(S) = log2

(
πA

2

)
. (8.45)

Inserting this result into (8.42) we get the lower bound

D =
πA2

16
2−2R. (8.46)

Using this last result we can obtain a lower bound on the distortion when quan-
tizing sinusoids. For instance, when quantizing a sinusoid, having AdBFS amplitude,
with a b-bit quantizer, the amplitude is A = ∆10

AdBFS
20 2b−1 input units (cf. (8.37))

and the rate is R = b (bits). The squared-error distortion can in this case never be
lower than

DSLB =
π

64
∆2 10

AdBFS
10 . (8.47)

Note that DSLB is a lower bound on the distortion of a quantizer tailored for a
sinusoid input.

Finally, inserting DSLB from (8.47) as MSEo in (8.31), we obtain

MSEη, SLB =
π

64
∆2 10

AdBFS
10 +

η2

12
. (8.48)
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This result is a lower bound on MSE for η = 0, but is also likely to be lower than
the practically achievable MSE for η > 0. Note, however, that the discussion on
asymptotic results in Section 8.3 is valid in this case too. Therefore, the practical
MSE will not increase above MSEQ, although the formula (8.48) does, implying
that MSEη, SLB can for sure not be a lower bound for all η. It can also be noted
that the random input noise of Section 8.4 was not added in (8.48). If random noise
at the input of the quantizer should be accounted for in this case, the distribution
of the noise must be known. The differential entropy must then be calculated, not
for the sinusoid only, but for the resulting PDF after adding the sinusoid to the
random noise.

SINAD

Once again, the MSE result obtained is transferred to a SINAD expression. This
time, the MSE from (8.48) is inserted into (8.38) to obtain the expression

SINADSLB = 20 b log10 2 + AdBFS − 10 log10

(
π

8
10

AdBFS
10 +

2η2

3

)
, (8.49)

also in dB. Comparing with (8.39), we see that SINADSLB > SINADDNL for all
AdBFS < 0, arbitrary σ2

n and σ2
D, and for all η.

8.6 Simulations

The results derived in this chapter has been tested in simulation experiments. Two
different mathematical models for ADCs have been used to verify the results. The
experiments and the outcome of them are described in the following two sections.

Both experiments have the same overall structure, which is described first. The
resolution of the quantizers are in both cases b = 10 bits. The following steps are
common to both simulations:

1. Calibrate a LUT. A sinusoid with amplitude –1 dBFS and random initial
phase is used as input to the ADC model. The normalized frequency (f/fs)
is selected to 3001/16384 ≈ 0.1832, i.e., the conditions for coherent sampling
are fulfilled for a record of 16 384 samples, which is the size of the record
taken.

2. A sinewave fit is made to the recorded data, as per the IEEE standard
[Std1241]. The fitted sinewave is used as reference signal and a correction
table is built (cf. Section 7.4). The correction table is static, i.e., having
one correction term per ADC code level. The correction terms are stored in
floating-point precision.

3. Evaluate the correction. 16 sinusoid test signals are generated, each having
amplitude and frequency as above and random initial phase. These are used
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as input to the ADC model and the resulting output is corrected using the
LUT. The performance in terms of mean SINAD over the 16 sequences is
calculated.

4. The LUT correction values are quantized to lower precision η, and the eval-
uation step 3 is repeated for different values of η.

Random DNL Model

In this first experiment, the model was a simple quantizer where the widths of the
quantization regions where randomly altered from an ideal uniform configuration.
The input signal was first perturbed by additive Gaussian noise, with zero mean
and variance σ2

n = 0.05 LSB2. The subsequent quantizer had a DNL that for each
code level was generated as an independent observation of a zero-mean Gaussian
random variable with variance σ2

D = 0.002 LSB2. The resulting DNL is shown in
Figure 8.4.

The evaluation procedure outlined above is performed on the quantizer model.
Figure 8.5 shows the output spectrum of the uncorrected quantizer, evaluated using
the 16 sinusoids in step 3. Finally, Figure 8.6 shows the resulting SINAD after
correction with varying precision η. The graph shows the experimental results (‘o’),
the theoretical result SINADDNL as predicted in (8.39) (solid line), and the upper
limit SINADSLB in (8.49) (dashed line). The graph also shows two horizontal lines,
where the upper (‘△’) shows the SINAD after correction with infinite precision,
and the lower (‘∇’) shows the SINAD of the uncorrected ADC model.

We see from the results that the theoretical line SINADDNL aligns well with the
experimental results, up to δb = 0. For poorer resolution than that, i.e., for δb < 0
implying η > 1 LSB, the experimental SINAD approach that of the uncorrected
ADC. This is in perfect accordance with the discussion in Section 8.3, where it
was argued that the performance would not be worse than that of the uncorrected

0 200 400 600 800 1000

−0.1

0

0.1

code

D
N
L

Figure 8.4: DNL of the random DNL model. The DNL curve was generated as
independent realizations of a zero-mean Gaussian random variable with variance
σ2

D = 0.002 LSB2.
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Figure 8.5: The average output spectrum of the 16 test signals before correction.

ADC. It does also make sense that a table resolution η ≥ 2 LSBs does not provide
much improvement, since the vast majority of the table values in this case had a
magnitude less than 1.

It is also evident that SINADSLB is an upper bound in the “active” region, i.e.,
the region where the experimental SINAD is larger than the uncorrected SINAD.
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Figure 8.6: The figure shows SINAD results for different correction value resolutions
η. The experimental results using the random DNL model are shown using circles
(‘o’), while the solid line shows the predicted results according to (8.39). The upper
bound from (8.49) is shown in dashed line. Finally, ‘△’ and ‘∇’ show the results of
infinite precision correction and no correction, respectively.

Polynomial Model

In this model, the transition levels of the quantizer have been altered according to
a fourth degree polynomial. The rationale for simulating with this model is to test
whether the whiteness assumption for the DNL made in Section 8.2 is mandatory.

The model is defined as following: If the ideal value for the k-th transition level
is T o

k , then the actual k-th transition level is

Tk = T o
k + C1k

4 + C2k
3 + C3k

2, k = 1, 2, . . . , 2b − 1. (8.50)

The coefficients were set to

C1 = 2.958 · 10−10,

C2 = −4.512 · 10−7,
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Figure 8.7: DNL of the polynomial model.

and

C3 = 1.520 · 10−4,

where Tk and T o
k is expressed in LSBs. The resulting DNL is shown in Figure 8.7.

The values were chosen so that the mean-squared DNL is equal to 0.002 LSB2, i.e.,
the same as the variance σ2

D in the random DNL model above. Also in this model,
the input signal is perturbed by an additive Gaussian noise, with zero mean and
variance σ2

n = 0.05 LSB2

The evaluation procedure outlined on page 102 is again performed, now with
the polynomial model. Figure 8.8 shows the output spectrum of the uncorrected
quantizer, evaluated using the 16 sinusoids in step 3. Figure 8.9 shows the resulting
SINAD after correction with different precision η.

Again, the results show a very good match between the theoretical values
SINADDNL and the experimental SINAD. Just as with the random DNL model,
the experimental SINAD levels out at the SINAD of the uncorrected ADC. This
time, however, the performance of the uncorrected ADC is worse. An effect of this
is that even a resolution as coarse as η = 4 LSBs gives a significant increase in
performance. This is of course because the values of the correction table have a
larger span in this case. We can also conclude that the whiteness assumption on the
DNL seems to be unnecessary, since the agreement between theory and simulation
is just as good as in the simulation with random DNL.
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Figure 8.8: The average output spectrum of the 16 test signals before correction.
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Figure 8.9: Same contents as in Figure 8.6, but here using the polynomial ADC
model.
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8.7 Results Using Experimental ADC Data

The theories presented in this chapter have also been evaluated using experimental
ADC data, acquired from an Analog Devices AD9430, 210 MSPS, 12 bit converter.
The data is described in detail in Appendix B.3.

From the measurements the following parameters were estimated:

• Random noise variance: σ2
n ≈ 0.5374 LSB2.

• Variance of DNL: σ2
D ≈ 0.004206 LSB2.

With these values we can estimate the performance in terms of SINAD of the
converter after correction using the formula (8.39).

An LUT is calibrated and used for correction. The procedure is quite similar
to that used in the simulations of Section 8.6:

1. Calibrate a LUT. A sinusoid with amplitude –0.5 dBFS is used as input to
the ADC model. The frequency is selected to 60 124 547 Hz, so that the
conditions for coherent sampling are fulfilled for a record of 65 536 samples.
31 such sequences are recorded. (The samples are in fact recorded in one long
sequence of 2 097 152 samples, subsequently split into 31 sequences.)

2. A three-parameter sinewave fit is made to the recorded data, as per the IEEE
standard [Std1241]. The fitted sinewave is used as reference signal and a
correction table is built (cf. Section 7.4). The correction table is static, i.e.,
having one correction term per ADC code level. The correction terms are
stored in floating point precision.

3. Evaluate the correction. The same sinusoid signal as in step 1 is applied to
the ADC. 31 sequences with 65 536 samples each are recorded. The resulting
output is corrected using the LUT. The performance in terms of mean SINAD
over the 31 sequences is calculated.

4. The LUT correction values are quantized to lower precision η, and the eval-
uation step 3 is repeated for different values of η.

Figure 8.10 shows the results using the experimental ADC data. It is clear that
the formula (8.39) overestimates the resulting SINAD after correction. It seems
that either the noise variance or the DNL variance is estimated too low. Therefore,
an alternative method was used to estimate the random noise parameter σ2

n. The
method is described in Appendix B.3 on page 181, and the resulting estimate was
σ2

n ≈ 0.8092 LSB2. Using this new value of the random noise variance, the results
of Figure 8.11 were obtained. We see now a good match between the experimental
results and the predicted value from (8.39).
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Figure 8.10: The figure shows SINAD results for different correction value resolu-
tions η. The results using data from an AD9430 are shown using circles (‘o’), while
the solid line shows the predicted results according to (8.39). Finally, ‘△’ and ‘∇’
show the results of infinite precision correction and no correction, respectively.

8.8 Discussion

The results obtained in the simulations of Section 8.6 seemed to verify the theories
derived in this chapter. It seemed that knowing the random noise variance σ2

n and
the variance of the DNL σ2

D was sufficient to accurately predict the outcome of
a post-correction, in terms of SINAD or ENOB. The first results obtained using
experimental ADC data did, however, not verify this theory. The results of Fig-
ure 8.10 indicate that either σ2

n or σ2
D were too low. On the other hand, estimating

the noise using a 60 MHz –0.5 dBFS sinewave as input – instead of a 20 kHz triangle
wave with an amplitude of approximately –54 dBFS – resulted in a higher noise
estimate for the random noise σ2

n. The results shown in Figure 8.11 indicate that
this estimate is more consistent with the actual noise corrupting the input signal.

The most likely explanation for this is that σ2
n in (8.39) should not be the

variance of the random input noise (or thermal noise) only, but should also include
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Figure 8.11: The figure shows SINAD results for different correction value resolu-
tions η. The setting is the same as for Figure 8.10, but with an alternative estimate
for the variance of the random noise σ2

n resulting in a different curve for SINADDNL.

other random errors in the sampled signal. One significant source of random errors
is aperture jitter, especially as the signal frequency increases. Thus, it is likely
that the higher noise estimate obtained using a high-frequency large-scale sinewave
signal also incorporates errors induced by aperture jitter.
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Chapter 9

Results on ADC Correction Using

LUTs

In Chapter 3, an overview of the most common LUT methods was given. The
methods were (cf. Section 3.2):

Static The LUT is addressed using only one sample from the ADC output. Fig-
ure 3.4 shows two implementations of static correction.

State-space The table is addressed using a combination of two consecutive output
samples from the ADC. Figure 3.2 depicts a state-space correction system.

Phase-plane (Also called code-slope.) The LUT is addressed using one output
sample and (an estimate of) the slope corresponding to this sample. Figure 3.3
shows this type of correction.

In this second part of the thesis we will focus most of our attention to a specific
generalized look-up table post-correction system. In this chapter, the method is
defined and exemplary results using experimental ADC data are presented. In
Chapter 10 an analysis tool related to the proposed method is derived. The analysis
tool is applied in a few optimization scenarios in Chapter 11. Finally, a suboptimal
method to solve the optimization problem posed is discussed in Chapter 12.

The motivation for the proposed scheme is twofold: First, the errors of an ADC
can exhibit substantial dependence on the dynamics of the input signal, wherefore
a static or even a state-space or phase-plane correction method might fall short.
Introducing more samples into the table index will provide more information about
the signal dynamics. Second, the method proposed in this chapter will provide
efficient means of controlling the amount of memory required by a LUT.

115
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Figure 9.1: Dynamic post-correction system outline. Since the ADC errors sought
to mitigate are dependent on signal history, the correction is also history depen-
dent through the use of K delay elements. In order to reduce the index size (and
thereby the memory requirements), a subset of β samples are selected to address
the correction table. The bit mask vector q is a mathematical construct included
to facilitate the performance analysis.

9.1 The Generalized LUT Post-correction Method

The method proposed in this thesis is a generalized extension of the look-up table
correction methods listed above. The correction system is outlined in Figure 9.1.
Previous work has alluded to the possibility of extending the look-up table to more
than two dimensions, e.g., [RI87], [DVBS92] and [Tsi95]. In the state-space method
in Section 3.2, the present and one-step delayed samples are used to address a two-
dimensional table. Here, the present sample, x(n), is used together with K delayed
samples, x(n−1) through x(n−K), to address a (K +1)-dimensional table. This is
illustrated in Figure 9.1 with the K+1 address samples being concatenated together
to form the table index I of size B = K b + b bits. With more table dimensions,
it is presumed that a better estimate of the present error can be produced. This
is based on the assumption that the ADC error depends on the signal dynamics,
and that a higher-order state-space structure can describe dynamic features more
accurately.

One major drawback, also identified in the previous work where multidimen-
sional tables have been suggested, is that the size of the table, equating to 2B ,
quickly grows out of hand with increasing K. For a 10-bit converter and 8-bit cor-
rection words, a static correction requires a modest 210 bytes, or 1 kB. Meanwhile, a
2-dimensional state-space table (K = 1) requires 1 MB, and expanding yet another
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dimension to K = 2 amounts to 1 GB. The proposed countermeasure is to reduce
the address space by using only a subset of the b available bits in each sample. One
way to accomplish this is to apply further quantization to the delayed samples, so
that they are represented with less than b bits resolution (used in [TMBSL02] and
similar to the method used in [RI87] and [DVBS92] in the context of phase-plane
correction). Here, this approach is generalized to say that a number less than or
equal to b bits are used from the sample x(n−k) (for k ∈ {0, 1, . . . , K}). However,
these are not necessarily the most significant bits but can be selected from all b bits
of x(n− k). That is, some of the bits in the sample x(n− k) are masked away, and
the remaining bits are used for addressing. This is illustrated in Figure 9.1 with
the B-bit concatenated address I being bit-masked into a β-bit address Ĩ, where β
is an integer less than (or equal to) B.

