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Abstract 

Background Prostate cancer (PCa) is one of the most prevalent cancers worldwide. The clinical manifestations and 
molecular characteristics of PCa are highly variable. Aggressive types require radical treatment, whereas indolent ones 
may be suitable for active surveillance or organ‑preserving focal therapies. Patient stratification by clinical or patho‑
logical risk categories still lacks sufficient precision. Incorporating molecular biomarkers, such as transcriptome‑wide 
expression signatures, improves patient stratification but so far excludes chromosomal rearrangements. In this study, 
we investigated gene fusions in PCa, characterized potential novel candidates, and explored their role as prognostic 
markers for PCa progression.

Methods We analyzed 630 patients in four cohorts with varying traits regarding sequencing protocols, sample con‑
servation, and PCa risk group. The datasets included transcriptome‑wide expression and matched clinical follow‑up 
data to detect and characterize gene fusions in PCa. With the fusion calling software Arriba, we computationally pre‑
dicted gene fusions. Following detection, we annotated the gene fusions using published databases for gene fusions 
in cancer. To relate the occurrence of gene fusions to Gleason Grading Groups and disease prognosis, we performed 
survival analyses using the Kaplan–Meier estimator, log‑rank test, and Cox regression.

Results Our analyses identified two potential novel gene fusions, MBTTPS2,L0XNC01::SMS and AMACR::AMACR . These 
fusions were detected in all four studied cohorts, providing compelling evidence for the validity of these fusions and 
their relevance in PCa. We also found that the number of gene fusions detected in a patient sample was significantly 
associated with the time to biochemical recurrence in two of the four cohorts (log‑rank test, p‑value < 0.05 for both 
cohorts). This was also confirmed after adjusting the prognostic model for Gleason Grading Groups (Cox regression, 
p‑values < 0.05).

Conclusions Our gene fusion characterization workflow revealed two potential novel fusions specific for PCa. We 
found evidence that the number of gene fusions was associated with the prognosis of PCa. However, as the quantita‑
tive correlations were only moderately strong, further validation and assessment of clinical value is required before 
potential application.
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Background
Prostate cancer (PCa) is the second most common malig-
nant disease in men and the fifth leading cause of can-
cer-related death worldwide [1]. Localized PCa shows 
a broad spectrum of clinical behaviors, ranging from 
indolent to aggressive forms, with varying genotypes and 
phenotypes [2]. Aggressive forms of PCa are commonly 
treated with radical prostatectomy (RP) or radiotherapy 
[3]. In contrast, localized, low-risk, and clinically non-
significant PCa that displays no evident risk of metastasis 
is often actively monitored. Risk categories relying solely 
on clinical parameters lack sufficient precision [4]. Thus, 
understanding the molecular differences of PCa and their 
implications, as well as their suitability as additional bio-
markers for PCa prognosis, is urgently needed.

In the past, PCa prognosis has benefitted from a 
detailed understanding of the relationship between the 
clinical course of the disease and patient-specific molecu-
lar profiles. Several studies have used extended statistical 
models that combine clinical factors like Gleason Grad-
ing Groups (GGG) or prostate-specific antigen (PSA) 
levels with multiparametric imaging, genomic or tran-
scriptomic markers, or other biochemical markers to 
measure the risk of tumor progression [5–7]. However, 
none of the prognostic models incorporates parameters 
reflecting the status of chromosomal rearrangements and 
transcriptional disorganization in a patient sample, even 
though gene fusions are known to drive PCa develop-
ment and progression [8].

Gene fusions are chimeric genes that combine at 
least two parental genes. Such chromosomal rearrange-
ments are critical in tumorigenesis by introducing new 
or altered chimeric proteins as well as non-coding RNAs 
(ncRNAs) to the cell, altering the regulation of cellular 
pathways, and thus supporting the evolution of cancer 
cells [2, 9, 10]. To date, more than ten thousand PCa-
associated gene fusions with variable occurrences have 
been identified [11, 12]. PCa is a tumor with low muta-
tional burden but large genomic intra- and inter-patient 
heterogeneity; thus, patients carry a variety of gene 
fusion combinations [13–15]. In contrast to most other 
solid tumors, gene fusions in PCa are a central element 
of tumorigenesis [2, 6]. In particular, gene fusions formed 
at the transcriptional level are associated with PCa devel-
opment and progression [16]. One of the most promi-
nent gene fusions in PCa is TMPRSS2::ERG. It occurs in 
approximately 50% of PCa patients of European descent, 
as well as in about 25% of patients of Asian and African 

descent [17, 18]. TMPRSS2::ERG is known to influence 
multiple cellular functions, such as cell invasion, metas-
tasis, and the differentiation of prostate epithelium upon 
constitutive ERG overexpression [19]. The altered expres-
sion of ERG is known to induce changes in many differ-
ent cellular pathways, such as the PI3K or Wnt signaling 
pathways, making ERG a crucial element in PCa develop-
ment and progression [18].

In this study, we characterized known and novel gene 
fusions, including fusions of ncRNAs, by analyzing four 
RNA sequencing cohorts. We investigated whether the 
detected gene fusions are potentially suitable molecular 
markers for PCa risk stratification. We also evaluated the 
occurrence of single gene fusions in two newly sequenced 
PCa cohorts with long-term follow-up (n = 40 and n = 176 
patient samples), The Cancer Genome Atlas (TCGA) 
prostate adenocarcinoma (PRAD) cohort (n = 332 patient 
samples), and a set of early-onset PCa samples from Ger-
hauser et  al. (n = 82 patient samples) [20]. This allowed 
us to assess the familiarity and functionality of detected 
gene fusions and associated their detection with clinical 
outcome, taking into account known clinical factors such 
as Gleason Grading Group and prognostic gene expres-
sion. Our hypothesis was that the overall number of gene 
fusions in a PCa patient sample might serve as a surro-
gate marker for the degree of genomic dysregulation 
and therefore be associated with disease progression. 
Thus, we aimed to improve strategies for stratifying PCa 
patients in early clinical decision-making.

Methods
Cohort description
We assessed primary PCa tissue specimens with follow-
up data from four different cohorts. The first cohort, 
FF_RP, consisted of 40 fresh-frozen tissue specimens 
from 456 PCa patients who underwent radical prostatec-
tomy (RP) between 1995 and 2008 at the Department of 
Urology of the University Hospital Dresden (Germany) 
(Fig. 1A). None of the patients had received neoadjuvant 
therapy prior to surgery. Kreuz et  al. [6] have provided 
a comprehensive description of the clinical characteri-
zation of the cohort and information on the processing 
of the 456 tumor samples. After stringent quality con-
trol, 164 tissue specimens with high tumor cell content 
(TCC) and sufficient RNA quality and yield remained 
(Fig.  1A). From these 164 samples, we selected the tis-
sue specimens of 40 PCa patients for deep sequenc-
ing (~ 200 million reads). All remaining samples were 
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analyzed with microarrays (Agilent)—see Kreuz et  al. 
[6]. The patient samples were divided into eight clini-
cal risk groups (Table S1 and Kreuz et  al. [6]) based on 

Gleason Score (GS), the presence of regional lymph node 
metastases (pN), and the occurrence of death of disease 
(DoD), which was the primary endpoint of this cohort. 

Fig. 1 Overview of the cohorts included in this study. The flowcharts depict the number of patients included in each cohort as well as exclusion 
criteria according to REMARK [25]. A FF_RP: 64 samples of the fresh‑frozen tissue specimens fulfilled all inclusion criteria. 40 of those samples were 
tumor samples, and 16 were matched tumor‑free samples. The remaining eight samples were tissue specimens from patients with benign prostatic 
hyperplasia and served as controls. B FFPE_Bx: 176 patients fulfilled all inclusion criteria. All samples were derived from FFPE biopsies. C TCGA_PRAD: 
Of the initial 552 samples, we included 332 samples that met our inclusion criteria. D DKFZ_RP: We downloaded the data for 130 samples from the 
EGA archive. Of those, we included 82 samples in our analyses. Patient characteristics of the cohorts are shown in Tables S1 and S2 (Additional file 1). 
BCR: biochemical recurrence; Bx: biopsy; DoD: Death of Disease; FF: fresh‑frozen; FFPE: formalin‑fixed paraffin‑embedded; RP: radical prostatectomy; 
RIN:RNA integrity number
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For our analyses, we have enriched certain risk groups 
with patient samples with observed events (see Kreuz 
et  al. [6] for details). In addition to the tumor samples, 
we included tissue specimens from eight benign prostate 
hyperplasia (BPH) patients and 16 matched tumor-free 
tissue specimens (TCC = 0–5%) from high-risk patients 
(Fig. 1A, Table S1). These samples served as control sam-
ples for the computational prediction of gene fusions. We 
performed RNA sequencing of the tumor-free and con-
trol samples similar to the process for the tumor samples 
described by Kreuz et al. [6]. All samples were sequenced 
relatively deep, with approximately 200 million reads per 
sample, allowing the detection of rare transcripts. To val-
idate gene expression, the other specimens were analyzed 
using custom expression arrays (Agilent), as described by 
Kreuz et al. [6].

