

Open access • Posted Content • DOI:10.1101/2020.12.09.414284

Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces — Source link \square

Yuanqiang Zou, Xiaoqian Lin, Wenbin Xue, Ying Dai ...+2 more authors Institutions: South China University of Technology, University of Copenhagen Published on: 10 Dec 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Faecalibacterium prausnitzii

Related papers:

- Rubneribacter badeniensis gen. nov., sp. nov. and Enteroscipio rubneri gen. nov., sp. nov., new members of the Eggerthellaceae isolated from human faeces.
- Peribacillus faecalis sp. nov., a moderately halophilic bacterium isolated from the faeces of a cow.
- Physiological and genomic features of Henriciella with the description of Henriciella mobilis sp. nov.
- Labedella phragmitis sp. nov. and Labedella populi sp. nov., two endophytic actinobacteria isolated from plants in the Taklamakan Desert and emended description of the genus Labedella.
- Anaerotignum faecicola sp. nov., isolated from human faeces

1	Characterization and description of <i>Faecalibacterium</i>
2	butyricigenerans sp. nov. and F. longum sp. nov., isolated
3	from human faeces
4	
5	Yuanqiang Zou ^{1, 2, 3, 4§*} , Xiaoqian Lin ^{1, 5§} , Wenbin Xue ¹ , Ying Dai ¹ , Karsten Kristiansen ^{1, 2, 4} , Liang
6	Xiao ^{1, 3, 4*}
7	
8	¹ BGI-Shenzhen, Shenzhen 518083, China
9	² Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of
10	Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
11	³ Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome,
12	BGI-Shenzhen, Shenzhen, China
13	⁴ Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
14	⁵ School of Bioscience and Biotechnology, South China University of Technology, Guangzhou
15	510006, China
16	
17	*Corresponding authors:
18	Liang Xiao.
19	Address: BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.
20	E-mail: xiaoliang@genomics.cn
21	Yuanqiang Zou.
22	Address: BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.

- 23 E-mail: zouyuanqiang@genomics.cn
- 24
- [†]Yuanqiang Zou and Xiaoqian Lin contributed equally to this work.
- 26 Running title: Faecalibacterium butyricigenerans sp. nov. and Faecalibacterium longum sp. nov.
- 27 Contents Category: New Taxa Firmicutes and related organisms
- 28
- 29 Keywords: Faecalibacterium, Faecalibacterium butyricigenerans sp. nov., human faeces,
- 30 taxonomy, genome sequencing, phylogenetic analysis, average nucleotide identity

31

32 Abstract

33 Exploiting a pure culture strategy to investigate the composition of human gut microbiota, two novel anaerobes, designated strains AF52-21^T and CM04-06^T, were isolated from faeces 34 35 of two healthy Chinese donors and characterized using a polyphasic approach. The two 36 strains were Gram-stain-negative, non-motile, and rod-shaped. Both strains grew optimally 37 at 37°C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that 38 the two strain clustered with species of the genus Faecalibacterium and were most closely related to Faecalibacterium prausnitzii ATCC 27768^T with sequence similarity of 97.18% and 39 40 96.87%, respectively. The two isolates shared a 16S rRNA gene sequence identity of 98.69%. Draft genome sequencing was performed for strains AF52-21^T and CM04-06^T, generating 41 42 genome sizes of 2.85 Mbp and 3.01 Mbp. The calculated average nucleotide identity values between the genomes of the strains AF52-21^T and CM04-06^T compared to *Faecalibacterium* 43

44	<i>prausnitzii</i> ATCC 27768 ^T were 83.20% and 82.54%, respectively, and 90.09% when
45	comparing AF52-21 ^T and CM04-06 ^T . Both values were below the previously proposed
46	species threshold (95%), supporting their recognition as novel species in the genus
47	Faecalibacterium. The genomic DNA G+C contents of strain AF52-21 ^T and CM04-06 ^T
48	calculated from genome sequences were 57.77 mol% and 57.51 mol%, respectively. Based on
49	the phenotypic, chemotaxonomic and phylogenetic characteristics, we conclude that both
50	strains represent two new Faecalibacterium species, for which the names Faecalibacterium
51	<i>butyricigenerans</i> sp. nov. (type strain AF52-21 ^T = CGMCC 1.5206^{T} = DSM 103434^{T}) and
52	<i>Faecalibacterium longum</i> sp. nov. (type strain CM04-06 ^T = CGMCC 1.5208^{T} = DSM 103432^{T})
53	are proposed.

54

55 Introduction

The human gastrointestinal¹ tract harbours complex microbial communities², dominated by 56 bacteria from the phyla Bacteroidetes and Firmicutes³⁻⁶. The composition and diversity of the gut 57 microbiota are affected by numerous factors, including host genetics⁷, long-term diet^{8,9}, drugs^{1,10,11} 58 and several other environmental factors¹². Evidence suggests that the composition of the 59 microbiota is associated with the development of obesity^{4,13-15}, diabetes^{16,17}, inflammatory bowel 60 disease^{18,19}, colorectal cancer^{20,21}, and non-alcoholic fatty liver disease^{22,23}. Therefore, the 61 62 composition and function of the microbial species living in our gut are crucial importance for 63 maintenance of health. Short-chain fatty acids (SCFAs), produced by fermentation of dietary fibre 64 by several abundant genera of the intestinal microbiota, including Roseburia, Eubacterium and $Faecalibacterium^{24}$, have been reported to elicit beneficial effects on energy metabolism and for 65

prevention of colonization of pathogens²⁵. The genus *Faecalibacterium* as an abundant butyric 66 67 acid-producing bacterium colonizing the human gut displays anti-inflammatory effects and may be used as a potential probiotics for treatment of gut inflammation 26,27 . 68 69 The genus Faecalibacterium, belonging to the family Ruminococcaceae within the order *Clostridiales*, comprises only one validated species, *Faecalibacterium prausnitzii*²⁸, and two 70 non-validly published species, Faecalibacterium moorei²⁹ and Faecalibacterium hominis³⁰, all 71 72 originally isolated from human faeces. F. prausnitzii is a gram-negative non-spore-forming and 73 strictly anaerobic rod-shaped bacterium. The genomic G+C content of genus Faecalibacterium ranges from 47% to $57\%^{31}$. The fermentation products from glucose are butyrate, D-lactate and 74

formate. In the present study, we describe two novel species of the genus *Faecalibacterium* by
 using polyphasic taxonomy along with whole genome sequence analysis.

77

78 **Results and discussion**

79 Phenotypic and Chemotaxonomic Characterization

Both strains (AF52-21^T and CM04-06^T) were obligate anaerobic, Gram-stain-negative, 80 81 non-spore-forming, non-motile and rod-shaped bacteria (Fig. 1). After incubation on MPYG agar 82 at 37°C for 2 days, the colonies appeared 1.0-2.0 mm in diameter, round, creamy white to yellowish, convex and opaque with entire margins for AF52-21^T and 2.0 mm in diameter, round, 83 yellowish, slightly convex and opaque with entire margins for CM04-06^T. The growth temperature 84 was 20-42°C (optimum 37°C) for AF52-21^T and 30-45°C (optimum 37°C) for CM04-06^T. Growth 85 was observed at pH 6.0-7.5 (optimum 7.0-7.5) for AF52-21^T and pH 5.0-8.0 (optimum 7.0-7.5) for 86 CM04-06^T. Strains AF52-21^T and CM04-06^T grew with 0-1% and 0-3% NaCl, respectively. Both 87

strains were catalase-negative. The major metabolic end products for strains $AF52-21^{T}$ and CM04-06^T were acetic acid, formic acid, butyric acid and lactic acid. Differential physiological and biochemical characteristics of strains $AF52-21^{T}$ and CM04-06^T with the closest related species of genus *Faecalibacterium* are listed in the species description and in **Table 1**.

93 Table 1. Differential phenotypic characteristics of strains AF52-21^T, CM04-06^T, and the

94 related species *F. prausnitzii* ATCC 27768^T.

95 Strains: 1, F. butyricigenerans AF52-21^T; 2, F. longum CM04-06^T; 3, F. prausnitzii ATCC

96 27768^T. +, positive; w, weakly positive; –, negative.

