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[1] Leaf area index (LAI) is a critical variable for land surface and climate modeling
studies. Several global LAI products exist, and it is important to know how these products
perform and what their uncertainties are. Five major global LAI products—MODIS,
GEOV1, GLASS, GLOBMAP, and JRC-TIP—were compared between 2003 and 2010 at
a 0.01� spatial resolution and with a monthly time step. The daily Land-SAF product was
used as a regional reference in order to evaluate the performance of other global products in
Africa. Cross-sensor LAI conversion equations were derived for different biome types.
Product uncertainties were assessed by looking into the product quantitative quality
indicators (QQIs) attached to MODIS, GEOV1, and JRC-TIP. MODIS, GEOV1, GLASS,
and GLOBMAP are generally consistent and show strong linear relationships between the
products (R2> 0.74), with typical deviations of< 0.5 for nonforest and< 1.0 for forest
biomes. JRC-TIP, the only effective LAI product, is about half the values of the other
LAI products. The average uncertainties and relative uncertainties are in the following order:
MODIS (0.17, 11.5%)<GEOV1 (0.24, 26.6%)<Land-SAF (0.36, 37.8%)
< JRC-TIP (0.43, 114.3%). The highest relative uncertainties usually appear
in ecological transition zones. More than 75% of MODIS, GEOV1, JRC-TIP, and
Land-SAF pixels are within the absolute uncertainty requirements (� 0.5) set by the
Global Climate Observing System (GCOS), whereas more than 78.5% of MODIS and
44.6% of GEOV1 pixels are within the threshold for relative uncertainty (20%). This
study reveals the discrepancies mainly due to differences between definitions, retrieval
algorithms, and input data. Future product development and validation studies should
focus on areas (e.g., sparsely vegetated and savanna areas) and periods
(e.g., winter time) with higher uncertainties.
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1. Introduction

[2] Leaf area index (LAI) indicates the area of live green
leaves in the canopy per unit of ground surface. It is one of
the essential climate variables defined by the Global Climate
Observing System (GCOS) that are important in improving

the parameterization of the land surface-atmosphere interac-
tion processes in a range of models [GCOS, 2011]. Over the
last decade, a number of LAI products with different spatial
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and temporal characteristics have become available, for ex-
ample, the 1 km MODIS products from the TERRA and
AQUA platforms [Huang et al., 2008; Myneni et al.,
2002], the 10 day CYCLOPES V3.1 LAI generated from
the SPOT/VEGETATION sensor [Baret et al., 2007], and
the monthly 1 km GLOBCARBON V2.0 LAI product de-
rived from the combined use of the SPOT/VEGETATION
and ENVISAT/ATSR instruments [Deng et al., 2006;
Plummer et al., 2006]. More recently, several new global
LAI products have appeared: GEOV1, GLASS,
GLOBMAP, and JRC-TIP (Table 1). Other LAI products
have been produced for a specific region, such as the
Land-SAF LAI, obtained from MSG/SEVIRI, for Africa,
Europe, and South America (Table 1).
[3] Characterization of uncertainties associated with LAI

products is essential for the application community [Gobron
and Verstraete, 2009; Lafont et al., 2012]. A better under-
standing of the uncertainties embedded in current LAI prod-
ucts will improve the assimilation of the LAI into land
surface modeling studies [Rüdiger et al., 2010]. Various
configurations of LAI uncertainties have been extensively
investigated in the literature. LAI uncertainty can be easily
represented by an overall constant value [Sabater et al.,
2008]. However, several authors have proposed using
different uncertainties for different LAI values [Barbu
et al., 2011; Pauwels et al., 2007], e.g., 0.2, 0.4, and 0.6
for LAI values less than 1, 2, and 3, respectively. More fre-
quently, the LAI uncertainty is set to an empirical percentage
(e.g., 10% or 20%) of the LAI value [Jarlan et al., 2008;
Rüdiger et al., 2010]. In order to meet the needs of global
climate modeling studies, GCOS has proposed a guideline
which requires an accuracy of �0.5 for the LAI products
[GCOS, 2011]. Furthermore, the LAI application
communities require a minimum relative accuracy of about
20% (Table 2).
[4] Product uncertainty information can be categorized

into two types: theoretical and physical [Fang et al.,
2012c]. Theoretical uncertainties are caused by uncertainties
in the input data, model imperfections, and the inversion
process and are usually estimated and reported using quanti-
tative quality indicators [Baret et al., 2007; Knyazikhin
et al., 1999; Pinty et al., 2011b]. Theoretical uncertainties
can also be derived using uncertainty estimation tools, such
as the triple collocation error model [Fang et al., 2012c].
Physical uncertainties are derived through comparison with
values representing the ground truth, such as field measure-
ments or estimations from higher-resolution imagery. In
practice, both theoretical and physical uncertainties have
been used as product quality indicators [GCOS, 2011].

[5] To better understand the consistency of existing LAI
products and their associated uncertainties, a series of
systematic validation and intercomparison studies have been
carried out by the Committee on Earth Observation Satellites
(CEOS) Land Product Validation (LPV) subgroup (http://
lpvs.gsfc.nasa.gov/). These studies have been undertaken
for either a fixed number of sites [Abuelgasim et al., 2006;
De Kauwe et al., 2011; Kobayashi et al., 2007; Pisek and
Chen, 2007] or globally [Fang et al., 2012a; Garrigues
et al., 2008; Verger et al., 2009; Weiss et al., 2007]. The
intercomparison approach requires no ground measurement
and determines the quality of one product relative to the
quality of other products [Morisette et al., 2006]. The
approach has been used to assess temporal consistency and
spatial and statistical distributions within and between
sensors [Camacho et al., 2010; Fang et al., 2012a, 2012b,
2012c; Garrigues et al., 2008; Verger et al., 2009; Weiss
et al., 2007]. However, further intercomparison studies
using products that are closest to the native spatial and
temporal resolution of the sensors (i.e., ~1 km in this study)
are needed in order to investigate the interannual variability
of vegetation [Gobron and Verstraete, 2009].

Table 1. Characteristics of MODIS, GEOV1, GLASS, GLOBMAP, JRC-TIP, and Land-SAF LAI Products

Products Version
Spatial

Resolution
Temporal
Resolution Algorithms Lt/Le

Uncertainty
Provided? References

MODIS MCD15 C5 1 km 8 day LUT (red, NIR) T Yes Huang et al. [2008]
GEOV1 V1.0 1/112� 10 day NN (red, NIR, SWIR, SZA) T Yes Baret et al. [2013]
GLASS V3.0 1 km 8 day NN (red, NIR) T No Xiao et al. [2013]
GLOBMAP V1.0 500m 8 day Empirical VI-LAI relationship T No Liu et al. [2012]
JRC-TIP V1.0 0.01º 16 day Data assimilation retrieval from albedo E Yes Pinty et al. [2011b]
Land-SAF V2.0 3 km Daily Empirical fCover-LAI relationship T Yes García-Haro et al. [2008]

“Lt/Le” refers to true (T)/effective (E) LAI. LUT, NIR, NN, SWIR, SZA, and VI stand for look-up table, near infrared, neural network method, shortwave
infrared, solar zenith angle, and vegetation index, respectively.

Table 2. Observational Accuracy Requirements for LAI Products

From GCOS, GTOS, WMO and GMESa

Projects Application
Accuracy

Requirementb References

GCOS TOPC 10%�7%�5% GCOS [2007]
0.5 GCOS [2011]

GTOS 25%�15% GTOSc

WMO Agricultural
meteorology

10%�6.3%�5% WMO [2011]

Global NWP 20%�10%�5%
High resolution NWP 10%�5%�3%

Hydrology 20%�7.9%�5%
GMES 10% Drusch et al.

