
Characterization and Error-Correcting Codes for
TLC Flash Memories

Eitan Yaakobi, Laura Grupp, Paul H. Siegel, Steven Swanson, and Jack K. Wolf
University of California, San Diego La Jolla, CA 92093− 0401, USA

Emails: {eyaakobi, lgrupp, psiegel, swanson, jwolf}@ucsd.edu

Abstract—Flash memory has become the storage medium of
choice in portable consumer electronic applications, and high
performance solid state drives (SSDs) are also being introduced
into mobile computing, enterprise storage, data warehousing, and
data-intensive computing systems. On the other hand, flash mem-
ory technologies present major challenges in the areas of device
reliability, endurance, and energy efficiency. In this work, the
error behavior of TLC flash is studied through an empirical
database of errors which were induced by write, read, and erase
operations. Based on this database, error characterization at the
block and page level is given. To address the observed error be-
havior, a new error-correcting scheme for TLC flash is given and
is compared with BCH and LDPC codes.

I. INTRODUCTION

Flash memories are, by far, the most important type of

non-volatile memory in use today. They are employed widely

in mobile, embedded, and mass-storage applications, and the

growth in this sector continues at a staggering pace. More-

over, since flash memories do not suffer from the mechanical

limitations of magnetic disk drives, solid-state drives have the

potential to upstage the magnetic recording industry in the

foreseeable future.

Flash memory chips may use single-level cell (SLC)

technology, where each cell can store one binary digit, or

multi-level cell (MLC) technology, where each cell can store

multiple binary digits. In this work, we assume that MLC

chips store two bits in a cell and TLC chips store three

bits in a cell. In early generations of flash memories, only

low-redundancy error detection and correction (EDAC) codes,

such as Hamming codes and error-detecting cyclic redun-

dancy check (CRC) codes, were used. However, reducing the

cell size and using MLC technology has created the need for

more powerful error-correcting codes (ECC), such as BCH

codes and low-density parity-check (LDPC) codes.

The design of effective error-correcting codes requires a

comprehensive understanding of the error mechanisms and

error characteristics of flash memories. To help address this

need, we collected an extensive empirical database of errors

observed during erase, program, and read operations on SLC

and MLC flash memory devices. These experimental results

were then used to evaluate various coding schemes in [7]

and [14]. For this paper, we gathered similar error statis-

tics from several TLC flash memory chips. For each block,

we repeated continuously the following process thousands of

times:

1) Erase the block.

2) Write pseudo-random data into the block.

3) Read the block and identify errors by comparing the

originally recorded data to the data that was read.

This research was funded in part by Toshiba Corporation, the University of
California Lab Fees Research Program, Award No. 09-LR-06-118620-SIEP,
and the National Science Foundation under Grant CCF-MRR9335.

Fig. 1. Mappings of cell levels to binary representations in SLC, MLC, and
TLC flash.

As mentioned in [14], we note that these experiments were

conducted in a controlled laboratory environment and the er-

ror data was collected from only a few blocks on each chip.

Therefore, the reported results do not account for possible vari-

ability among blocks on any given chip.

In this report, we extend the results reported in [7] and [14].

In Section II, a description of the structure of TLC flash mem-

ory is given. In Section III, we provide an error characteriza-

tion of TLC flash at the block and page level. In Section IV,

a comparison is made between different schemes that use a

TLC block as an MLC or SLC block. Then, in Section V, we

compare the performance of different ECC codes with respect

to the measured error profile. In Section VI, we provide a new

ECC scheme to be used in TLC flash and compare it with the

other ECC. Section VII concludes the paper.

II. FLASH MEMORY STRUCTURE

An SLC flash memory cell has two levels and stores a single

bit in each cell. An MLC flash memory cell has four levels

and stores two bits, where the left bit among the two bits is

called the Most Significant Bit (MSB) and the right bit is the

Least Significant Bit (LSB). The mapping between charge val-

ues and bit values is depicted in Fig. 1. Similarly, in TLC flash,

each cell stores three bits: MSB, CSB (Central Significant Bit),

and LSB. The corresponding mapping between charge values

and bit values is also given in Fig. 1 [13].