Phenotypic features	1	2	3
Growth:			
Temperature range (optimum) (°C)	20-42 (37)	30-45 (37)	20-42 (37)
pH range	6.0-7.5	5.0-8.0	6.0-7.5
Salt tolerance (%)	1	3	3
Hydrolysis of:			
Aesculin	+	_	+
Gelatin	_	+	-
Acid from (API 20A and API 50CHL):			
Cellobiose	+	_	W
D-Fructose	W	_	+
D-Fucose	W	_	W
D-Galactose	W	_	_
D-Glucose	W	_	+
D-Lactose	+	_	_
D-Maltose	+	+	W
D-Fannitol	+	_	_
D-Fannose	W	_	_
D-Mannose	+	+	_
D-Raffinose	_	W	_
D-Trehalose	+	W	W
Gluconate	_	_	+
Glycogen	+	_	_

Inositol	W	_	_
Inulin	+	_	+
Methyl- β -D-Xylopyranoside	W	_	_
Enzyme activity (API ZYM):			
N -acetyl- β -Glucosaminidase	-	W	_
Naphthol-AS-BI-Phosphohydrolase	+	_	+
a-Glucosidase	-	_	+
β -Galactosidase	-	_	W
β -Glucosidase	+	-	-
β -Glucuronidase	+	W	+
DNA G+C (mol %)	57.77	57.51	52–57

97 All data are from this study.

98

99	The result of cellular fatty acid profiles of strain AF52-21 ^T , CM04-06 ^T and related species are
100	shown in Table 2. The major components of fatty acids (constituting >5% of the total) present in
101	strain AF52-21 ^T were C _{14:0} (5.9%), C _{16:0} (16.3%), C _{18:1} ω 7 <i>c</i> (8.1), C _{18:1} ω 9 <i>c</i> (39.0%) and iso-C _{19:0}
102	(12.9%). The profiles including C _{16:0} (25.5%), C _{18:1} ω 7 c (7.5%), C _{18:1} ω 9 c (32.5%), iso-C _{19:0} (5.9%)
103	and iso- $C_{17:1}$ I/anteiso B (9.7%) were detected as the predominant fatty acids for strain CM04-06 ^T .
104	The highest levels of fatty acids, including $C_{16:0}$ and $C_{18:1}$ $\omega 9c$, were similar, but not identical
105	comparing strain AF52-21 ^T , CM04-06 ^T and ATCC 27768 ^T . Furthermore, strains AF52-21 ^T ,
106	CM04-06 ^T and ATCC 27768 ^T could be differentiated by less abundant fatty acids, such as $C_{18:1}$
107	20H, anteiso-C _{15:0} , anteiso-C _{17:0} , C _{13:0} 30H/Iso-C _{15:1} I, C _{16:1} ω 7c/C _{16:1} ω 6c and antei-C _{18:0} /C _{18:2}
108	<i>ω</i> 6, 9 <i>c</i> (Table 2).
109	
110	Table 2. Fatty acid profile of strains AF52-21 ^T . CM04-06 ^T and the closest related species $F_{\rm c}$

Table 2. Fatty acid profile of strains AF52-21¹, CM04-06¹ and the closest related species *F*. *prausnitzii* ATCC 27768^T.

112 Numbers represent percentages of the total fatty acids. –, not detected (<1%).

Fatty acids composition	F. butyricigenerans AF52-21 ^T	<i>F. longum</i> CM04-06 ^T	<i>F. prausnitzii</i> ATCC 27768 ^T
C _{12:0}	1.5	1.8	1.9
C _{13:1}	_	-	1.25
C _{14:0}	5.9	4.6	11.8
C _{16:0}	16.3	25.5	21.1
$C_{17:1} \omega 8c$	1.3	-	1.1
$C_{18:1} \omega 7c$	8.1	7.5	5.7
$C_{18:1} \omega 9c$	39.0	32.5	31.4
C _{18:0}	4.5	3.5	4.1
C _{18:1} 2OH	2.9	-	2.0
Iso-C _{19:1} I	1.2	1.1	2.1
Iso-C _{19:0}	12.9	5.9	-
Anteiso-C _{15:0}	_	2.6	_
Anteiso-C _{17:0}	_	2.1	-
C _{13:0} 3OH/ Iso-C _{15:1} I	_	-	2.1
$C_{16:1} \omega 7c/ C_{16:1} \omega 6c$	1.5	1.9	4.0
Iso-C _{17:1} I/anteiso B	4.7	9.7	7.6
Antei- $C_{18:0}/C_{18:2}\omega 6, 9c$	_	1.9	1.3

113

114 **Phylogenetic Analysis**

115 The almost complete 16S rRNA gene sequences of strains AF52-21^T and CM04-06^T, comprising 116 1,382bp and 1,374bp, respectively, were obtained. BLAST analysis of the 16S rRNA gene 117 sequences against the EzBioCloud server showed that the two strains grouped in the genus 118 Faecalibacterium within the family Ruminococcaceae and were most closely related to F. prausnitzii ATCC 27768^T, which is the sole valid species of the genus Faecalibacterium, with 119 similarity values of 97.18% and 96.87%, respectively. Faecalibacterium hominis 4P-15^T, an 120 121 unrecognized species of the genus Faecalibacterium, was also used as a related taxa for 16S rRNA gene analysis. Strains AF52-21^T and CM04-06^T share 16S rRNA gene sequence similarity of 122 98.65% and 97.68% with F. hominis 4P-15^T. The 16S rRNA gene sequence similarity between 123

124	strains $AF52-21^{T}$ and $CM04-06^{T}$ was 98.69% (Table 3), both these values were lower than the
125	recommended thresholds (98.7%) for classification of human-associated bacterial isolates at the
126	species level ³² . Phylogenetic analysis based on the neighbour-joining, maximum-likelihood and
127	minimum-evolution (Fig. 2, Supplementary Fig. S1 and Fig. S2, respectively) confirmed the
128	result of affiliation of the novel isolates with the species of the genus Faecalibacterium and
129	revealed that the two isolates formed a distinct lineage with <i>F. prausnitzii</i> ATCC 27768 ^T .
130	

131 Table 3. Levels of 16S rRNA gene sequence similarity and ANI values (in percentages) based

132 on BLAST for strains $AF52-21^{T}$, CM04-06^T and the phylogenetically related species *F*.

133 prausnitzii ATCC 27768^T and the unrecognized species Faecalibacterium hominis 4P-15^T.

134 Taxa: 1, F. butyricigenerans AF52-21^T; 2, F. longum CM04-06^T; 3, F. prausnitzii ATCC

Strain	Accession no.	1	2	3	4
16S rRNA gene sequ	ence similarity (%)				
AF52-21 ^T	KX146426	100	98.69	97.18	98.65
CM04-06 ^T	KX150462	98.69	100	96.87	97.68
ATCC 27768 ^T	AJ413954	97.18	96.87	100	98.35
$4P-15^{T}$	NMDCN000012L	98.65	97.68	98.35	100
ANI values (%)					
AF52-21 ^T	CNA0017730	100	90.01	83.16	85.72
CM04-06 ^T	CNA0017731	90.19	100	82.53	85.40
ATCC 27768 ^T	CNA0017732	83.32	82.58	100	85.7985
4P-15 ^T	NMDC60014083	85.72	85.40	85.7985	100

135 27768^{T} ; 4, Faecalibacterium hominis 4P-15^T.

137 Genome Analysis and function annotation

138	The assembled draft genomes of strains AF52-21 ^T and CM04-06 ^T comprised total lengths of
139	2,851,918bp and 3,011,178bp with 73 and 47 scaffolds, respectively (Table 4). The G+C contents
140	calculated from genome sequences were 57.77% and 57.51%, which were slightly higher than the
141	range reported previously for the genus Faecalibacterium (47-57 mol%) ²⁸ . CheckM analysis of
142	the genomes showed high completeness (>90%) and low contamination (<5%) (Table 4),
143	indicating these are high-quality genomes sequences. The genome comparison between strains
144	AF52-21 ^T , CM04-06 ^T , ATCC 27768 ^T and 4P-15 ^T showed ANI values ranged from 82.53% to
145	90.19% (Table 3), which were significantly below the proposed cutoff value of 95-96% for
146	delineating bacterial species, indicating that strains AF52-21 ^T and CM04-06 ^T represented novel
147	species in the genus <i>Faecalibacterium</i> . Circular maps of the two strains $AF52-21^{T}$ and $CM04-06^{T}$
148	are shown in Fig. 3 and Fig. 4.