[2010]

aGCOS: Global Climate Observing System; GTOS: Global Terres-
trial Observing System; WMO: World Meteorological Organization;
GMES: Global Monitoring for Environment and Security; NWP:
Numerical Weather Prediction; TOPC: Terrestrial Observation Panel
for Climate.
Accuracy requirements are denoted as a percentage of the maximum

possible value for GCOS and as a percentage of the true value for GTOS
and WMO.

bStated in terms of the minimum, the breakthrough, and the targeted
values. The GMES row shows the targeted precision for green LAI
estimation.

cGTOS web site—http://www.fao.org/gtos/tems/variable_show.jsp?
VARIABLE_ID=80 (accessed on 1 March 2012).
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[6] Understanding and quantifying the quality of the LAI
products are challenging tasks for the remote sensing
community [Fang et al., 2012a, 2012c]. Currently, LAI
values are usually distributed along with the quality infor-
mation, either qualitative or quantitative, in order to show
the product processing status and the quality information.
Qualitative quality flags (QQFs) have been taken into
account by most validation studies [e.g., Abuelgasim et al.,
2006; Garrigues et al., 2008; Kobayashi et al., 2007; Pisek
and Chen, 2007; Sprintsin et al., 2009; Weiss et al., 2007].
However, as far as can be ascertained, no study has system-
atically investigated the quantitative quality indicators
(QQIs) at a global level. The QQFs are categorical and can-
not be used to describe the uncertainties at a pixel level. The
QQIs, distributed along with the LAI products, are quantita-
tive and provide the information about the LAI product fea-
tures and their uncertainties. An assessment of these
quantitative indicators is thus critical if the spatial and tem-
poral patterns of global LAI uncertainties are to be
understood.
[7] The objective of this study is to provide an

intercomparison of current global LAI products so that their
characterizations and uncertainties can be better understood.
This study extends an earlier intercomparison study of the
MODIS, CYCLOPES, and GLOBCARBON products
[Fang et al., 2012b]. A new suite of five major global LAI
products—MODIS, GEOV1, GLASS, GLOBMAP, and
JRC-TIP—was examined and compared in order to charac-
terize the global LAI seasonality and quality variation. The
continental Land-SAF product was used as a reference in
order to assess the performances of other global products
in Africa. These products span the full spectrum of different
satellite sensors, LAI estimation algorithms, and uncertainty
representations, and the product details can be easily found
from various reference sources. Special attention has been
paid to the product quality indicators in order to investigate
the uncertainties and relative uncertainties of the products.
This study intends to answer several crucial questions as
follows: (1) How do the products compare with each other,
in terms of LAI values, theoretical uncertainties and relative
uncertainties? (2) What is the best method for making
conversions between the products where there are missing
values? (3) How have the current products improved
compared to their earlier versions? (4) How do the current
products, based on their own quality indicators, compare
with the quality requirement proposed by GCOS?

2. Data Sets and Methods

2.1. MODIS LAI Product

[8] The MODIS collection 5 product, acquired from the
combined TERRA and AQUA platforms (MCD15A2), is
generated every 8 days in a 1 km spatial resolution (http://
wist.echo.nasa.gov, accessed on 1 March 2012). The product
uses eight biome types as a priori information to constrain
the vegetation optical and structural parameter spaces:
(1) grasses/cereal crops, (2) shrubs, (3) broadleaf crops,
(4) savanna, (5) evergreen broadleaf forest (EBF), (6) decid-
uous broadleaf forest (DBF), (7) evergreen needleleaf forest
(ENF), and (8) deciduous needleleaf forest (DNF) [Yang
et al., 2006]. The main algorithm employs a look-up table
(LUT) method simulated from a 3-D radiative transfer

model [Knyazikhin et al., 1998a, 1998b]. In collection 5, a
stochastic radiative transfer equation is applied [Huang
et al., 2008]. The LUT method essentially searches for LAIs
for a specific set of solar and view zenith angles, observed
bidirectional reflectance factors (BRFs) at certain spectral
bands and biome types. The outputs are the LAI mean
values averaged over all acceptable solutions, and the
standard deviation (LaiStdDev) serving as a measure of the
solution accuracy. The LaiStdDev has been released to
the public as part of the collection 5 data. A quality control
mask indicates whether the LAI value is derived from the
main method or from the empirical backup method.

2.2. GEOV1 LAI Product

[9] The Geoland2 project (http://www.gmes-geoland.info)
aims to implement the GMES (Global Monitoring for
Environment and Security) Land Monitoring Services,
which represents to the European contribution to GEOSS
(Group of Earth Observation System of Systems). One
component of the project, Geoland2/BioPar, has developed
the first version of a global biophysical product, GEOV1, from
the SPOT/VEGETATION observations at 1/112� (about 1 km
at the equator) spatial resolution with a 10 day time step in a
Plate Carrée projection (http://www.geoland2.eu). TheMODIS
and CYCLOPES products are first fused to generate “best
estimates” of the LAIs that are then scaled to closely match
their expected range of variation [Baret et al., 2013]:

LAIfused ¼ w�LAIMOD þ 1� wð Þ�LAICYC; with

w ¼ min 1; 1
4
LAICYC

� �

(1)

where the subscripts “fused,” “MOD,” and “CYC” correspond
to the fused,MODIS, and CYCLOPES products, respectively.
The weight, w, is driven by LAICYC since it appears more
stable at low LAI values compared to MODIS. The threshold
value: LAICYC=4, corresponds to the value when LAICYC
starts to saturate. A neural network training process is performed
between the fused LAI and the SPOT/VEGETATION top
of canopy directionally normalized reflectance values at
the global BELMANIP sites [Baret et al., 2006]. Once the
neural network is calibrated, it is run to provide LAI
estimates from the SPOT/VEGETATION sensor, along
with the quality flags and quantitative uncertainties.
Clumping effects at the landscape level have been
accounted for in CYCLOPES through the separation of pure
vegetation and bare soil in a pixel [Baret et al., 2007]. The
quantitative uncertainties (LAI_ERR) are computed using
the training dataset and reflect the sensitivity of the
product to input reflectance values [Baret et al., 2013]).

2.3. GLASS LAI Product

[10] The Global Land Surface Satellite (GLASS) project
estimates LAIs from MODIS and AVHRR time series
reflectance data using a neural network approach [Xiao
et al., 2013]. The 8 day, 1 km GLASS LAI product (version
3.0) is available from the Beijing Normal University (BNU)
(http://www.bnu-datacenter.com/) in the Integerized
Sinusoidal (ISIN) projection. The “effective” CYCLOPES
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LAI (LAIe) is converted to the true value (LAIt) using the
following formula:

LAIt ¼ LAIe=Ω (2)

where Ω is the clumping index derived from POLDER
[Chen et al., 2005]. After transformation, the MODIS LAI
and CYCLOPES LAIt are combined in a weighted linear
combination in order to obtain the best LAI estimate. In con-
trast to GEOV1 (equation (1)), GLASS uses the spatiotem-
porally varied weights determined by MODIS and
CYCLOPES for each biome type:

LAIfused ¼ w�LAIMOD þ 1� wð Þ�LAICYC t; (3)

where the subscripts “fused,” “MOD,” and “CYC_t” corre-
spond to the fused, MODIS, and converted CYCLOPES
LAI values, respectively. Linear regressions are constructed
between MODIS and CYCLOPES LAIs and the ground
values for each biome type. The weight, w, is determined
by the deviation of MODIS and CYCLOPES from the
ground LAI [Xiao et al., 2013]. The MODIS red and near-
infrared reflectance data (MOD09A1) are reprocessed to
remove cloud contaminated data and to fill in missing values
using temporal-spatial filtering algorithms [Tang et al.,
2013]. A general regression neural network (GRNN) is
trained for each biome type using the combined LAI and
the reprocessed MODIS reflectance values over the
BELMANIP sites [Baret et al., 2006] between 2001 and
2003. The trained GRNNs are used to estimate LAIs from
the yearly reprocessed MODIS reflectance data [Xiao
et al., 2013]. A quality control layer is attached to GLASS
LAIs to show the processing status, the quality of the input
reflectance and the contamination by snow, cloud, and
shadow.

2.4. GLOBMAP LAI Product

[11] The GLOBMAP project derives global LAI (1981–2011)
by quantitatively fusing the MODIS and AVHRR observa-
tions [Liu et al., 2012]. The effective LAI is first generated
fromMODIS land surface reflectance data (MOD09A1) based
on the GLOBCARBON LAI algorithm [Deng et al., 2006].
The GLOBCARBON algorithm relies on land cover-specific
LAI-vegetation index relationships simulated from a four-
scale geometrical optical model [Chen and Leblanc, 1997;
Deng et al., 2006]. The IGBP land classes are grouped into
six biomes (crops/grasses and others, conifer, tropical, decidu-
ous, mixed forest, and shrub) and one nonvegetated class
[Deng et al., 2006]. The GLOBMAP effective LAI is then
converted to the true LAI using the 500m global clumping
index data [He et al., 2012]. Pixel level relationships are
established between the true LAI and vegetation indices for
AVHRR and MODIS during their overlapping period. The
relationships are then utilized to estimate long-term pixel level
LAI for both AVHRR and MODIS over the non-overlapping
periods. This study used the global 8 day, 500m LAI series
retrieved from the MODIS observations (http://www.
globalmapping.org/globalLAI, version 1.0).