In the bit-masking process the (column) vector q ∈ {0, 1}B is introduced. It
has exactly β ones and the remaining B − β entries are zero. A ‘1’ in the i-th
position dictates that the i-th bit of I should be propagated to the reduced-size
index Ĩ, while a ‘0’ implies that the corresponding bit should be masked out. That
is, q can be viewed as a selection vector. This is illustrated in Figure 9.1 with ‘on’
and ‘off’ in the bit mask block. The order of the bits is preserved. The notation
I

q−→ Ĩ is used to denote that the index Ĩ ∈ [0, 2β − 1] is constructed from the β
bits in I selected by the bit mask q:

Definition 2. Let q be a vector with elements qk, k = 1, 2, . . . , B, out of which
exactly β elements are equal to 1, and the remaining B − β elements are 0. Let
i1 < i2 < · · · < iβ be the indices of those elements that are 1, i.e., qij = 1 for
j = 1, 2, . . . , β. Let I be an integer in [0, 2B − 1], with binary representation

I = (IB , IB−1, . . . , I1)2. Then, the mapping I
q−→ Ĩ defines an integer Ĩ with

binary representation

Ĩ = (Iiβ , Iiβ−1
, . . . , Ii1)2. (9.1)

The integer Ĩ is in the range [0, 2β − 1].

Elucidating example Consider a 4-bit quantizer and an index-building structure
as in Figure 9.1. Assume that K = 1 and q = [1 1 0 0 1 1 0 0]T. Hence, β = 4.
Assume that at time n we have the output x(n) = 11 = 10112 from the quantizer,
and the previous sample was x(n − 1) = 4 = 01002. Concatenating the bits gives
the full 8-bit index I = 1011 01002 = 180. The bitmask defined by q would now
select the two most significant bits from the two samples, so that the 4-bit index
Ĩ = 10012 = 9.

To conclude, the proposed method reduces the memory size by using only a
subset of the available bits for addressing, but still takes information from K delayed
samples into account.
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Vector Quantizer Interpretation

The production of the concatenate index I can be described in a framework similar
to that of vector quantization (e.g., [GG92]). Assume that the ADC is ideal, thus
operating as described in Section 1.2. Define the (K + 1)-dimensional vector of
input samples

s(n) = [s(n) s(n − 1) . . . s(n − K)]T. (9.2)

Now, the production of the index I in Figure 9.1 can be described using a partition
of the (K+1)-dimensional real space into disjoint sets {SJ}2B−1

J=0 . The partition is
such that the index I is produced if s ∈ SI , where I is the concatenation of the b-
bit quantized values1 x(n) through x(n−K). This description is a straightforward
extension into higher dimension of the first step in the quantizer of Figure 1.1, i.e.,
the mapping from s to i where the index i is decided based on the sets {Sj}2b−1

j=0 . In

the light of this framework, the bit-masking I
q−→ Ĩ is simply the result of merging

the sets SJ into larger, and obviously fewer, sets and assigning them a new index Ĩ.
This will be thoroughly discussed in Chapter 10, where also the higher-dimension
representation introduced here will become useful.

Selecting a “good” bit mask q for a given delay K and a fixed table size 2β

is a non-trivial problem, indeed. A solution to this problem is one of the main
contributions in Chapter 10. It should be made clear at this point that the bit mask
vector q is a mathematical construct included to facilitate the performance analysis.
It is likely that in a typical implementation of the correction structure, the address
bit selection would be hardwired, after deciding upon a beneficial configuration.

Calibration of the Generalized LUT

The results of Section 3.4 can now be applied to the generalized post-correction
system described above. The suggested calibration structure is depicted in Fig-
ure 9.2, where an external reference signal is used (cf. Chapter 3 for a discussion
on different ways to obtain a reference signal). In this case we are interested in
finding the MMSE optimal correction values as opposed to the optimal reconstruc-
tion values. (Figures 3.4(a) and 3.4(b) illustrate the difference.) In Section 6.2 the
optimal correction values were given in (6.5)–(6.6). These results were derived for
a quantizer without memory, i.e., where the produced index i at sample time n
depends only on the present sample s(n), but they are readily extended to the case
where the table index I is a function of present and past samples, as in Figure 9.2.

By incorporating the multidimensional description of quantization introduced
above, it is possible to express the optimal value for the correction table entry eI .

1In order to follow the presentation of the ideal quantizer in Section 1.2, and Figure 1.1 in
particular, the integer index I should be the concatenation of the intermediate quantization indices
i(n) through i(n − K). However, since the mapping from i(n) to x(n) = xi is uniquely invertible
for practical ADCs, it does not matter which notation we use. We can simply assume that the
output samples x(n) are represented as b-bit binary values, which is indeed the case in a practical
ADC.
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Figure 9.2: Outline of calibration system. The table is built by exercising the ADC
with a calibration signal and comparing a reference measurement or an estimate of
the calibration signal, sref(n), with the output x(n).

Let fs(s) be the joint probability density function for the (K+1)-dimensional vector
in (9.2). It is here assumed that the underlying signal is such that the joint PDF
is independent of n; consequently, the n is omitted. Since the aim is to find the
correction value, the function e(s) (from R

K+1 to R) is introduced. The function
is the error produced by the ADC, s(n) − x(n), when s(n) = s. Ideally, this error
is only the quantization error, but in a practical ADC it is more involved. These
extensions to (6.5) result in the equation

eI, opt =

∫

s∈SI

e(s) fs(s) ds

∫

s∈SI

fs(s) ds

(9.3)

for the optimal table entries. Recall that the disjoint sets {SJ}M−1
J=0 define the

mapping s → I by partitioning the space R
K+1.

Equation (9.3) gives the optimal value for the correction table entries, but re-
quires full knowledge of both the actual quantization regions {Sk}M−1

k=0 and the PDF
fs(s) of the calibration signal. The situation is analogous to that of Chapter 7,
where two estimators for the optimal correction terms, based on a reference signal
sref(n), were proposed. In this chapter we use the sample mean (7.9) of Section 7.4.
The estimator was shown to be optimal when the reference signal associated with
a certain output code was modeled as a Gaussian random variable. In Section 3.4
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it was shown that the sample mean can also be motivated even without knowledge
of the reference signal distribution. The derivation was made in (3.8)–(3.10) by
approximating the integrals of (3.7) (or (6.5)). Here, the sample mean approach
is extended to multiple dimensions. Similar approximations as in (3.8)–(3.10) can
be made to (9.3), resulting in the conclusion that eI, opt should be estimated as
the mean of all errors observed while the index I was produced. Observed error is
simply the difference between a reference signal sref(n) and the ADC output x(n).
In the bit-masked case, we simply say that the Ĩ-th correction value eĨ is estimated
as the mean of all errors observed at times when the output from the index building
was Ĩ. For now we make this statement as a heuristic conclusion drawn from the
above results, but the validity of this statement will be proved in Chapter 10.

The calibration of the Ĩ-th table entry can be implemented as a running average:
Let ẽĨ be assigned the initial value zero for all Ĩ; when no calibration information is
available it makes sense to estimate the error with zero. Let the calibration signal
scal(t) and an estimate thereof, sref(n), be available for n ≥ 0. Define aĨ(m) as the
number of times the index has been equal to Ĩ for 0 ≤ n < m. Then, assuming
that the index is Ĩ at time n, update

ẽĨ → aĨ(n) ẽĨ + sref(n) − x(n)

aĨ(n) + 1
. (9.4)

After calibration is completed, the vector a will represent the distribution, or ‘hit-
rate’, of the calibration signal over the correction table. Referring to the notation
introduced in Section 3.4 we can conclude that the i-th element ai will be the
number of elements in the set Ci, i.e., ai = Ni.

9.2 Exemplary Results

In this section the generalized post-correction method presented in Section 9.1 is
evaluated. The evaluation is performed using experimental ADC data from an
Analog Devices AD876 commercially available converter. The converter is a 10-
bit pipelined flash converter designed to operate at 20 MSPS. The ADC data was
acquired using a test bed which is described in Appendix A.1, and the properties
of the recorded data is described in Appendix B.1.

Fixed-Point Representation of Table Entries

Naturally, the precision with which the correction table entries are represented
will affect the performance of the correction. This was thoroughly investigated
in Chapter 8. All forthcoming results in this work have been obtained using 8
extra bits of resolution in the correction values; the correction value resolution is
2−8 = 1/256 LSBs. According to the results of Chapter 8 this will yield virtually
the same results as an infinite-precision correction would.
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Table 9.1: Correction results for some exemplary configurations. The results are
presented as mean improvement over the entire Nyquist range. Each configuration
represent a unique bit mask.

Configuration Improvement [dB]
SFDR SINAD THD

1 K = 0, 10-bit index 10.6 4.2 −10.0
2 K = 1, 20-bit index 12.4 2.6 −9.5
3 K = 1, 10-bit index 13.6 4.4 −10.6
4 K = 1, 5-bit index 11.3 4.1 −9.6
5 K = 1, 10-bit index 11.1 4.0 −9.8
6 K = 1, 5-bit index 10.6 3.9 −9.4
7 K = 1, 10-bit index 11.9 4.1 −9.7
8 K = 1, 5-bit index 10.5 3.8 −8.7
9 K = 4, 10-bit index 12.9 3.9 −9.3
10 K = 4, 18-bit index 20.3 5.4 −17.9

Correction Results

Some results of the correction method described above are presented here. The
vast amount of different configuration possibilities when varying the number of
delay elements K and the bit mask q makes it virtually impossible to make an
exhaustive evaluation. Moreover, the results of the various configurations are most
certainly different for different ADC models. Therefore, only a few exemplary
configurations have been evaluated. For each configuration tested the table ẽ has
been calibrated according to the structure in Figure 9.2, using several near full-
scale sinewave calibration signals at different frequencies. Then, the performance
was evaluated with near full-scale sinewaves at several frequencies, separate from
those used for calibration in order to evaluate the wide-band performance of the
converter. Three performance measures have been used: SFDR, SINAD and THD
(see Section 1.4). The results are presented in Table 9.1.

The first configuration is a standard static table, using all 10 bits in x(n) and
no delay elements. The second configuration is a state-space table, i.e., one delay
element and 20 index bits. Configurations 3–8 also utilize one delay element, but
select only a subset out of the 20 available bits in x(n) and x(n − 1). Finally,
configurations 9 and 10 are higher order tables with four delay elements and 10
and 18 index bits, respectively. When considering the 10-bit tables (1, 3, 5, 7 and
9) we see that the performance can be improved from that of a static correction
without increasing the index size, i.e., without increasing the memory size. The
SFDR is in fact increased with up to 3 dB. Configuration 10 is outstanding in all
three measures; in this configuration the 18 bits are distributed over x(n) through
x(n − 4), selecting all 10 bits from x(n) and the two most significant bits from the
delayed samples.
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Another observation is that the improvement in SINAD is less than the im-
provement in SFDR and THD (note that improving performance corresponds to
decreasing THD). This is likely an effect of the SINAD being more dependent on
stochastic errors (noise) than the SFDR and THD, since the latter two measure
harmonic distortion and spurs often resulting from deterministic errors.

From the results in Table 9.1 we can conclude that the configuration employed
has a significant impact on the performance of the corrected ADC, and that the
allocation of bits in the bit mask is a non-trivial problem (even though one skilled
in the art may have a partial intuition on the topic). This conclusion motivates the
theoretical analysis to be performed in Chapter 10.



Chapter 10

Bit Allocation Analysis

In this chapter we focus our attention on the generalized correction scheme for
ADCs presented in Chapter 9. We saw in the exemplary results of Section 9.2 that
the actual choice of the number of delay elements and bit mask greatly influenced
on the performance after correction. In this chapter, an analysis of the effect of
a specific bit mask is derived. The analysis is based on the Hadamard transform
of a vector, which is introduced in Section 10.1. In Section 10.2, the analysis is
performed, and Section 10.3 concludes the chapter by explaining how the analysis
tool is utilized in the correction table problem.

10.1 The Hadamard Transform

We begin this chapter by reviewing the Hadamard transform of a vector. The
transform is useful because it provides an efficient means of analyzing the influence
of a single bit in the vector index.

First, we introduce the Hadamard matrix (see e.g., [YH97,Lüt96]):

Definition 3 (Hadamard matrix). The Sylvester-type Hadamard matrix of order
B is recursively defined through

HB = H1 ⊗ HB−1, B > 1, (10.1)

H1 =

[
+1 +1
+1 −1

]
, (10.2)

where ⊗ is the Kronecker matrix product.

The Kronecker product of two matrices A and B, where A is of size m-by-
n with elements aij and B of size p-by-q, is an mp-by-nq matrix defined as (see

123
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e.g., [Lüt96,HJ91])

A ⊗ B ,




a1 1 B a1 2 B · · · a1 n B

a2 1 B a2 2 B · · · a2 n B
...

...
. . .

...
am 1 B am 2 B · · · am n B


 . (10.3)

Accordingly, the matrix HB in (10.1) is M -by-M square and symmetric, consisting
of only ±1. As before, M = 2B . Furthermore, let hi, i = 0, 1, . . . , M − 1, be
the columns of HB . Any two columns hi and hj , i 6= j, are orthogonal, i.e., the
inner product hT

i hj = 0, and hT
i hi = M . This results in HB HB = M IM , which

implies that the inverse of HB is H−1
B = 1

M HB .
Another useful feature of the Sylvester-type Hadamard matrix is that each col-

umn hi of the matrix can be explicitly calculated from the column index i. To make
this to work out properly, the integer index i ∈ [0, M − 1] must be represented in
a special binary format. Let the ‘standard’ binary (base-two) representation of
i be (iB , iB−1, . . . , i1)2, with all ij either 0 or 1. The LSB is i1 and the MSB
is iB so that i =

∑B
j=1 ij 2j−1. Now, define an alternative binary representation

(̄ıB , ı̄B−1, . . . , ı̄1) of i, where we let

ı̄j = 1 − 2ij =

{
1, ij = 0,

−1, ij = 1.
(10.4)

That is, logical ‘zero’ is represented by +1 and logical ‘one’ is represented by −1.
This is nothing but a re-mapping of the standard 0/1 binary representation to a ±1
representation. With this special binary representation, the following relationship,
easily proven by verification, between i and the column hi holds:

Lemma 11. Let (̄ıB , ı̄B−1, . . . , ı̄1) be the special ±1-representation of the integer
i ∈ [0,M − 1], such that

i =
2B − 1

2
−

B∑

j=1

ı̄j2
j−2. (10.5)

Let HB be the Hadamard matrix of order B with columns denoted hi; h0 is the first
column and hM−1 is the last. Then,

hi =

[
1
ı̄B

]
⊗
[

1
ı̄B−1

]
⊗ · · · ⊗

[
1
ı̄1

]
. (10.6)

We are now ready to define the Hadamard transform:

Definition 4 (Hadamard transform of a vector). Let e = [e0 e1 . . . eM−1]
T be a

column vector of size M = 2B. The Hadamard transform of e is defined as

t ,
1

M
HB e. (10.7)
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Straightforward calculations of the Hadamard transform as it is written in (10.7)
requires O(22B) = O(M2) arithmetic operations (not counting those required to
build the matrix HB). However, there are faster methods for calculating (10.7),
requiring only O(B 2B) = O(M log M) arithmetic operations, e.g., [YH97].