149

150 Table 4. Genome properties of *F. butyricigenerans* AF52-21^T and *F. longum* CM04-06^T.

Feature	AF52-21 ^T	CM04-06 ^T
Accession No.	CNA0017730	CNA0017731
Approximate Genome Size (bp)	2,851,918	3,011,178
G+C content (mol%)	57.77	57.51
DNA scaffolds	73	47
N50 Length	191,233	119,299
Completeness	100	99.32
Contamination	0	0
Genes total number	2,291	2,506
Gene average length (bp)	939	920
rRNAs (5S, 16S, 23S)	4	5

tRNAs	60	61
sRNA	0	0
Genes assigned to COGs	2029	2164

151

152	For genome annotation, the distributions of the genes into clusters of orthologous groups (COGs)
153	functional categories are depicted in Fig. 5 and Table S1. Both strain strains $AF52-21^{T}$ and
154	CM04-06 ^T share identical COGs functional categories. The abundant categories comprise amino
155	acid transport and metabolism (E), carbohydrate transport and metabolism (G), cell
156	wall/membrane/envelope biogenesis (M), energy production and conversion (C), general function
157	prediction only (R), replication, recombination and repair (L), signal transduction mechanisms (T),
158	transcription (K) and translation, ribosomal structure and biogenesis (J). Annotated genes
159	associated with synthesis of diaminopimelic acid, teichoic and lipoteichoic acids and
160	lipopolysaccharides, and metabolism of polar lipids and polyamines by RAST annotation,
161	comparing strains AF52-21 ^T , CM04-06 ^T with ATCC 27768 ^T , are shown in Table 5 and Table S2 .
162	
163	Table 5. Number of genes associated with biosynthetic pathway from whole genome
164	sequences of strain <i>F. butyricigenerans</i> AF52-21 ^T and <i>F. longum</i> CM04-06 ^T and <i>F. prausnitzii</i>
165	ATCC 27768 ^T identified by RAST.

Taxa: 1, AF52-21^T; 2, CM04-06^T; 3, *F. prausnitzii* ATCC 27768^T. Data are for type strains.
Numbers of genes identified for lipopolysaccharides and mycolic acids were zero for all taxa
studied.

Genes responsible for biosynthesis	1	2	3

Diaminopimelic acid	11	12	12
Polar lipids	18	19	22
Polyamines	12	13	11
Quinones	14	16	15
Teichoic and lipoteichoic acids	3	2	3

169

170	The annotation showed that AF52-21 ^T , CM04-06 ^T , and ATCC 27768 ^T contained a complete
171	acetyl-CoA to butyrate synthesis pathway, but possessed butyryl-CoA:acetate CoA-transferase
172	activity only in the final step (Fig. 6), as discussed previously ^{33,34} . Prophages were identified
173	using the PHAST software, and the results are shown in Fig. 7. Two incomplete phage sequences
174	were detected in the AF52-21 ^T genome, one of which encodes the Phd_YefM protein, an antitoxin
175	component. Three incomplete phage sequences and two intact prophages were detected in the
176	CM04-06 ^T genome, encoding the Phd_YefM protein, relaxase/mobilisation nuclease domain,
177	bacterial mobilisation protein (MobC) /ribbon-helix-helix protein, helix-turn-helix, and predicted
178	transcriptional regulators. Moreover, the antibiotic resistance analysis indicated that $AF52-21^{T}$
179	contained macrolide antibiotic, lincosamide antibiotic, and streptogramin antibiotic genes, while
180	CM04-06 ^T and ATCC 27768 ^T contained aminoglycoside antibiotic genes (Fig. 8).

181

182 **Discussion**

The 16S rRNA genes phylogenetic, physiological results and genome description showed that the two new isolates $AF52-21^{T}$ and $CM04-06^{T}$ represent two novel species. The ANI values between AF52-21^T, $CM04-06^{T}$ and the closest related species ATCC 27768^T were 82.54% and 90.09%, respectively, which is in support of a new species delineation. The result of biochemical and

187	genomic functional analyses showed that both $AF52-21^{T}$ and $CM04-06^{T}$ are butyric
188	acid-producing bacteria.
189	Most strains in the genus Faecalibacterium exhibit a common ability to produce butyric acid,
190	peptides and other anti-inflammatory substances, which have immunomodulatory effects ^{26,27,35} .
191	Some studies have confirmed that the decreased abundance of this genus is related to the
192	occurrence and development of inflammatory bowel diseases ³⁶⁻³⁸ . Accordingly, Faecalibacterium
193	is receiving much attention as one of the candidate next-generation probiotics (NGPs) , which can
194	be used for disease treatment ^{39,40} .
195	Previous studies based on comparative genomics from isolates suggested the wide diversity of this
196	genus, with the presence of at least two phylotypes in <i>F. prausnitzii</i> ²⁹ . A recent study analysing the
197	Faecalibacterium-like MAGs, proposed that Faecalibacterium from the human gut can be divided
198	into 12 clades ⁴⁰ . These studies have expanded the diversity of <i>Faecalibacterium</i> and proposed that
199	different phylotypes have different functions, which results in different contributions to health or
200	diseases.
201	Moreover, as a candidate taxa for the NGPs, the Faecalibacterium isolates can be used for in-vitro
202	functional verification and animal model experiments to further explore its probiotic functions,
203	and ultimately expected to be used in clinical disease intervention.
204	

204

205 Description of Faecalibacterium butyricigenerans sp. nov.

- 206 *Faecalibacterium butyricigenerans* (bu.ty.ri.ci.ge'ne.rans. N.L. n. *acidum butyricum* butyric
- 207 acid; L. part. adj. generans, producing; N.L. adj. butyricigenerans, butyric acid-producing;
- 208 referring to its production of butyric acid)

209	Cells of strain AF52-21 ^T are Gram-stain-negative, non-motile, non-spore-forming and rod-
210	shaped. Strictly anaerobic and catalase negative. Colonies on PYG agar are round, creamy white
211	to yellowish, convex and opaque with entire margins and colony size is approximately 1.0-2.0 mm
212	in diameter after incubation at 37°C for 2 days. Cells are able to grow at 20-42°C with optimum
213	temperature at 37°C. The pH range for growth is 6.0-7.5 (optimum at 7.0-7.5). Growth occurs at
214	NaCl concentrations 0-1%. The strain is positive for the assimilation of cellobiose, D-lactose,
215	D-maltose, D-mannitol, D-mannose, D-trehalose, glycogen, inulin, D-fructose, D-fucose,
216	D-galactose, D-glucose, inositol and methyl- β -D-xylopyranoside, but negative for amygdalin,
217	arbutin, D-adonitol, D-arabinose, D-arabitol, D-lyxose, D-melezitose, D-melibiose, D-raffinose,
218	D-ribose, D-sorbitol, D-tagatose, D-turanose, dulcitol, D-xylose, erythritol, gentiobiose, gluconate,
219	glycerol, L-arabinose, L-arabitol, L-fucose, L-rhamnose, L-sorbose, L-xylose,
220	methyl-D-glucopyranoside, methyl- α -D-mannopyranoside, N-acetyl-glucosamine, salicin, starch,
221	sucrose, xylitol, 2-ketogluconate and 5-ketogluconate. In enzymatic activity tests, strain AF52-21 ^T
222	is positive for naphthol-AS-BI-phosphohydrolase, β -glucuronidase and β -glucosidase, and
223	negative for alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine
224	arylamidase, valine arylamidase, cystine arylamidase, trypsin, α -chymotrypsin, acid phosphatase,
225	naphthol-AS-BI-phosphohydrolase, α -galactosidase, β -galactosidase, α -glucosidase,
226	α -mannosidase and β -fucosidase. Indole is not produced. Positive for hydrolysis of esculin and
227	negative for gelatin. Formic acid, acetic acid, butyric acid and lactic acid are the fermentation
228	products. The major fatty acids are $C_{14:0}$, $C_{16:0}$, $C_{18:1} \omega 7c$, $C_{18:1} \omega 9c$ and iso- $C_{19:0}$.
229	In the result of RAST annotation, 11 genes/proteins are associated with biosynthesis of DAP,
230	including A-bydroxy-tetrabydrodinicolinate reductase (EC 1.17.1.8)