2.5. JRC-TIP LAI Product

[12] JRC-TIP is the only effective LAI product explored in
this study. The 16 day, 0.01� LAI product is generated at the

Joint Research Centre (JRC) to help bridge the gap between
remote sensing products and large-scale global climate
models [Pinty et al., 2011b]. The inversion algorithm, called
the Two-stream Inversion Package (JRC-TIP) [Pinty et al.,
2006], uses the white sky albedo product, derived from
MODIS and MISR in the visible and near-infrared (NIR)
domains, to infer the probability density functions (PDFs)
of the effective LAI. The methodology uses automatic
differentiation techniques to generate the adjoint and
Hessian codes of a cost function [Pinty et al., 2011b]. The
retrieval uncertainties (Xstd) are the standard deviations
relating to the diagonal of the posterior covariance matrix
and denote the monthly dispersion of LAI values. The
uncertainties are derived from prior PDFs and observations
and model uncertainties.

2.6. Land-SAF LAI Product

[13] The Land-SAF LAI version 2.0 is generated daily at a
3 km spatial resolution from the MSG/SEVIRI instrument
over four specific geographical regions under the MSG disk
(Europe, North Africa, South Africa, and South America)
(http://landsaf.meteo.pt/). The LAI is estimated using a
semi-empirical exponential relationship with the fractional
vegetation cover (FVC) [Roujean and Lacaze, 2002]. Three
SEVIRI short-wave channels (visible, near-infrared, and
shortwave infrared) are used as inputs for deriving the FVC
product. The LAI product is thus obtained directly from the
cloud-free FVC product, which has been corrected for view/
sun angles and anisotropy effects. The algorithm incorporates
a biome-dependent clumping index to correct for the clumping
effect on LAI estimates [Chen et al., 2005]. The overall LAI
error depends primarily on the input FVC error. Details about
the algorithm, implementation, and validation have been
documented in García-Haro et al. [2008]

2.7. Data Analysis

[14] This study analyzed the five global LAI products
between 2003 and 2010 to characterize their performances.
Global pixel level uncertainties provided by MODIS,
GEOV1, and JRC-TIP products were analyzed. All global
tiles were first mosaicked and then resampled to a 0.01�

spatial resolution using the nearest neighbor resampling
method on the Plate Carée projection. Because each data
set has a different temporal compositing period, the data sets
and their quantitative quality indicators (QQIs) were aggre-
gated into a monthly time step using the averaging method,
which enabled direct comparisons of the products. This
paper refers to the QQIs distributed in the standard LAI
products as the product uncertainties. The relative uncer-
tainty was calculated as the ratio of the uncertainty divided
by the LAI values. Raw LAI data that had been corrupted
or had missing geometry information (flagged with filled
values) were excluded from the aggregation. Only MODIS
pixels retrieved from the main algorithms were considered
in the composition. For the JRC-TIP products, only pixels
where the quality flags are all “OK” (majority of the cases)
were considered.
[15] For consistency purposes, this study used the MODIS

biome type map (2003) provided in the 0.05� MODIS/
Terra +Aqua collection 5 land cover type product
(MCD12C1) [Friedl et al., 2010], as a base map for LAI
products analysis. For the sake of computation efficiency
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and compatibility with the biome map, LAI climatologies
and uncertainties were analyzed over the whole globe using
0.05� grid cells. The correlations between each pair of LAI
products were examined in order to derive translation
equations that would allow missing LAI products, due to
retrieval failure or lack of satellite coverage for a given
long-term LAI time series, to be filled in [GCOS, 2011].
[16] A continental intercomparison was performed in

accordance with the Land-SAF coverage in order to explore
the temporal and spatial consistency of LAIs and uncer-
tainties in Africa (2007�2010). This study did not separate
the two hemispheres in the calculation as the main aim is
to make an intercomparison between different products.
In order to understand how well the products perform
compared to the earlier releases, the present GEOV1 and
GLOBMAP products were compared to their heritage
products: CYCLOPES V3.1 and GLOBCARBON V2.0,
respectively. Since the uncertainty information is not available
for GLASS and GLOBMAP, theoretical uncertainties were
evaluated for the other four products in order to assess their
conformity with user requirements (Table 2). It should be
noted that the theoretical uncertainties explored in this
study generally resemble the random errors, whereas the
GCOS requirements for physical uncertainties represent the
systematic errors.

3. Results

3.1. Intercomparison of Global LAI Products

3.1.1. Spatial Consistency of Global LAI Products
[17] Figure 1 shows the geographical distribution of

global average LAIs from 2003 to 2010. MODIS, GEOV1,
GLASS, and GLOBMAP LAI products are generally
consistent in their spatial patterns and are in agreement with
regard to their magnitudes. The general consistency is
associated with the fact that all the products represent the
true LAI, even if their retrieval algorithms and reflectance
data sources differ from one another. The two hemispheres
clearly show opposite seasonality. There are three clear
LAI peaks in the northern hemisphere, which are located
in the tropical (0�N), subtropical (20�N), and boreal regions
(60�N). The equatorial regions, e.g., Amazonia and central
Africa, have the highest LAIs (> 5.0), followed by the
boreal areas, which is in accordance with the forest distribu-
tion. The LAI values are intermediate at middle latitudes and
are associated with agricultural activities and broadleaf
forests, for example, over the United States, Europe, and
China. The LAI values are very low (< 1.0) over sparsely
vegetated areas. Missing LAI values (white areas in Figure 1)
can be easily seen in the desert regions and during the winter
and are caused by the lack of quality input data. MODIS and
GLASS are very similar, and both show the highest LAIs
(4.3) in the tropical regions. GEOV1 and GLOBMAP values
are slightly lower (~0.5) in the tropical regions compared to
the MODIS and GLASS values. GLOBMAP values are also
lower (~0.6) than the other true LAI products in the subtrop-
ical regions. All products show small LAI peaks (~1.5) and
high variability around 40�S�50�S. The JRC-TIP (effective)
LAIs clearly produce the lowest values (< 1.5) at a global
scale and are, on average, about one third of values
calculated by the other products.

3.1.2. Global LAI Climatologies
[18] Figure 2 shows the climatologies of all LAI products

from 2003 to 2010. All the products generally show a
smooth seasonal evolution with higher values in summer
and lower in winter. All the climatologies agree very well
for grasses/cereal crops and shrubs, with mean deviations
of less than 0.33 (Table 3). Small differences (< 0.85) are
recorded for broadleaf crops and savanna. For broadleaf
crops, GEOV1 and GLASS values are slightly higher
(~0.25) than the MODIS values, while the GLOBMAP and
JRC-TIP values are lower (~0.20) than the MODIS values.
For savanna, the MODIS, GEOV1, and GLASS values are
similar, but the GLOBMAP and JRC-TIP values are lower
(~0.45) than the MODIS values.
[19] MODIS, GEOV1, GLASS, and GLOBMAP produce

relatively stable LAIs for EBF over the year. MODIS and
GLASS overestimate GEOV1 and GLOBMAP by about
0.50. Possible reasons are discussed in section 4.1. All of
the four true LAI products produce similar values for DBF,
ENF, and DNF. GEOV1 produce slightly higher values for
needleleaf forests in winter, especially for DNF, which is
partly due to snow and cloud contamination. Overestimation
also occurs in the earlier CYCLOPES product and will be
further discussed in section 3.5. For JRC-TIP, the effective
LAI values are about half of the other true LAI products
on average (Table 3). The underestimation is less
pronounced for herbaceous types, for which the JRC-TIP
temporal profiles are similar to those of GLOBMAP. The
underestimation is more pronounced for forest types
during the maturity stage, reaching 4.0 for EBF. The LAI
values for the nonvegetated areas are, understandably, low
(< 0.30). The urban pixels make up a small percentage of
the data and display a clear seasonal variation.
3.1.3. Relationships and Conversions Between
LAI Products
[20] Figure 3 shows the density scatter plots between the

global LAI products. The MODIS, GEOV1, GLASS, and
GLOBMAP LAI products show strong linear correlations
with one another, with R2 values ranging between 0.743
and 0.896. Although the data points are scattered, the corre-
lation between GEOV1 and MODIS is as high at R2 = 0.789,
and they differ by only 0.38 LAI (Figure 3a). Both MODIS
and GEOV1 become saturated at about 6.0, due to the fact
that the fused GEOV1 is mainly driven by MODIS for larger
LAI values. The excellent agreement between MODIS and
GEOV1 indicates that after taking into account the fusion
equation (1), the GEOV1 LAI is close to the MODIS true
LAI. GLASS shows the highest correlation with MODIS
(R2 = 0.855) and GEOV1 (R2 = 0.896). The good consistency
between MODIS, GEOV1, and GLASS is expected because
the fusion algorithm makes use of the best LAI estimates
(equations (1) and (3)) in the neural network training
process, which smoothes out possible outliers contaminated
by clouds, snow, or atmospheric effects and provides
improved consistency between products. GLOBMAP
produces a small number of rather high LAI values (> 7.0;
Figures 3d�3f), which correspond to EBF in southern
Amazonia and is related to the fairly low pixel-level
clumping index (0.5�0.6) data [He et al., 2012; Liu et al.,
2012]. The graphics for JRC-TIP are different from those
of the other scatter plots (Figures 3g�3j). JRC-TIP values
are about one third of the other LAI values and have a low
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relationship (R2
≤ 0.661) with these products. The effective