The memory cells are organized in blocks, where typically

each block contains 64 pages (SLC), 128 pages (MLC) or

384 pages (TLC) and the size of a page can range from 2KB

to 8KB. In MLC flash, the two bits within a single cell are

not mapped to the same page. Rather, the collection of MSB’s

from a group of cells constitute a page called the MSB page

and, similarly, the LSB’s from the same group of cells form a

page called the LSB page. A similar picture is derived for TLC

flash. Here we distinguish between the MSB, CSB, and LSB

page derived from the same group of cells [13]. The block

layout of a TLC block is depicted in Table I. Note that in the

first and last row only the MSB page is stored, and in rows 63

and 64 the LSB page is not stored. One possible explanation

International Conference on Computing, Networking and Communications, Data Storage Technology and Applications Symposium

978-1-4673-0009-4/12/$26.00 ©2012 IEEE 486

TABLE I
TYPICAL LAYOUT OF A TLC BLOCK

Row MSB of the CSB of the LSB of the MSB of the CSB of the LSB of the

Index first 216 cells first 216 cells first 216 cells last 216 cells last 216 cells last 216 cells

0 page 0 page 1
1 page 2 page 6 page 12 page 3 page 7 page 13
2 page 4 page 10 page 18 page 5 page 11 page 19
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

62 page 362 page 370 page 378 page 363 page 371 page 379
63 page 368 page 376 page 369 page 377
64 page 374 page 382 page 375 page 383
65 page 380 page 381

for this structure is that the first and last rows are more vul-

nerable to errors and thus by storing only the MSB and CSB

pages the BER is not too high. We will later see that in gen-

eral the MSB pages have the lowest BER. In this work, we

follow the scheme in [13] to program the three bits in a TLC

cell.

Each page in a flash memory block contains a spare area. If

the page size is 2KB then a typical spare area can be 64B. A

portion of this spare area is used to store metadata in order to

build the Flash Transition Layer (FTL) once the flash memory

is activated. The rest of the spare area is dedicated to storing

the redundancy bytes of EDAC codes [6].

Remark 1. The organization of pages in a flash memory block

may differ from one manufacturer to another. The configura-

tion shown in Table I is consistent with the information avail-

able to us about the devices tested, as well as with most of

the results of our experiments.

III. ERROR CHARACTERIZATION OF TLC FLASH

In [14], we provided a characterization of the error behavior

in SLC and MLC flash. In particular, we analyzed the BER at

the block-, page-, and bit-level. Here, we give a similar anal-

ysis for TLC flash. We first measured the average BER as

a function of the number of program/erase cycles for several

TLC blocks. The results are shown in Fig. 2.

Next, we examined the BER of individual pages within a

block. Fig. 3 shows the average BER of all program/erase cy-

cles for each of the first 100 pages in the block. The same

pattern of average BER repeats for the rest of the pages so

we omit the details. We deduce that the MSB pages have the

lowest BER. For the CSB and LSB pages, we see that the

LSB pages on the left side of the block and the CSB pages

on the right side of the block have higher BER than the LSB

pages on the right side and the CSB pages on the left side.

The consistency of this spatial variation in the page-level BER

suggests that it is due to some property of the TLC block, but

we do not have sufficient information about the device to offer

a conclusive explanation.

At the bit level, we measured the total number of errors in

each cell, just as we did in [14] for SLC memories. In contrast

to the SLC case, we did not find that the errors were clustered

along the bit lines; rather, the bit-error locations appear to be

randomly distributed among the cells.

IV. PARTIAL CELL STATE USAGE IN TLC FLASH

In order to evaluate the effect on reliability of storing three

bits (i.e., eight levels) per cell, we measured the block-level

BER under the following restricted programming scenarios:

0 1000 2000 3000 4000 500010�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

BER of TLC Flash

Fig. 2. BER of TLC chips as a function of the number of program/erase
cycles.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

x 10�3

Page Number

A
ve

ra
ge

 B
ER
Average BER for Every Page

Left MSB Page
Right MSB Page
Left CSB Page
Right CSB Page
Left LSB Page
Right LSB Page

Fig. 3. Average BER of the pages of TLC block.

