Characterization and Monitoring of Transverse Beam Tails*
 J. T. Seeman, F. J. Decker, I. Hsu, and C. Young Stanford Linear Accelerator Center, Stanford, Califormia, 94309

Introduction

Low emittance electron beams accelerated to high energy in a linac experience transverse efficels (wakefield. filamentation, optics...) which produce non-Gaussian projected transverse beann distributions. Characterizations of the beam shapes are difficult because the shapes are often asymmetric and change with betatron phase. In this note several methods to describe beam distributions are discussed including an accelerator physics model of these tails. The uses of these characterizations in monitoring the beam emitlances in the SLC are described here as well as in Ref. 1.

Fisst, two dimensional distributions from profile monitor screens are reviewed showing correlated tails. Second, a fituing technique for non-Gaussian one dimensional distribuions is used to extract the core from the tail areas. Finally, a model for tail propagation in the linac is given.

Beam Profiles from an X-Y Screen

When a beam surikes a fluorescent screen, it produces a two dimensional light distribution which ean be observed with a TV camera and monitor or can be digitized and processed [2].

The digitized TV picture can be projected onto the x or y axis and compared to beam shaped measured with other devices such as a wire scanner [3]. Information is lost during the projection process. In addition, size data from fluorescent screens are unique in that an image of a single bean pulse can usually be measured. Whereas, many pulses (~ 20) are nected for a wire scanner measurement.

A two dimensional image is a projection of the x, x, y, y^{\prime} distributions onto the x, y plane. Information about the other variables must be obrained at locations with different betatron phase advances or by using an adjustable quadrupole upstream. For example, a measured beam projection is shown in Fig. 1 where a transverse beam tail is apparent. The orientation of the tail in phase space is not known unless further measurements are taken. However, because of the longitudinal extent of the bunch and the fact that the back of the bunch tends to be the tail as produced by wakefields, a two dimensional image provides clues to the tail orientation. The x y view aids in deciphering the head from the tail. The transverse tails observed on this type of screen can be adjusted with upsiream variables but solutions which look small usually contain a tail in the angular dimension.

Beam Projections from Wire Scanners

In the SLC, beam sizes (projections) are now routinely measured with wire scanners. When the beams are well behaved, the projected beam size is well represcnted by a

[^0]

Fig. 1 Beam distribution with transverse tail measured on a screen profile monitor. This normally colored, two dimensional representation of the beam gives more information than a projection alone. The horizontal and vertical Gaussian beam sigmas are about $150 \mu \mathrm{~m}$.

Gaussian. A straight forward weighted least squares fiu yields reliable results. However, a beam with "tails" leads ofien to a very poor fil. We report here on some techniques for analyzing such cases.

This approach assumes that the core of the beam is well represented by a gaussian, but otherwise makes no assumptions about the properties of the "tail". In particular, the functional form of the tail disuribution is nol needed.

Given a wire sean data set, we first fit to it with a simple Gaussian form. If the quality of fil is good as delermined by a chi square cut, then the distribution is decmed to have no tait. Otherwise, we use the fitted gaussian mean to separate the data into left and right porions, and refit each one independently with Gaussians. The sinaller (or better) fit is retained as being representative of bean core. Its functional value is extended into the unfited region, and subtracted from the scan data. The residual disuribution is the "wil". This hil can then be characterized by its momenis relative to the fitted Gaussian mean. Two examples of this filting procedure are shown in Fig. 2.

When the population in the tail is a signifitant fraction of the core or when it extends very far from the axis, the new Gaussian fit may still be unacceplably poor. This is easily cured by allowing extra itcrations during partitioning of the data and refituing.

The benefits of this approach are its simplicity, robustness and independence of tail distribution function. Reliable standard Gaussian fitting routines can be used without custom modification or additional debugging. Its convergerce is essentially independent of the propertics of the tail distribution function; therefore, the algorithm can be used in many siluations. If a specific distribution was assumed. then the algorithm would have to be re-coded for a different furctional form for each spesibic case.

Fig. 2 Profiles fitted with a left or right core gaussian and showing a residual tail.

Accelerator Physics Model for Tail Projection

A bunch executing a betatron oscillation in the quadrupole latice of the linac experiences transverse wakefields in the accelerating structure. The head of the bunch drives the core and back of the bunch to ever increasing amplitudes producing a non-Gaussian tail. Simulations of this growth have been made where a bunch is divided into longiudinal slices and traced through the linac. In Fig. 3 the centroid positions of these slices are shown for a simulated SLC bunch of 5×10^{10} elecuons after oscillating from an initial amplitude of about 100 microns. The (nearly) exponential growth from head to back is apparene.

The transverse particle distribution $\rho(x)$ of each slice is equal to that of the initial phase space distribution. The initial distribution for the SLC is a gaussian with widih σ.

Fig. 3 Transverse slice centroid positior of a smulated SLC beam. The longitudinal head is on the r. t and the back of the bunch is on the left. Note the (near..) exponential growth of the transverse position.
$\rho(x)=\exp \left(-\left[x+x_{0}\right]^{2} / 2 \sigma^{2}\right) / \sigma(2 \pi)^{1 / 2}$.
where x_{0} is the mean of the distribution. The oversll distribution must be integrated over the slices with different transverse positions x_{0}.