LAI generally saturates at 3.0 or slightly higher, which
represents an upper boundary for JRC-TIP retrievals with
regard to prior values and observational uncertainties [Pinty
et al., 2011b].
[21] Table 4 gives the conversion equations between the

LAI products for different biome types. The MODIS LAI
was used as a baseline becauseGEOV1, GLASS, GLOBMAP,
and JRC-TIP are, to some extent, connected to MODIS in the
LAI retrieval process. The linear function performs well in
translating the LAI values among the different products,
although some variability exists. Good relationships are found

for grasses/cereal crops, shrubs, DBF, ENF, and DNF. The
moderate relationships (R2

≤ 0.60) for broadleaf crops are
due to overestimations (~1.0�2.0) by GEOV1, GLASS, and
GLOBMAP in the Midwestern United States corn and
soybean belt and underestimations (~2.0) in the tropical West
Africa in summer (Figure 1). The similarly moderate relation-
ships for savanna reveal differences between the products for
this structurally complicated biome type [Fang et al., 2013].
The low relationships (R2< 0.42) for evergreen broadleaf
forest can be partly attributed to the small range of high values
for this particular biome type, even though the mean deviations
among the products are less than 0.50 (Figure 2).

Figure 1. Global mean LAI from MODIS, GEOV1, GLASS, GLOBMAP, and JRC-TIP from 2003 to
2010 (0.05�) in January (left panels) and July (right panels), respectively.
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Figure 2. Climatologies of global monthly MODIS, GEOV1, GLASS, GLOBMAP, and JRC-TIP LAI
products for different biome types from 2003 to 2010 (0.05�).

Table 3. Yearly Mean LAI, Uncertainties, and Relative Uncertainties for Different Biome Types, 2003–2010a

Biome Types Grass/Crop-C Shrub Crop-B Savanna EBF DBF ENF DNF Non-V Urban Average

Mean LAI MODIS 0.64 0.41 1.17 1.38 4.64 2.04 1.58 1.34 0.14 1.01 1.43
GEOV1 0.84 0.57 1.42 1.53 4.05 2.27 2.03 1.55 0.20 0.94 1.55
GLASS 0.79 0.51 1.46 1.58 4.50 2.28 1.91 1.54 0.15 0.65 1.55

GLOBMAP 0.51 0.27 0.98 0.92 4.13 2.07 1.95 1.30 0.15 0.51 1.23
JRC-TIP 0.61 0.41 0.96 0.83 1.53 0.92 0.46 0.53 0.19 0.50 0.78
Land-SAF 0.78 0.54 1.46 1.67 3.46 2.31 2.03 0.31 1.26 1.63

Uncertainty MODIS 0.07 0.05 0.09 0.16 0.38 0.36 0.43 0.33 0.02 0.12 0.17
GEOV1 0.17 0.13 0.26 0.31 0.66 0.41 0.36 0.33 0.00 0.22 0.24
JRC-TIP 0.40 0.24 0.69 0.62 1.14 0.62 0.42 0.39 0.01 0.44 0.43
Land-SAF 0.25 0.21 0.36 0.47 0.88 0.54 0.43 0.2 0.3 0.36

Relative uncertainty (%) MODIS 9.1 11.8 6.5 11.0 8.8 15.8 23.9 19.0 4.8 3.8 11.5
GEOV1 33.8 35.1 24.6 23.5 15.9 23.3 18.4 25.9 6.2 29.3 26.6
JRC-TIP 126.7 133.9 101.0 103.9 78.9 103.3 137.2 141.3 104.0 130.7 114.3
Land-SAF 56.8 57.2 37.4 30.3 25.2 25.4 30.1 102.3 32.1 37.8

aLand-SAF derived from 2007 to 2010 over Africa. The last column is calculated from the global average of all vegetated pixels. Crop-C and Crop-B refer
to the cereal crops and broadleaf crops, respectively. EBF, DBF, ENF, and DNF stand for the evergreen broadleaf forest, deciduous broadleaf forest,
evergreen needleleaf forest, and deciduous needleleaf forest, respectively. Non-V indicates the non-vegetated type. In all statistics, positive (>0) values were
considered for LAI, and non-negative (≥0) values for uncertainty and relative uncertainty.
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3.2. Theoretical Uncertainties of LAI Products

3.2.1. Spatial Consistency of LAI Uncertainties
[22] The uncertainty maps for MODIS, GEOV1, and JRC-

TIP are presented in Figure 4. In general, the spatial patterns

for the uncertainties are similar, correlate well with the

distribution of biome types, and show that the tropical

(20�S�15�N) and boreal regions (60�N) have higher uncer-

tainties than the other areas. The overall uncertainties are gen-

erally in the following order: MODIS<GEOV1< JRC-TIP.

This trend is more obvious at lower latitudes. The MODIS

uncertainty varies between 0.10 and 0.35 in the tropical

regions, whereas the GEOV1 uncertainty is> 0.40 between

10�N and 10�S. JRC-TIP produces the highest uncertainty

(~1.00) in the tropical regions. LAI uncertainties are also high

in the boreal regions, which reflects the complex landscape

caused by poor illumination, low solar zenith angle (SZA),

snow and cloud contamination, and the understory effect

[Pisek et al., 2010; Weiss et al., 2007]. The amplitudes of

seasonal variability are visually correlated with the LAI
products, with generally higher uncertainty in July than in
January, except for the tropical regions. Data gaps are mostly
caused by the occurrence of snow and cloud, especially in
January. In July, higher GEOV1 uncertainties, compared to
MODIS, are observed in eastern North America, Europe,
and East Asia. For JRC-TIP, the uncertainties are also higher
for forest and high LAI regions, for example, in the eastern
United States and China. Moreover, the dynamic ranges of
the uncertainties for JRC-TIP are considerably higher than
those of MODIS and GEOV1, which reflects the higher
monthly variation in the LAI data retrieved by MODIS albedo
(section 2.5).
3.2.2. Temporal Variation in LAI Uncertainties
[23] The temporal variation in LAI uncertainties for

MODIS, GEOV1, and JRC-TIP are compared in Figure 5.
Seasonally, the product uncertainties are relatively higher in

Figure 3. Density scatter plots between MODIS, GEOV1, GLASS, GLOBMAP, and JRC-TIP global
LAI products from 2003 to 2010 (0.05�).

