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Abstract 

Direct current electrodeposition of Co−P alloy coatings were carried out using gluconate 

bath and they were characterized by employing techniques like XRD, FESEM, DSC and 

XPS. Broad XRD lines demonstrate the amorphous nature of Co−P coatings. Spherical 

and rough nodules are observed on the surface of coatings as seen from FESEM images. 

Three exothermic peaks around 290, 342 and 390 °C in DSC profiles of Co−P coatings 

could be attributed to the crystallization and formation of Co2P phase in the coatings. As-

deposited coatings consist of Co metal and oxidized Co species as revealed by XPS 

studies. Bulk alloy P (Pδ−) as well as oxidized P (P5+) are present on the surface of 

coatings. Concentrations of Co metal and Pδ− increase with successive sputtering of the 

coating. Observed microhardness value is 1005 HK when Co−P coating obtained from 10 

g L−1 NaH2PO2 is heated at 400 °C that is comparable with hard chromium coatings. 
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1. Introduction 

In recent years, Co and Co based alloys have been identified as unique materials in 

replacing of hard chromium coatings that are formed in the environmentally hazardous 

process based on hexavalent chromium.1−6 It has also been found that alloying with P 

enhances the wear behavior, corrosion behavior, thermal stability and electrochemical 

properties of nanocrystalline and amorphous Co.7−12  

Electrodeposition has been considered as a simple, economical and viable method 

to prepare high quality alloy coatings.13,14 Brenner had first introduced electrodeposition 

of Co−P alloys.15 Previously, chloride and sulfate baths were employed to prepare these 

alloy coatings. Conditions of electrodeposition also play a significant role in composition, 

structure and properties of these coatings. Generally, many carboxylate based complexing 

agents such as citrates, sulfamates, tartrates, malates, glycinates and gluconates were 

being used in the process of electrodeposition of various metals and their alloys. These 

complexing agents are easily obtainable and nontoxic to aquatic organisms. Weston et al. 

used gluconate bath for the electrodeposition of Co−W coatings.16 Recently, we have 

reported studies on pulse electrodeposited Co−P coatings employing gluconate bath.17 In 

this sense, we wanted to see the differences in structure and properties of Co−P coatings 

prepared with direct current (DC). In the present study, we report DC electrodeposition of 

Co–P coatings using gluconate bath of different P content. X-ray diffraction (XRD), field 

emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy 



 3

(EDXS), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy 

(XPS) techniques are used to characterize the surface structure, morphology, thermal 

study, composition and elemental oxidation states of coatings. Structure and 

microhardness of these alloy coatings before and after heat treatment has been 

investigated to study the coating characteristics.  

2. Experimental methods 

Co−P alloy coatings were electrodeposited from a bath containing cobalt sulfate 

heptahydrate (15 g L−1), boric acid (40 g L−1), sodium gluconate (110 g L−1) and sodium 

chloride (30 g L−1). The pH of bath was around 5.2 and the pH was adjusted to 5.0 ± 0.05 

by the addition of H2SO4. Three different Co−P alloy coatings with varying P content 

were obtained by adding 2, 5 and 10 g L−1 NaH2PO2 into the above prepared bath. Here, 

NaH2PO2 was used as a P source. Analytical grade chemicals and deionized water were 

used to prepare the baths. For electrodeposition, approximately 200 mL solution was 

taken in a 250 mL glass beaker. Temperature of the bath was maintained at 80 °C using a 

constant temperature water bath. A graphite bar was used as the anode and a 

mechanically buffed brass sheet with 10 cm × 2.5 cm × 0.1 cm dimension with an 

exposed area of 6.45 cm2 was used as the substrate. The graphite anode was covered with 

a pretreated anode bag which prevented the carbon depositing on the Co−P coatings. For 

XPS and DSC studies plating was done on stainless steel substrates and peeled off from 

the substrate for analysis. Substrate was degreased with acetone, rinsed with tap and 

deionized water, cathodically cleaned with 10 % NaOH solution for 1 min at 15 A dm−2, 

rinsed with tap and deionized water. Then the substrate was deoxidized with 10 vol.% 

H2SO4 for 30 s (50 vol.% H2SO4 for 5 s for stainless steel substrate), rinsed with tap 
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water and deionized water and loaded in the bath for electroplating. DC electrodeposition 

was carried out galvanostatically by using an Aplab 7253 regulated DC power supply at 

an average applied current density of 4.7 A dm−2. The plating was carried out for 1 h and 

the deposited coating was rinsed with deionized water and dried at room temperature. 