It follows directly from the properties of the Hadamard matrix HB that upon
pre-multiplying the transform (10.7) with HB we get the vector e back. Breaking
it down to a single vector element, we have that

ei = hT
i t, i = 0, 1, . . . , M − 1. (10.8)

Thus, if we represent the vector index i with the special binary representation
above, we can write ei = hT

i t, with hi as in (10.6). This is in fact ei written as
a (nonlinear) function of the bits in i. To see how it works, we consider a small
example.

Simple Example of Hadamard Transform Let e = [e0 e1 e2 e3]
T be a vector

of length M = 4 (implies B = 2), say e = [6 0 10 − 4]T. From (10.1) we obtain

H2 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 . (10.9)

Then, using (10.7), we have t = [3 5 0 − 2]T. We would now like to calculate
the element e2 (the third element) from t. Thus, i = 2 with the corresponding
standard binary representation (1, 0)2 mapping through (10.4) to the special binary
representation (−1, +1). From (10.6) we have

h2 =

[
1
−1

]
⊗
[
1
1

]
=




1
1
−1
−1


 (10.10)

(indeed equal to the third column of H2) and upon inserting this and our t in (10.8)
we obtain e2 = 3 + 5 − 0 − (−2) = 10, which is the correct value.

From this small example it might seem as if the Hadamard transform is merely a
cumbersome method for extracting an element from a vector. On the contrary, the
transform will prove itself useful in the remainder of this chapter, when it is applied
in the analysis of bit mask assignments. In a similar way as the discrete Fourier
transform can be used to transform a vector to the frequency domain, perform
manipulations and transform it back again, we will use the Hadamard transform
to manipulate vectors in the ‘bit domain’.

10.2 Allocating the Index Bits

It is clear from the results presented in Section 9.2 that the choice of bit mask
configuration, i.e., the allocation of ones and zeros in q, has a significant effect
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on the corrected ADC performance. In this section we will derive a mathematical
analysis tool, based on Hadamard transforms, for the bit allocation problem.

The analysis below will have its starting point in a calibrated correction table
e, indexed with a full B-bit index I, thus having 2B entries. This table is then
reduced by deselecting index bits from I.

Correction Table Hadamard Representation

Consider again the setup of Figure 9.1 on page 116. Assume that K delay ele-
ments are used, and that no bit-masking is performed; this is of course the same
as assigning a transparent bit mask q = 1. Accordingly, the table is indexed with
B = K b + b bits, resulting in a table size M = 2B . Denote this table e and let it
be represented as a column vector. The table entry corresponding to an index I is
denoted eI , and the vector e consists, thus, of entries e0 through eM−1.

Using (10.7), the Hadamard transform t of e is readily calculated. Recall also
that a certain table entry eI can be calculated from the bits of I through (10.6)
and (10.8).

Deselecting Index Bits

Let us now employ a bit mask on the index I to deselect bits so that only β bits
remain (0 ≤ β ≤ B). As in Chapter 9, we use a bit mask vector q to define which
bits from (the binary representation of) the index I to propagate to the β-bit index
Ĩ. The vector q contains ones and zeros with a ‘1’ in the j-th position dictating
that the j-th bit Ij should be propagated to Ĩ. The notation I

q−→ Ĩ will be used
to denote the mapping from I to Ĩ through the bit mask q. See Definition 2 on
page 117. We can define a new table, ẽ, of length 2β , which is indexed with Ĩ.
Naturally, the table ẽ will differ with the choice of bit mask q, even if exactly the
same calibration signal is applied. Consequently, the performance of the corrected
ADC will also depend on the choice of q.

The problem of interest is which β bits to select from I. This is of course
dependent on which figure of merit we choose; different figures of merit will be
discussed and evaluated in Chapter 11. In this chapter, we derive a framework to
compare the outcome of different bit masks. Below, two different derivations are
presented – one probabilistic and one deterministic – yielding the same result.

Probabilistic Derivation

Assume, as above, that a correction table e of length M = 2B has been calibrated.
Furthermore, assume that the calibration signal applied is such that the calibration
samples are distributed over all possible indices I according to some probability
mass function (PMF), say pI(i). Thus, we can say that the probability of the index
I being equal to i is pI(i). A straightforward estimate of pI(i) is to use the counter
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aI introduced in the calibration scheme in Section 9.1; simply set

p̂I(i) =
ai∑
j aj

. (10.11)

This is in fact the maximum-likelihood estimate if the samples used for calibration
are considered independent and identically distributed.

Next, a set QĨ of indices is defined in order to simplify the notation in the
forthcoming derivations. Since the mapping I

q−→ Ĩ omits a number of bits in I,
there will be several – in fact 2B−β – values for I that map to one and the same Ĩ.
Those integers I constitute the set QĨ(q):

Definition 5. Let q be a bit mask, consisting of the elements qk, k = 1, 2, . . . , B.

The bit mask defines a mapping I
q−→ Ĩ as in Definition 2. Then, define the set

QĨ(q) = {I : I
q−→ Ĩ}, (10.12)

that is, the set of all indices I which map to the same Ĩ through the bit mask defined
by q.

Each choice of q defines 2β different sets. It is easy to see that all sets will
have exactly 2B−β members and that all sets are disjoint. In fact, the operation
q−→ defines an equivalence relation on the set of B-bit integers {0, 1, . . . , 2B − 1}.
Two integers I1 and I2 are said to be equivalent (with respect to

q−→) if I1
q−→ Ĩ

and I2
q−→ Ĩ. Hence, the set of B-bit integers is partitioned into disjoint equivalence

classes. Each class is the set of all B-bit integers mapping to the same β-bit integer
through

q−→, leading to the conclusion that QĨ(q) is an equivalence class.
The aim is now to find a good correction value, given that the bit masked index

is a specific integer Ĩ ∈ [0, 2β − 1]. We saw in (9.3) that the optimal correction
values were given by

eI, opt =

∫

s∈SI

e(s) fs(s) ds

∫

s∈SI

fs(s) ds

. (10.13)

Moving on to find the optimal value for ẽĨ , we can express this in a similar
fashion as (10.13) if the range of integration is extended from SI to the union of
all sets SJ such that J ∈ QĨ(q). The fact that all sets are disjoint will be utilized.
Thus, we have

ẽĨ, opt =

∫

s∈{∪SJ : J∈QĨ}

e(s) fs(s) ds

∫

s∈{∪SJ : J∈QĨ}

fs(s) ds

=

∑

J∈QĨ

∫

s∈SJ

e(s) fs(s) ds

∑

J∈QĨ

∫

s∈SJ

fs(s) ds

. (10.14)
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Rearranging (10.13), we have
∫

s∈SI

e(s) fs(s) ds = eI, opt

∫

s∈SI

fs(s) ds. (10.15)

Furthermore, we observe that the integral on the right-hand side of (10.15), and
hence the integral in the denominator of (10.13) and (10.14), is in fact the prob-
ability of the index I, i.e.,

∫
s∈SI

fs(s) ds = pI(I). Inserting this and (10.15) into
(10.14) yields

ẽĨ =

∑

J∈QĨ

pI(J) eJ

∑

J∈QĨ

pI(J)
, (10.16)

provided that the denominator is non-zero; if not, the probability of the index Ĩ
being produced is zero and we let ẽĨ = 0. We have now in (10.16) a relation
between the entries of e and the entries of ẽ. For notational simplicity, the explicit
dependence of the set QĨ upon q is omitted. Furthermore, the subscript ‘opt’ has
been removed, indicating that (10.16) will be used also when merging table entries
resulting from an experimental calibration, and thus not being equal to the optimal
value of (10.13). Under the assumption that pI(I) is constant for all I ∈ QĨ , (10.16)
reduces to

ẽĨ =
1

2B−β

∑

I∈QĨ

eI . (10.17)

That is, the value for ẽĨ is the arithmetic mean of all eI for which I
q−→ Ĩ when all

eI have equal probability.
We are now interested in comparing the original correction table e (of size 2B)

with the reduced-size table ẽ (of size 2β) resulting from (10.16). However, these
two tables, represented as vectors, are of different sizes (except for the trivial case
of β = B), so a direct, one-to-one comparison is not possible. Instead, we would
like to construct a new table, say f , of the same size as e, but with the special
property that

fI = ẽĨ if I
q−→ Ĩ . (10.18)

It will become clear in Section 10.3 why this property is desirable. In order to
facilitate the bit-allocation analysis, the table f should have an explicit relationship
to e and the bit mask q. First, however, a special vector and matrix must be
introduced:

Definition 6. Let q be a vector consisting of the elements qk, k = 1, 2, . . . , B.
We define the vector

g ,

[
1

qB

]
⊗
[

1
qB−1

]
⊗ · · · ⊗

[
1
q1

]
(10.19)
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of length M = 2B, and the matrix

G , diag{g} =

[
1 0
0 qB

]
⊗
[
1 0
0 qB−1

]
⊗ · · · ⊗

[
1 0
0 q1

]
(10.20)

of size M -by-M .

Now, an expression for the table (vector) f as a function of e and q is to be
derived, first in the case of equal probability, but later generalizing to arbitrary
probabilities. In the equal-probability case, we have that fI = ẽĨ with ẽĨ as in
(10.17) when I

q−→ Ĩ. The following lemma provides an explicit relationship between
f and e in this case:

Lemma 12 (Projection matrix P(q)). Let e = [e0 e1 . . . eM−1]
T be a column

vector of length M = 2B, were B is a positive integer. Let the integer I ∈ [0, M−1]
be represented using a B-bit binary representation (IB , IB−1, . . . , I1)2. Let Ĩ be an
integer resulting from selecting β bits from I, where 0 ≤ β ≤ B. Denote this

operation I
q−→ Ĩ and define the set QĨ(q) as in (10.12). Then, the vector

f = P(q) e (10.21)

is of length M , with the I-th entry (I ∈ [0, M − 1])

fI =
1

2B−β

∑

J∈QĨ

eJ , (10.22)

if the M -by-M matrix P(q) is

P(q) =
1

M
HB GHB . (10.23)

The matrix G is defined in (10.20).

The proof is provided in Appendix 10.A, but an intuitive explanation is that
e is transformed to the ‘bit domain’, where G nulls out the deselected bits, after
which the inverse transform is applied. The matrix P(q) is in fact an orthogonal
projection matrix, since

P(q)2 =
1

M2
HB G HB HB︸ ︷︷ ︸

M ·I

GHB =
1

M
HB GG︸︷︷︸

G

HB = P(q) (10.24)

and P(q)T = P(q).
Moving on to the case of arbitrary probabilities pI(i), the entry fI should be

set equal to ẽĨ of (10.16). Collect all probabilities in the column vector p =
[pI(0) pI(1) . . . pI(M − 1)]T. The numerator of (10.16) can then be written

∑

J∈QĨ

eJpI(J) =
∑

J∈QĨ

eJpJ = /(10.21) and (10.22)/

= 2B−β [P(q) diag{p} e]I ,

(10.25)
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and the denominator can be written in a similar fashion as
∑

J∈QĨ

pI(J) = 2B−β [P(q)p]I . (10.26)

The fact that element-wise multiplication of two column vectors x and y can be
written diag{x}y has been used in both the preceding formulas. The vector f is
the element-wise division of the vectors P(q) diag{p} e and P(q)p (factors 2B−β

cancel), except where the denominator has a zero element, in which case the corre-
sponding element in f is set to zero. This can be written using the Moore-Penrose
pseudoinverse (see e.g., [GVL96]), here denoted †, since D†, where D is a diagonal
matrix, is simply the nonzero elements replaced by their reciprocals. The following
lemma concludes this discussion:

Lemma 13 (Reduction matrix R(q, p)). Let e = [e0 e1 . . . eM−1]
T and p =

[p0 p1 . . . pM−1]
T be column vectors of length M = 2B, were B is a positive

integer. Let the integer I ∈ [0, M −1] be represented using a B-bit binary represen-
tation (IB , IB−1, . . . , I1)2. Let Ĩ be an integer resulting from selecting β bits from

I, where 0 ≤ β ≤ B. Denote this operation I
q−→ Ĩ and define the set QĨ(q) as in

(10.12). Then, the vector

f = R(q, p) e (10.27)

is of length M , with the I-th entry (I ∈ [0, M − 1])

fI =





∑

J∈QĨ

pI(J)eJ

∑

J∈QĨ

pI(J)
,

∑

J∈QĨ

pI(J) 6= 0,

0, otherwise,

(10.28)

if the M -by-M matrix R(q, p) is

R(q, p) = diag{P(q)p}† P(q) diag{p}. (10.29)

The proof is in the discussion above. Note that the matrix R(q, p) does not
change when the vector p is scaled with a constant. Moreover, upon inserting a
uniformly distributed p in (10.29), R(q, p) reduces to P(q), i.e.,

R(q, α1) = P(q), (10.30)

where α 6= 0. We conclude that the matrix R(q, p) in (10.29) provides a linear
relation between e and f , although the matrix is dependent on q in a nonlinear
way.
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Deterministic Derivation

In this section, an alternative derivation of the results in the previous section is
presented. The same results, in brief Lemmas 12 and 13, are obtained.

Let the table e be calibrated according to Section 9.1 with a transparent bit
mask (all qi = 1), using a specific set of N calibration samples. Assume that the
calibration samples are such that all entries in e are calibrated with the same (inte-
ger) number of samples N/M , i.e., the calibration samples are equally distributed
over all possible indices I. Hence, all aI , aI(N) are equal. This can be accom-
plished by using a uniformly distributed noise; the uniformity constraint will be
relaxed later on. Assume now that one of the bits in the index I, say the j-th bit,
is deselected through bit-masking (cf Figure 9.1) to produce a (B − 1)-bit index Ĩ.
With B bits it is possible to produce 2B different indices I, while with B − 1 bits
we can only construct 2B−1 = 2B/2 indices. Hence, given a (B − 1)-bit index Ĩ,
we have two possible B-bit indices, say I1 and I2, that will map through q to the
same Ĩ, i.e., both I1

q−→ Ĩ and I2
q−→ Ĩ holds. Following the calibration scheme of

Section 9.1, samples that would have been used to update either eI1
or eI2

, will
now all be used to update ẽĨ . The outcome will be that ẽĨ equals the arithmetic
mean of eI1

and eI2
. A short example is suitable here.