Table 4. Translation Equations for Different LAI Products (y) as a Function of the MODIS LAI (x) for Different Biome Typesa

Biome Types GEOV1~MODIS GLASS~MODIS GLOBMAP~MODIS JRC-TIP ~MODIS

Grass/ Cereal crops y= 0.96x+ 0.16
(0.736, 0.458)

y= 0.96x+ 0.18
(0.777, 0.397)

y= 0.79x� 0.00
(0.759, 0.347)

y= 0.55x+ 0.18
(0.675, 0.313)

Shrubs y= 1.04x+ 0.09
(0.736, 0.291)

y= 1.06x+ 0.09
(0.773, 0.257)

y= 0.71x� 0.02
(0.753, 0.183)

y= 0.53x+ 0.15
(0.630, 0.199)

Broadleaf crops y= 0.63x+ 0.69
(0.508, 0.750)

y= 0.66x+ 0.69
(0.605, 0.662)

y= 0.53x+ 0.36
(0.450, 0.726)

y= 0.36x+ 0.51
(0.411, 0.539)

Savanna y= 0.72x+ 0.51
(0.572, 0.679)

y= 0.70x+ 0.62
(0.636, 0.581)

y= 0.60x+ 0.09
(0.600, 0.535)

y= 0.34x+ 0.36
(0.458, 0.400)

Evergreen broadleaf forest y= 0.41x+ 2.09
(0.261, 0.887)

y= 0.41x+ 2.59
(0.418, 0.645)

y= 0.61x+ 1.32
(0.219, 1.522)

y= 0.21x+ 0.53
(0.213, 0.519)

Deciduous broadleaf forest y= 0.86x+ 0.49
(0.702, 0.910)

y= 0.82x+ 0.65
(0.766, 0.744)

y= 0.93x+ 0.19
(0.698, 1.004)

y= 0.34x+ 0.25
(0.644, 0.413)

Evergreen needleleaf forest y= 0.83x+ 0.62
(0.696, 0.625)

y= 0.81x+ 0.67
(0.746, 0.539)

y= 1.13x+ 0.26
(0.592, 1.069)

y= 0.23x+ 0.13
(0.566, 0.231)

Deciduous needleleaf forest y= 0.76x+ 0.37
(0.780, 0.520)

y= 0.86x+ 0.42
(0.823, 0.505)

y= 0.91x� 0.02
(0.796, 0.584)

y= 0.26x+ 0.16
(0.606, 0.268)

aEquations derived from positive (>0) LAI values, 2003–2010 (0.05�). Each cell shows the conversion equations (p< 0.001), and R2 and RMSE values
in the brackets.
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summer and lower in winter. Similarly, the magnitude of the
differences between the different products is normally higher
in summer than in winter. Overall, MODIS and GEOV1
achieve similarly low uncertainties (0.17 versus 0.24).
JRC-TIP uncertainty shows a clear seasonal pattern for all
biome types. On average, the JRC-TIP uncertainty (0.43) is
approximately twice the MODIS and GEOV1 uncertainties
(Table 3).
[24] When individual biome types are considered, the uncer-

tainties are generally in the order ofMODIS<GEOV1< JRC-
TIP for grasses/cereal crops, shrubs, broadleaf crops, and
savanna. MODIS and GEOV1 uncertainties are fairly stable
and at a low level (< 0.30) over the year for these
biome types, which is related to the low LAI values. For
JRC-TIP, the uncertainty reaches about 0.96 for broadleaf
crops in August. The uncertainties for forests are generally
higher than those for nonforests (Figure 5). The highest
uncertainty is observed for EBF, which is partly related to
the high LAI values for the biome type (see more explana-
tions in section 3.3.2). The uncertainties for MODIS
(~0.38) and GEOV1 (~0.66) are stable over the year. In
contrast, the JRC-TIP uncertainties are higher in spring
(~1.44) than in summer (~0.99). MODIS and GEOV1 show
similar uncertainties for DBF, ENF, and DNF, with
average differences smaller than 0.1 (Table 3). MODIS,
GEOV1, and JRC-TIP all display similar temporal varia-
tions for the three forest biome types, with larger
uncertainties in summer than in winter. For DBF, the JRC-TIP
uncertainty is slightly higher (~0.20) than the MODIS and
GEOV1 uncertainties.

3.3. Relative Uncertainties of LAI Products

3.3.1. Spatial Consistency of LAI Relative Uncertainties
[25] The relative uncertainty maps differ among the LAI

products (Figure 6). MODIS produces the lowest relative

uncertainties and JRC-TIP produces the highest values.

The largest discernible discrepancies occur in the boreal

regions (60�N). The highest relative uncertainties are gener-

ally located in the ecological transition zones, such as the

sparsely vegetated western parts of the Americas, Sahel,

South Africa, central Asia, and Australia, as well as savanna

areas. MODIS shows very low relative uncertainties in the

eastern United States, Amazonia, central Africa, southeast-

ern Asia, and the arctic regions. GEOV1 displays higher rel-

ative uncertainties than MODIS at lower latitudes but is

lower than MODIS in the boreal regions. The relative uncer-

tainties for GEOV1 are between 20% and 40% in the boreal

regions during summer. The JRC-TIP relative uncertainties

exhibit strong spatial variability in South America, Africa,

and East Asia, especially in January. The relative uncer-

tainties of JRC-TIP show more spatial variability than the

other two products during summer.
3.3.2. Uncertainty-LAI Relationships
[26] Overall, the relative uncertainties for the three LAI prod-

ucts are in the following order: MODIS<GEOV1< JRC-TIP
(Table 3). The relative uncertainty for GEOV1 (26.6%) is more
than twice that of MODIS (11.5%). For both MODIS and
GEOV1, the relative uncertainties for broadleaf forests are
lower than those for the needleleaf forests (Table 3). Figure 7
illustrates the general relationship between product uncertainties

Figure 4. LAI uncertainty maps for MODIS, GEOV1, and JRC-TIP from 2003 to 2010 (0.05�) in Jan-
uary (left panels) and July (right panels), respectively.
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and LAI values. The uncertainties for MODIS and GEOV1
are about 10�14% of the LAI values (Figures 7a and 7b).
For JRC-TIP, the overall uncertainty is about 52% of the
LAI values, with an offset of 0.24 (R2 = 0.397). The figure
indicates that the uncertainties are largely modulated by
LAI values, especially for GEOV1 (R2 = 0.843). The strong
linear relationship between GEOV1 uncertainty and LAI
indicates that the relative uncertainties might be inherent
to the properties of the product. In contrast, MODIS and
JRC-TIP appear to have maximum product uncertainty
fluctuations for intermediate LAI values at around 4.0 and
2.0, respectively.
[27] For each product, there are two LAI and uncertainty

peaks, corresponding to the herbaceous and woody biome
types, which can be clearly identified in the density scatter
plots (Figure 7). For MODIS, the two peaks are located at
LAI< 2 and between 5 and 6, respectively. For GEOV1,
the locations of the two peaks are at LAI< 3 and between 4
and 5.5, respectively, and the uncertainty values are higher
than those produced by MODIS. Figure 7b also shows that
the GEOV1 LAI maximum is around 6.7, while the

uncertainty peaks are around 1.0. The locations of the JRC-
TIP peaks are at LAI< 1.3 and between 1.2 and 2.0, respec-
tively, which illustrates the lower effective LAI values with
relatively high uncertainties.
3.3.3. Temporal Variation in LAI Relative Uncertainties
[28] Figure 8 shows the climatologies of the relative uncer-

tainties for MODIS, GEOV1, and JRC-TIP. In contrast to the
LAI values and uncertainties, no consistent seasonal trends are
observed for any particular biome type. For MODIS, small
seasonal variations occur for DBF, ENF, and DNF, while
the relative uncertainties are relatively stable for the other
biome types. The MODIS relative uncertainties are less than
20% for all biomes, except for ENF (23.9%). The smallest
relative uncertainty is observed for EBF (8.8%). For GEOV1,
with the exception of EBF (15.9%), the relative uncertainties
are all higher than 20%. In comparison, the relative uncer-
tainties for MODIS are slightly lower than those of GEOV1
for all biome types, except for ENF. The largest deviations be-
tween the two products can be seen for nonforest biomes. The
relative uncertainties for MODIS and GEOV1 show nearly no
seasonal change for EBF. The overall relative uncertainty for

Figure 5. Climatologies of global LAI uncertainties for MODIS, GEOV1, and JRC-TIP from 2003 to
2010 (0.05�).
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JRC-TIP reaches about 114.3% (Table 3). Because of the rel-
atively lower values and higher uncertainties, the JRC-TIP
profiles have extremely high relative uncertainties (> 100%)
for most of the year, except during the summer when the rela-
tive uncertainties decrease to around 60% for DBF (Figure 8f).

3.4. Intercomparison of LAI Products in Africa

3.4.1. Spatial Characterization
[29] Figure 9 demonstrates the performances of the six LAI

products in Africa in July 2010. The highest LAI values are
observed in the tropical rainforest regions (> 5.0), but they
vary substantially among the different products. For most of

the other areas, all the products show moderately similar and
low LAIs (< 2.0). However, MODIS contains some missing
pixels in the rainforest regions, and the MODIS status map
(not shown) reveals that these pixels correspond to poor
retrievals caused by consistent cloud contamination in the
data. GEOV1, GLOBMAP, and JRC-TIP also suffer from
similar data gaps, especially along the Gulf of Guinea coast.
In comparison, GLASS displays the most continuous LAI
map, which is due to the integration of MODIS and CYCLO-
PES and the yearly neural network approach (section 2.3).
GLOBMAP shows similar, but concentrated, high LAIs in
the tropical areas but gives slightly lower values for other areas

Figure 6. Maps of LAI relative uncertainties for MODIS, GEOV1, and JRC-TIP from 2003 to 2010
(0.05�) in January (left panels) and July (right panels), respectively. Note the different scale bar for
JRC-TIP.