The current efficiencies of the deposits have been evaluated using Faraday’s first law of 

electrolysis assuming electrochemical equivalence of 0.000305 g C−1 for Co−P.    

The heat treatment temperatures were identified and chosen from DSC curves. 

Co−P alloy coatings were heat-treated for 1 h in a muffle furnace. To prevent the 

oxidation of the coating a paste of proprietary mixture was applied on the coated samples. 

This was then dried and wrapped in a nickel foil and introduced into the furnace when the 

required temperature was attained. Coating obtained from the bath containing 2 g L−1 

NaH2PO2 was heat treated at 280 and 400 °C while the other two high phosphorous 

containing coatings prepared with baths containing 5 and 10 g L−1 NaH2PO2 were 

annealed at 300 and 400 °C. The accuracy of the set temperature was ± 10 °C. Rates of 

heating and cooling were 5 °C min−1. 

The structure of alloy deposits was determined by XRD studies employing a 

PANalytical X’Pert PRO X-Ray diffractometer operated with CuKα radiation of 1.5418 

Å wavelength at 40 kV and 30 mA in the 2θ range 30−100°.  

The surface morphology and composition of these alloy coatings were examined 

by FESEM using a Carl Zeiss Supra 40VP coupled with energy dispersive X-ray 

spectrometer from Oxford Instruments. 
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Surface roughness was investigated by AFM from CSEM Instruments (Model 

SSI) operated in non-contact mode and calculated from average roughness (Ra) and root 

mean square roughness (Rrms) values. 

DSC studies for the phase transformation of these Co−P alloy coatings were 

performed with a Diamond DSC (Perkin Elmer) at the heating rate of 20 °C min−1 under 

continuous purging of the heating chamber with nitrogen flow of 30 mL min−1 to avoid 

sample oxidation. The plot of temperature against heat flow was obtained.  

XPS of several electrodeposited Co−P alloy coatings were recorded with a 

Thermo Fisher Scientific Multilab 2000 spectrometer using non-monochromatic AlKα 

radiation (1486.6 eV) run at 15 kV and 10 mA as X-ray source. The binding energies 

(EB) reported here were calculated with reference to C1s peak at 284.5 eV with a 

precision of  ± 0.1 eV. All the spectra were obtained with pass energy of 30 eV and step 

increment of 0.05 eV. To know composition and elemental oxidation states, coating 

surface was sputtered with defocussed Ar+ ion beam using EX05 ion gun fitted in the 

preparation chamber by applying energy of 3 keV and beam current of 2.6 µA with Ar 

gas pressure of 5 × 10−6 Torr. Sputtering rate was 5 nm min−1. The experimental data 

were curve fitted with Gaussian peaks after subtracting a linear background employing 

PeakFit v4.11 program. For Gaussian peaks, slightly different full width at half maximum 

(FWHM) was used for different chemical states. The spin-orbit splitting and doublet 

intensities were fixed as given in the literature.18  

Microhardness measurements of these alloy coatings were carried out on the 

surface of the deposits using Buehler microhardness tester (Micromet 100) with a Knoop 

indenter under a test load of 50 g for 15 s. For microhardness measurements, samples 
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were polished with 0.3 µm Al2O3 until mirror finishing was obtained. Average hardness 

(HK) value was estimated by making 5 indents on each sample.                                                                        

3. Results and discussion  

3.1 Current efficiencies, deposition rates and chemical compositions 

Current efficiencies for DC plated Co−P alloys calculated from the charge passed and 

the weight gained are observed to be 62 ± 5%, whereas deposition rates of these alloys 

leads to thickness of 36 ± 2 µm h−1.  Lin et al. found concomitant decrease in current 

efficiency with the increase in phosphorous content in the alloy when the plating mode 

was changed from DC plating to pulse plating.19 This is true in our case as we see the 

current efficiency in DC plating is high when compared to that obtained from the pulse 

plating under the same conditions.17 This can be because of the peak current density 

used in pulse plating i.e. 23.5 A dm−2 which might be above the limiting current density 

for this system. 