230 including 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8),

231	4-hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7), aspartate-semialdehyde dehydrogenase
232	(EC 1.2.1.11), aspartokinase (EC 2.7.2.4) (2 copies), diaminopimelate decarboxylase (EC
233	4.1.1.20), diaminopimelate epimerase (EC 5.1.1.7), L, L-diaminopimelate aminotransferase (EC
234	2.6.1.83), <i>N</i> -acetyl-L, L-diaminopimelate deacetylase (EC 3.5.1.47),
235	UDP-N-acetylmuramoylalanyl-D-glutamate-2, 6-diaminopimelate ligase (EC 6.3.2.13) and
236	UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-diaminopimelate-D-alanyl-D-alanine ligase (EC
237	6.3.2.10). 18 genes/proteins are associated with biosynthesis of polar lipids, including
238	1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51) (2 copies), ABC-type
239	multidrug/protein/lipid transport system, ATPase component, acyl carrier protein (3 copies),
240	acyl-phosphate:glycerol-3-phosphate O-acyltransferase PlsY, cardiolipin synthetase (EC 2.7.8) (3
241	copies), CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase (EC 2.7.8.5),
242	dihydroxyacetone kinase family protein, glycerol kinase (EC 2.7.1.30), glycerol-3-phosphate
243	dehydrogenase $[NAD(P)^{+}]$ (EC 1.1.1.94), phosphate:acyl-ACP acyltransferase PlsX,
244	phosphatidate cytidylyltransferase (EC 2.7.7.41) and phosphatidylglycerophosphatase B (EC
245	3.1.3.27) (2 copies). 12 genes/proteins are associated with biosynthesis of polyamines, including
246	5'-methylthioadenosine nucleosidase (EC 3.2.2.16), S-adenosylhomocysteine nucleosidase (EC
247	3.2.2.9), ABC transporter, periplasmic spermidine putrescine-binding protein PotD (TC
248	3.A.1.11.1), agmatinase (EC 3.5.3.11), arginine decarboxylase (EC 4.1.1.19), arginine/ornithine
249	antiporter ArcD (2 copies), carboxynorspermidine decarboxylase, putative (EC 4.1.1),
250	carboxynorspermidine dehydrogenase, putative (EC 1.1.1), putrescine transport ATP-binding
251	protein PotA (TC 3.A.1.11.1), spermidine putrescine ABC transporter permease component PotB
252	(TC 3.A.1.11.1), spermidine putrescine ABC transporter permease component potC

253	(TC3.A.1.11.1) and spermidine synthase (EC 2.5.1.16). 3 genes/proteins are associated with
254	biosynthesis of teichoic and lipoteichoic acids, including cell wall teichoic acid glycosylation
255	protein gtcA, teichoic acid export ATP-binding protein TagH (EC 3.6.3.40) and membrane protein
256	involved in the export of O-antigen, teichoic acid lipoteichoic acids. 14 genes/proteins are
257	associated with biosynthesis of quinones, including 2-heptaprenyl-1,4-naphthoquinone
258	methyltransferase (EC 2.1.1.163), electron transport complex protein RnfA (2 copies), electron
259	transport complex protein RnfB, electron transport complex protein RnfC, electron transport
260	complex protein RnfD (2 copies), electron transport complex protein RnfE (2 copies), electron
261	transport complex protein RnfG, F420H2:quinone oxidoreductase, heptaprenyl diphosphate
262	synthase component I (EC 2.5.1.30), microsomal dipeptidase (EC 3.4.13.19) and undecaprenyl
263	diphosphate synthase (EC 2.5.1.31). There are no genes responsible for biosynthesis of
264	lipopolysaccharides or mycolic acids. Additional annotations showed that the $AF52-21^{T}$ genome
265	contains a complete butyrate synthesis pathway, two prophage remnants, and three antibiotic
266	genes.

267 The type strain, $AF52-21^{T}$ (=CGMCC 1.5206^{T} = DSM 103434^{T}), was isolated from human 268 gut. The G+C content of the genomic DNA is 57.77 mol% as calculated from whole genome 269 sequencing.

270

271 Description of Faecalibacterium longum sp. nov.

Faecalibacterium longum (lon'gum. L. neut. adj. *longum* long, the shape of the cells)
Cells are Gram-stain-negative, non-motile, non-spore forming, long rod in shape. Strictly
anaerobic. Catalase and urease are negative. Colonies are round, yellowish, slightly convex,

275	opaque with entire margins with 2.0 mm in diameter on PYG agar for incubation at 37°C for 48 h
276	under anaerobic condition. The strain showed growth at 30-45°C (optimum temperature is 37°C).
277	Growth is observed at pH 5.0-8.0 (optimum pH is 7.0-7.5). NaCl is tolerated with concentrations
278	up to 3%. Acid is produced from D-maltose, D-mannose, D-raffinose, D-trehalose and salicin, but
279	not from amygdalin, arbutin, cellobiose, D-adonitol, D-arabinose, D-arabitol, D-cellobiose,
280	D-fructose, D-fucose, D-galactose, D-glucose, D-lactose, D-lyxose, D-maltose, D-mannitol,
281	D-mannose, D-melezitose, D-melibiose, D-raffinose, D-ribose, D-sorbitol, D-sucrose, D-tagatose,
282	D-turanose, dulcitol, D-xylose, erythritol, gentiobiose, gluconate, glycerol, glycogen, inositol,
283	inulin, L-arabinose, L-arabitol, L-fucose, L-rhamnose, L-sorbose, L-xylose,
284	methyl-D-glucopyranoside, methyl- α -D-mannopyranoside, methyl- β -D-xylopyranoside,
285	N-acetyl-glucosamine, salicin, starch, sucrose, xylitol, 2-ketogluconate and 5-ketogluconate. In the
286	API ZYM strip, strain showed weakly positive enzyme activities for β -glucuronidase and
287	<i>N</i> -acetyl- β -glucosaminidase, but negative for alkaline phosphatase, esterase (C4), esterase lipase
288	(C8), lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin,
289	α -chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α -galactosidase,
290	β -galactosidase, α -glucosidase, β -glucosidase, α -mannosidase and β -fucosidase. Indole is not
291	produced. Gelatin is hydrolysed, but aesculin is not. Major end products are acetic acid, formic
292	acid, butyric acid and lactic acid. The major fatty acids (constituting >5% of the total) are $C_{16:0}$,
293	$C_{18:1} \omega 7c$, $C_{18:1} \omega 9c$, iso- $C_{19:0}$ and iso- $C_{17:1}$ I/anteiso B.
294	In the result of RAST annotation, 12 genes/proteins are associated with biosynthesis of DAP,
295	including 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8),

296 4-hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7) (2 copies), aspartate-semialdehyde

297	dehydrogenase (EC 1.2.1.11), aspartokinase (EC 2.7.2.4) (2 copies), diaminopimelate
298	decarboxylase (EC 4.1.1.20), diaminopimelate epimerase (EC 5.1.1.7), L, L-diaminopimelate
299	aminotransferase (EC 2.6.1.83), N-acetyl-L, L-diaminopimelate deacetylase (EC 3.5.1.47),
300	UDP-N-acetylmuramoylalanyl-D-glutamate-2, 6-diaminopimelate ligase (EC 6.3.2.13) and
301	UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-diaminopimelate-D-alanyl-D-alanine ligase (EC
302	6.3.2.10). 19 genes/proteins are associated with biosynthesis of polar lipids, including
303	1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51) (2 copies), ABC-type
304	multidrug/protein/lipid transport system, ATPase component, acyl carrier protein (3 copies),
305	acyl-phosphate:glycerol-3-phosphate O-acyltransferase PlsY, cardiolipin synthetase (EC 2.7.8) (2
306	copies), CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase (EC 2.7.8.5),
307	dihydroxyacetone kinase family protein, glycerate kinase (EC 2.7.1.31), glycerol kinase (EC
308	2.7.1.30), glycerol-3-phosphate dehydrogenase [NAD(P) ⁺] (EC 1.1.1.94), octaprenyl diphosphate
309	synthase (EC 2.5.1.90) / gimethylallyltransferase (EC 2.5.1.1) / (2E,6E)-farnesyl diphosphate
310	synthase (EC 2.5.1.10) / geranylgeranyl pyrophosphate synthetase (EC 2.5.1.29),
311	phosphate:acyl-ACP acyltransferase PlsX, phosphatidate cytidylyltransferase (EC 2.7.7.41) and
312	phosphatidylglycerophosphatase B (EC 3.1.3.27) (2 copies). 13 genes/proteins are associated with
313	biosynthesis of polyamines, including 5'-methylthioadenosine nucleosidase (EC 3.2.2.16) @
314	S-adenosylhomocysteine nucleosidase (EC 3.2.2.9), ABC transporter, periplasmic spermidine
315	putrescine-binding protein PotD (TC 3.A.1.11.1), agmatinase (EC 3.5.3.11), arginine
316	decarboxylase (EC 4.1.1.19), arginine/ornithine antiporter ArcD (3 copies), carboxynorspermidine
317	decarboxylase, putative (EC 4.1.1), carboxynorspermidine dehydrogenase, putative (EC 1.1.1),
318	putrescine transport ATP-binding protein PotA (TC 3.A.1.11.1), spermidine putrescine ABC