Bit Reduction Example Consider a table e of M = 8 entries, i.e., indexed
with a 3-bit index I ∈ {0, 1, . . . , 7}. Assume that the table has been calibrated, in
accordance with the method described in Section 9.1, with a set of N calibration
samples such that all entries in e are updated with the same number of samples
(N/8). Suppose now that a second table ẽ is calibrated using the same set of
samples, but this time with the second bit deselected, i.e., applying a bit mask
q = [1 0 1]T used to map I

q−→ Ĩ. The new table has 4 entries and Ĩ is hence a 2-bit
index. Then, both I = 0 and I = 2 map into Ĩ = 0, since apart from the second
bit they are both equal. In the same way, 1 and 3 map to 1, 4 and 6 map to 2,
and 5 and 7 map to 3. The outcome is that ẽ0 will be updated with those samples
previously used to update both e0 and e2, so that ẽ0 = (e0 + e2)/2, and so on.

We are now interested in finding a table f – of the same size as e, but with
fI = ẽĨ when I

q−→ Ĩ – and an explicit relationship between f and the original e.
From the discussion above we learn that those table entries whose indices cannot be
distinguished without the j-th bit, are to be replaced by their averages. Returning
to the 3-bit example, this implies f0 = f2 ≡ (e0 + e2)/2, and so forth.

The discussion can be extended to the case of more than one bit being removed.
The result is still that if I

q−→ Ĩ, then fI should equal the arithmetic mean of all
entries eJ for which J

q−→ Ĩ. This is precisely the result of Lemma 12.
The next step is to generalize the result above to the case when the set of

calibration samples is arbitrarily distributed over all possible indices I, i.e., all aI

are nonnegative integers summing up to N but otherwise arbitrary. In this case,
the averaging above should be replaced by a weighted averaging, to conform with
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the calibration strategy of Section 9.1. That is, in the 3-bit example above, ẽ0

would equal (a0 e0 + a2 e2)/(a0 + a2) after completed calibration. Consequently,
both f0 and f2 should equal (a0 e0 + a2 e2)/(a0 + a2).

Again, the methods can be extended to the case of more than one bit being
deselected. The weighted averaging is extended to weighted arithmetic mean of
all those entries whose indices cannot be distinguished without the deselected bits.
This agrees with the result of Lemma 13 if we set p = a.

10.3 Post-correction Equivalents

The reduction matrix R(q, a) can now be used to evaluate the effects of a specific
bit allocation in the bit mask q of Figure 9.1. Retain the assumptions on the table
e being calibrated using the structure of Figure 9.2, employing K delay elements
and a transparent bit mask, i.e., selecting all B = K b + b bits. Still, e is of size
M = 2B and is indexed with a B-bit index I. The table has been calibrated with a
specific set of calibration samples applied to the ADC under test, possibly resulting
in nonuniformly distributed elements in a. We could also say that the table has
been calibrated with a calibration signal resulting in a specific index PMF pI(i).

Also, a second table ẽ has been calibrated with the same set of calibration
samples (or a signal with the same statistical properties), still employing K delay
elements, but this time with a non-transparent bit mask q selecting β < B bits
from I. The table ẽ is thus of size 2β and is indexed with a β-bit index Ĩ. Since
e and ẽ are calibrated with the same set of calibration samples, the relations of
Lemma 13 apply so that the entry ẽĨ equals the weighted average of all entries eI

whose indices I map into Ĩ through the bit mask q.
The performance of the ADC after correction will naturally differ depending on

which correction table, e or ẽ, is being used. Clearly, it would be of great benefit
if the outcome of a specific choice of bit mask could be calculated without having
to re-calibrate the table. The reduction matrix R(q, a) is the key to relating the
results of different bit masks to each other. From (10.29) we have f = R(q, a) e,
which is a table of size 2B . However, through the averaging operation of the matrix
R(q, a), the table f has a 2B−β-fold redundancy, i.e., f has only 2β unique entries.
The unique entries are exactly those of the 2β-size table ẽ. Since every index I
addresses an entry in f which is equal to the weighted average of all entries eI such
that I

q−→ Ĩ, we have that

ẽĨ = fI = [R(q, a) e]I . (10.31)

In other words, f and e share the same address space, but f addressed with I

yields the same values as ẽ addressed with Ĩ if I
q−→ Ĩ. Figure 10.1 illustrates this

relationship in a signal flowchart.

Bit Reduction Example (continued) Returning once more to the simple 3-
bit example in Section 10.2, it is clear that both e and f are of size 8, while
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error
table ẽ

ẽĨ
bit mask

q
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Ĩ

f

fI

equal

Figure 10.1: An illustration of the relationship between the 2B-size table f and and
the 2β-size table ẽ.

ẽ is of size 4. The table f has, however, a 2-fold redundancy, since f0 = f2 =
(a0 e0 + a2 e2)/(a0 + a2) = ẽ0 because both I = 0 and I = 2 maps to Ĩ = 0.

The observation above can now be used to evaluate the outcome of different
bit mask settings without re-calibrating a new correction table. For example, if a
state-space table e (that is, K = 1 and B = 2b) has been calibrated, we can now
mimic a static table simply by setting the b bits in q corresponding to the ‘previous
sample’ x(n − 1) to zero in (10.29) and (10.31). In other words, set q = [1T

b 0T
b ]T.

In fact, we can mimic any table ẽ by using (10.31), as long as ẽ is indexed with a
subset of the bits used to index e.

In the next chapter we will give two examples of how to use the reduction matrix
in order to optimize the bit mask.
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10.A Proof of Lemma 12

In order to simplify the notation, define the iterated Kronecker products

K⊗

k=1

Ak , A1 ⊗ A2 ⊗ · · · ⊗AK (10.32)

of the matrices A1 through AK of suitable dimensions. Note that the Kronecker
product is not commutative. For instance,

⊗K
k=1 Ak 6=⊗1

k=K Ak in general.
Assume now that one bit, say the j-th bit, is deselected in the B-bit index I,

using a bit mask q (cf. Figure 9.1), i.e., the p-th element of q is

qp =

{
0, p = j,

1, otherwise.
(10.33)

Let e be a vector of size M = 2B with a Hadamard transform t. With B bits,
M different indices I ∈ {0, . . . , M−1} exist, but with one bit deselected the indices
will be partitioned into pairs; both indices in one pair are indistinguishable when
the j-th bit is masked, that is, one pair consists of the two indices I such that I

q−→ Ĩ.
Denote one such pair {J1, J2}. Furthermore, let J̄k be the ±1-representation (cf
(10.4)) of Jk. Then, the average of the two table entries eJ1

and eJ2
is

fJ1
= fJ2

=
1

2
(eJ1

+ eJ2
) = /(10.8)/ =

1

2M
(hT

J1
+ hT

J2
) t, (10.34)

where we get

hJ1
+ hJ2

=

2∑

k=1




1⊗

p=B

[
1

[J̄k]p

]
 =

/
[J̄1]p = [J̄2]p, p 6= j

/

=




j+1⊗

p=B

[
1

[J̄1]p

]
⊗

([
1

[J̄1]j

]
+

[
1

[J̄2]j

])
⊗




1⊗

p=j−1

[
1

[J̄1]p

]


=

/
[J̄1]j + [J̄2]j = 0

/

=




j+1⊗

p=B

[
1

[J̄1]p

]
⊗

[
2
0

]
⊗




1⊗

p=j−1

[
1

[J̄1]p

]


= 2




j+1⊗

p=B

[
1

[J̄1]p

]
⊗

[
1
0

]
⊗




1⊗

p=j−1

[
1

[J̄1]p

]
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= /(10.33)/ = 2

1⊗

p=B

[
1

qp[J̄1]p

]
= 2

1⊗

p=B

([
1 0
0 qp

] [
1

[J̄1]p

])

=

/
AC ⊗ BD = (A ⊗ B)(C ⊗ D)

/

= 2




1⊗

p=B

[
1 0
0 qp

]




1⊗

p=B

[
1

[J̄1]p

]


= /(10.20) and (10.6)/ = 2GhJ1
= 2GhJ2

. (10.35)

The last equality comes from the fact that the only difference between hJ1
and hJ2

lies in the bit masked away by q. Inserting (10.35) in (10.34), we have

fJ1
= fJ2

= hT
J1

Gt = hT
J2

Gt, (10.36)

and thus for the entire table, i.e., for all I ∈ {0, . . . , M − 1}, we obtain

f = HB Gt =
1

M
HB GHB e , P(q) e. (10.37)

This result is easily generalized to a bit mask where ℓ bits have been deselected.
Through repeated use of (10.37) with bit masks deselecting one bit each, and uti-
lizing the fact that HB HB = M I, it can be shown that (10.37) holds for bit masks
deselecting an arbitrary number of bits ℓ ∈ [0, B].





Chapter 11

Applications of the Reduction

Matrix

In the previous two chapters, a correction method comprising bit-masking was
introduced. Also, an analysis tool for analyzing the effect on the correction table
of a specific bit mask was derived. The reduction matrix R(q, a) in particular was
found to be a crucial part of the analysis. In this chapter, the analysis framework is
going to be used to optimize the bit mask. Two different criterions will be applied
– the total harmonic distortion (THD) and the signal-to-noise and distortion ratio
(SINAD). The derivations and results for these are presented in Sections 11.2 and
11.3, respectively. Since the fundamental setup for both criterions is the same, the
common ground is laid down in Section 11.1. The optimization problem formulated
in Section 11.1 is a nonlinear binary problem. By making certain assumptions, the
cost function can be rewritten as a linear function in binary variables. This is
shown in Appendix 11.A, where it is also shown how to avoid the Kronecker-type
optimization constraints arrived at in the sequel.

11.1 Generic Cost Function

Consider the generalized correction method described in Chapter 9, with correction
and calibration structures depicted in Figures 9.1 and 9.2, respectively. In agree-
ment with the analysis of Chapter 10, let the table e be a table calibrated using the
structure of Figure 9.2 and a specific set of calibration samples. Assume that K
delay elements are used and that the bit mask is transparent (q = 1), implying that
that the table is addressed with B = K b+b bits. Since the bit mask is transparent,
Ĩ = I, and we say that the table e is addressed with the integer index I ∈ [0, M−1],
where M = 2B . Thus, the table is a column vector e = [e0 e1 . . . eM−1]

T.
The general problem posed in this chapter is to find the optimal bit mask q,

selecting exactly β < B bits out of the B bits in I. That is, if we were restricted
to use a look-up table ẽ of size 2β < M , but still employing K delay elements and

137
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the same calibration samples, which β bits out of the B bits available in I should
be used to form the index Ĩ? The concept of optimality must of course come with
a measure, or a cost function, for which we are interested to find an extremum. As
indicated above, we will employ two different measures in this chapter, THD and
SINAD, both leading to a special form of cost functions, viz.

V (q) = (R(q, a) e + c)∗B(R(q, a) e + c). (11.1)

Here, c is a column vector of length M , B is a Hermitian M -by-M matrix and ∗
denotes complex conjugate transpose. The matrix and vector B and c are deter-
mined explicitly by which measure is selected, and also on other parameters related
to the particular problem. In both cases we will also have the constraint that q

must select exactly β bits. This can be written as




B∑

i=1

qi = 1Tq = β

qi ∈ {0, 1} i = 1, 2, . . . , B.

(11.2)

11.2 Minimizing THD

The total harmonic distortion (THD) is defined in Section 1.4. There it is stated
that the ADC under test should be exercised with a spectrally pure, large amplitude
(near full-scale) sinewave, s(t) = A sin(2πf0t + φ) + C, with C and A chosen so
that the signal is centered within and spans a major part of the ADC’s analog
input range. The fundamental frequency f0 is in [0, fs/2] and the initial phase
φ is arbitrary. A record of N successive samples are collected in a vector x =
[x(0) x(1) . . . x(N − 1)]T. The THD is then defined as

THD =
1

N

√√√√
H∑

h=2

|X(fh)|2, (11.3)

where X(fh) is the discrete Fourier transform (DFT) of the vector x, evaluated at
the h-th harmonic of the fundamental frequency f0. That is,

X(fh) =

N−1∑

n=0

x(n) e−
j2πnfh

fs . (11.4)

In order to avoid spectral leakage in the DFT, f0 should be selected to coincide with
a bin frequency k fs/N , k = 0, 1, . . . , N/2 − 1, so that the fundamental tone and
also the harmonics line up with a DFT bin. Normally the lowest nine harmonics
are considered (H = 10), and the aliased counterpart of those are added in (11.3).
An equation for calculating the aliased harmonics is [Std1241]

fh = (h f0 + N fs) mod fs, h = ±{2, 3, . . . , H}, (11.5)



11.2. MINIMIZING THD 139

although this does not have to be used explicitly in the forthcoming derivations.
We aim at finding a cost function of the form (11.1). Therefore, the THD is

expressed in a matrix notation. Let the row vector wh be

wh =
[
e−j2πh

f0
fs

0 e−j2πh
f0
fs

1 . . . e−j2πh
f0
fs

(N−1)
]
, (11.6)

and form a matrix W as

W ,




w2

w3

...
wH


 . (11.7)

Then, we can write the Fourier transform (11.4) as X(fh) = wh x, and the squared
magnitude as

|X(fh)|2 = |wh x|2 = x∗ w∗
h wh x. (11.8)

The sum in (11.3) can then be written as a quadratic form with W, and we obtain
the expression

THD =
1

N

√√√√
H∑

h=2

x∗ w∗
h wh x =

1

N

√
x∗ W∗ Wx. (11.9)

This is the THD of the uncorrected ADC at the frequency f0.
Assume now that a correction table e has been calibrated as described in Sec-

tion 11.1, i.e., employing K delay elements and a transparent bit mask. The se-
quence of correction terms for the recorded output x can also be described with a
matrix notation. Let I(n) be the table index produced at time n. Furthermore,
let Sx be a selection matrix of size N -by-2B . Each row n of Sx corresponds to a
sample time index n−1, and each column I corresponds to a correction table entry
eI−1 (row and column indices of Sx start at 1 while the first sample is at time
n = 0 and the first table entry is e0). If the table index for the time index n is I,
then the element [Sx]n+1, I+1 is set to one and the remaining entries in the same
row are zero:

[Sx]n+1, I+1 ,

{
1, I(n) = I,

0, otherwise.
(11.10)

The correction term at time n is eI(n) and, by construction, the (n + 1)-th row of
Sx sifts out eI(n) when post-multiplied with e. Hence, the matrix Sx selects the
appropriate correction term from the table e for each time n, and the correction
for the entire sequence x can be written Sx e.