 Amounts of P are observed to be 11.6, 13.6 and 13.7 at.% in Co−P coatings 

prepared with 2, 5 and 10 g L−1 NaH2PO2, respectively as determined by EDXS and 

corresponding spectra are shown in Fig. 1. EDX spectra confirm the absence of trace 

amount of carbon content in the coatings which was presumed to be contaminated from 

the graphite bar anode. It is evident that even with smaller concentration of 

hypophosphite (2 g L−1) in the bath we were able to produce electrodeposit with high P 

concentration containing 11.5 at.%. P content while it increases to 13.6 at.% when 5 g 

L−1 NaH2PO2 is added and there is no appreciable change in P concentration with further 

increase in the hypophosphite concentration indicating that high P content amorphous 
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coating could be obtained from gluconate bath using small amount of P precursor at a 

relatively high temperature. It is important to note that there is a relation between the 

magnitude of the DC current density and the amount of phosphorous content. The 

relationship can be shown by calculating the partial current densities for Co and P during 

the electrodeposition process. The partial current density (imetal) is calculated by the 

following formula: 

                                       imetal =  
−೙ ಷ ಾ೏೐೛೚ೞ೔೟ ೈ೘೐೟ೌ೗ೌ ೟ ಾ೘೐೟ೌ೗  A m−2 

where, n, F, Mdeposit, Wmetal, a, t and Mmetal are valency of the metal atom, Faraday 

constant (96485 C mol−1), mass (g) of the deposit, weight percent of the metal in the alloy 

deposit, reactive surface area (m2) of the deposit, time (s) duration of the deposition, and 

molecular weight (g mol−1) of the metal, respectively. The ratio (Ri) of the partial current 

density (iCo or iP) for the deposition of cobalt or phosphorous to the total current density 

(iT) were calculated according to reference 19. Ri values of Co are 0.526, 0.518 and 0.518 

for 2, 5 and 10 g L−1 NaH2PO2, respectively, whereas these values for P are 0.068, 0.082 

and 0.082. Therefore, comparison of the Ri values obtained for the deposition of Co and 

P demonstrates that there is a very small change in the Ri values for different 

concentrations of NaH2PO2 which indicates that there is no appreciable change in the 

content of Co or P with changing phosphorous source.  

3.2 XRD studies 

XRD patterns of as-deposited Co−P alloy coatings with different P content are given in 

Fig. 2 (a). XRD pattern of coatings demonstrates the presence of the structure of major 

component of the alloy. Accordingly, a broad peak around 44.9° observed for all the 
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Co−P alloy coatings demonstrates that the deposits are amorphous in nature. Peak 

intensities in all samples are more or less same. Specifically, the peak positions show a 

very small shift from the usual value. Co−P with 2 g L−1 NaH2PO2 shows the peak at 

45.1° while the peak was seen at 44.8° for the Co−P coating prepared at 5 and 10 g L−1 

NaH2PO2. Again, diffractograms of coatings indicate that electrodeposited Co−P alloys 

are amorphous in nature, even it is prepared with small amount of NaH2PO2.  

XRD patterns of Co−P coatings with different P content heat treated at 400 °C are 

displayed in Fig. 2 (b). XRD patterns reveal the amorphous to crystalline transformation 

of the coatings at these temperatures. The observed diffraction lines for all heat treated 

coatings match well with hcp-Co structure. Since the heat treatment was carried out under 

417 °C (the fcc to hcp phase transformation temperature) there is no allotropic 

transformation of hcp-Co to fcc-Co is observed in this temperature range. In addition to 

the hcp-Co peaks, peaks related to Co2P phase are also identified in the XRD patterns of 

the heat treated Co−P alloys. The peaks at 40.93 and 52.55° correspond to Co2P phase 

(JCPDS 32−306), whereas the peaks at 44.29, 47.11, 76.05 and 92.2° are associated with 

hcp-Co.9 Appearance of Co2P phase in heat treated Co−P coatings at low P 

concentrations in this study is supported by the preceding reports on such types of 

coatings.20,21 However, heat treatment of the coatings at lower temperature also shows the 

XRD patterns similar to 400 °C.  

3.3 FESEM studies 

The morphology of the as-deposited Co−P coatings characterized by FESEM is displayed 

in Fig. 3. As-deposited coatings contain rough spherical nodules like cauliflower 
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morphology on their surface and surface is free from microcracks. There is no significant 

effect of different phosphorus contents on the surface morphology of the coatings.  