As a second cohort, we included 185 formalin-fixed 
and paraffin-embedded (FFPE) samples from biopsies 
collected at the Department of Urology, University Hos-
pital Dresden (Germany), between 2007 and 2013 (FFPE_
Bx, Fig. 1B). All patients in this cohort were treated with 
RP and did not receive neoadjuvant therapy prior to sur-
gery. After exclusion of six samples with insufficient qual-
ity and three patients without biochemical recurrence 
(BCR) data, 176 samples remained. As described by Rade 
et al. [21], we chose a total RNA sequencing protocol.

For both cohorts, FF_RP and FFPE_Bx, the Internal 
Review Board at the Technische Universität Dresden 
(EK194092004, EK195092004, EK59032007) approved 
the study, and all patients provided written informed 
consent. Routine histopathological examination of the 
surgical specimens revealed clinicopathological param-
eters. Serum prostate-specific antigen (PSA) levels 
were determined preoperatively. Information on dis-
ease progression, patients’ survival, and cause of death 
was obtained from the patient’s medical records, from 
the treating urologists or general practitioners, or from 
records of the regional tumor registry.

As a third cohort, we used poly(A)-enriched tran-
scriptome-wide expression data from 332 patients from 
the TCGA_PRAD cohort from TCGA (Fig.  1C) [12]. 
The inclusion of this thoroughly studied dataset, in our 
analyses supported the results in our own cohorts and 
validated our workflow by allowing comparison between 
our results and the published results for the cohort. This 
paper’s Table S2 as well as the TCGA publications by 
Abeshouse et al. [12] and Kreuz et al. [6] provide compre-
hensive descriptions of the data source.

As a fourth cohort, we included a cohort of patients 
with early-onset PCa from Gerhauser et al. [20], DKFZ_
RP (Fig.  1D). It provides poly(A)-RNA-sequencing 
data of 82 fresh-frozen samples with matched informa-
tion on clinical variables such as GS and BCR. Some 

patients (n = 6) in this cohort were represented by mul-
tiple samples. After confirming the consistency of the 
TMPRSS2::ERG fusion for every replicate, we reduced 
the number of samples per patient to one (the first avail-
able sample) (Table S13C). With its fresh-frozen samples, 
the cohort provided well-conserved RNA, whereas the 
nature of the early-onset PCa samples implied a molec-
ular difference [20, 22, 23] from the samples previously 
included in this study.

Each cohort provided unique combinations of char-
acteristics. While FF_RP, TCGA_PRAD, and DKFZ_RP 
consisted of fresh-frozen tissue specimens from radi-
cal prostatectomy, FFPE_Bx specimens were forma-
lin-fixed and paraffin-embedded biopsy samples. This 
specimen and conservation type is most commonly used 
in clinical practice. In addition, the cohorts differed in 
RNA-sequencing protocols, with total RNA sequenc-
ing for FF_RP and FFPE_Bx versus poly(A)-enriched 
RNA libraries for TCGA_PRAD and DKFZ_RP. Total 
RNA sequencing enables analysis of all ncRNA families, 
whereas poly(A)-sequencing captures only RNA with a 
poly(A) tail, such as mRNA and some long ncRNA fami-
lies [24]. The DKFZ_RP cohort also allowed us to char-
acterize fusions from the perspective of early-onset PCa 
and to assess the prognostic potential of gene fusions in 
an early-onset PCa cohort.

The primary endpoints were DoD for FF_RP and BCR 
for TCGA_PRAD, DKFZ_RP, and FFPE_Bx. Patients who 
did not experience an event or those who dropped out for 
other reasons were censored at the last follow-up. Table 
S2 in Additional File 1 provides further information on 
the technical and clinicopathological characteristics of all 
the cohorts.

Preprocessing of Transcriptome‑wide Data
For FF_RP and FFPE_Bx, we processed the total RNA 
sequencing data with demultiplexing, adapter-clipping, 
and quality control, as described in the supplementary 
material by Kreuz et  al. [6]. The sequencing depth of 
the cohorts per sample was approximately 200 million 
reads (FF_RP) and 50 million reads (FFPE_Bx). Kreuz 
et  al. [6] described the processing of the TCGA_PRAD 
poly(A)-enriched sequencing data and associated clini-
cal data in the supplementary material. We estimated the 
sequencing depth via the mean of the raw read counts 
to be approximately 56 million reads per sample. The 
poly(A)-enriched sequencing data of the TCGA_PRAD 
cohort are provided as BAM files aligned to the human 
reference genome GRCh38/hg38 using the STAR aligner. 
To retrieve the data formats accessible by Arriba, we 
applied Picard Tools version 1.118 (http:// broad insti tute. 
github. io/ picard/) to revert the supplied BAM files to 
the FASTQ format with SamToFastq. According to Rade 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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et  al.’s [21] description, the DKFZ_RP poly(A)-enriched 
sequencing data was downloaded in FASTQ format using 
pyEGA3 software [26] as well as the relevant clinical data 
from cBioportal. We excluded patients from our study 
without matched clinical data or complete information 
on BCR and limited samples to one replicate per patient.

Detection of gene fusions
The FASTQ files of all samples served as inputs for gene 
fusion detection with Arriba (version 1.2.0) [27], using 
the STAR aligner (version 2.6.1c) [28] to map reads to the 
human genome version hg38. Using the workflow man-
ager Nextflow (version 19.10.0) with an adapted script 
of the Arriba pipeline (version 1) assured parallel and 
reproducible data processing. To increase the sensitivity 
of Arriba, we combined a list of known gene fusions pro-
vided as a whitelist by Arriba with a list of ETS-specific 
fusion partners provided by Tandefelt et  al. [29] (Table 
S3). With including a list of known gene fusions, we fol-
lowed the same strategy as the TCGA consortium in its 
PCa publication in 2015 [11, 12]. For all other Arriba 
and STAR options, we used default values, as provided 
in the Arriba manual [27]. This also included the Arriba 
blacklist option, for which the software provided a list of 
recurrent alignment artifacts and gene fusions present in 
healthy tissue.

Quality assessment of gene fusions
We merged the Arriba results for all individual tissue 
specimens (< sample > .fusions.tsv files) into a single file 
for each cohort. These files contain breakpoints from 
the fusions, the number of reads supporting a specific 
gene fusion, and information on filters applied to specific 
fusions. Arriba also assigned a confidence level to each 
predicted fusion based on the technical and biological 
aspects of the fusion. To assess the quality of the fusion-
calling results, we determined the number of fusions per 
cohort (designated as the number of fusions in the fol-
lowing text), per sample, and per confidence level. When 
multiple identical gene fusions were detected in indi-
vidual samples, we selected the fusion with the highest 
confidence and highest number of supporting reads for 
further analysis. To assess the unique fusions in a cohort, 
each detected fusion was counted once per cohort. For all 
steps, we used the statistical computing environment R 
4.0.0 [30]. To validate our pipeline, we used gene fusions 
covering the genes ERG, ETV1, ETV4, and FLI1 reported 
by the TCGA consortium for the TCGA_PRAD cohort as 
a reference. The annotated data from the TCGA consor-
tium was provided by the cBioPortal for Cancer Genom-
ics database [31] in the Prostate Adenocarcinoma study 
(TCGA, Cell 2015). We compared the samples carrying 
an ERG-fusion as published by the TCGA consortium 

with those for which we detected an ERG-fusion in 
TCGA_PRAD with the Arriba pipeline one-to-one and 
created contingency tables of the results. The same analy-
ses were performed for ETV1, ETV4, and FLI1. To fur-
ther evaluate the detection of fusions in FF_RP, FFPE_Bx, 
and DKFZ_RP, we examined which of the above men-
tioned genes were found in fusions in these three cohorts 
and compared their frequency of occurrence with the 
TCGA_PRAD cohort.

Based on the confidence levels Arriba determined, 
we filtered candidate gene fusions for our analyses. If 
not otherwise mentioned, we performed the following 
analyses with high-confidence gene fusions. To visualize 
high-confidence gene fusions per sample, we used the R 
package ggplot2 (version 3.3.6) [32].