319	transporter permease component PotB (TC 3.A.1.11.1), spermidine putrescine ABC transporter
320	permease component potC (TC3.A.1.11.1) and spermidine synthase (EC 2.5.1.16). 2
321	genes/proteins are associated with biosynthesis of teichoic and lipoteichoic acids, including cell
322	wall teichoic acid glycosylation protein gtcA and teichoic acid export ATP-binding protein TagH
323	(EC 3.6.3.40). 16 genes/proteins are associated with biosynthesis of quinones, including
324	2-heptaprenyl-1,4-naphthoquinone methyltransferase (EC 2.1.1.163), electron transport complex
325	protein RnfA (2 copies), electron transport complex protein RnfB, electron transport complex
326	protein RnfC, electron transport complex protein RnfD (2 copies), electron transport complex
327	protein RnfE (2 copies), electron transport complex protein RnfG, heptaprenyl diphosphate
328	synthase component I (EC 2.5.1.30), microsomal dipeptidase (EC 3.4.13.19), octaprenyl
329	diphosphate synthase (EC 2.5.1.90) / dimethylallyltransferase (EC 2.5.1.1) / (2E,6E)-farnesyl
330	diphosphate synthase (EC 2.5.1.10) / geranylgeranyl pyrophosphate synthetase (EC 2.5.1.29)
331	ubiquinone/menaquinone biosynthesis methyltransferase UbiE (EC 2.1.1) @
332	2-heptaprenyl-1,4-naphthoquinone methyltransferase MenG (EC 2.1.1.163) (2 copies) and
333	undecaprenyl diphosphate synthase (EC 2.5.1.31). There are no genes responsible for biosynthesis
334	of lipopolysaccharides or mycolic acids. Additional annotations showed that the CM04-06 ^T
335	genome contains a complete butyrate synthesis pathway, three phage remnants, two intact
336	prophages, and aminoglycoside antibiotic genes.
337	The type strain CM04.06 ^T (-CGMCC 1.5208 ^T - DSM 103432 ^T) was isolated from human

The type strain, CM04-06^T (=CGMCC 1.5208^{T} = DSM 103432^{T}), was isolated from human gut. The G+C content of the genomic DNA is 57.51 mol% as calculated from whole genome sequencing.

Materials and Methods 341

Origin of bacterial strains 342

343	Faeces samples were collected from two healthy donors living in Shenzhen, Guangdong province,
344	China (GPS positioning of the samples collection site is 37°35'37"N/114°15'32"E) and preserved
345	refrigerated and anaerobically until processed. The collection of the samples was approved by the
346	Institutional Review Board on Bioethics and Biosafety of BGI under number BGI-IRB17005-T1.
347	All protocols were in compliance with the Declaration of Helsinki and explicit informed consent
348	was obtained from the participants. 1 g of faecal sample was diluted with 0.1 M PBS (pH 7,
349	supplemented with 0.5% cysteine) and spread onto modified peptone-yeast extract-glucose
350	(MPYG, supplemented with 5g/L sodium acetate in DSMZ 104 medium) agar plates in an
351	anaerobic box (Bactron Anaerobic Chamber, Bactron 2-2, shellab, USA). The plates were
352	incubated at 37°C under anaerobic conditions (90% $N_2,5\%$ CO_2 and 5% H_2, v/v) for 3 to 5 days.
353	Single colonies were randomly picked and purified by repetitive subculturing on the new plates
354	containing the same medium and incubated under the same conditions as described above. Among
355	the pure cultures, two isolates, designated as $AF52-21^{T}$ and $CM04-06^{T}$, respectively, were
356	obtained and subsequently maintained in 20% (v/v) glycerol and frozen at -80°C.

357

Phenotypic characterization

The morphological characteristics of strains AF52-21^T and CM04-06^T were performed on cultures 358 359 grown on MPYG medium at 37°C. Bacterial cell shape was examined by phase contrast 360 microscopy (Olympus BX51, Japan) during the exponential phase of growth. Cell motility was examined using semi-solid MPYG medium containing 0.5% agar⁴¹. The Gram reaction was 361 362 carried out using a Gram-staining kit (Solarbio, China). Spore formation and presence of flagella

363	were determined by staining using spore stain kit and flagella stain kit supplied by Solarbio (China)
364	following the manufacturer's instructions. Colony morphology was observed following growth of
365	the cultures on PYG agar for 2 days at 37°C. Optimal temperature for growth was determined
366	using growth in MPYG medium at 4, 10, 20, 25, 30, 35, 37, 45 and 50°C for 7 days. The pH range
367	for growth was also measured in MPYG medium covering the range of pH 3.0–10.0 (at interval of
368	0.5 pH units) at 37°C for 7 days. Growth at various NaCl concentrations (0-6%, in increments of
369	1.0%) was performed for determining tolerance to NaCl. Bile tolerance was measured at different
370	bile salt concentrations (0-5%, at an interval of 1.0%) in the MPYG medium. Catalase activity was
371	assessed by gas formation after dropping the fresh cells in 3% $\mathrm{H_2O_2}$ solution. Biochemical
372	properties, including utilization of substrates, acid production from carbohydrates, enzyme
373	activities, hydrolytic activities, were determined using the API 20A, API 50CHL and API ZYM
374	systems ((bioMérieux Inc., Marcy-l'Étoile, France) according to the manufacturer's instructions
375	with modification by adding sodium acetate at concentration of 0.5% in all tests. The reference
376	type strain was tested under the same condition with strains $AF52-21^{T}$ and $CM04-06^{T}$.

377 Chemotaxonomic characteristics

378 Chemotaxonomic features were investigated by analyses of cellular fatty acids. Biomasses of 379 strains $AF52-21^{T}$ and $CM04-06^{T}$ were harvested from cells growing in MPYG at 37°C for 2 days.

- 380 Whole cell fatty acid methyl esters (FAMEs) were extracted, separated and identified according to
- the MIDI Microbial Identifications System and performed by CGMGG (China General
 Microbiological Culture Collection Center, Beijing, China) identification service.

Fermentation products analysis

384 For analysis the metabolic end products from glucose fermentation, including SCFAs and organic

385	acids, cells were cultured in MPYG broth at 37°C for 2 days. Supernatant harvested from the
386	cultures centrifuged at 10000g for 10min was used for determining SCFAs and organic acids.
387	SCFAs detection was performed using a gas chromatograph (GC-7890B, Agilent) equipped with a
388	flame ionization detector (FID) and capillary column packed with Agilent
389	19091N-133HP-INNOWax porapak HP-INNOWax (30m × 0.25mm × 0.25um). Organic acids
390	were analysed by equipping capillary column packed with Agilent 122-5532G DB-5ms (40m \times
391	0.25mm × 0.25 um).

392 PCR of bacterial 16S rRNA genes and phylogenetic analysis

Total genomic DNA of strains AF52-21^T and CM04-06^T were extracted using the standard 393 phenol:chloroform method as described by Cheng and Jiang⁴². The complete 16S rRNA genes 394 were amplified and sequenced according to the method previously described⁴³. Primers used for 395 396 amplification of 16S rRNA genes were 27f (5'-AGAGTTTGATCATGGCTCAG-3') and 1492r 397 (5'-TAGGGTTACCTTGTTACGACTT-3'). The obtained 16S rRNA gene sequences of strains $AF52-21^{T}$ and CM04-06^T were compared with the sequences of type strains retrieved from the 398 EzBioCloud database (https://www.ezbiocloud.net/)⁴⁴ using the BLAST program to determine the 399 400 nearest phylogenetic neighbours and 16S rRNA gene sequence similarity values. Phylogenetic 401 trees were reconstructed by using the neighbour-joining method⁴⁵, maximum-likelihood method⁴⁶ and minimum-evolution method⁴⁷ with the MEGA X program package⁴⁸, after Clustal W multiple 402 403 alignment of the sequences. Robustness of the phylogenetic trees was evaluated by using the bootstrap resampling method (1000 resamplings) of Felsenstein⁴⁹. 404

405 Genome sequencing, assembly, and annotation of isolates

406 For genome sequences of strains AF52-21^T and CM04-06^T, genome DNA was prepared following

407	the method described above. The draft genome was sequenced on an Ion Proton Technology (Life
408	Technologies) platform at BGI-Shenzhen (Shenzhen, China) after constructing a paired-end DNA
409	library with insert size of 500 bp. The resulting reads were assembled using the SOAPdenovo 2
410	package ⁵⁰ . CheckM (v1.1.2) was used to estimate genome completeness and contamination ⁵¹ .
411	Genome assemblies were visualized using CGView Server ⁵²
412	(http://stothard.afns.ualberta.ca/cgview_server/index.html). Annotation of the assembled genome
413	was performed using the Rapid Annotation Using Subsystem Technology (RAST) server ⁵³ and
414	COG database ⁵⁴ . The G+C content in genomic DNA was calculated from the whole genome
415	sequence. The genes in known pathways from acetyl-CoA to butyrate were annotated by BLAST
416	(evalue=1e-5, identity \geq 60%, coverage \geq 90%) ³³ . A search for prophages was performed by PHAST
417	(<u>http://phast.wishartlab.com/</u>) ⁵⁵ . Antibiotic resistance was analysed using the CARD database ⁵⁶ .