In order to obtain a description for the sample vector x conforming with the
selection matrix notation above, a column vector r of size 2B is introduced. Since
the employed bit mask is transparent, each index I is uniquely decodable to an ADC
output level xj . In fact, when backtracking the index building part of Figure 9.1,
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it is evident that xj is simply the b first bits in I. Thus, if the index I corresponds
to the non-delayed sample x(n) being equal to xj , then let rI = xj so that the
vector x can be written x = Sx r. An example is appropriate here. If e is a static
table, i.e., K = 0, then r is just the vector of all possible ADC output levels, from
x0 to x2b−1, without repetitions. In the state-space case, when K = 1, then r is
still composed of all ADC output levels. This time, each level is repeated 2b times,
so that for all indices I corresponding to the ‘present sample’ being equal to xj it
holds that rI = xj .

Now, we can write the corrected ADC output y(n) corresponding to the record
x in a new vector y = [y(0) y(1) . . . y(N − 1)]T as

y = x + Sx e = Sx r + Sx e = Sx (r + e). (11.11)

The THD after correction is obtained by inserting (11.11) into (11.9), resulting in
the expression

THDy =
1

N

√
y∗ W∗ Wy =

1

N

√
(r + e)∗ S∗

x W∗ WSx (r + e). (11.12)

Having established a matrix expression for the THD after correction with a
(K + 1)-dimensional, B-bit indexed correction table e, we are now interested in
how the THD is affected when a non-transparent bit mask q is employed. If the bit
mask maps I

q−→ Ĩ, then every occurrence of eI in (11.12) should be replaced with
ẽĨ in order to get the resulting THD after correction with the table ẽ. Using the
results of Section 10.3, the vector e in (11.12) should be replaced with the vector
f = R(q, a) e, with R(q, a) defined in (10.29), in order to evaluate the effect of
reducing the address space. That is, the THD after correction with a table ẽ –
calibrated with the same set of calibration signals as e and with the same K, but
this time with a specific bit mask q – is

THDỹ =
1

N

√
(r + R(q, a) e)∗ S∗

x W∗ WSx (r + R(q, a) e). (11.13)

For example, we can evaluate the resulting THD after correction with a state-
space (K = 1, q = 1) table e versus that of a static table, simply by setting the
appropriate bit mask q in (11.13), in this case q = [1T

b 0T
b ]T, i.e., a vector of b ones

and b zeros.
The function in (11.13) is the cost function to minimize. The expression within

the square root of (11.13) is in fact a vector norm, and is thus nonnegative. More-
over, the square root function is monotonically increasing for nonnegative argu-
ments. Minimizing THDỹ is therefore the same as minimizing the square THD2

ỹ,
which is indeed a cost function of the form (11.1) (the normalization with N2 does
not change the minimization problem). The constraint is that a bit mask q of β
ones and B − β zeros is the only allowed solution, which was specified in (11.2).
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Figure 11.1: Exemplary optimization results for THD. Each row corresponds to a
specific choice of β, and the dots indicates which positions in the bit mask q should
be set to ‘1’. The results are obtained for f0 = 3.01 MHz.

The optimization problem for minimizing the THD then becomes




min
q

(r + R(q, a) e)∗ S∗
x W∗ WSx (r + R(q, a) e)

s.t.
∑

i

qi = β and qi ∈ {0, 1}, i = 1, 2, . . . , B. (11.14)

The above expression is the optimization problem for finding the optimal β-bit bit
mask such that the THD is minimized, given that the address bits must be taken
from the samples x(n) through x(n − K).

Results

The optimization problem (11.14) has been solved and evaluated for an exemplary
scenario. The same experimental ADC data that was used in Section 9.2 has been
used here (see Appendix B.1). A state-space table is considered in this example.
The table, denoted e, is indexed using an index building structure with one delay
element (i.e., K = 1) and a transparent bit mask (cf. Figure 9.1). Hence, the index
I is B = 20 bits long and e consists of M = 220 = 1048 576 entries. The table is
calibrated with a large number of different signals, all near full-scale sinewaves but
each with a unique frequency. The vector a represents the number of times each
entry in e was updated during the calibration (cf. Section 9.1).

Next, an optimization frequency f0 is selected and a near full-scale sinewave
record x of N = 16 384 samples is taken; the frequency f0 = 3007 273 Hz is used
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Figure 11.2: Resulting THD after correction, optimized for and evaluated at f0 =
3.01 MHz, as a function of table index size β. The solid line shows the results using
the best possible bit mask, while the dashed line shows the outcome of the worst
choice.

in the results below. The matrices Sx and W are formed and the optimization
problem (11.14) is solved – using an algorithm described in Chapter 12 – for all
integers β ∈ [1, 19] (the solutions for β = 0 and β = 20 are trivial, viz. q set to all
zeros and all ones, respectively). Figure 11.1 illustrates the optimal bit masks for
different choices of β: each row corresponds to a specific β and the dots indicates
which of the positions in the bit mask q should be set to ‘1’, or, which of the original
20 bits to use in a β-bit index Ĩ. For example, if a 10-bit index is desired, Figure 11.1
suggests that the 6 most significant bits from the present sample x(n) should be
selected, together with bits 8, 7, 5 and 4 from the previous sample x(n − 1), with
10 being the MSB. These 10 bits form the index Ĩ used to address the table ẽ of
size 210 = 1024 entries. Note that Figure 11.1 illustrates the results for a specific
ADC at a specific frequency f0, and should not be taken to be optimal in general.

In Figure 11.2 the resulting THD after correction with a β-bit table is plotted.
The solid line shows the results using the optimal choice of index bits for each β, as
suggested in Figure 11.1. The THD is evaluated at the frequency f0, i.e., the same
frequency as the one for which the index was optimized. Somewhat surprisingly,
the THD is not minimal at β = 20 bits, but rather at 15 bits. This phenomenon is
most likely due to the fact that in our experiment the amount of calibration data is
constant, so that a smaller table will have more calibration data per table entry. For
example, a table indexed with 15 bits, thus having 215 entries, will have 32 times
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Figure 11.3: THD for the uncorrected ADC (‘+’), THD after correction with a
static 10-bit table (‘◦’), and THD after correction with a 10-bit table optimized for
the frequency f0 = 3.01 MHz (solid).

more calibration data per entry compared with a table of size 220. The conclusion
is that given the fixed amount of calibration data, Figure 11.2 suggests that the
performance in terms of THD at f0 = 3.01 MHz improves when β is reduced from
20 to 15, but then deteriorates as β is further reduced.

In order to assess the importance of selecting the optimal bit mask, the resulting
THD when selecting the worst bit mask has been calculated. The optimization was
performed again, but this time maximizing instead of minimizing the cost function
in (11.14). The dashed line in Figure 11.2 shows the resulting THD evaluated at the
same frequency as the solid line. It is evident that the difference between choosing
the best or worst bit-mask configuration implies a difference between 10 and 15 dB
in THD after correction, in this experiment.

In Figure 11.3, the evaluation frequency is altered. The three curves show THD
for the uncorrected ADC, THD after correction with a static 10-bit table, and THD
after correction with a 10-bit table optimized for the frequency f0 = 3.01 MHz. We
see that near the optimization frequency the optimized table outperforms the static
table, while this is not the case over the entire range. Thus, by clever selection of
the index bits, we can gain a few dB in THD, without increasing the table size.
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11.3 Maximizing SINAD

The signal-to-noise and distortion ratio (SINAD) is also defined in Section 1.4.
Like in the case of THD above, the definition stipulates that the ADC under
test should be exercised with a spectrally pure, large amplitude (near full-scale)
sinewave, s(t) = A sin(2πf0t + φ) + C, with C and A chosen so that the signal is
centered within and spans a major part of the ADC’s analog input range. This
time, however, the fundamental frequency f0 does not have to line up with a DFT
bin frequency. A record of N successive samples x(0), x(1), . . . , x(N − 1) is taken
from the ADC output. The basic requirement for the SINAD test method is that
the input sinewave is pure enough so that noise input to the ADC is negligible.
Then, the output from the ADC can be modeled as a sinewave plus a term contain-
ing all the distortion and noise in the output signal. The distortion and noise can
be assumed to be a product of the quantization and non-idealities in the converter
only, since the input was a pure sinewave. The SINAD is then the ratio of the rms
signal to the rms distortion.

The sinewave part of the output signal x(n) is found by calculating a sinewave
least-squares fit, say š(n), to the ADC data x(n). Standardized methods for
sinewave fitting are described in [Std1241, §4.1.4]. The SINAD is then defined
as

SINAD =
RMSsig
RMSnoise

, (11.15)

where

RMSsig =
A√
2

(11.16)

and

RMSnoise =

(
1

N

N−1∑

n=0

(x(n) − š(n))
2

) 1
2

. (11.17)

This is the SINAD for the uncorrected ADC at frequency f0.
Let a correction system of the type described in Chapter 9 be applied to the

ADC under test. Assume once again that a correction table e has been calibrated
as described in Section 11.1, i.e., employing K delay elements and a transparent bit
mask. The index building will then produce an index I for every sample time n.
Denote the indices associated with the calibration samples with {I(n)}N−1

n=0 . Thus,
when calculating the SINAD for the corrected ADC, x(n) should be replaced by
y(n) = x(n) + eI(n) in (11.17), so that

RMSnoise, y =

(
1

N

N−1∑

n=0

(
x(n) + eI(n) − š(n)

)2
) 1

2

. (11.18)
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The aim is now to find an alternative expression for the SINAD which is inde-
pendent of the sample time n. Since RMSsig in (11.16) is already independent of
n, RMSnoise is the only one that must be rewritten. Therefore, assume that there
exists a reference table e0, the same size as e, but with entries such that we can
write

š(n) ≈ x(n) + e0
I(n). (11.19)

That is, the table e0 is such that when correcting the ADC output (obtained with
s(t) applied to the input) with e0, the result is approximately equal to a sinewave
fit to the output signal. Inserting (11.19) in (11.18) results in

RMSnoise, y =

(
1

N

N−1∑

n=0

(
x(n) + eI(n) −

(
x(n) + e0

I(n)

))2
) 1

2

=

(
1

N

N−1∑

n=0

(
eI(n) − e0

I(n)

)2
) 1

2

.

(11.20)

Counting the occurrences of different indices I in {I(n)}N−1
n=0 gives the distribution

of the sampled evaluation signal over the tables e and e0. Thus, let a0
I be the

number of occurrences of the specific index I in {I(n)}N−1
n=0 , i.e., the number of

times eI and e0
I is used in the sum (11.20). Note that the vector a0 is not to

be confused with a; the former is the distribution of the evaluation samples over
the table, while the latter is the distribution of the calibration samples. Denote
A0 = diag{a0}, then (11.20) can be written as

RMSnoise, y =

(
1

N

(
e − e0

)T
A0

(
e − e0

)) 1
2

, (11.21)

which, together with (11.15) and (11.16), is a matrix expression, independent of n,
for the SINAD of the ADC corrected with a B-bit indexed table.

Once again we are interested in investigating the effects of reducing the index
size from B bits to β bits. Using the same arguments that lead to (11.13) in the
minimization of THD, the table e should be replaced with f = R(q, a) e. As before,
q is the considered bit mask and a is the distribution of the calibration samples
over e. Inserting this into (11.21), the root-mean-square noise can be written

RMSnoise, ỹ =

(
1

N

(
R(q, a) e − e0

)T
A0

(
R(q, a) e − e0

)) 1
2

. (11.22)

Thus, the RMS noise is expressed as the weighted RMS difference between tables
f and e0. The weighting emphasizes each table entry according to the entry’s
significance to the SINAD, that is, how many times it is used in the sum in (11.20).
For example, in the static case (K = 0) this results in the table entries corresponding
to quantization levels near the sinewave endpoints C ± A being emphasized, since
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the evaluation signal s(t) spends most time in those regions. Furthermore, a0 can
be extended to represent the distribution of several sinewave signals at different
frequencies by simply adding the individual distribution of each frequency. The
effect will then be that the mean SINAD over those frequencies is optimized.

Since the amplitude A in (11.16) is independent of the bit mask q, maximizing
the SINAD (11.15) is equivalent to minimizing the noise (11.22). Omitting the
square root (which is monotonically increasing) and the normalization with N , we
end up with a cost function of the form (11.1) again. The constraint (11.2) still
applies, since we still want to find a bit mask that sifts out β bits. The following
minimization problem can be posed:





min
q

(R(q, a) e − e0)T A0 (R(q, a) e − e0)

s.t.
∑

i

qi = β and qi ∈ {0, 1}, i = 1, 2, . . . , B. (11.23)

That is, minimize the weighted noise power with respect to the bit mask q consisting
of β entries set to 1 and the remaining entries 0.

The choice of reference table e0 naturally impacts on the optimization results.
The reference table should be such that x(n) + e0

I(n) matches a sinewave fit to
the output as closely as possible and for all frequencies for which the performance
shall be optimized. The restriction is that e0 must be the same size as e, viz.
2B entries. If the e0 is calibrated according to the method in Section 9.1, i.e.,
using Lloyd’s optimal reconstruction levels, it minimizes the mean-squared error
difference between the input and output during calibration, calculated over all
calibration samples. Accordingly, the best reference table is that which is calibrated,
using the methods of Section 9.1, for exactly those frequencies for which we want
to optimize (11.23). Thus, if we calibrate the table e for our frequencies of interest,
the best we can do is to let e0 = e and a0 = a. The immediate interpretation of the
cost function in (11.23) is then that the weighted difference between the original
table e0 = e and the reduced size table ẽ (represented by R(q, a) e) should be
minimized.

Results

The optimization problem (11.23) has been solved and evaluated with experimental
ADC data from an Analog Devices AD876, i.e., the same ADC as in Section 11.2.
Two different sets of data are used which gives us two test cases:

Case A: The calibration and evaluation signals are sinusoids in the first Nyquist
band, i.e., in [0, fs/2]. The same data is used for the results presented in
Section 11.2 (see Appendix B.1).

Case B: The calibration and evaluation signals are sinusoids in the fifth Nyquist
band, i.e., in [2fs, 5fs/2] (see Appendix B.2).
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In both cases, a state-space table e (i.e., a table addressed with K = 1 delay element
and a transparent bit mask, B = 20) is calibrated using several large amplitude
sinewaves at different frequencies distributed over the considered Nyquist band (first
or fifth). The vector a is the corresponding distribution vector, i.e., the number
of times each table entry was updated during calibration. The calibrated table e

is also used for reference, i.e., we let e0 = e. Furthermore, a0 is set equal to a.
This corresponds to evaluating the average SINAD over all frequencies for which
the table e was calibrated, so that the SINAD is optimized over the same frequency
range. The purpose of this is to achieve an optimization valid in a wide frequency
range. The optimization problem (11.23) is solved using an algorithm that will be
presented in Chapter 12 and for all integers β ∈ [1, 19] (the solutions for β = 0
and β = 20 are trivial). The optimal bit masks for cases A and B are illustrated
in Figure 11.4. The interpretation of the plots is that each row corresponds to a
specific choice of β and the dots indicate which bits to use in a β-bit index Ĩ. We
see that the results match closely for the two cases, but they are not identical. We
also see that the results are not identical to those obtained while minimizing the
THD.