Characterization and annotation of detected gene fusions
To characterize gene fusion, we applied different criteria 
depending on the properties of the cohorts. Fresh-frozen 
tissue specimen cohorts (FF_RP, n = 40; TCGA_PRAD, 
n = 332) were used as discovery cohorts for potential 
novel gene fusions. Gene fusions that Arriba [27] clas-
sified as "high confidence" and found in at least one dis-
covery cohort we considered as fusions of interest. In 
contrast to fresh-frozen tissue samples, the quality of 
RNA isolated from FFPE biopsies decreases with sample 
age, resulting in lower accuracy in detecting gene fusions 
[33]. However, FFPE biopsies correspond to routine clini-
cal samples and are thus helpful in assessing gene fusions 
as close as possible to clinical conditions. To counteract 
the lower accuracy in detecting gene fusions in FFPE 
samples, we matched gene fusions that were detected 
in at least one discovery cohort (at high confidence) 
with gene fusions detected in FFPE_Bx and added them 
regardless of their confidence level in FFPE_Bx. This set 
of fusions was combined with all remaining gene fusions 
detected with high confidence in FFPE_Bx (Fig. S1). We 
annotated the discovered gene fusions based on addi-
tional information provided by the Arriba output, such 
as the visual output of fusions, clinical data describing 
the samples (TCC, BCR, DoD, GGG), and the databases 
Mitelman DB [11], snoDB [34], and literature searches. 
The Mitelman DB is a database for chromosome aberra-
tions and gene fusions in cancer, and it is updated quar-
terly. As of April 18, 2022, it contained 32,962 known 
gene fusions in cancer and 2,305 PCa-specific fusions. 
We chose the Mitelman DB as the primary gene fusion 
database because of its frequent update cycle. Other 
available gene fusion databases, such as FusionGDB2 
[35], the TumorFusions database [36], ChimerDB4 [37], 
ChiTars5 [38], and Quiver [39], were not as up-to-date as 
the Mitelman DB. However, we searched all six available 
databases for the potential novel fusions as support. In 
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addition to the gene fusion databases, we used the snoDB 
database to assess snoRNAs and their hosts that we found 
to be involved in gene fusions. The SnoDB is a data-
base of human snoRNAs with data on their abundance, 
sequences, interactions, and host genes. It contained 
1,970 snoRNA sequences in the database, version 1.1.0. 
To describe potential novel gene fusions, we relied on 
fusions detected in both discovery cohorts and matched 
all gene fusions identified in the discovery cohorts with 
the FFPE_Bx fusion set described above. Based on the 
assumption that fusions that occur in multiple cohorts 
are more likely to be true positives, we restricted the list 
to fusions that appeared in at least two cohorts. Finally, 
we ranked the matched fusions by the number of cohorts 
in which they were detected and if they could be found 
in the Mitelman DB. To include DKFZ_RP, we combined 
the above-described unfiltered set with all high-confi-
dence gene fusions of DKFZ_RP and reduced the list to 
fusions detected in at least two different cohorts (Fig. S1).

Statistical analyses
To relate gene fusions with PCa prognosis, we used 
Kaplan–Meier analyses, log-rank tests, and Cox regres-
sion in R 4.0.0, with the R packages survival (version 
3.3–1, functions Surv(), coxph(), and survdiff()), rms 
(version 6.3–0, function npsurv()), and survminer (ver-
sion 0.4.9) for visualization [40, 41]. We defined time to 
DoD as the primary endpoint for FF_RP and time to BCR 
as the prognostic endpoint for TCGA_PRAD, FFPE_Bx, 
and DKFZ_RP. It has been shown that BCR can be used 
as a surrogate endpoint for PCa; therefore, we can utilize 
both types of endpoints for our analyses [6, 42].

We conducted survival analyses for two different sce-
narios. First, we analyzed the impact of TMPRSS2::ERG 
fusion on the prognosis of PCa on a dichotomized scale 
(TMPRSS2::ERG fusion observed vs. not observed), as 
this fusion is ubiquitous and known to play a major role 
in PCa. We then analyzed the impact of a high number of 
gene fusions as a surrogate marker for genomic complex-
ity on a dichotomized scale (less than the median of total 
fusions per cohort vs. more than or equal to the median 
of all fusions per cohort). Cox regression was used to 
investigate whether the number of detected gene fusions 
in a patient sample had an impact on prognosis after 
adjustment for the Gleason Grading Group (GGG). For 
this purpose, we performed Cox regression with fusion 
numbers dichotomized at the median and GGG (on a 
continuous scale).

Results
This retrospective study was performed on transcrip-
tome-wide sequencing data from four different primary 
PCa cohorts with long-term clinical follow-up data, 

information about the time to BCR or DoD as well as 
pathological GGG (Fig.  1). We used data of three gen-
eral PCa cohorts, FF_RP, TCGA_PRAD, and FFPE_Bx, 
to identify gene fusions, including novel fusions, and 
annotated them using publicly available data. We also 
estimated the prognostic relevance of the detected gene 
fusions in primary PCa in comparison with clinical fol-
low-up data. Using the DKFZ_RP cohort helped to evalu-
ate our results from the perspective of early-onset PCa.

Computational pipeline for gene fusion detection 
differentiates between tumor samples and samples 
without tumor tissue
The FF_RP cohort allowed us to assess whether a dif-
ference in gene fusion numbers was evident between 
tumor and tumor-free samples. In total, we detected 633 
gene fusions in 24 control samples (Table  1, column 1). 
According to Arriba’s filtering criteria, 34 of these fusions 
had high confidence (5.37%, or 1.42 fusions per sample). 
The majority of gene fusions detected by Arriba were 
classified as medium (33.02%, 8.71 fusions per sample) 
or low confidence (65.56%, 17.29 fusions per sample), 
respectively (Table 1, column 1). The distribution of high-
confidence fusions per control and tumor-free sample of 
FF_RP (Fig. 2A) revealed that both sample types had only 
low numbers of gene fusions per sample, with a mean of 
1.25 (min = 0, max = 3) and 1.5 (min = 0, max = 3), respec-
tively. In contrast, for the FF_RP tumor samples, we 
observed 488 high-confidence fusions (on average 12.20 
fusions per sample, min = 1, max = 54; Fig.  2B). In total, 
20.56% of the observed fusions were of high confidence 
(Table  1, column 2). Thus, consistent with our assump-
tions, we observed a higher rate of high-confidence 
fusions and a substantially higher number of fusions per 
tumor sample compared with specimens without tumor 
tissue.

The quality of detected gene fusions depends on the type 
of specimen conservation
In the 40 tumor samples from the FF_RP cohort, we 
detected 2,373 gene fusions (Table  1, column 2). Con-
fidence filtering resulted in 20.56% high (mean = 12.2 
fusions per sample), 31.69% medium, and 53.65% low 
confidence unique gene fusions (mean = 18.8 and 31.83 
fusions per sample, respectively).

The fusion calling for the TCGA_PRAD cohort 
(n = 332) resulted in 12,908 gene fusions with 3,265 
(25.29%, mean = 9.83 fusions per sample) high confi-
dence, 2,134 (16.53%, mean = 6.43 fusions per sample) 
medium confidence, and 8,002 (61.99%, mean = 24.1 
fusions per sample) low confidence fusions (Table  1, 
column 3). The distribution of fusions per sample for 
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TCGA_PRAD revealed a minimum of 0 fusions and a 
maximum of 77 fusions (Fig. 2C).

In the 176 tumor samples from the third cohort, 
FFPE_Bx, we detected 109,590 gene fusions. Of these, 
only 230 (0.21%) were classified as “high confidence”, 
yielding 1.31 fusions per sample in the mean. 6.82% 
of the detected fusions of FFPE_Bx were labeled as 
“medium confidence” (mean = 42.48 fusions per sam-
ple), and the majority (93.02%) were considered 
low confidence (mean = 579.24 fusions per sample) 
(Table  1, column 4). With a mean value of 1.31 high 
confidence fusions per sample, the results for FFPE_Bx 
were lower than the number of fusions detected in the 
FF_RP control samples (mean = 1.42 fusions per sam-
ple). However, the values increased for FFPE_Bx with 
medium confidence fusions (mean = 42.48 fusions 
per sample versus mean = 8.71 fusions per sample in 
FF_RP controls, Table  1). To visualize the distribution 
of fusions per sample, we divided the cohort accord-
ing to the age of the sample (Fig.  2D) by tertiles. We 
used this division to show the effect of storage time 
on the fusion detection in FFPE specimens. The stor-
age time ranged from 4.5 to 11.1 years for the FFPE_Bx 
cohort. The results also revealed that FFPE_Bx sam-
ples conserved for less than 8.16  years carry more 
high confidence gene fusions (mean = 2.4 fusions per 
sample, min = 0, max = 13, Fig. 2D top plot) than older 
specimens (mean = 0.71 fusions per sample, min = 0, 
max = 6, Fig. 2D lower plots) (Wilcoxon rank sum test 
p-value = 5.6e−06, Fig. S2A).