418 Average nucleotide identities

419 Genome relatedness was investigated by calculating average nucleotide identity (ANI)⁵⁷, with a

420 value of 95-96% proposed for delineating bacterial species, corresponding to the traditional 70%

421 DNA-DNA reassociation standard^{58,59}. The ANI values between strains AF52-21^T, CM04-06^T,

422 and closely related species were determined using the $FastANI^{60}$.

423

424 **References**

425	1	Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to
426		allergic asthma. EMBO Rep 13, 440-447, doi:10.1038/embor.2012.32 (2012).
427	2	Costello, E. K. et al. Bacterial community variation in human body habitats across space and
428		time. Science 326, 1694-1697, doi:10.1126/science.1177486 (2009).
429	3	Robles Alonso, V. & Guarner, F. Linking the gut microbiota to human health. Br J Nutr 109
430		Suppl 2, S21-26, doi:10.1017/S0007114512005235 (2013).
431	4	Tagliabue, A. & Elli, M. The role of gut microbiota in human obesity: recent findings and
432		future perspectives. Nutr Metab Cardiovasc Dis 23, 160-168,

433	_	doi:10.1016/j.numecd.2012.09.002 (2013).
434	5	Ringel-Kulka, T. et al. Intestinal microbiota in healthy U.S. young children and adultsa high
435		throughput microarray analysis. PLoS One 8, e64315, doi:10.1371/journal.pone.0064315
436		(2013).
437	6	Voreades, N., Kozil, A. & Weir, T. L. Diet and the development of the human intestinal
438		microbiome. Front Microbiol 5, 494, doi:10.3389/fmicb.2014.00494 (2014).
439	7	Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait
440		shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107,
441		18933-18938, doi:10.1073/pnas.1007028107 (2010).
442	8	Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly.
443		Nature 488, 178-184, doi:10.1038/nature11319 (2012).
444	9	De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study
445		in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 14691-14696,
446		doi:10.1073/pnas.1005963107 (2010).
447	10	Antunes, L. C. & Finlay, B. B. A comparative analysis of the effect of antibiotic treatment and
448		enteric infection on intestinal homeostasis. Gut Microbes 2, 105-108 (2011).
449	11	Wilson, I. D. & Nicholson, J. K. The role of gut microbiota in drug response. Curr Pharm Des
450		15 , 1519-1523 (2009).
451	12	Adlerberth, I. Factors influencing the establishment of the intestinal microbiota in infancy.
452		Nestle Nutr Workshop Ser Pediatr Program 62, 13-29; discussion 29-33,
453		doi:10.1159/000146245 (2008).
454	13	DiBaise, J. K. et al. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc
455		83 , 460-469, doi:10.4065/83.4.460 (2008).
456	14	Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes
457		associated with obesity. Nature 444, 1022-1023, doi:10.1038/4441022a (2006).
458	15	Parekh, P. J., Arusi, E., Vinik, A. I. & Johnson, D. A. The role and influence of gut microbiota
459		in pathogenesis and management of obesity and metabolic syndrome. Front Endocrinol
460		(Lausanne) 5, 47, doi:10.3389/fendo.2014.00047 (2014).
461	16	Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from
462		non-diabetic adults. <i>PLoS One</i> 5 , e9085, doi:10.1371/journal.pone.0009085 (2010).
463	17	Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes.
464		<i>Nature</i> 490 , 55-60, doi:10.1038/nature11450 (2012).
465	18	Conte, M. P. et al. Gut-associated bacterial microbiota in paediatric patients with
466		inflammatory bowel disease. Gut 55, 1760-1767, doi:10.1136/gut.2005.078824 (2006).
467	19	Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and
468		their unaffected relatives. Gut 60, 631-637, doi:10.1136/gut.2010.223263 (2011).
469	20	Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma
470		sequence. <i>Nat Commun</i> 6 , 6528, doi:10.1038/ncomms7528 (2015).
471	21	Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal
472		cancer. <i>Nat Rev Microbiol</i> 12 , 661-672, doi:10.1038/nrmicro3344 (2014).
473	22	Aron-Wisnewsky, J., Gaborit, B., Dutour, A. & Clement, K. Gut microbiota and non-alcoholic
474		fatty liver disease: new insights. <i>Clin Microbiol Infect</i> 19 , 338-348,
475		doi:10.1111/1469-0691.12140 (2013).
476	23	Gkolfakis, P., Dimitriadis, G. & Triantafyllou, K. Gut microbiota and non-alcoholic fatty liver
770	23	Skonakis, 1., Dimenadis, S. & Thanarynou, K. Out incrotota and non-aconolic fatty liver

477		disaasa Hanatahiliam Banaraat Dis Let 14 572 581 (2015)
	24	disease. <i>Hepatobiliary Pancreat Dis Int</i> 14 , 572-581 (2015).
478	24	Ríos-Covián, D. <i>et al.</i> Intestinal Short Chain Fatty Acids and their Link with Diet and Human
479	25	Health. Frontiers in Microbiology 7, doi:10.3389/fmicb.2016.00185 (2016).
480	25	Puertollano, E., Kolida, S. & Yaqoob, P. Biological significance of short-chain fatty acid
481		metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care 17, 139-144,
482	26	doi:10.1097/MCO.0000000000025 (2014).
483	26	Quevrain, E. <i>et al.</i> Identification of an anti-inflammatory protein from Faecalibacterium
484		prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 65, 415-425,
485	07	doi:10.1136/gutjnl-2014-307649 (2016).
486	27	Sokol, H. <i>et al.</i> Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium
487		identified by gut microbiota analysis of Crohn disease patients. <i>Proc Natl Acad Sci U S A</i> 105 ,
488	• •	16731-16736, doi:10.1073/pnas.0804812105 (2008).
489	28	Duncan, S. H., Hold, G. L., Harmsen, H. J., Stewart, C. S. & Flint, H. J. Growth requirements
490		and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as
491		Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 2141-2146,
492	• •	doi:10.1099/00207713-52-6-2141 (2002).
493	29	Fitzgerald, C. B. <i>et al.</i> Comparative analysis of Faecalibacterium prausnitzii genomes shows a
494		high level of genome plasticity and warrants separation into new species-level taxa. BMC
495	•	<i>Genomics</i> 19 , 931, doi:10.1186/s12864-018-5313-6 (2018).
496	30	Chang Liu, MX. D., Rexiding Abuduaini, Hai-Ying Yu, Dan-Hua Li, Yu-Jing Wang, Nan
497		Zhou, Min-Zhi Jiang, Peng-Xia Niu, Shan-Shan Han, Hong-He Chen, Wen-Yu Shi, Linhuan
498		Wu, Yu-Hua Xin, Juncai Ma, Yuguang Zhou, Cheng-Ying Jiang, Hong-Wei Liu, Shuang-Jiang
499		Liu. Enlightening the Taxonomy Darkness of Human Gut Microbiomes With Cultured
500		Biobank. Research Square, doi:10.21203/rs.3.rs-74101/v1 (2020).
501	31	Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin
502		<i>Microbiol</i> 16 , 255-261, doi:10.1016/j.mib.2013.06.003 (2013).
503	32	Rossi-Tamisier, M., Fournier, PE., Benamar, S. & Raoult, D. Cautionary tale of using 16S
504		rRNA gene sequence similarity values in identification of human-associated bacterial species.
505		International Journal of Systematic and Evolutionary Microbiology 65, 1929-1934,
506		doi:10.1099/ijs.0.000161 (2015).
507	33	Vital, M., Howe, A. C. & Tiedje, J. M. Revealing the bacterial butyrate synthesis pathways by
508		analyzing (meta)genomic data. <i>mBio</i> 5 , e00889, doi:10.1128/mBio.00889-14 (2014).
509	34	Zou, Y. <i>et al.</i> 1,520 reference genomes from cultivated human gut bacteria enable functional
510		microbiome analyses. <i>Nat Biotechnol</i> 37 , 179-185, doi:10.1038/s41587-018-0008-8 (2019).
511	35	Zhou, L. <i>et al.</i> Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance
512		and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflamm Bowel Dis
513		24 , 1926-1940, doi:10.1093/ibd/izy182 (2018).
514	36	Fujimoto, T. et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota
515	25	of Crohn's disease. J Gastroenterol Hepatol 28, 613-619, doi:10.1111/jgh.12073 (2013).
516	37	Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and
517		Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63,
518	a -	1275-1283, doi:10.1136/gutjnl-2013-304833 (2014).
519	38	Lopez-Siles, M. et al. Alterations in the Abundance and Co-occurrence of Akkermansia
520		muciniphila and Faecalibacterium prausnitzii in the Colonic Mucosa of Inflammatory Bowel