(a) programming one bit per cell using only the MSB pages;

or (b) programming two bits per cell using only the MSB and

CSB pages. We considered two cases, the first being where

the programming restrictions were introduced at the start of

the experiment, and the second where they were introduced

after 2000 normal TLC program/erase cycles. The results are

depicted in Fig. 4.

V. ECC COMPARISON

We evaluated several different ECC schemes for use in flash

memories, including BCH codes, several families of LDPC

codes, and a new scheme designed specifically for TLC flash

devices, which will be described in Section VI.

In our analysis of BCH code performance, we assumed that

if the code could correct t errors per page, then it would cor-

rect any page with at most t errors. If the number of errors

exceeded t, we assumed that the BCH decoder would detect

this and leave the page unchanged.

487

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10�6

10�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

BER while programming only part of the pages

All pages are programmed
Only MSB pages are programmed
Only MSB and CSB pages are programmed
Only MSB pages are programmed after 2000 cycles
Only MSB and CSB pages are programmed after 2000 cycles

Fig. 4. Comparison between the BER of TLC flash when all pages are
programmed, only the MSB and CSB pages, or only the MSB pages are
programmed.

For the LDPC code performance evaluation, we assumed

that the all-zero codeword was stored, and that the memory

introduced errors in the locations indicated by our empirical

measurements. We treated the channel as a binary symmetric

channel (BSC) with “crossover” error probability p equal to

the average probability of error reflected in the measured er-

ror data. The decoder was based upon belief-propagation (BP)

decoding, implemented in software as the floating-point sum-

product algorithm (SPA).

The following families of LDPC codes were considered in

this study.

1) LDPC (3, k)-regular Gallager codes.

We used Gallager’s method for designing “random” reg-

ular LDPC codes [5] to construct (3, k)-regular LDPC

codes of block length 216 bits and rates 0.8, 0.9, or

0.925. No attempt was made to eliminate length-4 cy-

cles in the corresponding Tanner graphs. We refer to

these codes in the sequel as “Gallager” codes.

2) Protograph-based low-density convolutional codes.

A protograph [11] is a relatively small bipartite graph

from which a larger graph can be obtained by a

copy-and-permute procedure. The protograph is copied

M times, and then the edges of the individual repli-

cas are permuted among the M replicas to obtain a

single, large bipartite graph referred to as the derived

graph. Such an expansion preserves the degree distribu-

tion and hence can be used to construct LDPC codes.

LDPC codes constructed through protograph expan-

sions of convolutional codes have been shown to have

belief-propagation thresholds close to the maximum a

posteriori probability (MAP) thresholds [9].

The rate-4/5 protograph-based LDPC code used in

our simulation was obtained by expanding convolu-

tional codes (with memory equal to two) using random

permutation matrices, with matrix sizes chosen to en-

sure the required blocklengths. For this preliminary

comparison, we did not make use of more refined de-

sign techniques, such as the progressive edge growth

(PEG) method [8] or the approximate cycle extrinsic

message degree (ACE) conditioning algorithm based

upon the approximate cycle extrinsic message degree

[12]. We will refer to this code as a “PCC” code.

3) AR4JA protograph-based LDPC codes.

A family of protograph-based LDPC codes, known

as Accumulate Repeat 4-Jagged Accumulate (AR4JA)

codes, has been chosen by the Consultative Committee

for Space Data Systems (CCSDS) as an experimen-

tal standard for “deep space” applications [2]. This

set of codes, with code rates of 1/2, 2/3, and 4/5,

offers higher rates than the previously standardized

family of turbo codes. Three length options are avail-

able for each of the code rates. In our study, we

considered rate-4/5 AR4JA codes of three different

lengths, (n, k) = (1280, 1024), (5120, 4096), and

(20480, 16384), all taken from the CCSDS standard.