3.4 AFM studies 

AFM is used to measure the roughness of Co−P coatings. The 3D AFM images of Co−P 

coatings with 11.6 and 13.7 at.% P are shown in Fig. 4. Roughness of the coatings is 

evaluated from Ra and Rrms values at time intervals of 5, 15 and 30 min of plating. It is 

distinct from the figure that the surface roughness increases as the plating duration 

increases. It is very clear from the images that deposits have different surface roughness 

due to the different growth pattern of the deposit. Ra values for 5, 15 and 30 min 

deposition of coating with 11.6 at.% P are 280, 600 and 1280 nm, respectively, whereas 

Rrms values for similar deposition times for this coating are 31, 162 and 284. Roughness 

characteristics of coatings containing 13.6 and 13.7 at.% P are observed to be similar. In 

the coating with 13.7 at.% P, observed Ra values for 5, 15 and 30 min deposition times 

are 320, 980 and 1625 nm, respectively. Rrms values are found to be 84, 228 and 370 nm 

in the same coating.       

3.5 DSC studies 

Studies on behavior of amorphous alloy coatings under the effect of heat helps to identify 

the thermal conditions in which it can be employed. DSC profiles of all Co−P alloy 

coatings with a scan rate of 20 °C min−1 are displayed in Fig. 5 and the peak temperatures 

and the respective enthalpies are given in the Table 1. DSC profile of Co−P alloy 

obtained from 2 g L−1 NaH2PO2 contains two exothermic peaks at 280 and 397 °C which 

are shifted to 297, 392 and 307, 384 °C in Co−P coatings prepared with bath containing 5 

and 10 g L−1 NaH2PO2, respectively. A very weak peak at 342 °C is also noticed in the 
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profile of Co−P alloy obtained from 2 g L−1 NaH2PO2 that becomes much more intense 

when amounts of NaH2PO2 increase to 5 and 10 g L−1. Cebollada et al. showed that the 

electrodeposited hypoeutectic Co−P coatings with P content greater than 21 at.% 

manifested a single crystallization peak, while those with less than 21 at.% P crystallize 

in two consecutive steps that are not fully resolvable.22 In the present study, the gradual 

increase in intensity of the peak at ~342 °C in relation to other two peaks and the two 

extreme peaks approaching each other at high P content with decrease in their intensities 

clearly shows that it approaches the single crystallization peak with the increase in P 

content. When the enthalpy values corresponding to peak at ~342 °C are put into 

scrutiny, it has been found that there is a drastic increase in the values obtained from the 

coatings at 5 and 10 g L−1 NaH2PO2 (see Table 1). In addition, a profound decrease in the 

ΔH values of the peak around 390 °C is noticed which allows us to strongly state that the 

increase in P content have a propensity towards displaying a peak for single 

crystallization for the Co−P coatings obtained in this work. Although increase in P 

content is not appreciable in the coatings, it is apparent that even the small increase in P 

helps in attaining the single crystallization peak. DSC profiles also demonstrate that the 

stability of the coating increases with increase in P content. Here, the released enthalpies 

(ΔH) for lower to higher temperature peaks in all alloys are in the range of 36−38, 5−38 

and 22−34 mJ g−1 °C−1, respectively. In this context, it is interesting to compare these 

results with the one obtained in the case of pulse electrodeposition.17 Pulse 

electrodeposited Co−P deposits exhibit the curves similar to the one obtained by 

Cebelloda et al.22 This is not surprising since the composition of pulse plated coatings 

obtained from 5 and 10 g L−1 NaH2PO2 bath solutions are very close to that studied by 
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Cebelloda and coworkers. However, signs of approaching towards single crystallization 

peak is also found in pulse current deposited Co−P coatings but with slightly higher P 

content.17 From the DSC studies it is clear that pulse current and direct current deposited 

coatings have different thermal behaviors due to the difference in phosphorous content 

obtained by the two deposition methods. 

3.6 XPS studies 

XPS of Co2p core level region in as-deposited Co−P alloy coating obtained from 10 g L−1 

NaH2PO2 is given in Fig. 6 along with the spectra of same coating after 10, 20 and 30 

min sputtering. In all cases, Co is in different oxidation states as evident from Co2p core 

level spectral envelops. Sets of spin-orbit doublets along with associated satellite (S) 

peaks could be generated after deconvolution of the spectra. Accordingly, Co2p3/2,1/2 

peaks at 778.0 and 792.9 eV with spin-orbit separation [ΔEB (2p3/2−2p1/2)] of 14.9 eV 

observed in as-deposited coating could be assigned for Co metal. On the other hand, 

peaks at 781.3 and 797.1 eV with 15.8 eV spin-orbit separation could be ascribed to Co2+ 