Figure 7. Density scatter plots between LAI and the associated uncertainties for (a) MODIS, (b) GEOV1,
and (c) JRC-TIP.
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in the continent. JRC-TIP is understandably lower (< 3.0)
than all the other products, even for the tropical rainforest.
Land-SAF is smaller in the equatorial areas but higher in
the other regions compared to the other true LAI products.
Land-SAF also reveals a uniquely smooth decreasing
pattern from the tropical regions to higher latitudes because
of its to more frequent observations and a monthly averag-
ing of the daily values.
3.4.2. Land-SAFUncertainties and Relative Uncertainties
[30] Figure 10 shows the Land-SAF uncertainties and

relative uncertainties calculated in January and July between
2007 and 2010, respectively. The figure shows that the
uncertainties for 10�N�18�S (> 0.2) are clearly higher than
those of the other regions. The peak uncertainties migrate
from the east Congo Basin in January (1.0–1.5) to the north
Congo Basin in July (> 1.5), which corresponds to the
seasonal migration of EBF in Africa [Pfeifer et al., 2012].
The relative uncertainties are relatively stable over the year
and are lower between 5�N and 20�S (< 30%). The higher
relative uncertainties (> 30%) are mainly distributed in the
transitional zones between savanna, shrubs, and grasses.

3.4.3. Characterization of a Transect
[31] Figure 11 compares the LAIs, the uncertainties, and

the relative uncertainties along the 25�E transect in July
2010. The curves were filtered using a 2.5� moving averag-
ing method to show the general performances of the differ-
ent products. From the furthest north to the furthest south,
LAI values gradually increase from 15�N to 5�N and
produce a maximum EBF value of around 5.0. After a
sudden decrease to less than 2.0 along 4�S, the LAI values
gradually decrease from woody savannas to open shrublands.
The tropical areas (5�N�4�S) show rather marked differences
for EBF, with LAI values varying from 3.4 (Land-SAF) to 5.2
(MODIS). This confirms the earlier observation of large
deviations for EBF and will be discussed further in section
4.1. At subtropical latitudes (4�S�25�S, and 5�N�10�N),
the landscape is dominated by savanna systems and the LAI
values differ considerably between the different products.
MODIS, GLASS, and Land-SAF produce similar values for
woody savannas between 5�N and 8�N. However, GEOV1
produces higher, and GLOBMAP produces lower values
(by about 1.0) than MODIS, GLASS, and Land-SAF.

Figure 8. Climatologies of global LAI relative uncertainties (%) for MODIS (solid lines), GEOV1 (dot-
ted lines), and JRC-TIP (dashed lines) from 2003 to 2010 (0.05�). See the left ordinates for MODIS and
GEOV1, and the right ones for JRC-TIP. Same legend as in Figure 5.
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Substantial differences also exist between the two hemispheres
for the savanna systems. Savannas and woody savannas in
the northern hemisphere occur in a narrow latitudinal band
(about 3�), but their LAI values are higher (~1.5) than those
of their counterparts in the southern hemisphere. In contrast
to the northern hemisphere, Land-SAF shows higher values
than all the other products from 4�S southward. The peculiar
performance of the savanna systems could be related to the
unique vegetation structure of this biome type which is
marked by a highly dynamic vegetation structure, varying
across space and time and driven by precipitation seasonal-
ity [Bucini and Hanan, 2007; Pfeifer et al., 2012]. Some of
these differences may also be related to the different product
composition periods. For example, the daily Land-SAF
product may be able to optimally capture the high frequent
LAI changes caused by precipitation, whereas this sort of
information may be missed by other products with a longer
composition cycle.
[32] In a similar manner to LAI, the uncertainties are also

higher for woody savannas and EBF (Figure 11b). The
MODIS uncertainties are below 0.5 over the whole transect.
The GEOV1 uncertainties are around 0.75 for both woody
savannas and EBF. JRC-TIP and Land-SAF have similar
profiles as the transect moves from 10�N to the south,
reaching about 1.4 for woody savannas and EBF, but
decreasing to< 0.5 for other latitudes. Land-SAF assigns a
constant uncertainty value (0.3) to bare surfaces, such as
the deserts at the two ends of Africa (from 10�N and from
15�S). The relative uncertainties produce bowl-shaped
profiles with increasing values from lower to higher latitudes
(Figure 11c). MODIS, GEOV1, and Land-SAF values are
similar for savannas and EBF (10�N�19�S), which are
slightly lower than the values for the other biome types at

higher latitudes. The three products show relatively larger
discrepancies for savannas and open shrublands from 19�S,
which indicates the complex structures for these biome
types. The relative uncertainties for JRC-TIP (> 100%) are
also lower for savannas and EBF than for grasslands and
open shrublands.

3.5. Improvement Over Heritage Products

[33] The differences between the GEOV1 and
GLOBMAP products and the heritage products are plotted
in Figure 12. The improvement in GEOV1 over the earlier
CYCLOPES is clear, both regarding accuracy and spatial
and temporal consistency (not shown). CYCLOPES tends
to underestimate MODIS, especially for higher LAI values,
mainly due to the differences in LAI definitions between
CYCLOPES (closer to effective LAI) and MODIS (true
LAI) [Fang et al., 2012b]. In contrast, the global average
GEOV1 value is slightly higher than that of MODIS
(Table 3), and this is due to the new fusion algorithm
(equation (1)). The MODIS-GEOV1 differences are much
smaller than the previous MODIS-CYCLOPES differences
[Fang et al., 2012b]. GEOV1 values have increased over
the CYCLOPES values for all vegetated biomes, especially
for the forest types (Figure 12a), indicating the effectiveness
of the new fusion algorithm. The highest increase is found
for EBF (~0.96). Geographically, GEOV1 matches
better with MODIS in Amazon and boreal regions, whereas
CYCLOPES usually underestimates MODIS in these
regions [Fang et al., 2012b].
[34] The GEOV1 uncertainties are also smaller than those

of CYCLOPES (Figure 12b). Substantial differences are
found for broadleaf crops and savanna. For CYCLOPES,
the typical uncertainties in summer are close to 0.80 and

Figure 9. (a) MODIS, (b) GEOV1, (c) GLASS, (d) GLOBMAP, (e) JRC-TIP, and (f) Land-SAF LAI
products in Africa in July 2010 (0.05�).
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0.70 for broadleaf crops and savanna, respectively [Fang
et al., 2012c]. In comparison, the corresponding GEOV1 un-
certainties are about 0.40 and 0.30, respectively. The reduc-
tion of the GEOV1 uncertainties (0.36 on average) are most
significant for forest types, to a similar level with MODIS
(Figure 5) which reaffirms the improvement of GEOV1 for
these biome types. The relative uncertainty uniformly
decreased by about 20�32% for all biomes (Figure 12c).
[35] Previous validation and intercomparison studies have

shown that GLOBCARBON underestimates MODIS by
about 1.0 for EBF due to algorithm differences and the
different clumping processing methods [ESA, 2007; Fang
et al., 2012b; Garrigues et al., 2008]. The present study
reveals much improved spatial and temporal consistency
between GLOBMAP and the other products for EBF.
Overall, GLOBMAP has increased by about 1.5 over
GLOBCARBON for EBF (Figure 12d). The improvement
in consistency is mainly attributed to the enhanced
MODIS reflectance data utilized in GLOBMAP [He et al.,
2012; Liu et al., 2012].