Next, the resulting SINAD after correction with a 2β-size table ẽ was evaluated.
The SINAD was evaluated for different values of β and at the frequencies 3.01 MHz
and 42.16 MHz in the cases A and B, respectively. For each value β, the index bits
were selected according to the results of Figure 11.4. The solid lines in Figure 11.5
show that the performance only deteriorates slightly, or even improves, when β is
reduced as low as 3. However, part of this is, as was pointed out in Section 11.2,
due to the fact that in our experiment, the amount of calibration data is constant.

Just as in the case of THD in the previous section, the worst-case bit mask
was tested, so that the importance of bit-mask selection could be assessed. The
cost function in (11.23) was maximized instead of minimized. The dashed lines in
Figure 11.5 shows the resulting SINAD evaluated at the same frequencies as the
solid lines. The plots clearly show that selecting the appropriate bit mask improves
the performance of the corrected ADC with up to 5 dB. The dash-dot lines are the
SINAD of the ADC at the considered frequency without correction, included for
reference.

Finally, Figure 11.6 shows the SINAD after correction with an optimized 10-bit
table, compared with the SINAD after correction with a 10-bit static table (K = 0)
and the uncorrected SINAD of the ADC. It is clear from the results that in case
A, the optimized table performs significantly (approximately 2 dB) better than the
static table in the higher frequencies. We also see that the optimized table does not
deteriorate the ADC performance for frequencies close to 10 MHz, which the static
table does. In the lower frequencies (except between 1 MHz and 1.5 MHz), on the
other hand, the static table actually outperforms the 10-bit optimized table, but
the difference is small (less than 1 dB). In case B, the optimized table outperforms
the static table almost everywhere.
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Figure 11.4: Exemplary optimization results for SINAD. Each row corresponds to a
specific choice of β, and the dots indicates which positions in the bit mask q should
be set to ‘1’.
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Figure 11.5: Resulting SINAD after correction, evaluated at (a) f = 3.01 MHz and
(b) f = 42.16 MHz, as a function of table index size β.
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Figure 11.6: SINAD for the uncorrected ADC (‘+’), SINAD after correction with
a static 10-bit table (dotted), and SINAD after correction with a 10-bit optimized
table (solid).
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11.A Simplifications of the Cost Function

Both the optimization problems above ended up in rather complicated cost func-
tions, viz. (11.14) and (11.23). It has already been identified that both cost func-
tions are of the general form (11.1). When considering the special case of the
calibration samples being uniformly distributed over the table e, some simplifica-
tions can be done. It is reasonable to assume that a uniform distribution over the
table e is achieved by using independent identically distributed calibration samples
with a uniform distribution over the full-scale range of the ADC. A uniform distri-
bution corresponds to the vector a being a = α1. In this case, the following lemma
applies.

Lemma 14 (Cost function for uniform distribution). Let V (q) be the cost function
(11.1), i.e., V (q) = (R(q, a) e + c)∗B(R(q, a) e + c) where B is a Hermitian M -
by-M matrix and c and e are real column vectors of length M . Let R(q, a) be the
reduction matrix (10.29). Assume that a = α1 (α 6= 0). Then

V (q) = g(q)TFg(q) + cTBc, (11.24)

where g(q) is defined in (10.19) and the matrix F is

F ,
1

M2

(
(HeeT H) ◦ (HBH)

)
+

2

M
diag{diag{HB BceT HB}}. (11.25)

The proof is provided in Appendix 11.B. Since the second term in (11.24) is
constant, optimizing V (q) – minimizing or maximizing – is equivalent to optimizing
V ′(q) = gTFg. (The explicit dependence of g on q is omitted for brevity.) This
is a quadratic function in g. The constraints for optimization should be that g

depends on q as in (10.19) in addition to the constraints on q already stated in
(11.2).

It is in fact possible to rewrite the function V ′(q) as a linear function, although
not linear in q. From matrix analysis, e.g., [HJ91] or [Lüt96], we know that for
matrices X, Y and Z of suitable dimensions,

vec{XY Z} = (ZT ⊗ X) vec{Y}, (11.26)

where vec is the vectorization operator, stacking the columns of a matrix in one
single column vector. The vectorization of a scalar is simply the scalar itself, so

V ′(q) = vec{V ′(q)} = vec{gTFg} = (gT ⊗ gT) vec{F} = vec{F}T(g ⊗ g).

(11.27)

Defining
ξ = g ⊗ g, (11.28)

we can write an equivalent optimization problem using the cost function

V ′(ξ) = vec{F}Tξ (11.29)
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and the constraints




ξ =

[
1

qB

]
⊗ · · · ⊗

[
1
q1

]
⊗
[

1
qB

]
⊗ · · · ⊗

[
1
q1

]

B∑

i=1

qi = 1Tq = β

qi ∈ {0, 1} i = 1, 2, . . . , B.

(11.30)

The optimization problem has been transformed from the rather complicated form
(11.1) in B binary variables to the linear form (11.29) in 22B binary variables. The
transformation was made possible by constraining the distribution to be uniform,
i.e., a = α1. It is of course a significant simplification to reduce the problem to a
linear program, while the increase in the number of variables can make the form
(11.29) infeasible; in the examples of Sections 11.2 and 11.3, M is 220 and the
transformation to (11.29) would render a problem in M2 = 240 variables.

Avoiding the Kronecker-type Constraint

Although the new cost function (11.29) is linear, the constraints (11.30) are still
nonlinear because of the Kronecker-type constraint

ξ =

[
1

qB

]
⊗ · · · ⊗

[
1
q1

]
⊗
[

1
qB

]
⊗ · · · ⊗

[
1
q1

]
(11.31)

This constraint descends from the definition of g in (10.19),

g =

[
1

qB

]
⊗
[

1
qB−1

]
⊗ · · · ⊗

[
1
q1

]
. (11.32)

However, it is possible to reformulate this constraint in a linear matrix equality
constraint, which will be shown in the sequel.

Let us start by defining a vector

γ(i)⊥ =

[
1
1

]

B

⊗ · · · ⊗
[
1
1

]

i+1

⊗
[
1
0

]

i

⊗
[
1
1

]

i−1

⊗ · · · ⊗
[
1
1

]

1

(11.33)

which, by construction, has zeros where qi contributes to g, and ones elsewhere.
That is, if position j in g depends on qi through (11.32), then the j-th element
γ

(i)⊥
j is 0, otherwise it is 1. Let γ(i) = 1 − γ(i)⊥ which now, of course, has ones

where qi contributes to g. This vector possesses some properties that will be useful.
Consider the scalar product γ(i)Tg. Assume that q has exactly β ones and B−β

zeros. From the definitions of γ(i) and g we have

γ(i)Tg = (1 − γ(i)⊥)Tg = 1Tg − γ(i)⊥Tg. (11.34)
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The one-vector 1 of 2B ones can be written as an iterated Kronecker product with
B factors

1 =

[
1
1

]
⊗ · · · ⊗

[
1
1

]
, (11.35)

and, using the property of the Kronecker product that AC⊗BD = (A⊗B)(C⊗D),
we can write

1Tg =

([
1
1

]
⊗ · · · ⊗

[
1
1

])T([
1

qB

]
⊗
[

1
qB−1

]
⊗ · · · ⊗

[
1
q1

])

=

([
1 1

] [ 1
qB

])
⊗ · · · ⊗

([
1 1

] [ 1
q1

])
=

B∏

k=1

(1 + qk) = 2β .

(11.36)

The last equality comes from the fact that q has β elements equal to one, so that
β factors in the product are equal to 2 and the remaining factors are unity. In a
similar fashion we can calculate γ(i)⊥Tg as

γ(i)⊥Tg =

([
1
1

]

B

⊗ · · · ⊗
[
1
1

]

i+1

⊗
[
1
0

]

i

⊗
[
1
1

]

i−1

⊗ · · · ⊗
[
1
1

]

1

)T

×

([
1

qB

]
⊗
[

1
qB−1

]
⊗ · · · ⊗

[
1
q1

])

=
∏

k 6=i

(1 + qk).

(11.37)

The outcome will be one out of two possible numbers, depending on wether the
vector element qi is one or zero. If qi = 1, the product in the last equality of
(11.37) will be over β − 1 factors with value 2. Else, if qi = 0, (11.37) is a product
over β factors with value 2. Hence, γ(i)⊥Tg is 2β or 2β−1 when qi is 0 or 1,
respectively. To summarize the discussion, we conclude that

γ(i)Tg =

{
2β − 2β = 0, qi = 0

2β − 2β−1 = 2β−1, qi = 1,
(11.38)

or

γ(i)Tg = 2β−1qi (11.39)

The relation (11.39) can be used to formulate an alternative to the Kronecker-
type constraint on ξ in (11.30). Since ξ = g⊗g we define the vector γ̄(i) = γ(i)⊗γ(i)

and observe that

γ̄(i)Tξ = (γ(i) ⊗ γ(i))T(g ⊗ g) = (γ(i)Tg) ⊗ (γ(i)Tg) = (γ(i)Tg)2

= (2β−1qi)
2 =

/
qi ∈ {0, 1} → q2

i = qi

/
= 22β−2qi,

(11.40)
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where the relation (11.39) was used. Stacking the vectors γ̄(B)T through γ̄(1)T in
a matrix Γ̄, we can form the linear matrix equality constraint

Γ̄ ξ =




γ̄(B)T

γ̄(B−1)T

...
γ̄(1)T


 ξ = 22β−2q. (11.41)

Finally, this can be used to formulate a new set of constraints, replacing (11.30).
The new constraints are





Γ̄ ξ = 22β−2q
B∑

i=1

qi = 1Tq = β

qi ∈ {0, 1} i = 1, 2, . . . , B
ξj ∈ {0, 1} j = 1, 2, . . . , 2B .

(11.42)

We have in this section shown that it is possible to reformulate the general op-
timization problem (11.1) with constraints (11.2) into a linear binary optimization
problem (11.29) with linear constraints (11.42). The transformation of the cost
function depended on the assumption that the calibration samples were uniformly
distributed over the table e, i.e., a = α1.

11.B Proof of Lemma 14

Let V (q) be the cost function (11.1), i.e.,

V (q) = (R(q, a) e + c)∗B(R(q, a) e + c).

When a = α1 with α 6= 0, we have from (10.29) that

R(q, α1) = diag{P(q)α1}† P(q) diag{α1}

= diag{ 1

M
HB GHB α1}† 1

M
HB GHB diag{α1}

= diag{HB GHB 1}† HB GHB I.

(11.43)

The matrix G is defined in (10.20). Now, since 1 = h0, i.e., the first column of
HB , we have that the first factor is

diag{HB GHB HB u1}† = /HB HB = MI/ = diag{MHB Gu1}†

= /Gu1 = u1/ = diag{MHB u1}† = M−1 diag{1}†

= M−1I† = M−1I. (11.44)
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Thus, we have that

R(q, α1) =
1

M
HB GHB (11.45)

which in fact is equal to P(q) in Lemma 12.
Expanding the quadratic form in V (q) and inserting a = α1 we have

V (q) =

(
1

M
HB GHB e + c

)∗

B

(
1

M
HB GHB e + c

)

=
1

M2
e∗ HB GHB BHB GHB e +

1

M
e∗ HB GHB Bc

+
1

M
c∗ HB GHB Be + c∗ Bc

=
/
c and e real ⇒ c∗ = cT, e∗ = eT

/

=
1

M2
eT HB GHB BHB GHB e +

2

M
eT HB GHB Bc + cT Bc

(11.46)

The trace of a matrix product XY has the property that Tr{XY} = Tr{Y X}.
Also, the trace of a scalar a is Tr{a} = a. We also know that for two vectors, x

and y, and two matrices, X and Y, it holds that Tr{diag{x}X diag{y}YT} =
yT(X ◦ Y)x, where ◦ is the Hadamard product1 (see e.g., [HJ91, Lüt96]). Using
these relations, the first term in (11.46) can be written as

1

M2
eT HB GHB BHB GHB e =

1

M2
Tr{GHB e eT HGHBH}

=
1

M2
gT
(
(HeeT H) ◦ (HBH)T

)
g =

1

M2
gT
(
(HeeT H) ◦ (HBH)

)
g,

(11.47)

and the second term becomes

2

M
eT HB GHB Bc =

2

M
Tr{1eT HB GHB Bc}

= 1
(
(eT HB) ◦ (HB Bc)T

)
g = diag{HB BceT HB}T g, (11.48)

where diag{g} = G (see (10.20)) has been used. Now the cost function V (q) can
be expressed as

V (q) =
1

M2
gT
(
(HeeT H) ◦ (HBH)

)
g

+
2

M
diag{HB BceT HB}T g + cT Bc. (11.49)

1The Hadamard product, also known as the Schur product, is the entrywise multiplication of
the elements in two matrices of the same size.
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Since g consists of only zeros and ones (g ∈ B
M ), we can write the scalar product

between a vector x and g as

xTg =
M∑

m=1

xm gm =
M∑

m=1

xm g2
m = gT diag{x}g. (11.50)

Inserting this into (11.49) we have

V (q) =
1

M2
gT
(
(HeeT H) ◦ (HBH)

)
g

+ gT diag{diag{HB BceT HB}}g + cT Bc

= gT

(
1

M2

(
(HeeT H) ◦ (HBH)

)
+

2

M
diag{diag{HB BceT HB}}

)
g + cT Bc.

(11.51)



Chapter 12

Suboptimal Solver

The optimization problems in the previous chapter – generalized in (11.1) – are dif-
ficult to solve optimally. They are in fact nonlinear binary problems. Under certain
conditions it was shown in Appendix 11.A that the problem could be rewritten to
a linear binary problem, but at the expense of a dramatic increase in the number
of variables.

A heuristic algorithm for solving the optimization problem is proposed in this
section. The method, based on successive deletion of bits, is a “greedy” type algo-
rithm, which for each iteration deletes the bit that is locally best without consid-
erations of global optimality. See for instance [NW88] for a thorough treatment of
this class of algorithms.

First, recall the general cost function V (q) in (11.1),

V (q) = (R(q, a) e + c)∗B(R(q, a) e + c). (12.1)

The proposed algorithm starts with a bit mask that selects all B bits in the index
I – that is, we start with q = 1. A bit mask that selects β bits is then found
by deselecting one bit at a time, in an iterative fashion. In each iteration, the bit
that upon removal results in the lowest cost function V (q) is deselected. However,
such an algorithm is prone to find local minima. Therefore, in each iteration the
L different bit masks, resulting from deselecting L different bits, that yields the
L lowest costs are used as starting points in the next iteration. The number L is
a design variable. The algorithm is presented in Table 12.1. The optimal value
V (qopt) is a non-increasing function of the design variable L, meaning that we are
guaranteed that when increasing L, the solution will not get worse. However, it is
not guaranteed that the algorithm will converge to a global minimum.