Tumor samples from FF_RP and TCGA_PRAD 
resulted in similar proportions of confidence levels, 
whereas samples from FFPE_Bx showed a substantially 
lower number of high-confidence fusions and a larger 
number of low-confidence fusions (Table  1). In com-
parison, the means of fusions in the tumor samples of 
FF_RP and TCGA_PRAD were in the same range (12.2 
and 9.83, respectively; Fig. 2B and C), whereas FFPE_Bx 
had a markedly lower mean of gene fusions per sam-
ple in all specimen age groups (means = 2.4, 0.94, and 
0.44, respectively; Fig.  2D). This result was confirmed 
with a Wilcoxon rank-sum test. While the mean of 
TCGA_PRAD was only slightly lower than the mean of 
FF_RP (p-value = 0.01), the pairwise differences of means 
between FFPE_Bx and TCGA_PRAD or FF_RP yielded 
for both p-values of 2.2e−16 (Fig. S2B).

Interestingly, TCC was not related to the number of 
detected fusions per sample in all three cohorts (Fig.  2, 
coloring). Tumor samples from FF_RP and TCGA_PRAD 
all had a TCC of at least 50%, indicating that the effect 
of TCC on the number of fusions might not be detect-
able at such high TCC values (Fig. 2B and C). However, 
the cohort FFPE_Bx did not show an effect of TCC on 
the number of fusions, even though the TCC for biopsies 
ranged from 5 to 100%. This was evident for the youngest 
FFPE samples (Fig. 2D top), where some of the samples 
with the lowest TCC were ranked highest regarding the 
fusion numbers per sample. Overall, we observed a sub-
stantially lower number of high-confidence gene fusions 
in FFPE tissue specimens than in fresh frozen tissue. The 

Table 1 Numbers of detected gene fusions

The columns depict the number of detected gene fusions per cohort. We report the numbers of control and tumor-free samples of FF_RP (column 1), the tumor 
samples of FF_RP (column 2), all samples of TCGA_PRAD (column 3), and all samples of FFPE_Bx (column 4). The rows depict the number of detected fusions, the 
corresponding mean of fusions per sample, and the unique occurrence of fusions across a cohort. The numbers are listed for the whole cohort (‘all confidences’) and 
separated for each Arriba confidence level (‘high’, ‘medium’, and ‘low’). Percentages in parentheses correspond to the proportion of each category compared to the 
total number of fusions per cohort. Percentages do not sum up to 100% because fusions can appear in multiple confidence groups

FF_RP control FF_RP tumor TCGA_PRAD tumor FFPE_Bx tumor

number of samples 24 40 332 176

all confidences number of fusions 633 2,373 12,908 109,590

average fusions per sample 26.38 59.33 38.88 622.67

number of unique fusions per cohort 519 1,952 8,790 109,281

high number of fusions (percentage of all confidences) 34 (5.37%) 488 (20.56%) 3,265 (25.29%) 230 (0.21%)

mean fusions per sample 1.42 12.20 9.83 1.31

number of unique fusions per cohort 31 447 3,072 204

medium number of fusions (percentage of all confidences) 209 (33.02%) 752 (31.69%) 2,134 (16.53%) 7,476 (6.82%)

mean fusions per sample 8.71 18.80 6.43 42.48

number of unique fusions per cohort 159 567 1,778 7,440

low number of fusions (percentage of all confidences) 415 (65.56%) 1,273 (53.65%) 8,002 (61.99%) 101,946 (93.02%)

mean fusions per sample 17.29 31.83 24.10 579.24

number of unique fusions per cohort 350 1,065 4,393 101,693
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difference was even more pronounced in old FFPE tissue 
specimens stored for more than eight years.

Gene fusion detection pipeline shows good concordance 
with previously described ERG‑fusions
We compared our findings for TCGA_PRAD with 
those reported by the TCGA consortium in 2015 [12] 
in order to assess the efficacy of the gene fusion detec-
tion method using Arriba. The consortium published 
the status of ERG, ETV1, ETV4, and FLI1 fusions in 

the cBioportal database (dataset: Prostate Adenocarci-
noma (TCGA, Cell 2015)) for 333 samples. Of these, 
224 were part of the 332 TCGA_PRAD samples, fulfill-
ing our inclusion criteria with respect to information 
on fusions, minimal TCC, and clinical follow-up (Fig. 
S3) as described by Kreuz et al. [6]. A direct compari-
son of the 224 samples revealed good concordance. In 
35.7% (n = 80) of the samples, high-confidence ERG-
fusions were detected with Arriba, while the TCGA 
consortium reported ERG-fusions in 27 additional 

Fig. 2 Numbers of high confidence gene fusions per sample. We plotted the numbers of gene fusions per sample, ordered by the number of 
fusions for each cohort. Samples are colored according to their TCC. For each plot, the mean number of fusions per sample is shown. A Bar plot of 
FF_RP control and tumor‑free samples, respectively, and (B) FF_RP tumor samples. C Bar plot of the fusion number per sample for TCGA_PRAD. In 
(D), FFPE_Bx samples were split by specimen age (tertiles). The range of specimen ages is shown per age group
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samples (47.8% of the samples, Table S4A). However, 
the frequencies of medium-confidence fusions were 
consistent, with 46% (n = 103) of ERG-fusions detected 
in Arriba and 47.8% (n = 107) samples described by the 
TCGA consortium (Table S4A). Investigation of ERG 
expression in combination with ERG fusion status sup-
ported previous findings (Fig. S4). ERG expression 
commonly increases through fusion with androgen-
dependent TMPRSS2, and we observed a bimodal 
distribution of expression in TCGA_PRAD (Fig. S4) 
[29]. For 23 of the 27 samples for which Arriba did 
not report high-confidence ERG fusion but high ERG 
expression (Fig. S4A), we detected a medium-confi-
dence fusion of ERG with our pipeline (Fig. S4B). Of 
the four remaining samples for which we could not 
detect a fusion with Arriba, two samples exhibited 
high expression, while the other two exhibited low 
ERG expression (Fig. S4B). The calculation of con-
tingency tables for ETV1, ETV4, and FLI1 did not 
reveal such large variances between our results and 
those published by the TCGA consortium as for ERG. 
For ETV1, the consortium described 4.9% (n = 11) of 
fusion-affected samples, we detected 4.5% (n = 10) for 
high and high + medium confidence (Table S4B). For 
ETV4, we detected one more fusion (8 vs. 7 fusions) 
in the high + medium group than in the TCGA consor-
tium, and we did not detect a FLI1-fusion, while the 
consortium detected two (Tables S4C and D).

Based on these findings, we draw the conclusion that 
the Arriba pipeline’s results and those published by the 
TCGA consortium are consistent. A comparison of the 
frequencies of ERG, ETV1, ETV4, and FLI1 fusions 
in TCGA_PRAD with those of FF_RP and FFPE_Bx 
(Table S5) supported our previous findings that far 
fewer gene fusions could be detected in FFPE_Bx. For 
instance, we detected 35.7% ERG-fusion-positive sam-
ples (high confidence) in TCGA_PRAD, 50% in FF_RP, 
and only 14.8% in FFPE_Bx (Table S5).

Nevertheless, we decided on a conservative approach 
to limit the number of false positives, using only high-
confidence gene fusions for our analyses if not men-
tioned otherwise. Based on the lower quality of gene 
fusions observed for FFPE_Bx, we decided to use the 
cohorts FF_RP and TCGA_PRAD to identify novel 
fusion candidates and consult FFPE_Bx at all confi-
dence levels to support our findings.