from highly ionic Co2+ type of species present in this kind of coatings.23−25 In Fig. 7, 

typical deconvoluted spectrum of Co2p in 30 min sputtered Co−P alloy coating obtained 

from 10 g L−1 NaH2PO2 is displayed. As-deposited coating contains mainly oxidized 

species with small amount of Co metal and metal concentration increases in the 

subsequent layers after successive 10 min sputtering. The binding energies, relative 

intensities and FWHMs of different Co species as observed from Co2p spectra of Co−P 

alloy coating prepared with 10 g L−1 NaH2PO2 subjected to intermittent sputtering are 

summarized in Table 2.   
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In Fig. 8 XPS of P2p core level in as-deposited as well as sputtered Co−P coating 

prepared with 10 g L−1 NaH2PO2 are given. P2p peak is considered as a single peak due 

to very small binding energy difference (0.9 eV) between P2p3/2 and P2p1/2 core levels. 

XPS of P2p in as-deposited Co−P alloy shows two peaks at 129.7 and 133.7 eV. P2p core 

level binding energy in red phosphorous is 130.65 eV.26 Therefore, P2p peak in the Co−P 

alloy coating is shifted by −0.95 eV in the lower binding energy side in relation to red 

phosphorous indicating P is in a negatively charged state (Pδ−) that could be assigned for 

P of bulk Co−P alloy coating. Thus, a weak charge transfer from Co to P takes place in 

Co−P alloy and as P accepts electrons, P species interacting with Co in the alloy coating 

is negatively charged. Similar type of negative shifts have been observed in Cr−P, Mn−P  

and Ni−P alloys.27−29 Higher binding energy peak at 133.7 eV could be attributed to 

oxidized P species in 5+ oxidation state.28−31 Presence of both bulk and oxidized P 

species in the as-deposited Co−P coating agrees well with the literature of this kind of 

coating.32 Amount of P5+ is more than alloyed P in as-deposited Co−P coating. There is 

an increase in alloyed P concentration upon successive sputtering up to 30 min. The 

binding energies, relative intensities and FWHMs of different P species as observed from 

P2p spectra of Co−P alloys prepared with 10 g L−1 NaH2PO2 for several stages of 

sputtering are given in Table 3. 

The spectral features of XPS of O1s core level region of as-deposited as well as 

sputtered Co−P alloy coating obtained from 10 g L−1 NaH2PO2 are observed to be broad. 

Deconvoluted O1s spectrum of as-deposited as well as sputtered coating is displayed in 

Fig. 9. Peaks at 530.6 and 534.1 eV in as-deposited coating in Fig. 9 (a) can be assigned 

for O2− type of species associated with Co2+ ion and adsorbed H2O species, 
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respectively.10,33 On the other hand, an intense peak located at 532.4 eV can correspond 

to oxygen associated with P5+. Most probable P related species for this higher binding 

energy peak is phosphate (PO4
3−).28,30,34 Again, alkalization of the electrolyte occurs at 

the cathode layer due to hydrogen evolution during electrodeposition leading to the 

formation of Co(OH)2 species on the alloy coating surface which is evident from Co2p 

core level spectrum of as-deposited coating.24 O1s binding energy value of oxygen 

attached with P is close to that of metal hydroxide species with little higher 

region.10,28,30,33,34 So its binding energy can overlap with that of metal hydroxide species. 

Therefore, formation of both Co3(PO4)2 and Co(OH)2 species can be possible on the as-

deposited coating surface that augers well with the literature.32 There is no significant 

change in the intensity of the peak at 532.4 eV upon 30 min sputtering seen in Fig. 9 (b). 

However, intensity of O1s peak related to adsorbed H2O decreases drastically upon 

sputtering which is obvious. There is a low intensity peak around 536 eV that could be 

attributed to NaKLL coming from NaH2PO2 taken during the electrodeposition of the 

coating.17,35 NaKLL peak continues to be present upon successive sputtering.  

Relative surface concentrations of Co and P of as-deposited and sputtered Co−P 

alloy coatings have been estimated by the relation:36  

                                        
P

Co

C

C
 = 

CoCoCoP

PPPCo

DI

DI

λσ
λσ

 

where C, I, σ, λ and D are the surface concentration, intensity, photoionization cross-

section, mean escape depth and analyzer detection efficiency, respectively. Integrated 

intensities of Co2p and P2p peaks have been taken into account to estimate the 

concentration, whereas photoionization cross-sections and mean escape depths have been 

obtained from the literature.37,38 The geometric factor is taken as 1, because the maximum 
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intensity in this spectrometer is obtained at 90o. Relative surface concentrations (at.%) of 

Co and P in Co−P alloy coatings obtained from 5 and 10  g L−1 NaH2PO2 are summarized 

in Table 4.  