A rough estimate of the computational complexity of the algorithm is the num-
ber of times the cost function V (q) must be computed. Let Nalg be the number of
times the cost function must be evaluated in order to find a solution to the opti-
mization problem using the algorithm in Table 12.1. This is obviously dependent
on how many bits we want to use (β), how many bits we can choose from (B) and
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Table 12.1: Algorithm used to solve the optimization problem.

1. Let q(ℓ), ℓ = 1, 2, . . . , L be the (B−1)-bit bit masks that yields
the L lowest costs V (q(ℓ)) (found by trying all B possible com-
binations).

2. Set r := B − 2.

3. If r < β, go to 8.

4. Let Ω := ∅, i.e., the empty set.

5. For all ℓ = 1, 2, . . . , L: Append to Ω all possible vectors p

formed by changing one ‘1’ into a ‘0’ in q(ℓ).

6. Let q(ℓ), ℓ = 1, 2, . . . , L be the L (unique) vectors p ∈ Ω that
results in the L lowest values for V (p).

7. Let r := r − 1 and goto 3.

8. Let qopt = arg minℓ=[1, L] V (q(ℓ)).

how many solutions that are kept in each iteration (L). In fact, it is easy to see
that

Nalg ≤ B +
B−2∑

r=β

L (r + 1) + L =
L

2
(B2 − B − β2 − β) + L + B. (12.2)

The inequality comes from the fact that in each iteration, the number of unique
vectors p ∈ Ω is no more than L (r + 1), but possibly less. This can be compared
with the number of times Nes the cost function V (q) must be evaluated if an
exhaustive search is performed. When selecting β out of B bits there are

(
B
β

)

possible combinations, which must all be evaluated. Hence,

Nes =

(
B

β

)
=

B!

β! (B − β)!
. (12.3)

In Figure 12.1 the complexity of the proposed algorithm and the complexity of an
exhaustive search are plotted for B = 20, L = 6 and different values of β (these
are the parameter values used in the exemplary results presented in Chapter 11).
We see that the complexity is reduced with as much as two orders of magnitude
when using the above algorithm. For low values of β, on the other hand, the figure
suggests that an exhaustive search is more effective. However, for β < B/2 it is
beneficial to ‘reverse’ the algorithm, so that it starts with an empty bit mask (only
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Figure 12.1: Comparison of the computational complexity (number of evaluations
of V (q)) of the proposed algorithm (dashed) and of an exhaustive search (solid).

zeros) and then adds one bit in each iteration. The complexity of such an algorithm
is the reverse of the dashed line in Figure 12.1, so that

Nalg, rev ≤ L

2
(B2 − B − (B − β)2 − (B − β)) + L + B. (12.4)





Chapter 13

Post-correction Using Frequency

Selective Tables: An Alternative

Approach for Narrow-Band Signals

So far, we have tried to incorporate dynamic behaviour into the correction of ADCs
by employing a state-space indexing of the correction table. When narrow-band
signals are considered, one might think of the error of the ADC to be frequency
dependent. A correction scheme which is explicitly dependent on the instantaneous
signal frequency is a desirable countermeasure.

The correction scheme presented in this chapter utilizes a frequency selective cor-
rection table. This is accomplished by extending the usual one-dimensional correc-
tion table of classical look-up table correction (cf. Section 3.1) to a two-dimensional
table, using both the present ADC output x(n) = xj and the present frequency re-
gion estimate F̂ (n) = Fℓ ∈ {F1, . . . , FL} for addressing. The correction system is
depicted in Figure 13.1. The frequency region estimate is updated for each sample
x(n). This method can also be interpreted as selecting a specific one-dimensional
correction table for each frequency region estimate Fℓ. Thus, the corrected output
ŝ(n) is the table entry ŝj, ℓ associated with xj and Fℓ.

13.1 Frequency Region Estimator

A traditional way of constructing frequency estimators is by optimizing some cri-
terion related to the frequency. One of the most commonly used methods is the
method of maximum likelihood, or approximate variants thereof. In common for
most frequency estimation methods is that the output frequency estimate is a con-
tinuous variable. Here, on the other hand, we consider the problem of finding the
most probable region to hold the unknown frequency, out of a finite (small) set of
regions.

161



162
CHAPTER 13. POST-CORRECTION

USING FREQUENCY SELECTIVE TABLES

msb

ADC
ADC

correction
table setb

N

frequency
region
est. tbl

F̂ (n)

s(t)

N
-bit

shift
register

x(n)

i

frequency region estimator
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Figure 13.1: Correction system outline.

It has been illustrated [ASH00, And05] that there exists a high-performance
frequency estimator of low complexity employing only 1-bit of the input signal.
The use of 1-bit data also has the advantage that the estimator does not depend
on the power of the input signal, i.e., no gain control is needed. Here, we are not
limited to use 1-bit data but the resulting structure with a table look-up procedure
is tractable since it meets the demand of a fast estimator of low complexity.

The frequency estimator input z(n) is related to the most significant bit (MSB)
of x(n),

z(n) = sign(s(n)), (13.1)

where

sign(x) ,

{
1 x ≥ 0;

−1 x < 0.
(13.2)

(We can assume, without loss of generality, that the full-scale input range of the
ADC is symmetric around zero.) By collecting N successive binary samples at
each time instant n we can uniquely map one input sequence onto an integer
i ∈ {0, . . . , 2N −1}. The index i is then used as a pointer to an entry in a frequency
region estimation table, see Figure 13.1. Finally, the i-th table entry contains a
region estimate F̂ (n) ∈ {F1, . . . , FL}, indicating that the instantaneous signal fre-
quency is within the ℓ-th frequency region. The frequency regions Fℓ are determined
by the region center frequencies {fℓ}L

ℓ=1 through the definition

Fℓ = {f ∈ [0, 1/2) : |f − fℓ| ≤ |f − fp|, p = 1, . . . , L} (13.3)

where ℓ = 1, . . . , L. The center frequencies {fℓ} can be chosen arbitrarily, but the
size and location of the regions {Fℓ} is of course dependent on the actual choice.
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As a frequency region estimate we choose the region that maximizes the proba-
bility of including the unknown frequency f0 given the N 1-bit samples z(n) through
z(n − N + 1), that is

F̂ (n) = arg max
∀Fℓ

Pr{f0 ∈ Fℓ|z(n), . . . , z(n − N + 1)}, (13.4)

where Pr{·} is the probability function. Since z(n) through z(n − N + 1) are
binary variables (±1) there is a finite number of possible combinations, viz. 2N

combinations. This observation makes it possible to precalculate an estimate F̂ =
Fℓ for each combination and store these in a table. A straightforward way to obtain
the table is to use a training approach [ASH00,And05].

13.2 Correction Table

During ADC operation with correction engaged, the ADC output sample, x(n), is
mapped through the ADC correction table to a compensated output value ŝ(n).
The correction is determined by the present ADC output together with the cur-
rent frequency region estimate, as depicted in Figure 13.1. Thus, the correction
becomes1

s(t) → (xj , Fℓ) → ŝj, ℓ = ŝ(n) (13.5)

ŝj, ℓ ∈ {ŝi, p}(M−1, L)
(i, p)=(0, 1) .

With this structure, the compensation is made dynamic, with table indexing de-
pending on the frequency contents of the signal.

The table entries ŝj, ℓ should be selected such that the resulting conversion
s(t) →

(
xj , Fℓ

)
→ ŝj, ℓ = ŝ(n) is “better” than without correction. The employed

design criterion is again to minimize the mean squared error, E[(ŝ(n)−s(n))2]. Since
the selection of ŝ(n) = ŝj, ℓ depends on the ADC output x(n) and the frequency
region estimate F̂ (n), the criterion becomes

ŝj, ℓ = arg min
ŝ

E
[
(ŝ − s(n))2

∣∣x(n) = xj , F̂ (n) = Fℓ

]
(13.6)

Quite analogously to the discussion in Section 9.1, ŝj, ℓ should be estimated as
the mean value of all input samples, s(n) = s(t)

∣∣
t=n Ts

, that were quantized into
the value xj while the frequency region estimate was equal to Fℓ. Obviously, an
estimate of the calibration signal input to the ADC under test is needed, and several
methods have been proposed earlier; some of these have already been dealt with in
Section 3.4.

1The correction table is here described as a replacement table such that the ADC output
x(n) is replaced with the new value ŝ(n). It can, however, just as well be described as a table
of correction terms added to the ADC output, so that ŝ(n) = x(n) + ε(n) (cf. Figure 3.4(a) and
Figure 3.4(b)).
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13.3 Performance

Once again, the experimental ADC data described in Appendix B was used to
evaluate the proposed method. The ADC correction table was calibrated using
sinusoid calibration signals at several different frequencies. The calibration signal
estimate ŝ(n) was obtained using the optimal filtering method proposed in [HSP00].

Spurious-free dynamic range (SFDR) and signal-to-noise and distortion ratio
(SINAD) are used to evaluate the method, and the results are presented in Fig-
ures 13.2 and 13.3, respectively. The results for static correction (K = 0) and for
the uncompensated ADC are also presented in the figures.

The frequency-selective correction was evaluated for two test cases: the first
case involving 8 frequency regions (L = 8) and the second case having 16 regions
(L = 16). In both cases N was set to 16 and the L region center frequencies
were distributed uniformly over the Nyquist range, resulting in uniform frequency
regions. The results indicate that the frequency-selective correction method is supe-
rior to the frequency-static method in general, but also that increasing the number
of frequency ranges L from 8 to 16 does not give any significant improvement. We
see from the plots that the SFDR is improved with between zero and 7 dB, while
the SINAD in general is improved with less than 1 dB, both compared with the
results obtained using static correction. Furthermore, it is interesting to see that
the static correction yields deterioration of the ADC performance at frequencies
near the Nyquist rate, while for the frequency selective correction methods this is
not the case.
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Figure 13.2: SFDR for frequency-selective correction with L = 8 (solid) and L =
16 (dash-dot) compared with static correction (dotted) and uncompensated ADC
(dashed).
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Figure 13.3: SINAD for frequency-selective correction with L = 8 (solid) and L =
16 (dash-dot) compared with static correction (dotted) and uncompensated ADC
(dashed).





Chapter 14

Conclusions

14.1 Summary

In this thesis the topic of post-correction of ADCs has been discussed. The work
has been focused on correction methods based on look-up tables.

In the first part of the thesis, an overview to the state of the art on ADC error
correction methods was given. The part touched upon look-up table (LUT) meth-
ods, small- and large-scale dithering and model inversion methods. The techniques
were in most cases only briefly described, but several references to the literature
were given.

The second part of the thesis was dedicated to novel contributions to the art of
LUT post-correction, with emphasis on methods with close relationship to estima-
tion and information theory. Chapter 6 reviewed the most commonly used distor-
tion criteria, and the implications in terms of quantizer design and post-correction
were given. Following that, the problem of estimating an ADC transfer function
was revised in Chapter 7. The setting of the problem was that an ADC was cali-
brated using a calibration signal applied to the input. The exact calibration signal
was unknown, but a perturbed version of the calibration signal was provided as a
reference signal. The problem of interest was to estimate the optimal reconstruc-
tion levels of the quantizer from the reference measurements. Using a statistical
quantization model, the problem was rewritten as a classical constant-in-noise esti-
mation problem. Two plausible noise assumptions were suggested, and estimators
were found for both cases. The first scenario resulted in a Gaussian-noise problem,
easily solved using standard methods. The second scenario, arising from the clas-
sical staircase quantizer model, resulted in a non-linear estimator based on order
statistics. Optimality for the non-linear estimator could not be proven, but it was
conjectured that it is an asymptotically efficient estimator. This was concluded
by comparing the estimator performance with the Cramér–Rao bound and with
numerically obtained maximum-likelihood estimates. Numerical simulations were
performed and reported to support the theories.
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The theoretical performance of an ADC after correction was derived in Chap-
ter 8. The effects of limited resolution in the correction terms were investigated.
Furthermore, the outcome of a post-correction applied to an ADC with DNL errors
was explored. The results were combined to expressions for the theoretical SINAD
and ENOB for an ADC with post-correction as a function of four parameters.
These were the number of bits in the ADC, the variance of the intrinsic DNL, the
resolution of the correction terms and the ADC input noise variance. Simulation
results were provided to confirm the theories. Also, evaluations using experimental
ADC data supported the theories, but pointed out important issues regarding the
random noise.

Finally, the third part introduced a generalized approach for ADC correction
based on multidimensional tables. The correction method used several samples in
sequence from the ADC to form the address, or index, to the table. The rationale
for introducing an index dependent not only on the ‘present sample,’ but also on the
signal history, was that ADC errors in general exhibit a dynamic behavior. That is,
the errors that the correction scheme is to mitigate are dependent on the dynamics
of the signal, e.g., signal history. However, the table size grows exponentially with
the number of samples incorporated into the index, which has been pointed out
before. Therefore, the novel generalized scheme also comprises bit-masking in order
to reduce the address space, and thereby the table size. The bit-masking operation
selects a subset of the available bits. Through the use of a bit mask, the memory
requirements are reduced while the correction remains dynamic, at least to some
extent.

The experimental results showed that a correction scheme using multidimen-
sional indexing can outperform a static correction, in terms of SFDR, SINAD and
THD. It was also shown that significant performance improvements can be achieved
even without increasing the actual size of the look-up table, simply by letting some
of the index bits come from delayed samples.

When introducing the bit-masking concept, the question of which bits to select
in the table index arises. One of the contributions of this work is an analysis
framework for analyzing the effect of different bit allocations. It has been shown
that a correction table indexed with all bits from the present sample and a specific
number (K) of delayed samples, can be used to ‘mimic’ any correction scheme with
a more restrictive bit mask, i.e., a table indexed with any subset of the bits used
to index the original table. The relationship between the original table and the
new table was derived, and was shown to be linear. The derivation of the analysis
framework was based on the Hadamard transform.

The analysis framework was then applied in an optimization problem. The
problem consisted of allocating a specific number (β) of index bits. Two different
figures of merit were used, viz. THD and SINAD. In both cases, the optimization
problem was the following: which β bits, selected from all bits of the present sample
and K previous samples, should be used in order to maximize the performance of
the corrected ADC in terms of THD or SINAD? Both problems could be explicitly
posed using the previously derived analysis framework.
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Experimental ADC data was used to illustrate the optimization problems. The
results revealed two important facts. First, the optimal bit allocation depends on
which figure of merit – THD or SINAD – is applied. Second, the number of bits to
allocate, β can be significantly reduced without crippling the correction scheme.