The AR4JA codes have a number of attractive fea-

tures. Since they are constructed using protograph-based

techniques [3], [4], [11], they provide an underlying

regular structure that simplifies hardware implementa-

tion. They also allow for the introduction of degree-one

variable nodes and the use of puncturing, both of which

would be detrimental if applied to codes designed using

“random” construction techniques. The AR4JA codes

were created using two successive cyclic expansions of

the base matrix, a procedure that helps to ensure a large

minimum distance and a lower error floor. Two dif-

ferent optimization algorithms were used to select the

expansions in order to prevent the clustering of short

cycles [1]. Code designs were optimized using PEG

and ACE techniques. The code designers also traded a

small amount of threshold performance in the interest

of further lowering error floors. We refer to these codes

as “AR4JA” codes.

4) LDPC codes taken from MacKay’s database of sparse

graph codes [10].

We used MacKay’s constructions for LDPC codes with

the following parameters: (here, r stands for the number

of redundancy bits)

a) n = 4095, r = 737, R = 0.82, column weight 3,

and no 4 cycles.

b) n = 4095, r = 738, R = 0.82, column weight 4,

and no 4 cycles.

c) n = 16383, r = 2130, R = 0.87, column weight

3, and no 4 cycles.

d) n = 16383, r = 2131, R = 0.87, column weight

4, and no 4 cycles.

e) n = 32000, r = 2240, R = 0.93, column weight

3, and no 4 cycles.

f) n = 32000, r = 2241, R = 0.93, column weight

4, and no 4 cycles.

We will refer to the first, third, and fifth code as

“DJCM-3” codes, and the second, fourth, and sixth

code as “DJCM-4” codes.

In Fig. 5, we compare the performance of the BCH and

LDPC codes described above. The BER results were computed

for the first 100 program-erase cycles and then every 25th cy-

cle thereafter, and the data were averaged over six TLC blocks.

Comparisons were made between codes having approximately

the same rate. For the rate-4/5, protograph-based PCC code,

we did not see any errors and thus there are no points for

488

its plot in Fig. 5a. Likewise, for the AR4JA codes with code-

word lengths 5120 and 20480, we did not observe any errors.

The length-1280 AR4JA code experienced errors after about

2500 program-erase cycles. The Gallager code failed at only

one cycle after about 9000 cycles, while the rate-0.82 DCJM-

3 and DCJM-4 codes began to fail after about 2600 and 9000

program-erase cycles, respectively. Nevertheless, starting ap-

proximately at cycle 8500, the performance of all of these

LDPC codes is superior to that of the BCH code. For higher-

rate codes, the rate-0.9 Gallager code and the rate-0.87 DCJM-

3 and DCJM-4 codes outperformed their rate-0.9 BCH coun-

terpart. Finally, for yet higher rates near 0.925, we can see

that the rate-0.93 DJCM-4 code outperformed the rate-0.93

DJCM-3 code, as well as the rate-0.925 BCH and Gallager

codes.

VI. NEW ECC FOR TLC FLASH

We next propose a new ECC design that reflects the cell-level

error characteristics of our TLC flash memory chips. Our mo-

tivation comes from our previous work on the design of new

codes for MLC flash, as reported in [14]. The MLC codes op-

erate on pairs of pages which share the same group of cells,

and they reflect the fact that the dominant error types that

we observed involved a single-level cell-state change, specif-

ically from 10 to 00 or from 00 to 01. Initially, we expected

to see a similar behavior in TLC flash, with dominant errors

corresponding to an increase in the cell state by one or, at

most, two levels. Somewhat surprisingly, our measurements

did not support this expectation. In fact, we saw frequent er-

rors where the cell state changed from the lowest level to the

highest level. However, there were some properties shared by

the most frequently observed errors:

1) If a cell is in error, then with high probability only one

out of its three bits is in error.

2) The probability of a bit being in error does not depend

on the target cell state.

One possible explanation for this error behavior is as follows.