XPS studies demonstrate that Co2+ species in the Co−P coatings could be related 

to oxidized Co such as CoO. Observed lower current efficiencies (62 ± 5%) indicates 

higher hydrogen evolution reaction during electrodeposition which results in Co(OH)2 

formation on the coating surface supported by Co2p core level spectra. Possibility of 

formation of cobalt phosphate kind of species on the surface could also not be ruled out 

as oxidized P in the form of PO4
3− species is present as revealed by O1s core level 

spectra. P is present as bulk alloy (Pδ−) and oxidized (P5+) forms in as-deposited coating 

and bulk alloy continues to dominate up to certain successive layers as revealed by XPS 

studies. Surface concentrations of Co and P evaluated from XPS demonstrate that Co 

segregates on the surface of the alloy coatings. Decrease in P concentration in alloy 

deposits are observed after first sputtering (Table 4) and after that P concentration does 

not change much indicating that alloy coatings maintain uniform composition up to 

certain layers. 

3.7 Microhardness studies 

Microhardness measurements of all Co−P alloy deposits were carried out on the surface 

of as-deposited as well as heat treated coatings and the values are given in Table 5. As-

deposited alloy coatings show hardness values of 465, 480 and 485 HK for coatings 

obtained from 2, 5 and 10 g L−1 NaH2PO2, respectively. The hardness obtained is higher 

than electrodeposited Co (~300 HK).1 The increase in hardness of Co−P coatings is due 

to the alloying of Co with P and amorphous nature of the deposits. It is important to note 
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that microhardness values of as-deposited DC plated Co−P coatings observed in this 

study are less compared to that of previously studied pulse plated coatings.17 In pulse 

electrodeposition, very high instantaneous current densities are applied and hence more 

negative potentials can be attained. These negative potentials associated with the high 

pulse current density also greatly enhances the nucleation rate and other coating 

characteristics such as density of pores, mechanical and electrical properties. Therefore, 

comparatively decreased microhardness in as-deposited DC plated coatings could be due 

to its differences in coating nature from the pulse plated coatings.     

Significant increase in microhardness is observed in heat treated Co−P coatings 

with respect to the as-deposited coatings. Hardness values of 890, 995 and 1005 HK are 

obtained in all coatings heat treated with at 400 °C where coating prepared with 10 g L−1 

NaH2PO2 shows highest hardness value. We also observe an increasing trend in the 

hardness values of the Co−P coatings (Table 5) with increase in P concentration at heat 

treatment temperature of ~300°C. Heat treatment of the coating obtained from 10 g L−1 

NaH2PO2 at 300 °C results in hardness value of 855 HK. Within this context, increasing 

trend in hardness in heat treated Co−P coatings is contrary to the behavior of heat treated 

hard chromium coatings. It was well established that hard chromium coatings exhibited 

very high hardness values of ~1000 HV,39,40 but hardness values decreased drastically 

upon heat treatment.40 Hardness of conventional chromium coating decreased to 810, 

585, 270, 100 HV when it was heated at 200, 400, 600 and 800 °C, respectively.39 In the 

present study, microhardness value of 485 HK in as-deposited Co−P coating prepared 

with 10 g L−1 NaH2PO2 bath increases to 1005 HK when it is heat treated. Hardness 

values measured in heat treated Co−P coatings studied here could be comparable with as-



 16

deposited conventional hard chromium coatings. The increase in hardness in heat treated 

Co−P alloy coatings has mainly been ascribed to the formation of crystalline phase and 

also to the development of Co2P phase demonstrated by XRD studies during the heat 

treatment. Even though increase in phosphorous content is one of the reasons for the 

increase in hardness, the other probable basis would be the change in the DSC peaks to a 

single crystallization one with the increase in P content. It is strongly believed that the 

approach to the single crystallization peak has strong impact in the enhancement of the 

microhardness values in the heat treated condition.  