The majority of detected fusions had not been previously 
reported
The two cohorts, TCGA_PRAD and FF_RP, served as dis-
covery cohorts for the identification of gene fusions, as 
both consisted of fresh-frozen samples. In summary, we 
identified 3,504 unique high-confidence fusions in both 
cohorts (Fig.  3A, Table S6). Only a small number of 15 
fusions appeared in both cohorts (0.4% of all unique high-
confidence fusions, Fig. 3A, Table S7). Matching all fusions 
with annotated gene fusions in the Mitelman DB, we 
observed a large fraction (n = 2,820) of still unknown gene 
fusions, labeled with “high confidence” by Arriba (Fig. 3A). 
The detected fusions described in the Mitelman DB 
(n = 684) included the most common gene fusions, such 
as TMPRSS2::ERG and SLC45A3::ELK4. TMPRSS2::ERG 
was the most frequent fusion in both cohorts, detected in 
45% of FF_RP tumor samples and 28.6% of TCGA_PRAD 
samples. These numbers differ from the ERG-fusion fre-
quencies described above because of the reduction to only 
TMPRSS2::ERG fusions and the inclusion of 108 samples, 
which matched our inclusion criteria but had no matching 
results published by the TCGA consortium.

The second most frequently known gene fusion was 
SLC45A3::ELK4 in more than 10% of FF_RP samples and 
approximately 1% of TCGA_PRAD samples (Fig. 3A, left). 
Both fusion partners are known to be involved in gene 
fusions in PCa; SLC45A3 is specifically expressed in the 
prostate, while ELK4 is a member of the ETS gene fam-
ily, similar to ERG [16, 43, 44]. In addition to ELK4 and 
ERG, multiple ETS-family members were detected in gene 
fusions (Fig.  3A, red bars). Another known gene fusion 
detected in multiple samples is TTC6::MIPOL1. MIPOL1 
is thought to act as a tumor suppressor, and its fusions 
may accompany ETV1 fusions [45]. TTC6 is a snoRNA 
host gene located on chromosome 14 and is specifi-
cally expressed in breast and prostate tissues [34, 46]. The 
TTC6::MIPOL1 fusion has been described for both tissue 
types [47, 48].

Among the group of most frequent, not yet described 
fusions were also multiple ETS-family genes (Fig.  3A, 
right side, red bars). Another group of genes frequently 
represented in the detected fusions of both cohorts 
were genes with an "RP11" prefix (Fig.  3A, right side) 
[49]. These are genes derived from the BAC clone 
library at the Roswell Park Cancer Institute, without 
approved gene symbols. "RP11" is the identifier of 
the clone [50]. One of these genes, RP11-356O9.1, is 

(See figure on next page.)
Fig. 3 Characteristics of detected high confidence fusions for discovery cohorts FF_RP and TCGA_PRAD. A The Venn diagrams show the overlap of 
gene fusions between the two cohorts for all fusions (top), those fusions that are described in the Mitelman DB (left), as well as those that are not 
described (right). The overlap of fusions are shown in bar plots below, with their frequency in percent. Red: gene fusions that involve genes from the 
ETS family. Plot (B) shows the occurrence of gene fusions in FF_RP that involve snoRNAs (blue) or their host genes (red). Triangles highlight fusions 
of the type snRNA::snoRNA/host gene
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Fig. 3 (See legend on previous page.)
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annotated as a lncRNA on chr14 that is predominantly 
expressed in the prostate, and a fusion with ETV1 has 
been described previously in the PCa cell line MDA-
PCa 2B [51, 52]. In our case, RP11-356O9.1 frequently 
fused with MIPOL1, as well as less frequently with 
ETV1, TTC6, and YME1L1 (Table S6). MIPOL1 and 
RP11-356O9.1 are adjacent genes on chromosome 14. 
This suggests that these cases are read-through tran-
scription gene fusions. In addition, ETV1 has been 
described as being translocated to chr14 in that region 
in PCa, and through this translocation, another read-
through fusion can be formed [51].

In FF_RP, we also detected a group of fusions 
between snRNAs (prefix "RNU" [53]) and snoRNAs 
(prefix "SNOR") in multiple samples. Upon further 
inspection and reconciliation with the snoDB [34], 
we revealed various fusions involving snoRNAs and 
their host genes in FF_RP (Fig. 3B, Fig. S5). Only two 
of the fusions have been previously described (Fig. 3B, 
left panel), while the remaining 36 fusions were not 
included in the Mitelman DB. Interestingly, snR-
NAs were involved in 7 of the 36 snoRNA/host gene 
fusions (Fig. 3B, triangles). We found 209 gene fusions 
in TCGA_PRAD that involved a snoRNA host. Two of 
these fusions, TTC6::MIPOL1 and TTC6::SLC25A21, 
were found in both discovery cohorts (Tables S6 and 
S7). Fusions with snoRNAs could not be detected in 
TCGA_PRAD, as snoRNAs carry no poly(A) tails and 
are therefore not processed in poly(A)-RNA sequenc-
ing. Background information on these types of 
fusions is scarce; however, Persson et al. [49] recently 
described gene fusions in breast cancer involving 
snoRNAs, disrupting snoRNA/host gene transcrip-
tional balance, and contributing to a change in the 
expression of snoRNAs. Such fusions have not yet 
been described for PCa.

Revisiting the FF_RP tumor-free and BPH samples 
revealed gene fusions of the type snRNA::snoRNA in 
all sample types; however, the control samples had 
fewer supporting reads and a lower confidence level 
than the tumor samples (Table S8).

To evaluate whether these fusions were true positives 
or artifacts, we performed polymerase chain reaction 
(PCR) analyses. For TMPRSS2::ERG, our positive con-
trol, PCR amplified a product with the expected prod-
uct size (313  bp) in the sample where we predicted a 
fusion using Arriba (Fig. S6A, lane 5). Interestingly, 
the three different snRNA::snoRNA fusions that we 
wanted to verify showed bands with the expected sizes 
(103  bp, 106  bp, and 113  bp, respectively), but also 
for those samples we did not predict a fusion for (Fig. 
S6B-D).

Tumor suppressor genes are highly represented in gene 
fusions
Since the literature describes that most genes are unlikely 
to be partners in just one specific fusion but rather are 
promiscuous [8], we also inspected the genes that are fre-
quently involved in different gene fusions in our cohorts.

The most commonly affected genes among known 
fusions are TMPRSS2 as 5’ gene (Fig. 4A) and ERG as 3’ 
gene (Fig. 4B), based on their ubiquitous fusion in PCa. 
Among the genes that are frequent but not involved in 
one specific fusion, prominent tumor suppressors such as 
FOXP1, PTEN, and TP53 as 5’ genes (Fig. 4A) stand out. 
The gene PTEN was involved in several fusions in FFPE_
Bx and TCGA_PRAD. In addition to its tumor suppress-
ing functionality, it is known to be involved in apoptosis 
and neurogenesis. Its general expression is cancer unspe-
cific, however in PCa a decrease in expression is linked to 
the TMPRSS2::ERG fusion [54–56]. PTEN gene fusions 
have also been found in several other primary tumors [9]. 
FOXP1 expression has a low tissue specificity, the pro-
tein acts as transcriptional repressor and can negatively 
regulate AR signaling [55, 56]. The product of TP53 is 
ubiquitously expressed and involved in multiple tumor 
suppressing pathways such as growth arrest or apopto-
sis [55, 56]. Combining ERG overexpression with PTEN 
or TP53 loss — that is, through fusion or deletion — can 
induce cell migration as well as promote the development 
and progression of PCa [18, 20, 57].

The most frequent 3’ genes were also among the most 
frequent fusions (Fig. 4B). These were genes of the RP11 
group, with RP11-356O9.1 represented in both cohorts, 
as well as ETS-family genes such as ELK4, ETV1, or ETV4 
(Fig. 4B). Gene set enrichment analyses of genes involved 
in fusions in the discovery cohorts confirmed our find-
ings of a higher involvement of tumor suppressor genes 
in fusions (p = 0.013, adjusted with the Benjamini–Hoch-
berg procedure, Fig. S7) and a significant enrichment of 
genes from the MsigDB’s androgen response hallmark set 
(p = 0.008, adjusted with the Benjamini–Hochberg proce-
dure, Fig. S7) [58].