The three bits in a cell are not programmed all at once, but

rather one at a time. Therefore, an error in programming the

first or second bit can cause the cell to change its state by

more than one or two levels. For example, assume that we

seek to program the three bits in a cell to (1,1,1) and that an

error occurred while programming the MSB. Then, the CSB

and LSB will be programmed based upon the erroneous mea-

surement of the MSB as a 0 rather than as a 1. This results in

the programming of the cell to its highest level, corresponding

to bit values (0,1,1).

A. Code Construction

We will now show how the knowledge of the cell-state er-

ror behavior can be used to construct a new error correction

coding scheme. The scheme works as follows. Let C1 be an

[n + r1, n] t1-error-correcting code over Z4 and let C2 be a

binary [n+ r2, n] t2-error-correcting code, where t1 > t2. As-

sume that both codes are systematic. We will make use of a

mapping, φ : {0, 1}3 → Z4, from binary triplets to elements

of Z4, defined by:

φ(1, 1, 1) = 0, φ(1, 1, 0) = 1, φ(1, 0, 0) = 2, φ(1, 0, 1) = 3,
φ(0, 0, 0) = 0, φ(0, 0, 1) = 1, φ(0, 1, 1) = 2, φ(0, 1, 0) = 3.

The mapping φ extends naturally to triplets of binary vec-

tors of the same length.

Let pMSB = (p1, . . . , pn), pCSB = (c1, . . . , cn), pLSB =
(�1, . . . , �n) be a group of MSB, CSB, LSB pages, respec-

tively, sharing the same group of cells. The encoding proce-

dure, depicted in Fig. 6, is as follows.

Encoding:
1) Calculate and store s2, the r2 redundancy bits of C2 cor-

responding to the information page pMSB.

2) Calculate (without storing) u = φ(pMSB, pCSB, pLSB)
over Z4.

3) Calculate and store s1, the r1 redundancy symbols over

Z4 of C1 corresponding to the information page u.

For the decoding procedure, we let p′MSB = (p′1, . . . , p′n),
p′CSB = (c′1, . . . , c′n), p′LSB = (�′1, . . . , �′n) be the received

MSB, CSB, LSB pages, respectively. We define a mapping

ψ : {0, 1}3 × Z4 → {0, 1}3 which takes a binary triplet

(p′, c′, �′) and an error symbol e′ in Z4 and returns a new

binary triplet (p′′, c′′, �′′) as follows.

First, for all (p′, c′, �′) ∈ {0, 1}3, we setψ((p′, c′, �′), 0) =
(p′, c′, �′). We then specify

ψ((1, 1, 1), 1) = (1, 0, 1), ψ((1, 1, 0), 1) = (1, 1, 1),
ψ((1, 0, 0), 1) = (1, 1, 0), ψ((1, 0, 1), 1) = (1, 0, 0),
ψ((1, 1, 1), 2) = (0, 1, 1), ψ((1, 1, 0), 2) = (0, 1, 0),
ψ((1, 0, 0), 2) = (0, 0, 0), ψ((1, 0, 1), 2) = (0, 0, 1),
ψ((1, 1, 1), 3) = (1, 1, 0), ψ((1, 1, 0), 3) = (1, 0, 0),
ψ((1, 0, 0), 3) = (1, 0, 1), ψ((1, 0, 1), 3) = (1, 1, 1).

We then extend the mapping to the rest of the domain by de-

manding that, for e′ �= 0, if ψ((p′, c′, �′), e′) = (p′′, c′′, �′′),
then ψ((p′, c′, �′), e′) = (p′′, c′′, �′′). The role of the map-

ping ψ will be to return the bit values that were stored in a

cell, assuming there was only a single bit error. The mapping

ψ also extends naturally to a triplet of binary vectors and a

vector over Z4, all of the same length. The decoding proce-

dure, depicted in Fig. 7, is as follows.

Decoding:
1) Calculate u′ = φ(p′MSB, p′CSB, p′LSB) over Z4.

2) Using the r1 redundancy symbols over Z4 and a decoder

for the code C1, find up to t1 symbol errors in u′ and

let e′ denote the resulting error vector over Z4.

3) Calculate three binary vectors p′′MSB, p′′CSB, p′′LSB
according to

(p′′MSB, p′′CSB, p′′LSB) = ψ((p′MSB, p′CSB, p′LSB), e
′).