521		Disease Subjects. Front Cell Infect Microbiol 8, 281, doi:10.3389/fcimb.2018.00281 (2018).
522	39	Chang, C. J. <i>et al.</i> Next generation probiotics in disease amelioration. <i>J Food Drug Anal</i> 27,
523	39	615-622, doi:10.1016/j.jfda.2018.12.011 (2019).
525 524	40	De Filippis, F., Pasolli, E. & Ercolini, D. Newly Explored Faecalibacterium Diversity Is
525	40	Connected to Age, Lifestyle, Geography, and Disease. <i>Curr Biol</i> ,
525 526		doi:10.1016/j.cub.2020.09.063 (2020).
520 527	41	Tittsler, R. P. & Sandholzer, L. A. The Use of Semi-solid Agar for the Detection of Bacterial
527 528	41	Motility. J Bacteriol 31 , 575-580 (1936).
528 529	42	Cheng, H. R. & Jiang, N. Extremely rapid extraction of DNA from bacteria and yeasts.
529	42	<i>Biotechnol Lett</i> 28 , 55-59, doi:10.1007/s10529-005-4688-z (2006).
530 531	43	Zou, Y. <i>et al.</i> Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage.
532	43	<i>Int J Syst Evol Microbiol</i> 63 , 1817-1823, doi:10.1099/ijs.0.041111-0 (2013).
	4.4	-
533	44	Yoon, S. H. <i>et al.</i> Introducing EzBioCloud: a taxonomically united database of 16S rRNA
534 535		gene sequences and whole-genome assemblies. <i>Int J Syst Evol Microbiol</i> 67 , 1613-1617, doi:10.1099/ijsem.0.001755 (2017).
536	45	Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing
537	10	phylogenetic trees. <i>Mol Biol Evol</i> 4 , 406-425 (1987).
538	46	Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J
539	10	Mol Evol 17, 368-376 (1981).
540	47	Rzhetsky, A. & Nei, M. Theoretical foundation of the minimum-evolution method of
541	.,	phylogenetic inference. <i>Mol Biol Evol</i> 10 , 1073-1095 (1993).
542	48	Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary
543	10	Genetics Analysis across Computing Platforms. <i>Mol Biol Evol</i> 35 , 1547-1549,
544		doi:10.1093/molbev/msy096 (2018).
545	49	Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. <i>Evolution</i>
546		39 , 783-791, doi:10.2307/2408678 (1985).
547	50	Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo
548		assembler. Gigascience 1, 18, doi:10.1186/2047-217X-1-18 (2012).
549	51	Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
550		assessing the quality of microbial genomes recovered from isolates, single cells, and
551		metagenomes. Genome Res 25, 1043-1055, doi:10.1101/gr.186072.114 (2015).
552	52	Grant, J. R. & Stothard, P. The CGView Server: a comparative genomics tool for circular
553		genomes. Nucleic Acids Res 36, W181-184, doi:10.1093/nar/gkn179 (2008).
554	53	Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC
555		<i>Genomics</i> 9 , 75, doi:10.1186/1471-2164-9-75 (2008).
556	54	Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome
557		coverage and improved protein family annotation in the COG database. <i>Nucleic Acids Res</i> 43 ,
558		D261-269, doi:10.1093/nar/gku1223 (2015).
559	55	Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J. & Wishart, D. S. PHAST: a fast phage search
560		tool. Nucleic Acids Res 39 , W347-352, doi:10.1093/nar/gkr485 (2011).
561	56	Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive
562		antibiotic resistance database. Nucleic Acids Res 45, D566-D573, doi:10.1093/nar/gkw1004
563		(2017).
564	57	Richter, M. & Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic

565		species definition. Proc Natl Acad Sci U S A 106, 19126-19131,
566		doi:10.1073/pnas.0906412106 (2009).
567	58	Goris, J. et al. DNA-DNA hybridization values and their relationship to whole-genome
568		sequence similarities. Int J Syst Evol Microbiol 57, 81-91, doi:10.1099/ijs.0.64483-0 (2007).
569	59	Kim, M., Oh, H. S., Park, S. C. & Chun, J. Towards a taxonomic coherence between average
570		nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of
571		prokaryotes. Int J Syst Evol Microbiol 64, 346-351, doi:10.1099/ijs.0.059774-0 (2014).
572	60	Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput
573		ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9,
574		5114, doi:10.1038/s41467-018-07641-9 (2018).
575	61	Guo, X. et al. CNSA: a data repository for archiving omics data. Database (Oxford) 2020,
576		doi:10.1093/database/baaa055 (2020).
577	62	Chen, F. Z. et al. CNGBdb: China National GeneBank DataBase. Yi Chuan 42, 799-809,
578		doi:10.16288/j.yczz.20-080 (2020).
579		

580 Acknowledgment

581 This work was supported by grants from National Key Research and Development Program of

582 China (No. 2018YFC1313801) and Natural Science Foundation of Guangdong Province, China

583 (No. 2019B020230001). We also thank the colleagues at BGI-Shenzhen for sample collection, and

- 584 discussions, and China National Genebank (CNGB) Shenzhen for DNA extraction, library
- 585 construction, and sequencing.

586 Author contributions

587 Conceived and designed the experiments: Y.Z. and L.X. Performed the experiments: Y.Z., W.X.,

- 588 and Y.D. Analyzed the data: Y.Z., L.X., and X.L. Contributed reagents/materials/analysis tools:
- 589 Y.Z., W.X. and Y.D. Wrote the paper: Y.Z. and X.L. Revised the paper: K.K.

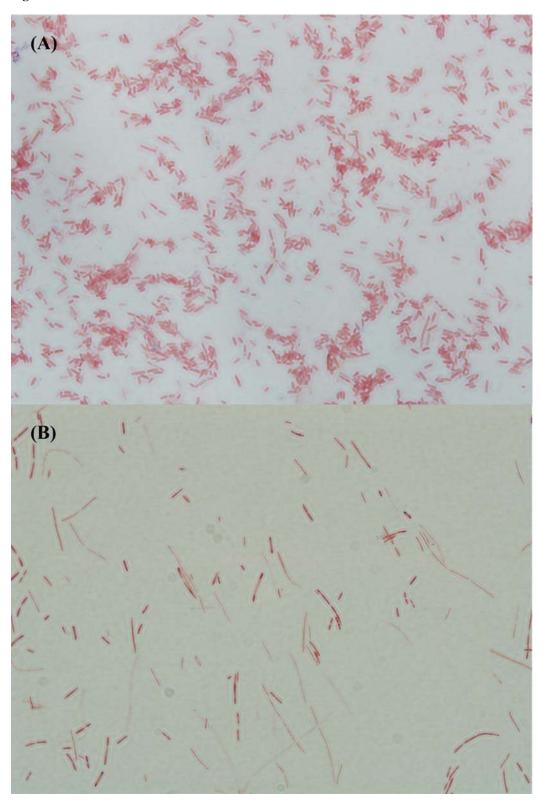
590

591 Data Availability Statement

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences determined in
 this study are: AF52-21^T (KX146426) and CM04-06^T (KX150462). The data of draft genome

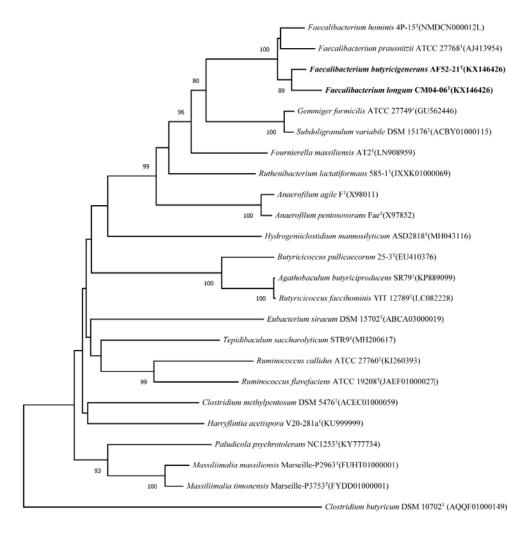
- 594 sequences have been deposited into CNGB Sequence Archive (CNSA)⁶¹ of China National
- 595 GeneBank DataBase (CNGBdb)⁶² with accession number CNA0017730 and CNA0017731 for
- 596 strains $AF52-21^{T}$ and $CM04-06^{T}$, respectively.