4. Conclusions 

In the present study, Co−P alloy coatings are electrodeposited using direct current and 

gluconate bath. As-deposited Co−P coatings are amorphous in nature as demonstrated by 

XRD. Heat treated coatings contain Co2P phase along with hcp-Co. DSC profiles show 

three exothermic peaks in all Co−P coatings and also demonstrate the approaching to the 

single crystallization peak with increase in P content. All Co−P alloy deposits exhibit 

rough spherical bright nodules with good uniformity. XPS studies show that as-deposited 

alloy coatings consist mainly of Co2+ species along with Co metal, whereas P binding 

energies could be assigned for Pδ− and P5+ forms. Amounts of Co metal increase with 

successive sputtering of the alloy. On the other hand, reduction of oxidized P can be 

observed upon mild sputtering in case of the coating obtained from 10 g L−1 NaH2PO2. 

Surface concentrations evaluated from XPS analysis indicate that Co is segregated over 

the alloy surface and P concentration decreases slightly upon sputtering and after that it 

maintains same concentration. Heat treated Co−P coatings show comparable hardness to 

conventional hard chromium. 
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Table 1. Peak temperatures (°C) and ΔH values (mJ g−1 °C−1) obtained from DSC 

thermograms of DC electrodeposited Co−P coatings with scan rate of 20 °C min−1 

 

Coatings 
Peak1 

(ΔH1) 

Peak2 

(ΔH2) 

Peak3 

(ΔH3) 

Co−P 

(2 g L−1 NaH2PO2) 

279.52 

(−36.82) 

341.83 

(−4.97) 

396.54 

(−34.35) 

Co−P 

(5 g L−1 NaH2PO2) 

297.25 

(−38.02) 

342.89 

(−13.45) 

392.25 

(−31.28) 

Co−P 

(10 g L−1 NaH2PO2) 

306.58 

(−35.77) 

343.24 

(−38.54) 

384.23 

(−22.72) 

 

 

 

 

 

 

 

 

 

 

 

 



 22

Table 2. Binding energies, relative intensities and FWHMs of different Co species as 

observed from Co2p of as-deposited and sputtered Co−P alloy prepared with 10 g L−1 

NaH2PO2  

 

Duration of 

sputtering (min) 

Co 

species 

EB of 

Co2p3/2 

(eV) 

Relative 

intensity 

(%) 

FWHM of 

Co2p3/2 

(eV) 

ΔEB (2p3/2−2p1/2) 

(eV) 

ΔEB (2p3/2−S) 

(eV) 

As-deposited Co0 

Co2+ 

778.0 

781.3 

18 

82 

2.15 

3.12 

14.9 

15.8 

− 

4.0 

10 Co0 

Co2+ 

778.1 

781.4 

48 

52 

2.05 

4.05 

15.0 

15.8 

− 

4.8 

20 Co0 

Co2+ 

778.2 

781.2 

64 

36 

1.82 

4.92 

15.0 

15.7 

− 

4.5 

30 Co0 

Co2+ 

778.2 

781.2 

67 

33 

1.95 

4.62 

15.0 

15.8 

− 

4.8 
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Table 3. Binding energies, relative intensities and FWHMs of different P species as 

observed from P2p of as-deposited and sputtered Co−P alloy prepared with 10 g L−1 

NaH2PO2 

 

Duration of 

sputtering (min) 

P species EB of P2p (eV) Relative 

intensity (%) 

FWHM of 

P2p (eV) 

As-deposited Pδ− 

P5+ 

129.7 

133.7 

39 

61 

2.05 

2.19 

10 Pδ− 

P5+ 

129.8 

133.7 

48 

52 

2.12 

2.25 

20 Pδ− 

P5+ 

129.7 

133.5 

56 

44 

2.07 

2.36 

30 Pδ− 

P5+ 

129.7 

133.6 

65 

35 

2.17 

2.47 
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Table 4. Relative surface composition of Co−P alloy coatings DC electrodeposited with 

5 and 10 g L−1 NaH2PO2 at different stages of sputtering as obtained from XPS analysis 

 

Duration of 

sputtering (min) 

5 g L−1 NaH2PO2 10 g L−1 NaH2PO2 

Co (at.%) P (at.%) Co (at.%) P (at.%) 

As-deposited 74 26 70 30 

10 71 29 75 25 

20 80 20 81 19 

30 78 22 81 19 
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Table 5. Microhardness of the as-deposited and heat treated Co−P coatings  

Coatings Microhardness (HK) 

As-deposited Heat treated 

Co−P 

(2 g L−1 NaH2PO2) 

465 ± 20 590 ± 20 (280 °C) 

890 ± 20 (400 °C) 

Co−P 

(5 g L−1 NaH2PO2) 

480 ± 20 

 

760 ± 20 (300 °C) 

995 ± 20 (400 °C) 

Co−P 

(10 g L−1 NaH2PO2) 

485 ± 20 855 ± 20 (300 °C) 

1005 ± 20 (400 °C) 
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Figure captions 

Fig. 1. EDXS of as-deposited Co−P alloy coatings prepared with (a) 2, (b) 5 and (c) 10 g 

L−1 NaH2PO2 containing 11.6, 13.6 and 13.7 at.% P, respectively. 