4) Using the r2 redundancy bits and a decoder for the code

C2, find up to t2 errors in p′′MSB and let e′′ denote the

resulting binary error vector.

5) Return (p′′MSB + e′′, p′′CSB + e′′, p′′LSB + e′′) as the de-

coded triplet of pages.

B. Code Analysis

In order to analyze the error capability of this construction,

we use the following definitions for different cell-errors.

1) A type-one cell-error is a cell-error where exactly one

out of the three bits in the cell is in error.

2) A type-two cell-error is a cell-error where exactly two

out of the three bits in the cell are in error.

489

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10�8

10�7

10�6

10�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

BER of Different Codes of Rate ~0.8

RAW BER
BCH (R=0.8)
Gallager (R=0.8)
DJCM�3 (R=0.82)
DJCM�4 (R=0.82)
PCC (R=0.8)
AR4JA 1024 (R=0.8)

(a)

0 2000 4000 6000 8000 10000
10�8

10�7

10�6

10�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

BER of Different Codes of Rate ~0.9

RAW BER
BCH (R=0.9)
Gallager (R=0.9)
DJCM�3 (R=0.87)
DJCM�4 (R=0.87)

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10�8

10�7

10�6

10�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

BER of Different Codes of Rate ~0.925

RAW BER
Gallager (R=0.925)
DJCM�3 (R=0.93)
DJCM�4 (R=0.93)
BCH (R=0.925)

(c)
Fig. 5. ECC performance comparisons for rates (a) R ≈ 0.8, (b) R ≈ 0.9, and (c) R ≈ 0.925.

Fig. 6. Encoder architecture for new ECC scheme for TLC flash.

Fig. 7. Decoder architecture for new ECC scheme for TLC flash.

3) A type-three cell-error is a cell-error where all three bits

in the cell are in error.

Let pMSB = (p1, . . . , pn), pCSB = (c1, . . . , cn), pLSB =
(�1, . . . , �n) be the stored MSB, CSB, LSB page, respec-

tively, which share the same group of cells, and u =
φ(pMSB, pCSB, pLSB). Let p′MSB = (p′1, . . . , p′n), p′CSB =
(c′1, . . . , c′n), p′LSB = (�′1, . . . , �′n) be the correspond-

ing received MSB, CSB, LSB page, respectively, and

u′ = φ(p′MSB, p′CSB, p′LSB). Let eMSB, eCSB, eLSB be the

error vector in the MSB, CSB, LSB page, respectively, i.e.,

p′MSB = pMSB + eMSB , p′CSB = pCSB + eCSB , p′LSB = pLSB + eLSB .

Assume that the number of type-one cell-errors is e1, the num-

ber of type-two cell-errors is e2, and the number of type-three

cell-errors is e3. For a vector v (binary or non-binary) we

denote by wH(v) its Hamming weight. First, we prove the

following two lemmas.
Lemma 1. The vectors u and u′ satisfy the following property:

wH(u′ − u) = e1 + e2.
Proof: For all 1 � i � n, if there is no error in the i-th

cell then (p′i , c
′
i , �
′
i) = (pi , ci , �i) and

ui = φ(pi , ci , �i) = φ(p′i , c
′
i , �
′
i) = u′i .

If all three bits in the i-th cell are in error then (p′i , c
′
i , �
′
i) =

(pi , ci , �i) and

ui = φ(pi , ci , �i) = φ(pi , ci , �i) = φ(p′i , c
′
i , �
′
i) = u′i .

If exactly one or two out of the three bits are in error then it

is easy to verify that

ui = φ(pi , ci , �i) �= φ(p′i , c′i , �′i) = u′i .