3.6. Comparison With the GCOS Accuracy Requirement

[36] Figure 13 shows the percentage of pixels that falls
within the GCOS quality thresholds for uncertainty (0.5)
and relative uncertainty (20%). Based on a yearly average,

93.2% of MODIS pixels are within the GCOS quality
requirement for uncertainty, followed by GEOV1 (85.8%)
and JRC-TIP (74.5%). Seasonally, the number of pixels
meeting the requirement is about 15% lower in summer than
in winter for MODIS, GEOV1, and JRC-TIP, which reflects
the higher LAI values and the associated retrieval
uncertainties during the peak growing season. Land-SAF
shows a minor seasonality, and about 82.0% of the data
have met the quality requirement in continental Africa.
This is comparable to that reported in the Land-SAF
validation report, which states that the mean uncertainty is
below 0.6 for 71% of the land surface [García-Haro et al.,
2008]. With regard to different biome types, forested pixels
have a slightly lower percentage of pixels than nonforest
types that have met the quality requirement (Figure 13b).
This is partly related to the generally higher LAI
values and uncertainties for forests. EBF have the lowest
percentage of pixels that have met the requirement for
GEOV1 (17.1%), JRC-TIP (26.4%), and Land-SAF
(17.8%), which indicates the difficulty of LAI retrieval for
this biome type (section 4.1).
[37] With regard to the relative uncertainty threshold

(20%), the number of good retrievals is ranked as
follows: MODIS (78.5%)>GEOV1 (44.6%)>Land-SAF
(13.3%)> JRC-TIP (5.7%). For GEOV1, the percentage of
good retrievals shows small seasonal variations, ranging

Figure 10. Land-SAF uncertainties (upper panels) and relative uncertainties (lower panels) in January
and July, respectively (2007�2010, 0.05�).
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from 31.0% in October to 58.6% in August, whereas there
are nearly no seasonal changes for the other three products
(Figure 13c). Pixels with good retrievals are distributed over
various biome types (Figure 13d). Unlike the absolute uncer-
tainties (Figure 13b), there is no clear dominant contributing
biome type for the relative uncertainties (Figure 13d).

[38] In this study, the theoretical uncertainties are derived
by each product separately, using different approaches, tools,
and resolutions. In order to consolidate the differences in
product uncertainties, a triple collocation error model (TCEM)
has been developed to calculate theoretical uncertainties for
the MODIS, CYCLOPES, and GLOBCARBON LAI

Figure 12. Bar plots showing the differences between GEOV1 and GLOBMAP with CYCLOPES and
GLOBMAP, respectively. (a) Mean LAI differences between GEOV1 and CYCLOPES, (b) uncertainty
differences between GEOV1 and CYCLOPES, (c) relative uncertainties differences between GEOV1
and CYCLOPES, and (d) mean LAI differences between GLOBMAP and GLOBCARBON.

Figure 11. Transects of (a) LAI, (b) uncertainties, and (c) relative uncertainties over Africa (along 25�E)
for July 2010. The land cover classes are based on the MODIS IGBP classification [Friedl et al., 2010].
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products [Fang et al., 2012c]. The results from this study (Ta-
ble 3) show that the average uncertainties (< 0.50) and the rel-
ative uncertainties (< 40%) are comparable to those estimated
by TCEM, which shows the validity of exploring theoretical
uncertainties using both product QQIs and the TCEM
approach. The TCEM study [Fang et al., 2012c] indicates that
less than 39.5% of MODIS and nearly half of CYCLOPES
retrievals (49.1%) have met the quality requirement for
absolute uncertainty (0.5). With regard to the relative uncer-
tainties, the percentages of good retrievals are only 19.2%
and 37.7% forMODIS and CYCLOPES, respectively. Results
from the present study indicate that the relative uncertainties
associated with the products clearly have a significantly higher
percentage of good retrievals compared to those obtained
using the independent TCEM approach. These differences
reflect the different approaches in deriving the theoretical
uncertainties and should be considered in evaluating the prod-
uct uncertainties.

4. Discussion

4.1. Characteristics of the Global LAI Products

[39] By definition, all the LAI products, except for JRC-TIP,
represent the true LAI. For GEOV1, the essence of the fusion
process (equation (1)) is to reduce the contribution of MODIS
for low LAI values, while enhancing its contribution for larger
values. GLASS shows the greatest similarity to MODIS
and GEOV1 (Figure 3) because it fuses the best MODIS
and CYCLOPES estimates, biome by biome, and uses the
MODIS reflectance as an input. GLOBMAP shows a
generally good agreement with MODIS but with slightly
lower values for broadleaf crops (by about 0.2�0.5),
savanna (~0.5), and EBF (~0.5). The GLOBMAP underes-
timation of broadleaf crops and savanna can be partly
explained by the mismatch between the land cover types
adopted by different retrieval algorithms. The MODIS

LAI algorithm separates grasses/cereal crops and broadleaf
crops, while GLOBMAP combines them into one type
(crops, grasses, and others). Likewise, GLOBMAP com-
bines shrubs and savanna into shrubs in the LAI algorithm.
JRC-TIP is understandably lower and is about one third of
the other true LAI values. The JRC-TIP product is likely
bounded by the upper limit (3.0 or slightly higher) for the
effective LAI values [Pinty et al., 2011a]. Land-SAF LAI
values are relatively smooth because SEVIRI high-frequency
sampling largely alleviates the cloudiness problem experi-
enced by optical-infrared sensors and small fragmented clouds
are usually averaged over time.
[40] This study demonstrates that even with the same

MODIS input reflectance, GLASS and GLOBMAP result
in larger discrepancies (~0.5) for broadleaf crops and
savanna than other biome types. The differences are due to
the different LAI retrieval methods, clumping effect process-
ing, and incorporation of a priori information. GLASS
algorithms treat the yearly reflectance data as a whole, whereas
GLOBMAP processes every 8 day period separately. GLASS
algorithms use the biome-specific clumping information as a
priori model input, whereas GLOBMAP needs the pixel-based
clumping index to convert the effective LAI to the true LAI.
[41] Retrieving accurate LAI values from very dense

canopies remains a challenging task [Aragão et al., 2005;
Shabanov et al., 2005]. The disagreement between the LAI
products (< 1.0) is notable for EBF. This confirms earlier
findings that large discrepancies exist for EBF due to
reflectance saturation and cloud-aerosol contamination
[Fang et al., 2012b; Garrigues et al., 2008]. Severe underes-
timation has been reported for CYCLOPES, which gives
consistently lower LAI estimates than MODIS [Fang et
al., 2012b; Weiss et al., 2007]. Evidently, GEOV1 has im-
proved the correspondence, as compared to CYCLOPES,
with MODIS for this biome type and has also improved
the results for low LAI periods in tropical evergreen

Figure 13. Percentages of MODIS, GEOV1, JRC-TIP, and Land-SAF pixels that meet the quality
requirements for (a and b) uncertainties and (c and d) relative uncertainties, respectively. (b and d) The
statistics for different biome types. Land-SAF for Africa only. Percentages calculated as the ratio of
the number of pixels that meet the threshold to the total number of valid retrievals. Biome types 1�10
correspond to Figures 2a–2j.
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vegetation caused by persistent cloud cover [Myneni et al.,
2007]. GLOBMAP underestimation of EBF has also been
reported previously [Liu et al., 2012]. The underestimation
by Land-SAF, with regard to other true LAI products, for
EBF in Africa (Figure 11a) highlights the algorithm differ-
ences and the complexity of this biome type. New cloud
and aerosol detection techniques based on time series and
spatial analyses may help to reduce these uncertainties and
improve LAI estimation of EBF [Hilker et al., 2012].
[42] ENF and DNF show similar seasonal courses but dif-

ferent amplitudes in winter (Figure 2). For ENF, the average
true LAI values rise from about 0.93 in January to 3.49 in July.
The seasonal variation in ENF is mainly attributed to changes
in the understory [Heiskanen et al., 2012; Manninen et al.,
2012]. Several studies have indicated that the winter LAI for
ENF has been unrealistically underestimated by current LAI
products [Fang et al., 2012c; Garrigues et al., 2008; Tian
et al., 2004]. Accurate estimation of LAI in needleleaf forests
in winter is challenging because of poor illumination condi-
tions, low solar zenith angle (SZA), snow and cloud con-
tamination, and the signal from the understory [Pisek et
al., 2010;Weiss et al., 2007]. These issues clearly have neg-
ative impacts on LAI data quality and their applications.
How to improve the LAI estimation in winter should be a
crucial research topic in the future.