Detected gene fusions in discovery cohorts are partly 
detectable in FFPE biopsies
Of the 3,504 high-confidence fusions detected in fresh-
frozen tissue of the two discovery cohorts (shown in 
Fig.  3A), we identified 36 gene fusions that occurred in 
at least two cohorts (FF_RP or TCGA_PRAD (high con-
fidence) or FFPE_Bx (all confidences)). Nine gene fusions 
were found in all three cohorts (Table  2). Of these, five 
gene fusions have already been described in the litera-
ture and can therefore be found in the Mitelman DB. Of 
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the four gene fusions that were not listed in the Mitel-
man DB, ERG::ERG, and FSIP1::RP11-624L4.1 have been 
described elsewhere [59, 60] (Table  2, top four rows). 
Next, we searched the other databases, FusionGDB2, 
TumorFusions database, ChimerDB4, ChiTars5, and 
Quiver, for the two remaining potential novel gene 
fusions, AMACR::AMACR  and MBTPS2, LL0XNC01-
39B3.1::SMS, without results. Although AMACR  is 
known to be involved in oncogenic gene fusions in PCa, 
a fusion with itself has not yet been described [61]. The 
three genes involved in the fourth fusion, MBTPS2, 
LL0XNC01-39B3.1, and SMS, are not known to be 
related to any diseases in the prostate or gene fusions, 
but since all three genes are neighboring genes (Fig. S8), 
read-through transcription was likely. In addition, we 
observed higher expression of SMS in luminal cells in the 
PCa Cell Atlas [21] than in the other cell compartments 
(Fig. S9A-C), as well as a significant correlation between 
high SMS expression and fusion involvement (Wilcoxon, 
p = 0.028, Fig. S9D).

Figure  5 provides more detailed information on 
gene fusions from the discovery cohorts that could 
be detected in FFPE_Bx (Table S9). Of the 36 fusions 
described above, we detected a total of 30 fusions in 
FFPE_Bx (Fig.  5, Table  2). Of these 30 gene fusions, 
16 were classified as low confidence and seven as 
high and medium confidence, respectively (Fig.  5A). 
The most prominent confirmed gene fusions were 
TMPRSS2::ERG and SLC45A3::ELK4 (Fig. 5B). Both are 
well-known gene fusions associated with PCa; however, 
the high quantity of low-confidence SLC45A3::ELK4 
fusions in FFPE_Bx suggests that false positive hits 
were detected. All other gene fusions were detected in 
a small number of samples. Among these fusions were 
TMPRSS2 and SLC45A3 fusions with other members 
of the ETS gene family, such as ETV1 and ETV4, which 
are also known to be involved in PCa gene fusions 
(Fig.  5B). The 30 fusions in FFPE_Bx corresponded to 
10 known and 20 unknown fusions when comparing 
the results with the Mitelman DB (Fig. 5B, triangles).

Fig. 4 Genes most frequently involved in gene fusions in the cohorts FF_RP and TCGA_PRAD. A Results for the 5’ gene and (B) results for the 3’ 
gene. The Venn diagrams show the numbers of different genes involved in gene fusions as well as their overlap between the two cohorts. Plots 
show the number of occurrences of genes found in both cohorts, divided by sample size for FF_RP (blue, n = 40) and TCGA_PRAD (yellow, n = 332). 
The black lines depict combined values calculated as the number of occurrences in FF_RP plus the number of occurrences in TCGA_PRAD, divided 
by the sum of the sample sizes of both cohorts. This value was used to sort the genes
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Number of gene fusions partly serves as an additional 
prognostic factor for PCa
After quality control of the cohorts and characterization 
of differences in fusion calling quality between them, we 
also analyzed the impact of gene fusions on the prognosis 
of PCa patients.

To see if the most common PCa fusion, 
TMPRSS2::ERG, had a direct effect on PCa progno-
sis, we used Kaplan–Meier curves and log-rank tests 

with the samples grouped by TMPRSS2::ERG status 
(TMPRSS2::ERG fusion observed vs. not observed). 
Analyses with FF_RP (n = 40, 12 events) resulted in 
a significantly better prognosis for patients with the 
TMPRSS2::ERG fusion (Fig. 6A, right panel, p = 0.00223). 
The larger cohorts, TCGA_PRAD (n = 332, 42 events) 
and FFPE_Bx (n = 176, 75 events), showed an effect 
towards a worse prognosis for patients who carried a 
TMPRSS2::ERG fusion. However, the log-rank tests for 

Table 2 Overlap of fusions between the three cohorts as well as their occurrence in Mitelman DB

The rows show 36 gene fusions found in at least two cohorts. Columns 2–4 show the detection status of the fusion per cohort, where 1 means fusion can be detected 
and 0 means fusion cannot be detected. Column 5 states whether the fusion can be found in the Mitelman DB (TRUE) or not (FALSE). The table is gradually sorted by 
prominence according to the Mitelman DB (column 5) and the sum of cohorts in which a fusion can be found, as well as their rediscovery in FFPE_Bx

Fusion FFPE_Bx FF_RP TCGA_PRAD Known

ERG(30,742),NCRNA00114(46,499)::ERG 1 1 1 FALSE

AMACR::AMACR 1 1 1 FALSE

FSIP1::RP11‑624L4.1 1 1 1 FALSE

MBTPS2(33,120),LL0XNC01‑39B3.1(20,917)::SMS 1 1 1 FALSE

AMBRA1::CKAP5 1 1 0 FALSE

THBS1::RP11‑624L4.1 1 1 0 FALSE

LINC00506(49,329),MIR4795(19,791)::CHMP2B 1 1 0 FALSE

RP11‑159H20.3(25,945),FOXB2(602)::PRUNE2 1 1 0 FALSE

RP11‑597A11.11::RP11‑597A11.1 1 1 0 FALSE

AC004921.2(27,972),PTPN12(47,164)::GSAP 1 1 0 FALSE

RP11‑356O9.1::ETV1 1 0 1 FALSE

PTEN::RP11‑380G5.4(8171),RP11‑129G17.2(201,135) 1 0 1 FALSE

PTEN::RNLS 1 0 1 FALSE

MAPKAPK5::ACAD10 1 0 1 FALSE

ACPP::CPNE4 1 0 1 FALSE

CTC‑340A15.2::CTC‑535M15.2 1 0 1 FALSE

PLPP1::SKIV2L2 1 0 1 FALSE

SCHLAP1::UBE2E3 1 0 1 FALSE

RP11‑17A19.1::KCTD1 1 0 1 FALSE

ZFHX3::AC004158.2 1 0 1 FALSE

RP11‑356O9.1::MIPOL1 0 1 1 FALSE

TTC6::SLC25A21 0 1 1 FALSE

RP11‑599B13.3::ETV1 0 1 1 FALSE

C1QTNF3‑AMACR::AMACR 0 1 1 FALSE

RP11‑492D6.3::RP11‑810K23.8(24,509),RP11‑810K23.6(7644) 0 1 1 FALSE

SLC45A3::ELK4 1 1 1 TRUE

TMPRSS2::ERG 1 1 1 TRUE

TMPRSS2::ETV4 1 1 1 TRUE

TTC6::MIPOL1 1 1 1 TRUE

SLC45A3::ERG 1 1 1 TRUE

ERG::TMPRSS2 1 0 1 TRUE

PMEPA1::ETV4 1 0 1 TRUE

SLC45A3::ETV1 1 0 1 TRUE

IQSEC1::SCCPDH 1 0 1 TRUE

GPATCH8::PYY 1 0 1 TRUE

PDZRN3::EIF4E3 0 1 1 TRUE
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both cohorts were not significant (Fig.  6A, left panel, 
p = 0.742, middle panel, p = 0.292). These inconsistent 
results suggest that TMPRSS2::ERG, although ubiquitous 
in PCa, is not a suitable prognostic marker.

Next, we considered all detected gene fusions (high-
confidence fusions for TCGA_PRAD and FF_RP, and 
the combined set of fusions for FFPE_Bx (Fig. S1)), 
dichotomizing the cohorts according to the median total 
number of fusions per sample. All three cohorts had an 
adverse prognosis in the group with more fusions. The 
log-rank test for TCGA_PRAD with 332 samples and 
42 BCR events showed a significant difference (p < 0.01, 
median = 7 fusions, 5-year BCR-free survival 86.3% vs. 
64.1%) in the time to BCR between patients (Fig.  6B, 
left). In addition, the calculation of Kaplan–Meier esti-
mates of the confirmation cohort FFPE_Bx (Fig. 6B, mid-
dle) also resulted in a significantly shorter time to BCR 
(p = 0.0141, median = 2 fusions, 5-year BCR-free sur-
vival 80.1% vs. 63.1%) for patients with a higher number 
of gene fusions. Only FF_RP with 40 tumor samples and 
12 DoD events presented a non-significant association 
(p = 0.0789, median = 12 fusions, 5-year survival 90% vs. 
75%), but still supported the trend that the other two 
cohorts exhibited (Fig. 6B right).