Assume that e′ = u′ − u, and let

(p′′MSB, p′′CSB, p′′LSB) = ψ((p′MSB, p′CSB, p′LSB), e
′),

and e′MSB, e′CSB, e′LSB be the new error vectors in the MSB,
CSB, LSB page, respectively, satisfying

p′′MSB = pMSB + e′MSB , p′′CSB = pCSB + e′CSB , p′′LSB = pLSB + e′LSB .
(1)

Lemma 2. The error vectors e′MSB, e′CSB, e′LSB satisfy
e′MSB = e′CSB = e′LSB

and
wH(e′MSB) = wH(e′CSB) = wH(e′LSB) = e2 + e3.
Proof: For all 1 � i � n, consider the following cases:

1) If there is no error in the i-th cell, then ui = u′i and

eMSB,i = eCSB,i = eLSB,i = 0 and e′MSB,i = e′CSB,i =
e′LSB,i = 0.

2) If all three bits are in error in the i-th cell then ui =
u′i and eMSB,i = eCSB,i = eLSB,i = 1 and e′MSB,i =
e′CSB,i = e′LSB,i = 1.

3) If only one bit is in error in the i-th cell, then ui �= u′i;
however, one can verify that ψ((p′i , c

′
i , �
′
i), e

′
i) =

(pi , ci , �i), and so e′MSB,i = e′CSB,i = e′LSB,i = 0.

4) If two bits are in error in the i-th cell, then ui �= u′i; now

we conclude that ψ((p′i , c
′
i , �
′
i), e

′
i) = (pi , ci , �i), and so

e′MSB,i = e′CSB,i = e′LSB,i = 1.

In each case, we find that for all 1 � i � n, e′MSB,i =
e′CSB,i = e′LSB,i and thus e′MSB = e′CSB = e′LSB. Also,

e′MSB,i = e′CSB,i = e′LSB,i = 1 if and only if there are two

or three bits in error in the cell, and thus wH(e′MSB) =
wH(e′CSB) = wH(e′LSB) = e2 + e3.

490

Next, we verify the error-correction capability of the new

code construction.

Theorem 3. Let C1 be an [n + r1, n] t1-error-correcting code

over Z4 and let C2 be a binary [n + r2, n] t2-error-correcting

code. If e1 + e2 � t1 and e2 + e3 � t2, then the decoding pro-

cedure described above successfully decodes the correct value

of the three pages.

Proof: According to Lemma 1, if e1 + e2 � t1, then

wH(u′ − u) � t1. Therefore, Step 2 of the decoding proce-

dure succeeds and e′ = u′ − u. Then, according to Lemma 2,

wH(e′MSB) = e2 + e3 � t2. Thus, Step 4 succeeds and e′′ =
p′′MSB − pMSB = e′MSB, from which we recover the correct

value of the MSB page. Finally, again invoking Lemma 2, we

deduce that that e′′ = e′CSB = e′LSB, from which we recover

the correct values of the CSB and LSB pages.

C. Performance Evaluation

We compared the BER performance of the new ECC

scheme to that of the BCH and LDPC codes consid-

ered above. We assumed a page size of 8KB, i.e., 216

bits. In order to specify a rate for the new ECC scheme,

we assumed that the code C2 is a binary t2-error cor-

recting BCH code with redundancy t2 log2(n) = 16t2,

where we have used the fact that, with the page size spec-

ified above, log2(n) = 16. For the code C1, we note

that for a t1-error correcting code over Z4, the mini-

mum redundancy according to the sphere packing bound

is on the order of t1 log2(3n) = t1 log2(n) + t1 log2(3).
Since efficient constructions of such codes are not readily

found, we assumed conservatively that C1 has redundancy

t1 log2(n) + 2t1 = 18t1. Using this redundancy calculation,

we evaluated codes for rates 0.9 and 0.925. The results are

shown in Fig. 8, where we can see that, for both rates, the

new ECC scheme outperforms the BCH code as well as the

Gallager, DJCM-3, and DJCM-4 LDPC codes.