The position x_{0} of each slice is represented y an exponential which initiates at position 20 along the 1 ngth of the bunch, as in Fig. 3, and has a growih rate of τ. T. Suil rolates in phase space with the betutron phase ϕ_{i} buls. , an initial phase $\phi 0$. The emiuance of each slice of the beum is ε and the betaron function at each profile measuremen ' i ' is β_{i} $\sigma_{i}^{2}=\mathrm{E} \beta_{i}$. The tail extension is scaled locally by σ_{j}.

$$
\begin{gather*}
x x_{0}\left(\phi_{\mathrm{i}}, 2\right)=\sigma_{\mathrm{i}} U\left(z_{0}-2\right)\left(\exp \left(\left(z_{0}-2\right) \tau / \sigma_{\mathrm{H}}\right)-11\right. \\
 \tag{2}\\
X \cos \left(\varphi_{\mathrm{i}}+\phi_{0}\right)
\end{gather*}
$$

where U is the unit step function. The bunch length is σ_{f}. The transverse distribution of each slice is given by:

$$
\begin{equation*}
\rho\left(x, \phi_{i}, z\right)=\exp \left(-\left(x-x_{0}\left(\phi_{i}, z\right)\right)^{2} / 2 \sigma_{i}^{2}\right) /(2 \pi)^{1,2} \sigma_{1} \tag{3}
\end{equation*}
$$

Now, the overall transverse distribution we will call $f(x)$ is given by
$f\left(x, \phi_{i}\right)=\int_{-\infty}^{+\infty} \rho\left(x, \phi_{i}, z\right) h(z) d z$

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United Siates Government aer any agency thereof, nor any of their employees, makes any warranty, express or implied, or acsumes any lefal liability or responsibility for the accurecy, completeness, or usefulaess of any information, apparatus, product, or process disclowed, or represents that its use would not infringe privately owned rights. Reference hereip to any specific commercial product, process, or service by trade name, traderuark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necossarily state or reflect those of the United States Government or any agency thereor.
where $h(z)$ is the longitudinal profile, usually assumed to be a gaussian as in Eqn. 1 but with length $\sigma_{\mathbf{z}}$. By choosing ϕ_{0}, t, and 2_{0}, the beam shape can be calculated at any location over a reasonably short (less than a betatron wavelength) region of the linac. In Fig. 4 various calculated beam spots esing this formalism are shown. Clearly, many different shapes can be generated.

Conversely, measured beam shapes can be analyzed to determine the tails structure of the beam and measure the effective $\$_{0}, z_{0}$. and τ. An oscillation was induced in the SLC electron beam with a dipole magnet and the resulting oscillation is shown in Fig. 5. The associated beam profiles are shown in Fig. 6 which cover a range in betatron phase. The beam shapes observed have a definite tail with a phase. Profiles (a) and (b) show no tails (it is in angles), but profiles (c) and (d) show large tails. Several simulated profiles from Fig. 4 closely resemble the measured shapes.

This analysis breaks down when the tail of the beam becomes quite convoluted after many oscillations or very strong wakefields. Longitudinal shapes go from banana-like into worm-like. Therefore, this analysis handles only moderately enlarged beams which covers the standard running condition of the SLC. If the shapes are much worse than shown, we would stop the program to fix them.

In the near future we plan to implement this algorithm into the online eminance package for eventual use in a feedback system for tails. This technique is properly suited for feedback as the phase of the tail is detemined as well as the amplitude.

Fjg. 4 Calculated transverse bunch projections showing the effects of different input conditions with the rate of tail growth τ and the place z_{0} along the bunch where the exponential growth starts. Large t (horizontal axis) makes long thin tails and a z_{0} closer to the from of the bunch (verical axis) makes a broader shoulder.

Fig. 5 Induced horizontal oscillation (measured) in the SLC linac which generated the beam tails in Fig. 6

Fig. 6 Measured beam profiles (47 GeV) for the belairon oscillation in Fig. 5. The projections were taker; with four wist scanners spaced at $0,22.5,90$., and 112.5 degrees in belatron phase. Note the similarities of these profiles with those calculated in Fig. 4.

Acknowledgments

Many thanks are extended to the SLC Mechanical and Controls Groups for their help with the beam size measurement syslems. L. Brown, D. McCormick, and M. Ross tave been very helpful.

References

1) J. Secman et al., 'Summary of Emitance Conurol in the SLC Linac', SLAC-PUB-5437 and Proc. of US PAC San Francisco (1991).
2) F. J. Decker, 'Beam Size Measurement at High Radintion Levels', SLAC-PUB-5481 and US PAC San Francisco (1991).
3) M. Ross et al., Wire Scanners for Bcam Size and Emitunce Measurements at the SICC, Proc. of US PAC San Francisco (1991).

[^0]: *Work supponied by Deparment of Energy contract DE-AC0376SF00515.