As a next step, we assessed whether gene fusions 
remained an independent prognostic factor when con-
sidering histological classification by GGG. To address 
this, we performed multivariate Cox regression with 
the total number of fusions per patient (dichotomized 
at the median) and the associated GGG (Table  3). 
The regression analysis showed that, in line with the 
Kaplan–Meier curves above, the number of fusions was 
significantly associated with prognosis in addition to 
GGG for TCGA_PRAD (p < 0.05, Table 3) and FFPE_Bx 
(p < 0.05, Table  3). However, in FF_RP, the number of 
fusions was not significantly associated with the prog-
nosis (p = 0.46, Table  3). Multivariate Cox regression 
with the additional inclusion of an established prognos-
tic transcriptome score for localized PCa, the revised 
ProstaTrend Score [21], provides only weak evidence 
that a model combining GGG and a prognostic tran-
scriptomic score with the overall number of observed 
gene fusions improves predictive performance (Table 
S10). For FFPE_Bx, gene fusions and GGG were signifi-
cant  (pGenefusions < 0.05,  pGleasonGrading < 0.001), whereas 
the revised ProstaTrend score was not  (pProstaTrend = 0.3, 
Table S10). In TCGA_PRAD, GGG was significant 
(p < 0.01), while the number of fusions and revised 

Fig. 5 Confirmation of gene fusions in FFPE_Bx. Unique gene fusions of discovery cohorts FF_RP and TCGA_PRAD that have been detected in 
FFPE_Bx. A Distribution of the 30 rediscovered gene fusions per Arriba confidence levels. B Histogram of the numbers of samples in which each 
gene fusion could be detected. Bars are colored according to confidence level. If a fusion was detected multiple times in one sample, the highest 
confidence level was assumed, and only one occurrence per sample was counted. Triangles next to the fusion names indicate whether a fusion can 
be found in the Mitelman DB
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ProstaTrend Score both had a p-value slightly above 
0.05 (both p = 0.058, Table S10). FF_RP showed non-
significant values for fusion numbers and GGG 
(p = 0.16 and p = 0.19, respectively), but a significant 
influence of the revised ProstaTrend score on survival 

(p = 0.002). For all three cohorts, we observed that 
the histological GGG and transcription-based revised 
ProstaTrend score were correlated, while the number of 
fusions seemed to be an independent marker in com-
parison with GGG (Fig. S10).

Fig. 6 Prognosis of PCa progression. A Prognosis of PCa for all three cohorts for patients with and without TMPRSS2::ERG fusion. Kaplan–Meier 
curves and log‑rank tests for TCGA_PRAD with n = 332 and 42 events (BCR), as well as FFPE_Bx with n = 176 and 75 events (BCR), and FF_RP with 
n = 40 and 12 events (DoD). B Kaplan–Meier curves and log‑rank tests for TCGA_PRAD (high confidence gene fusions), FFPE_Bx (combined fusions), 
and FF_RP (high confidence, left to right), grouped by the median of the total number of gene fusions (< median of fusions per sample vs. ≥ median 
of fusions per sample)

Table 3 Multivariate Cox regression for all three cohorts

Multivariate Cox regression with dichotomized numbers of fusions and continuous GGG. Columns represent the results per cohort, with all included TCGA_PRAD 
samples (n = 332, column 1), the combined FFPE_Bx dataset (n = 176, column 2), and the FF_RP tumor samples (n = 40, column 3). The rows represent the tested 
variables with their logHR, 95% confidence interval, and p-value. For the variable of total fusions, the median per dataset is recorded in the uppermost row

logHR Logarithmic hazard ratio, CI Confidence interval, p pvalue

TCGA_PRAD (n = 332, 
e = 42)

FFPE_Bx (combined) (n = 176, 
e = 75)

FF_RP (n = 40, e = 12)

total fusions median 7 2 12

logHR (95% CI) 0.82 (0.13, 1.5) 0.53 (0.07, 0.99) ‑0.46 (‑1.66, 0.74)

p 0.0198 0.0236 0.45564

GGG logHR (95% CI) 0.62 (0.32, 0.92) 0.67 (0.49, 0.85) 0.79 (0.28, 1.3)

p 4.79e‑05 1.72e‑13 0.00238
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Early‑onset PCa cohort supports potential novel gene 
fusions
We used samples from 82 patients with early-onset PCa 
to evaluate our previous findings. We wanted to deter-
mine, if the potential novel gene fusions we discovered, 
as well as the findings of a trend toward a worse prog-
nosis with a higher number of gene fusions, could be 
confirmed in early-onset PCa despite known molecular 
differences [20].

With our general gene fusion pipeline used above, 
Arriba reported 2,168 gene fusions of all confidence lev-
els for DKFZ_RP, with an average of 26.44 fusions per 
sample (Table S13A). The distribution of fusions per 
confidence level was similar to the distributions in the 
cohorts TCGA_PRAD and FF_RP, with 33.03% high con-
fidence fusions, 19.37% medium confidence fusions, and 
53.41% low confidence fusions (Table  1, Fig. S11A, and 
Table  S13A, respectively). As expected, the most fre-
quent fusion was TMPRSS2::ERG, which was detected 
with high confidence in 54.88% of samples (Table S11). 
In addition, ERG was a more frequent fusion partner in 
the DKFZ_RP cohort (58.5%, Table S5) than in the other 
cohorts (35.7–50%, Table S5), whereas fusions with 
ETV1, ETV4, and FLI1 did not show an increased inci-
dence (4.9% vs. 2.3–7.5% ETV1, 2.4% vs. 0–3.1% ETV4, 
and 0% vs. 0% FLI1, Table S5). Overlapping the high-
confidence fusions detected in the DKFZ_RP cohort 
with those in the other cohorts resulted in 52 fusions 
that could be detected in at least two cohorts. Of the four 
above-described fusions that have not been previously 
described in the Mitelman DB, we detected three fusions 
in the DKFZ_RP cohort: ERG::ERG, AMACR::AMACR , 
and MBTTPS2,L0XNC01::SMS (Table S12).

Finally, we performed survival analyses with high-confi-
dence fusions detected in the DKFZ_RP dataset. Kaplan–
Meier curves and log-rank tests based on the number of 
TMPRSS2::ERG positive samples (TMPRSS2::ERG fusion 
observed vs. not observed) showed that patients with a 
fusion had a significantly better prognosis (p = 0.00643, 
5-year BCR-free survival 86.1% with fusion vs. 64.5% 
without, Fig. S11B). In contrast, analyses with the total 
number of fusions per patient resulted in a non-significant 
worsening of prognosis for patients with above median 
fusions counts (median = 6 fusions, p = 0.0755, 5-year 
BCR-free survival 62.8% with fusion vs. 87.2% without, 
Fig. S11C). Cox regression analysis with dichotomized 
total fusion number (p = 0.482) and continuous GGG 
(p = 0.000104) supported these findings (Table S13B).

Discussion
With the detection and characterization of gene fusions 
from total RNA-sequencing and poly(A)-RNA-sequenc-
ing of four datasets (n = 630 samples), we identified two 

potential novel gene fusions and gained insights into PCa 
prognosis.

The first aim of our study was to characterize the gene 
fusions we identified in the available cohorts. The major-
ity of fusions we encountered were not reported in the 
Mitelman DB, meaning that they are not yet (sufficiently) 
described. This may be due to the low prevalence of 
specific fusions. Another reason could be that fusions 
described in the literature were mainly detected in stud-
ies using poly(A)-enriched sequencing (i.e., mRNA-
Seq). In contrast, our study also included two cohorts 
sequenced using rRNA-depleted total RNA-Seq, of which 
one was sequenced with approximately 200 million reads 
per sample.

However, as expected, TMPRSS2::ERG, which occurs in 
approximately 50% of PCa cases [62], was the most fre-
quent fusion detected with high confidence in all cohorts. 
Besides ERG, we observed plenty of fusions with other 
ETS-family members as 3’ partners, such as ETV1, ETV4, 
or ELK4. The ETS-family of genes consists in humans 
of 29 transcription factors that are involved in a variety 
of cellular functions along with gene fusions in various 
cancers [63]. Of the fusions known in PCa with partners 
such as TMPRSS2 or SLC45A3, a gene that codes for a 
transporter protein and is enriched in PCa [55, 56], we 
could also identify fusions affecting ETS-family members 
that have not previously been described in PCa (Table 2).

Overall, we found that tumor suppressor genes and 
genes related to the MsigDB androgen response hallmark 
set were significantly enriched in fusions. This was in line 
with the role of gene fusions in cancer development [64] 
as well as the important role of androgen regulation in 
PCa in particular [22].