Fig. 2. XRD of as-deposited (top) and heat treated at 400 °C (bottom) Co−P alloy 

coatings prepared with (a) 2, (b) 5 and (c) 10 g L−1 NaH2PO2 containing 11.6, 13.6 and 

13.7 at.% P, respectively. 

Fig. 3. FESEM images of as-deposited Co−P alloy coatings prepared with (a) 2, (b) 5 and 

(c) 10 g L−1 NaH2PO2 containing 11.6, 13.6 and 13.7 at.% P, respectively. 

Fig. 4. AFM images of as-deposited Co−P alloy coatings prepared with (a) 2 and (b) 10 g 

L−1 NaH2PO2 containing 11.6 and 13.7 at.% P, respectively. 

Fig. 5. DSC profiles of as-deposited Co−P alloy coatings prepared with (a) 2, (b) 5 and 

(c) 10 g L−1 NaH2PO2 containing 11.6, 13.6 and 13.7 at.% P, respectively. 

Fig. 6. XPS of core level Co2p of Co−P alloy coating obtained from 10 g L−1 NaH2PO2 

(13.7 at.% P) at different stages of sputtering: (a) as-deposited, (b) after 10 min 

sputtering, (c) after 20 min sputtering and (d) after 30 min sputtering. 

Fig. 7. Deconvoluted XPS of Co2p in Co−P alloy coating obtained from 10 g L−1 

NaH2PO2 (13.7 at.% P) after 30 min sputtering.   

Fig. 8. XPS of core level P2p of Co−P alloy coating obtained from 10 g L−1 NaH2PO2 

(13.7 at.% P) at different stages of sputtering: (a) as-deposited, (b) after 10 min 

sputtering, (c) after 20 min sputtering and (d) after 30 min sputtering. 

Fig. 9. XPS of core level O1s of Co−P alloy coating obtained from 10 g L−1 NaH2PO2 

(13.7 at.% P): (a) as-deposited and (b) after 30 min sputtering. 
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Fig. 1. EDXS of as-deposited Co−P alloy coatings prepared with (a) 2, (b) 5 and (c) 10 5 

g L−1 NaH2PO2 containing 11.6, 13.6 and 13.7 at.% P, respectively. 
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Fig. 3. FESEM images of as-deposited Co−P alloy coatings prepared with (a) 2, (b) 5 and 

(c) 10 g L−1 NaH2PO2 containing 11.6, 13.6 and 13.7 at.% P, respectively. 
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Fig. 5. DSC profiles of as-deposited Co−P alloy coatings prepared with (a) 2, (b) 5 and 

(c) 10 g L−1 NaH2PO2 containing 11.6, 13.6 and 13.7 at.% P, respectively. 

 

 

 

 

 

 

 

 

 

 



 32

                              

 

 

 

Fig. 6. XPS of core level Co2p of Co−P alloy coating obtained from 10 g L−1 NaH2PO2 

(13.7 at.% P) at different stages of sputtering: (a) as-deposited, (b) after 10 min 

sputtering, (c) after 20 min sputtering and (d) after 30 min sputtering. 
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Fig. 7. Deconvoluted XPS of Co2p in Co−P alloy coating obtained from 10 g L−1 

NaH2PO2 (13.7 at.% P) after 30 min sputtering.   
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Fig. 8. XPS of core level P2p of Co−P alloy coating obtained from 10 g L−1 NaH2PO2 

(13.7 at.% P) at different stages of sputtering: (a) as-deposited, (b) after 10 min 

sputtering, (c) after 20 min sputtering and (d) after 30 min sputtering. 
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Fig. 9. Deconvoluted XPS of core level O1s of Co−P alloy coating obtained from 10 g 

L−1 NaH2PO2 (13.7 at.% P): (a) as-deposited and (b) after 30 min sputtering. 