VII. SUMMARY AND CONCLUSIONS

In this paper, we extended our previous study of error char-

acteristics in SLC and MLC chips [14] to 3-bit per cell

(TLC) flash memories. After analyzing the BER at the

block-level and page-level, we measured the improvement in

BER that could be achieved with a reduction in the nomi-

nal chip storage capacity, as obtained by programming only

the most-significant-bit (MSB) page or both the MSB and

central-significant-bit (CSB) pages. We then compared the

BER performance of BCH codes and several families of

LDPC codes. We also introduced and evaluated a novel

error-correction scheme that takes into account our charac-

terization of the dominant cell-level errors found in TLC

devices. The new code operates on all three pages stored

in a physical row of TLC cells. Our results provided valu-

able insights into the advantages offered by certain classes of

high-rate LDPC codes, as well as by our proposed cell-level

coding technique.

ACKNOWLEDGMENT

The authors wish to thank Aman Bhatia, Brian K. Butler, Ar-

avind Iyengar, and Minghai Qin for their help in processing

the error measurement results and, in particular, for the LDPC

code performance simulations. The authors also wish to thank

Jeff Ohshima and Hironori Uchikawa of Toshiba Corporation

for their support of this work.

0 2000 4000 6000 8000 10000
10�8

10�7

10�6

10�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

Comparison with the New ECC for Rate ~0.9

RAW BER
BCH (R=0.9)
Gallager (R=0.9)
DJCM�3 (R=0.87)
DJCM�4 (R=0.87)
NEW ECC (R=0.9)
NEW ECC (R=0.87)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10�8

10�7

10�6

10�5

10�4

10�3

10�2

Program/Erase Cycle

B
ER

Comparison with the New ECC for Rate ~0.925

RAW BER
BCH (R=0.925)
Gallager (R=0.925)
DJCM�3 (R=0.93)
DJCM�4 (R=0.93)
NEW ECC (R=0.925)

(b)
Fig. 8. BER performance of BCH codes, selected LDPC codes, and the new
ECC scheme for TLC flash at rates (a) R ≈ 0.9, and (b) R ≈ 0.925.

REFERENCES
[1] K. Andrews et. al., “The development of turbo and LDPC Codes for

Deep-Space Applications,” Proceedings of the IEEE, November 2007.
[2] CCSDS, “Low Density Parity Check Codes for use in Near-Earth and

Deep Space Applications,” Experimental Specification CCSDS 131.1-O-
2, September 2007.

[3] D. Divsalar et. al., “Construction of protograph LDPC codes with linear
minimum distance,” Proc. IEEE Int. Symp. Inf. Theory, pp. 664–668,
June 2006.

[4] D. Divsalar, et. al., “Capacity-approaching protograph codes,” IEEE J.
Selected Areas in Commun., vol. 27, pp. 876–888, August 2009.

[5] R.G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. 8, no. 1, pp. 21–28, January 1962.

[6] S. Gregori et. al., “On-chip error correcting techniques for new-
generation flash memories,” Proceedings of The IEEE, vol. 91, no. 4,
pp. 602–616, April 2003.

[7] L. Grupp et. al., “Characterizing flash memory : anomalies, observations,
and applications,” MICRO-42, pp. 24–33, December 2009.

[8] X.-Y. Hu et. al., “Regular and irregular progressive edge-growth Tanner
graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386-398, Jan. 2005.

[9] S. Kudekar, T. Richardson, and R.L. Urbanke, ”Threshold saturation via
spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” CoRR, vol. abs/1001.1826, 2010.

[10] D.J.C. MacKay, “Encyclopedia of sparse graph codes,”
http://www.inference.phy.cam.ac.uk/
mackay/codes/data.html.

[11] J. Thorpe, “Low Density Parity Check (LDPC) Codes Constructed from
Protographs,” JPL INP Progress Report, pp. 42–154, August 15, 2003.

[12] T. Tian et. al., “Selective avoidance of cycles in irregular LDPC code
construction,” IEEE Trans. Comm., vol. 52, pp. 1242-1247, August 2004.

[13] H. Weingarten, “New strategies to overcome 3bpc challenges,” Flash
Memory Summit, Santa Clara, August 2010.

[14] E. Yaakobi et. al., “Error characterization and coding schemes for flash
memories,” in Proc. Workshop on the Application of Communication
Theory to Emerging Memory Technologies, Miami, Florida, Dec. 2010.

491