Among the most frequent fusions detected in the 
deeply sequenced total RNA FF_RP cohort, another 
group of fusions was noticeable: fusions of snRNA genes 
with snoRNA genes. On closer inspection, we found mul-
tiple fusions with snoRNA host genes, such as TTC6, in 
all cohorts. Arriba found fusions with snoRNAs in FF_RP 
and FFPE_Bx. In TCGA_PRAD, fusions with snoRNAs 
were not detectable, as the sequencing protocol only cov-
ered RNA molecules with a poly(A)-tail [12]. However, 
we also identified fusions between snRNAs and snoRNAs 
in control samples of FF_RP. Thus, it is currently unclear 
whether the observed fusions with snRNAs or snoRNAs 
are artifacts or true gene fusions associated with prostate 
tissue but not PCa.

Despite the low prevalence of most gene fusions, 
we also identified three candidates that could be 
detected in all four cohorts but were not described 
in the Mitelman DB. Of these three gene fusions, 
ERG::ERG could be confirmed as known fusion with lit-
erature research [59], whereas AMACR::AMACR  and 
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MBTPS2,LL0XNC01-39B3.1::SMS have not yet been 
described in the literature. AMACR , an isomerase with 
enriched expression in liver, renal, and prostate cancer 
[55, 56], has been described in PCa fusions but not with 
itself; however, the fusion of ERG with itself is known 
to occur in PCa. Therefore, this could likely be a similar 
event acting as a feedback loop with itself [11]. MBTPS2 
and SMS are neighboring genes. The gene MBTPS2 codes 
for a protease that is related to the steroid metabolism 
and ER stress response. It shows a low cancer specificity 
and its prognostic value is unknown [55, 56]. The protein 
of SMS catalyzes the production of spermine and is by 
default expressed in the prostate [55, 56]. The non-cod-
ing RNA LL0XNC01-39B3.1 can be found between the 
two genes Arriba named both MBTPS2 and LL0XNC01-
39B3.1 as the fusion partners of SMS, and the read cov-
erage of samples carrying the fusion was slightly higher 
in the non-coding area (Fig. S8). None of the three genes 
are known to have a specific role in PCa development; 
however, SMS is part of the androgen response hallmark 
set of MsigDB [58]. Using single-cell sequencing data, we 
observed high expression of SMS in luminal cells, which 
is the cell type where PCa is thought to originate along-
side basal cells [22] (Fig. S9). According to StringDB [65], 
the proteins of genes do not normally interact. Thus, it 
is unclear which function this fusion could provide for 
PCa and whether it is a tumorigenic event, a bystander 
aberration, or a false-positive finding. On the other hand, 
we observed increased gene expression of SMS in fusion-
positive samples, and the fusion was one of the very few 
gene fusions that we could detect in all cohorts (Fig. 
S9D). Therefore, the MBTPS2/LL0XNC01-39B3.1::SMS 
fusion was likely a true positive.

In all our characterizations, most gene fusions 
occurred very infrequently, which makes the investiga-
tion of biological and clinical relevance statistically chal-
lenging. A proposal by Persson et al. [49] to cluster gene 
fusions by the functionality of the involved genes rather 
than considering individual genes seems to be a prom-
ising method to mitigate the restrictions of cohort size 
and the low frequency of single fusions. This hypothesis 
should be tested in the future, considering the similarity 
of the gene expression landscapes of samples harboring 
these fusions.

The second aim of our study was to investigate the 
prognostic relevance of gene fusions. Performing survival 
analyses with samples dichotomized by TMPRSS2::ERG 
occurrence underlined the varying descriptions of the 
prognostic role of this fusion in the literature [66]. This 
is in line with the findings of Song and Chen in 2018 
[67] that TMPRSS2::ERG is not associated with BCR or 
DoD, which are the endpoints available for our study. 

Also in line with their findings is our observation of a 
higher number of TMPRSS2::ERG fusions in the young 
patients of the DKFZ_RP cohort in comparison with the 
other three cohorts. In one of their meta-analyses, Song 
and Chen examined eight published studies regarding 
the relationship between the age of PCa patients and 
TMPRSS2::ERG fusions. They reported a significant 
increase in fusions in younger patients (age ≤ 65  years). 
Overall, our prognostic analyses exhibited considerable 
heterogeneity, from a highly significant better progno-
sis for TMPRSS2::ERG-fusion positive patients in the 
cohorts FF_RP and DKFZ_RP to no specific effect in the 
cohorts TCGA_PRAD and FFPE_Bx.

In analyses based on the overall number of detected 
fusions, we observed a significantly adverse prognosis in 
two out of four cohorts (TCGA_PRAD and FFPE_Bx), 
as well as a consistent trend for FF_RP and DKFZ_RP 
for patients with a high number of gene fusions. How-
ever, the small cohort size (n = 40 tumor samples) and 
accompanying low number of events (n = 12 events) of 
FF_RP limited its statistical power. DKFZ_RP was a spe-
cial cohort because it described early-onset PCa, whereas 
the other three cohorts did not focus on a specific PCa 
subtype. We observed that for two out of four cohorts, 
the number of gene fusions had an additional prognostic 
value beyond that of GGG (multivariate Cox regression). 
Gerhauser et  al. [20] described molecular differences 
between early- and late-onset PCa. Accordingly, the influ-
ence of familiar predisposition in early-onset PCa [22] 
and the relatively low number of events (n = 18) could 
influence the prognosis and explain the differing results 
between the DKFZ_RP cohort and the TCGA_PRAD and 
FFPE_Bx cohorts. We hypothesize that gene fusions are 
a measure of genomic instability or cellular disorganiza-
tion induced by PCa [10]. Genomic instability and het-
erogeneity have been described as being associated with 
a worse prognosis of PCa [22]. However, measuring gene 
fusions transcriptome-wide is costly. Currentlyavailable 
gene fusion panels use targeted approaches and cannot 
account for the total number of gene fusions in a sam-
ple [68]. In addition, it is difficult to transfer the thresh-
old of fusion numbers between cohorts, which presents 
challenges for the translation of the marker to usability in 
clinical practice. Furthermore, the prognostic differences 
between the considered groups were of moderate effect 
size and varied considerably between the cohorts.

Our analyses revealed some limitations in the detec-
tion of gene fusions related to the composition and con-
servation of the cohorts. First, the quality of RNA has 
a major impact on the quality of detected gene fusions. 
As is known for FFPE samples, the quality of the RNA 
decreases with the age of the specimen [69]. The different 
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distribution of detected gene fusions by confidence level 
in the FFPE_Bx cohort compared to the fresh-frozen 
tissue specimen cohorts (FF_RP, TCGA_PRAD, and 
DKFZ_RP) suggests that the level of RNA degradation 
in FFPE tissue specimens affects how easily gene fusions 
can be found. We observed a shift towards low confi-
dence fusions in FFPE tissue: likely true positive fusions 
lacked supporting reads, and more false positive fusions 
were called due to degradation. Low RNA quality and 
degradation of RNA complicated identification and likely 
resulted in false-positive fusions. We showed that this 
decline in quality affected the detection of gene fusions, 
with a clear association between specimen age and the 
number of detected fusions as well as major differences 
between fresh-frozen and FFPE samples.

The second limiation that became apparent in this 
study was the number of samples in a cohort. The sam-
ple size of the TCGA_PRAD cohort (n = 332) allowed 
the description of a broad spectrum of gene fusions 
in PCa and their frequencies, while the FF_RP cohort 
revealed only a limited spectrum of gene fusions pre-
sent in PCa. In contrast, the mean number of fusions 
per sample was comparable between cohorts with a 
larger sample size, such as TCGA_PRAD, and cohorts 
with a smaller sample size, such as FF_RP (n = 40). The 
fusion numbers of FFPE_Bx were of no weight for this 
finding due to the poor RNA quality of the cohort. 
Another limiting factor for analyses with FF_RP was 
the low number of events (e = 12 DoD), resulting in low 
statistical power to assess the correlation between gene 
fusions and prognosis, thus restricting the survival anal-
yses with this cohort.

Conclusions
In this study, we identified two novel gene fusions for 
PCa that have not yet been described in the literature 
but were detectable in all cohorts included in our study. 
In addition, we provided information on the prognos-
tic relevance of gene fusions in primary PCa. We found 
evidence that the overall number of gene fusions in PCa 
tissue specimens was related to the prognosis of the dis-
ease in two cohorts, even when adjusting for GGG. How-
ever, the prognostic effect varied between the cohorts. 
The small number of events in two of the four cohorts 
as well as the specimen age of the FFPE samples limited 
our analysis. For FFPE-preserved samples, it is advis-
able to use fresh specimens for fusion detection to avoid 
loss of quality. Thus, we conclude that the overall num-
ber of gene fusions as surrogate marker for the degree of 
genomic instability is not a suitable parameter for inclu-
sion in statistical models for PCa prognosis at this time 
point.
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