598 Figure Legends


- 599 Figure 1. Micrographs of strains AF52-21^T, CM04-06^T after Gram staining.
- 600 A, $AF52-21^{T}$; B, CM04-06^T.
- 601
- 602 Figure 2. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing
- 603 the phylogenetic relationships of strains $AF52-21^{T}$, CM04-06^T and the representatives of
- 604 several other related taxa within the family *Ruminococcaceae*.
- 605 Clostridium butyricum DSM 10702^T (AQQF01000149) was used as an out-group. Bootstrap
- values based on 1000 replications higher than 70% are shown at the branching points. Bar,
- 607 substitutions per nucleotide position.
- 608
- 609 Figure 3. Circular map of AF52-21^T.
- 610 Innermost circle, GC skew; circle 2, G+C content; circle 3, contigs; circles 4, predicted prophage
- 611 remnants; circle 5, tmRNA, tRNA and rRNA genes; circles 6, CDS; circles 7-9, homologous
- 612 genomic segments from CM04-06^T, *F. prausnitzii* ATCC 27768^T and *F. hominis* 4P-15^T.
- 613

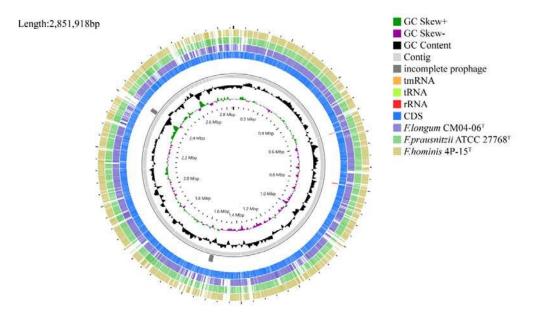
614 **Figure 4. Circular map of CM04-06**^T.

- 615 Innermost circle, GC skew; circle 2, G+C content; circle 3, contigs; circles 4, predicted prophage
- 616 remnants; circle 5, tmRNA, tRNA and rRNA genes; circles 6, CDS; circles 7-9, homologous
- 617 genomic segments from AF52-21^T, *F. prausnitzii* ATCC 27768^T and *F.hominis* 4P-15^T.
- 618
- 619 Figure 5. Comparison of COG functional categories of strains AF52-21^T, CM04-06^T and the

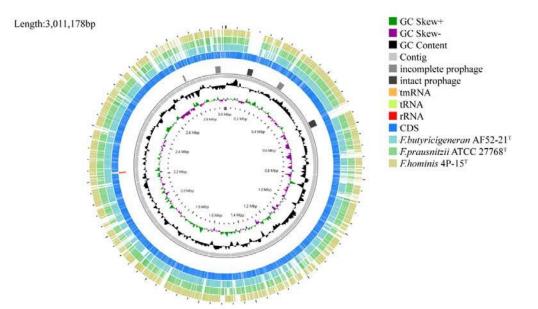

- 620 closest related species *F. prausnitzii* ATCC 27768^T.
- 622 Figure 6. The synthesis pathways from Acetyl-CoA to Butyrate. Strains AF52-21^T,
- **CM04-06^T** and **ATCC 27768^T** were annotated as blue, red, and yellow.
- 624 Thl, thiolase; Hdb, β-hydroxybutyryl-CoA dehydrogenase; Cro, crotonase; Bcd, butyryl-CoA
- 625 dehydrogenase; But, butyryl-CoA:acetate CoA transferase; Ptb, phosphate butyryltransferase; Buk,
- 626 butyrate kinase.
- 628 Figure 7. Distribution of prophage in strains AF52-21T and CM04-06T.
- 630 Figure 8. Comparison of resistance genes in strains AF52-21^T, CM04-06^T, and F.
- 631 prausnitzii ATCC 27768^T.

642 Figure 1

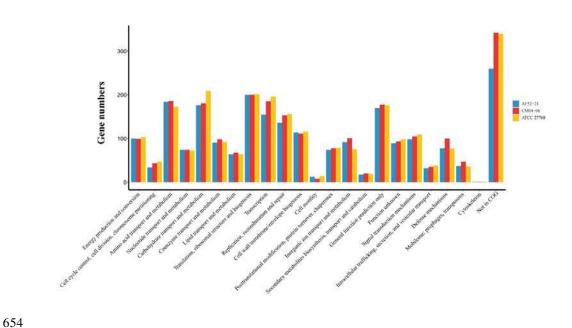
643


645 Figure 2

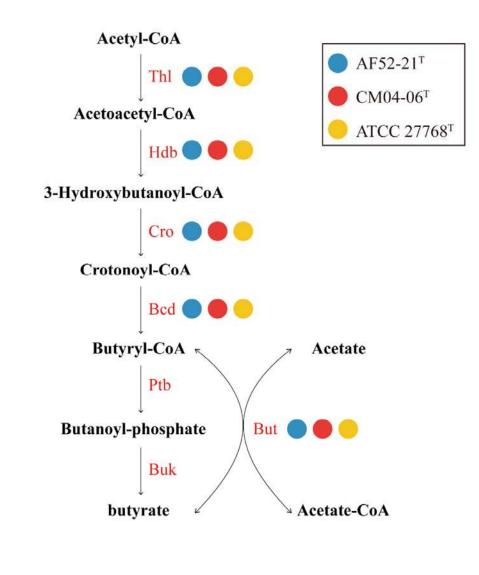
0.020

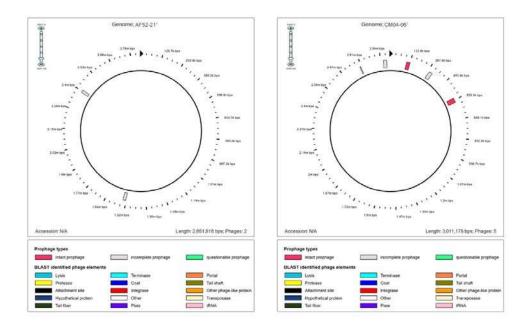

646

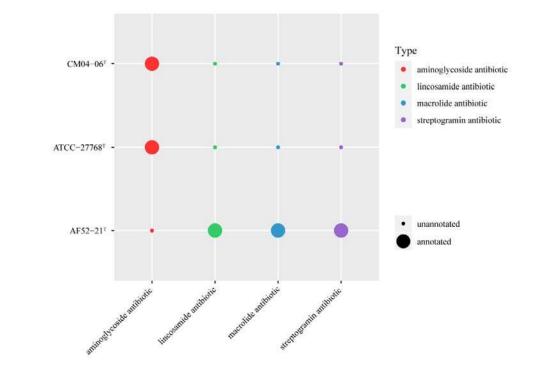
648 Figure 3



649


651 Figure 4


653 **Figure 5**


656 Figure 6

659 Figure 7

662 Figure 8

665 Supplementary Material

- 666 Supplementary Table S1. Number of genes associated with general COG functional
- 667 categories in the genome of *F. butyricigenerans* AF52-21^T and *F. longum* CM04-06^T.
- 668 Supplementary Table S2. The specific genes/protein related to biosynthesis of DAP, polar
- 669 lipids, polyamines and lipoteichoic and teichoic acids and their positions in the genome in
- 670 comparation of strains AF52-21^T, CM04-06^T and related organism, ATCC 27768^T identified
- 671 by Rapid Annotation Subsystem Technology (RAST).
- 672

Supplementary Figure S1. Maximum-likelihood phylogenetic tree based on 16S rRNA gene
sequences showing the phylogenetic relationships of strains AF52-21^T, CM04-06^T and the
representatives of related taxa. *Clostridium butyricum* DSM 10702^T (AQQF01000149) was used
as an out-group. Bootstrap values based on 1000 replications higher than 70% are shown at the
branching points. Bar, substitutions per nucleotide position.

678

Supplementary Figure S2. Minimum-evolution phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic relationships of strains AF52-21^T, CM04-06^T and the representatives of related taxa. *Clostridium butyricum* DSM 10702^T (AQQF01000149) was used as an out-group. Bootstrap values based on 1000 replications higher than 70% are shown at the branching points. Bar, substitutions per nucleotide position.

684

685 Supplementary Figure S3. Certification. Deposit certification of AF52-21^T in CGMCC.

- 686 Supplementary Figure S4. Certification. Deposit certification of AF52-21^T in DSMZ.
- 687 Supplementary Figure S5. Certification. Deposit certification of CM04-06^T in CGMCC.
- 688 Supplementary Figure S6. Certification. Deposit certification of CM04-06^T in DSMZ.