Finally, an alternative approach was proposed for correcting ADCs when the
input signal is assumed to be narrow-banded. Instead of using a multidimensional
table indexed with present and delayed samples, the frequency selective correc-
tion method utilized a frequency estimator. The correction table used was two-
dimensional with the present sample indexing one dimension and an instantaneous
frequency estimate indexing the other dimension. Thus, the correction scheme se-
lected different static correction tables depending on which frequency the sampled
signal was, or more precise, which frequency region it was estimated to reside in.
The results showed that a frequency selective table was superior to a static table,
especially in the highest frequencies.

14.2 Future Work

The art of analog-to-digital conversion is constantly evolving. Irons said [Iro] that ‘if
you start measuring a device for certain performance and specify the procedures and
errors, designers will “design out” the errors in subsequent designs.’ The implication
of this is twofold. First, some of the theories and methods for ADC characterization
and correction presented here and in the contemporary literature might become
obsolete with future ADC designs. Second, we do not know what methods will
be needed for future ADCs. The methods presented in this thesis are generic in
the sense that they are applicable to any converter architecture. It is, however,
likely that an application where post-correction can be considered today, will not
need any kind of correction in the future, thanks to the development of new and
improved converters. Meanwhile, new frontiers are opened with higher frequencies
and bandwidths, and these are the areas where post-correction is likely to find its
place.

Although solving a few problems, the work presented in this thesis points out a
number of new problems and tasks to confront. A few of them are posed here.

Account for Aperture Uncertainty

The experimental results presented in Section 8.7 indicated that knowing the vari-
ance of the thermal noise is not quite sufficient for accurately predicting the SINAD
after correction. As was pointed out in the subsequent discussion, it is likely that
aperture uncertainty, or jitter, is responsible for the increase in appreciated noise
variance. It should therefore be pleasing if the jitter could be explicitly included
into the theory for predicting the performance – in particular into (8.39) and (8.40).
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Theoretical Limits for Dynamic Errors and Correction

The derivations in Chapter 8 were all based on an assumption that the quantizer
(or ADC) to correct had a purely static behavior, in the sense that the same out-
put signal was produced for a given input regardless of signal dynamics, such as
frequency and sample history. This is obviously not true in general for a practical
ADC. An extension of the theories is necessary.

One such extension is to parameterize the dynamic dependence of the DNL. A
suggestion could be to model the DNL with a multidimensional stochastic variable,
in analogy with the multidimensional LUT in Part III. The benefits of this would
then be that the prediction of the performance after correction would take dynamics
into account. In particular, the effects of not taking care of dynamically dependent
errors – for instance by assigning too few dimensions in the correction scheme –
could be predicted. The weakness of this extension is of course the difficulty to
asses the multidimensional statistics of the DNL for a practical ADC.

Optimality for the Order-Statistics Estimator.

In Chapter 7 it was indicated that the estimator ĝos based on order statistics could
be the maximum-likelihood estimator in the case of a uniform-and-Gaussian mix-
ture noise. This was, however, not analytically shown. It would of course be
satisfying – at least from a scientific point of view – to be able to prove this con-
jecture.

Roadmap to an Order Statistics Calibration System

In Chapter 7 it was pointed out that the theories provided for an ADC transfer
function characterization based on order statistics estimators are not ready for
practical use yet. Section 7.7 points out the key problems that must be solved in
order to make such a characterization scheme feasible—these problems are of course
points of interest for future research.

Calibration Signals

The search for sufficiently exciting signals for calibration and testing, that are
feasible to use, must go on. With more applications that demand high bandwidth,
meaning that the signal of interest occupies a significant part of a Nyquist band,
it becomes increasingly insufficient to use narrow-band calibration signals, such as
sinewaves. Sinewaves do, on the other hand, have the advantage of being a well-
defined waveform. This enables us to use signal processing techniques (filtering
or waveform fitting) to obtain a reference signal from the recorded output of the
ADC—the calibration can be considered as “blind.” The feasibility of this approach
has been demonstrated several times, and also in this thesis. Sinewaves are also
relatively easy to produce with high fidelity.
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Migrating to wide-band calibration signals is not a trivial task. Preserving the
ability to use a blind calibration scheme requires two things: The calibration signal
must have some kind of structure (such as the sinewave has), and an estimator that
takes advantage of this structure must be devisable. In Section 7.7 the possibility of
using multisines as calibration signals was alluded to. This signal possesses sufficient
structure, and estimators that benefit from this structure are readily available.
It is, however, not trivial to generate a sufficiently pure multisine in practice –
intermodulation products created in the signal generator seems to be the main
hurdle at the moment. Other possible calibration signals must therefore also be
investigated.





Appendix A

ADC Test Beds

This appendix describes the test beds used to acquire the experimental ADC data
used in this thesis. Two test beds have been used, and they are described in brief.

A.1 KTH Test Bed

This first test bed, assembled at KTH, Stockholm, is intended for measuring a
10-bit, 20 MSPS converter. The test setup follows closely the recommendations in
IEEE standard 1241 [Std1241, §4.1.1.1], and the block schematics are provided in
Figure A.1.

Clock
generator

Sinewave
generator DUT FIFO

buffer ComputerSy
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Remote frequency selection

Figure A.1: Test bed block schematics. The frequency generators are synchronized
to enable coherent sampling without drifting. The first-in first-out (FIFO) buffer
is used as a temporary storage between the high-speed ADC and the computer.

The different parts of the test bed are briefly described in the sequel.

DUT (Device under test) The ADC under test is an Analog Devices AD876
evaluation board. The AD876 is a 10-bit pipelined flash converter operating
at a maximum sampling rate of 20 MSPS. The evaluation board provides easy
access to input, clock and output signals. See [AD876] for details.
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Signal generators The input sinewave signal and the clock signal are generated
by two Marconi Instruments MI 2024 tone generators. The input signal is
directly connected to the evaluation board (appropriate DC bias is added
on the evaluation board). The clock signal, on the other hand, must be a
0–5 V square wave, so the tone generator is connected to a pulse shaping
circuit (custom built), converting the sinewave to a square wave of the same
frequency. The two generators are synchronized so that they both utilize one
and the same reference oscillator. This is to ensure that the clock and the
test signal are phase-locked.

FIFO-buffer Since the computer, which is used to finally store the sampled data,
is unable to read the data coming from the ADC at the sampling rate, an
intermediate memory is used to store one batch of samples, viz. 16 384 sam-
ples. The samples are stored in a first-in first-out (FIFO) type memory. When
the memory is full, the sampling is stopped and the data is retrieved to the
computer at a lower rate.

Computer A standard PC equipped with a digital input/output board is used to
read the sample sequences from the FIFO board and store them to a file. The
computer is also used to control the test bed hardware.

A.2 HiG Test Bed

The experiments reported in Chapter 8 have been conducted using data from a
12-bit, 210 MSPS converter. The test bed used is at the University of Gävle (HiG),
and is described in [BH05]. The main parts of the test bed are:

Vector Signal Generator The signals, both clock and test signals, are generated
from a Rohde & Schwarz SMU200A.

Amplifier A custom-designed ultra low noise amplifier for driving the input signal
to the ADC under test. The amplifier has a gain of 14 dB in the range 20–
300 MHz.

Filters Several different SAW filters can be applied for signal conditioning.

Frame Grabber The custom-built frame grabber stores the samples coming from
the ADC under test in real time, at sample rates up to 300 MSPS. The word
length is 16 bits and 2000 kSample can be stored. The data is transferred to
a standard PC via LAN.

The data used in Chapter 8 was acquired from an Analog Devices AD9430. See
Appendix B.3 and [AD9430] for details.



Appendix B

Experimental ADC Data

All the data used to illustrate and evaluate the methods proposed in this work
has been acquired using the test beds described in Appendix A. The data was in
most cases collected using coherent sampling, as described in [Std1241, §4.1.4.5 and
§4.1.5.1] and also in Section 1.4. In order to facilitate subsequent Fourier analysis
of the data, the test signal frequency should also line up with a discrete Fourier
transform bin frequency. Thus, the input signal frequency f0 must satisfy two
criteria:

1. The frequency must coincide exactly with a DFT bin, i.e.,

f0 =
m

N
fs, m = 0, 1, . . . ,

N

2
− 1. (B.1)

2. The frequency must satisfy

f0 =
J

N
fs, (B.2)

where the integer J and the record length N are relatively prime, i.e., have
no common factors. Thus, GCF(m, N) = 1.

We immediately see from the two above equations that this implies that m and N
must be relatively prime. When N is a power of 2, which is the case of the data
used here, any odd integer m will satisfy the above condition 2. Additionally, the
standard stipulates that the number of samples N in a batch record should be at
least π2b, where b is the number of bits in the ADC under test, in order to ensure
a sample of every code bin.

B.1 Data Set A: AD876 in First Nyquist Band

The first set of ADC data was acquired from an Analog Devices AD876 using the
test bed in Section A.1. The converter performance, according to the manufacturer
supplied data sheet [AD876], is given in Table B.1.
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Table B.1: Performance parameters for Analog Devices AD876.

Resolution 10 bits
Maximum sampling frequency 20 MHz
Full power bandwidth 150 MHz
SINAD @ 3.58 MHz 56 dB
ENOB @ 3.58 MHz 9.0 bits
THD @ 3.58 MHz –62 dBc
SFDR @ 3.58 MHz 65 dB

Table B.2: Characteristics of data set A.

Sampling frequency fs = 19 972 096 Hz
Input frequency 1 000 799 ≤ f0 ≤ 9 984 829 MHz
Record size N = 16 384 samples
Sinewave amplitude −0.45 dBFS, or approx. 95% of full-scale

Table B.3: Characteristics of data set B.

Sampling frequency fs = 19 972 096 Hz
Input frequency 39 945 411 ≤ f0 ≤ 49 929 021 MHz
Record size N = 16 384 samples
Sinewave amplitude −0.45 dBFS, or approx. 95% of full-scale

887 sequences, of 16 384 samples each, with distinct frequencies were recorded.
All frequencies were selected to fulfill the requirements for coherent sampling as
above. The data has the characteristics listed in Table B.2.

The SINAD, SFDR, THD and ENOB of the experimental data vary over the
frequency range according to Figure B.1

B.2 Data Set B: AD876 in Fifth Nyquist Band

The second set of ADC data was acquired from the same AD876 and test bed as
for Set A. 400 sequences, of 16 384 samples each, with distinct frequencies were
recorded. All frequencies were selected to fulfill the requirements for coherent sam-
pling as above. The data has the characteristics listed in Table B.3.

The SINAD, SFDR, THD and ENOB of the experimental data vary over the
frequency range according to Figure B.2
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B.3 Data from AD9430

A series of measurements from an Analog Devices AD9430 was used to test the
theories of Chapter 8. The basic characteristics of the ADC, as stated in the man-
ufacturer data sheet [AD9430], is given in Table B.4. The data was acquired using
the test bed described in Appendix A.2. In order to try the theory of Chapter 8,
two parameters of the ADC is needed, viz. the random noise variance σ2

n and the
variance of the DNL, σ2

D. These were acquired using standardized tests, and are
described in the following sections.

The converter was clocked using a clock frequency of 209 993 728 Hz during all
measurements.

Random Noise Estimate from Triangular Wave Measurement

The random noise of the ADC was estimated as described in [Std1241, §4.5.3.2],
using small amplitude triangular waves. Two records of small scale triangular waves
was taken. The frequency of the triangle wave was approximately 20 kHz, and the
amplitude was adjusted so that the signal covered about 10 LSBs. Each record
consisted of 2 048 000 samples. The two records were lined up so that they had the
same initial phase, and the random input noise σ2

n was estimated as

MSE =
1

2N

N∑

k=1

(ya(k) − yb(k))2 (B.3)

σ̂2
n =

((
MSE

2

)−2

+ (0.886MSE)
−4

)− 1
2

, (B.4)

where ya and yb are the two recorded sequences after aligning them, and N is the
number of samples in each sequence. (N will probably be less than 2 048 000, since
the start of one sequence and the end of the other will be truncated during the
aligning operation.)

The resulting estimate was σ̂2
n = 0.5374 LSB2.

Table B.4: Performance parameters for Analog Devices AD9430.

Resolution 12 bits
Maximum sampling frequency 210 MHz
Full power bandwidth 700 MHz
SINAD @ 60 MHz 64.5 dB
ENOB @ 60 MHz 10.5 bits
SFDR @ 60 MHz 76 dB
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DNL Estimate from Sinewave Histogram Test

The DNL of the converter was estimated using the sinewave histogram test (SHT)
in [Std1241, §4.1.6.3]. The following parameters were used:

Desired tolerance B = 0.05 LSB
Overdrive Vod = 4 LSB
Random relative phase error σφ = 0

These parameters inserted in equation (69) of [Std1241] resulted in that at least
3 records of 2 048 000 samples each should be used to estimate the DNL.

Four 2 048 000-sample records of a sinewave were recorded with a signal fre-
quency of 60 124 547 Hz and sample frequency as above. The resulting esti-
mated DNL is shown in Figure B.3. The variance of the DNL was estimated to
σ̂2

D = 0.004206 LSB2.

1 1024 2048 3072 4094
−0.6

−0.4

−0.2

0

0.2

0.4

code

D
N
L

Figure B.3: The DNL estimated using sinewave histogram test.

Sinewave Measurements

Two sets of sinewave measurements were recorded for the purpose of look-up table
calibration and evaluation. The sinewave had a frequency of 60 124 547 Hz and
sample frequency as above, so that the conditions for coherent sampling were ful-
filled for a record length of 65 536 samples. The amplitude was set to –0.5 dBFS.
Each set of measurements consists of 31 sequences of 65 536 samples each. (In
fact, the 31 sequences were recorded in one long measurement of 2 031 616 sam-
ples, which was split up into 31 sequences. Two such long sequences were recorded
independently.) The power spectral density of the data is shown in Figure B.4.
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Figure B.4: Power spectral density for the AD9430.

Random Noise Estimate from Sinewave Measurement

Since the sinewave measurements above are made in one sequence of 2 031 616
samples, but with the sampling and signal frequencies set to guarantee only 65 536
unique phases, the input signal will repeat itself exactly 31 times, disregarding
from random noise. Therefore, when comparing two of the 31 sequences, the only
difference should be the non-deterministic errors and noise effects. Thus, we can use
the formulas of (B.3) and let ya and yb be two sequences of 65 536 samples each,
originating from the same long measurement. Using this technique, the random
noise was estimated to σ̂2

n = 0.8092, which is higher than what was obtained using
the triangular method above. The reason for this is probably that random jitter
will affect the high-frequency large-scale sinewave much more than it will affect the
triangular wave with its low slew-rate (cf. (1.3) on page 9).

Note that this should not be interpreted as the triangular method failing in es-
timating the correct noise level. The rationale for using a small-scale low-frequency
input signal in that test is that it should capture the random input noise (thermal
noise), and not the aperture jitter. Specific methods for estimating the jitter are
specified in [Std1241].
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