4.2. Interpretation of LAI Uncertainties

[43] The product uncertainties and the spatial and tempo-
ral variability are largely correlated with the LAI values.
The present study has indicated the general spatial and tem-
poral consistency of the product uncertainties between
MODIS and GEOV1 (Figures 4 and 5). However, no strong
relationship (R2< 0.39) was noticed globally between the
various uncertainties (not shown), which reveals the differ-
ent schemes used in the uncertainty computation. For the rel-
ative uncertainties, there are no clear seasonal and latitudinal
trends, indicating that the relative uncertainty might be an in-
herent property of the products. The relatively high errors
obtained in the ecological transition zones (Figure 6) are attrib-
uted to the mixed land cover types [Hu et al., 2003], which
make LAI retrieval difficult. The different performances be-
tween MODIS and GEOV1 reflect the impact of the input re-
flectances, the solar zenith angles, the retrieval algorithms, and
the treatment of biome types [Myneni et al., 2002;Weiss et al.,
2007]. It should be noted that no a priori biome classification
information has been used in the GEOV1 algorithm. JRC-
TIP tends to have large relative uncertainties (> 100%) for
DBF, ENF, and DNF in winter and spring (October to May),
which is probably due to the understory exposure when the
satellite observes mixed signals from the understory and the
background [Pisek et al., 2010].
[44] The present study of theoretical uncertainty is

complementary to other validation studies which have
provided LAI physical uncertainties. It should be noted
that the theoretical uncertainties obtained in the present
study (Table 3) are all smaller (by half) than the physical
uncertainties reported in recent validation studies, which gener-
ally vary from 1.06 to 1.37 for MODIS, from 0.50 to 1.24 for
CYCLOPES [Fang and Liang, 2005; Fang et al., 2012a;
Garrigues et al., 2008; Verger et al., 2009; Weiss et al.,
2007], and are around 1.15 for GLOBCARBON [Garrigues
et al., 2008]. The very low theoretical uncertainty values should

be interpreted in relation to the differences in theoretical and
physical uncertainties.
[45] The relative uncertainties for MODIS and GEOV1

(Table 3) are also smaller than the relative physical uncer-
tainties obtained in recent studies, which can range from
30 to 80% [Gonsamo, 2010; Pinty et al., 2007; Pisek and
Chen, 2007; Verger et al., 2009]. The relative uncertainty
for Land-SAF appears to be higher than that of the specified
target accuracy (25�30%) [García-Haro et al., 2008]. The
large relative uncertainty for JRC-TIP attests to the different
characteristics of the LAI retrieval algorithms and the
product QQIs, which suggests a need for further investiga-
tion into the effective LAI product.

4.3. Limitations and Future Studies

[46] Any intercomparison study is hampered by several
factors: (1) differences in concepts and definitions, (2) algo-
rithm differences, (3) discrepancies in temporal and spatial
referencing, and (4) the mismatch between land cover types.
In this study, the uncertainty information provided by each
product is derived using different approaches, tools, and input
products. Variances in the input data and the strong
nonlinearity of the LAI retrieval algorithm may also translate
into uncertainty values that may exceed those specified a priori
in the algorithm. Differences in the pixel sizes and the
temporal compositing period are to be expected for the LAI
products. The impact of biome misclassification on LAI
estimation has been investigated in a number of studies [Fang
et al., 2013; Gonsamo and Chen, 2011; Myneni et al., 2002].
Global averaging over all pixels of a particular biome type
may also mask the underlying variability in LAI amongst
those pixels. Given these inherent issues, it is hard to
conclude which is the best single quality indicator for
representing LAI uncertainty.
[47] A hierarchical four-stage validation approach has

been adopted by the Committee on Earth Observation
Satellites (CEOS), following the recommendations of the
Land Product Validation (LPV) group [http://landval.gsfc.
nasa.gov/, Morisette et al., 2006]. Intercomparison of
independent products, as demonstrated in the present study,
corresponds to the third validation scheme proposed by the
LPV to develop product uncertainty information. The
MODIS LAI product has achieved Stage 2 validation
[Nightingale et al., 2009]. Stage 3 validation involves
assessing product accuracy via independent measurements
that represent global conditions [http://landval.gsfc.nasa.
gov/]. With this and other similar studies [Fang et al.,
2012a, 2012b, 2012c; Garrigues et al., 2008; Weiss et al.,
2007], Stage 3 validation for global LAI products can be
achieved.
[48] Further work should focus on the development of

improved methods for LAI estimation. Even with the
availability of product quality indicators, further validation
efforts should be made in order to obtain absolute values of
product reliability and accuracy. In-depth Stage 3 validation
should involve more comprehensive field data collection for
under-represented biome types and areas. The present findings
for Land-SAF in Africa will be updated when new products
with global coverage are available. With the advent of several
operational LAI products, there is a trend to generate the best
LAI estimates from existing products (e.g., GEOV1 and
GLASS). However, how errors accumulate during the fusion
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process needs to be investigated. This study also reveals the
importance for data users to refer to the product QQIs.
Meanwhile, it is important for data producers to provide
the quality indicators. Results from this study should
therefore be further interpreted with new knowledge about
the product uncertainties.

5. Conclusions

[49] In this study, five global LAI products—MODIS,
GEOV1, GLASS, GLOBMAP, and JRC-TIP—were
assessed by examining their climatologies and uncertainty
information for different biome types. All the LAI products
generally agree with each other in representing the LAI
temporal variation, while discrepancies are observed with
regard to LAI levels, mainly due to differences between
definitions, retrieval methodologies, and input data. The
products agree remarkably well for grasses, crops, shrubs,
and savanna, with typical absolute differences below 0.5. For
forests, the deviations among the products are less than 1.0,
andMODIS, GEOV1, GLASS, and GLOBMAP strongly cor-
relate with each other (R2> 0.74). The effective JRC-TIP LAI
values are about half the values produced by the other
products. Conversion equations between different products
will help alleviate the differences in definitions and
residual errors caused by different algorithms and input
data. Continental assessment of LAI products shows that
Land-SAF is consistent with the other products in Africa,
although small discrepancies (< 1.0) do exist for woody
savannas and evergreen broadleaf forest.
[50] This study is the first to explore the product quantita-

tive quality indicators (QQIs) embedded in the LAI
products. The theoretical uncertainties are related to the
LAI values, and both exhibit consistent seasonal variability.
Generally, the forested areas display higher uncertainties
than the agricultural areas. The MODIS uncertainty is less
than 0.2 for nonforest biomes and less than 0.5 for forest
types. For GEOV1, the uncertainty is< 0.3 for all biome
types, except for evergreen broadleaf forest (0.50). The
overall uncertainty is highest (0.43) for JRC-TIP but moder-
ate for Land-SAF (0.36). The derived relative uncertainties
are variable across regions and appear to increase in ecolog-
ical transition zones. However, no clear seasonal trends are
observed for the relative uncertainties, indicating that the rel-
ative uncertainty might be an inherent property of the
products. Averaged globally, the relative uncertainties are
in the following order: MODIS (11.5%)<GEOV1
(26.6%)<Land-SAF (37.8%)< JRC-TIP (114.3%). MODIS
and GEOV1 generally show a similar range of relative
uncertainties in summer. For JRC-TIP, the climatologies
of the relative uncertainties show rather large temporal
variations, marked by higher deviations during winter
and spring. In contrast to the usually prescribed LAI uncer-
tainties in land surface modeling studies, the product QQIs
allow a more convenient specification of LAI uncertainties
and temporal variability at the grid level.
[51] Theoretically, the absolute uncertainty indicators dem-

onstrate that more than 75% of MODIS, GEOV1, JRC-TIP,
and Land-SAF pixels have met the absolute uncertainty
requirements (� 0.5) set by GCOS. Among the biome types,
evergreen broadleaf forest is the dominant contributor to the
number of pixels that fails to meet the quality threshold. In

terms of the relative uncertainty, more than 78.5% of MODIS
and 44.6% of GEOV1 pixels have met the minimum accuracy
requirement (20%). However, < 15% of the Land-SAF and
JRC-TIP pixels have met the quality requirement for relative
uncertainties. It should be noted that the reported
theoretical uncertainties are all smaller than the physical
uncertainties revealed by recent independent validation
studies [Fang et al., 2012a]. The theoretical uncertainties
explored in this study point the way for further validation stud-
ies of physical uncertainties.
[52] This study provides an operational guideline for further

studies to understand and improve the accuracy of global LAI
products. For example, by taking advantage of existing high-
quality products, GEOV1 and GLASS have improved over
the earlier CYCLOPES and GLOBCARBON, in terms of
spatial and temporal consistency and similarity to MODIS.
Future studies should focus on areas (e.g., ecological transi-
tion zones) and periods (e.g., winter time) where there are
higher uncertainties. With the advances in instrument and
retrieval algorithms, further cross-validation studies should
be performed in the future, which should lead to the rational
assessment of product qualities. As only theoretical
uncertainties were explored in this study, product physical
uncertainties warrant further investigation. The current
method can be adapted for the cross-validation of other
essential climate variables, such as the fraction of photosyn-
thetically active radiation absorbed by vegetation (FPAR)
and albedo.
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