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Abstract

In this paper we address the problem of designing good LDPC codes for the Gaussian

multiple access channel (MAC). The framework we choose is to design multiuser LDPC codes

with joint Belief Propagation decoding on the joint graph of the 2-user case. Our main result

compared to existing work is to express analytically EXIT functions of the multiuser decoder

with two different approximations of the Density Evolution. This allows us to propose a very

simple linear programming optimization for the complicated problem of LDPC code design

with joint multiuser decoding. The stability condition for our case is derived and used in the

optimization constraints. The codes that we obtain for the 2-user case are quite good for

various rates, especially if we consider the very simple optimization procedure.

Introduction

In this paper we address the problem of designing good LDPC codes for the Gaussian multiple access

channel (MAC). The corner points of the capacity region have long been known to be achievable by

single user decoding. This idea was also used to achieve any point of the capacity region by means

of rate splitting [13]. Here we focus on the design of multiuser codes since the key idea for achieving

any point in the capacity region of the Gaussian MAC is random coding and optimal joint decoding

[1, 8]. A suboptimal but practical approach consists in using irregular Low-Density Parity-Check

codes (LDPC) decoded with Belief Propagation (BP) [9, 2, 5]. In this paper we aim at proposing

low complexity LDPC code design methods for the 2-user MAC where joint decoding is performed

with belief propagation decoder (BP).

Here as in [2], we tackle the difficult and important problem where all users have the same power

constraint and the same rate in order to show that the designed multiuser codes can get close to any
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point of the boundary in the capacity region of the Gaussian MAC. We propose two optimization

approaches based on two different approximations of Density Evolution (DE) in the 2-user MAC

factor graph: the first is the Gaussian Approximation (GA) of the messages, and the second is an

erasure channel (EC) approximation of the messages. These two approximations, together with

constraints specific to the multiuser case, lead to very simple LDPC optimization problems, solved

by linear programming. The paper is organized as follows: in section 1, we present the MAC

factor graph and the notations used for the LDPC optimization. In section 2, we describe our

approximations of the mutual information evolution through the central function node, that we call

state check node. A practical optimization algorithm is presented in section 3 and finally, we report

in section 4 the thresholds of the optimized codes computed with density evolution and we plot

some finite length performance curves.

1 2-user MAC factor graph and decoding algorithm

In a 2-user Gaussian MAC, we consider 2 independent users x[1] and x[2], being sent to a single

receiver. Each user is LDPC encoded by different irregular LDPC codes1 with codeword length N ,

and their respective received power will be denoted σ2
i . The codeword is BPSK modulated and the

synchronous discrete model of the transmission at time n is given by, ∀0 ≤ n ≤ N − 1

yn = σ1x
[1]
n + σ2x

[2]
n + wn =

[
σ1 σ2

]
.Zn + wn (1)

Throughout the paper, neither the flat fading nor the multipath fading effect is taken into account.

More precisely, we will consider the equal rate/equal power 2-user MAC channel, that is R1 = R2 =

R and σ2
1 = σ2

2 = 1. The equal receive power channel can be encountered in practice, for example,

if power allocation is performed at the transmitter side. In equation (1), Zn = [x[1]
n , x

[2]
n ]T is the

state vector of the multiuser channel, and wn is a zero mean additive white Gaussian noise with

variance σ2: its probability density function (p.d.f.) is denoted N(0, σ2).

In order to jointly decode the two users, we will consider the factor graph [7] of the whole

multiuser system, and run several iterations of BP [10]. The factor graph of the 2-user LDPC-MAC

is composed of the 2 LDPC graphs,2 which are connected through function nodes representing the

link between the state vector Zn and the coded symbols of each user x
[1]
n and x

[2]
n . We will call this

node the state check node. Figure 1 shows the state check node neighborhood and the messages on

the edges that are updated during a decoding iteration.

In the following, the nodes of each individual LDPC graph are referred to as variable nodes and

check nodes. Let m
[k]
ab denotes the message from node a to node b for user k, where (a, b) can either

1The LDPC codes could however belong to the same code ensemble.
2an LDPC graph denotes the Tanner graph [15] that represents an LDPC code.
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Figure 1: Factor graph of the 2-user synchronous MAC channel: zoom around the state check node

neighborhood

be v for variable node, c for check node or s for state check node.

From now on and as indicated on Figure 1, we will drop the time index n in the equations.

All messages in the graph are given in log-density ratio form log
(

p(.|x[i]=+1)
p(.|x[i]=−1)

)
, except for the

probability message P coming from the channel observation y. P is a vector composed of four

probability messages given by:

P =




P00

P01

P10

P11




=




p(y|Z = [+1 + 1]T )

p(y|Z = [+1 − 1]T )

p(y|Z = [−1 + 1]T )

p(y|Z = [−1 − 1]T )




(2)

Since for the equal power case p(y|Z = [−1 + 1]T ) = P10 = P01 = p(y|Z = [+1 − 1]T ), the

likelihood message P is completely defined by only three values.

At initialization, the log-likelihoods are computed from the channel observations y. The message

update rules for all messages in the graph (m[i]
cv,m

[i]
vc,m

[i]
vs) follow from usual LDPC BP decoding

[7, 11]. We still need to give the update rule through the state check node to complete the decoding

algorithm description. The message m
[i]
sv at the output of the state check node is computed from

m
[j]
sv for (i, j) ∈ {(1, 2), (2, 1)} and P:





m
[1]
sv = log P00em

[2]
vs +P01

P10em
[2]
vs +P11

m
[2]
sv = log P00em

[1]
vs +P10

P01em
[1]
vs +P11

(3)

The channel noise is Gaussian N(0, σ2), and (3) can be rewritten for the equal power case as

m[i]
sv = log

e
2y−2

σ2 em[j]
vs + 1

em
[j]
vs + e

−2y−2
σ2

(4)

where the distribution of y is a mixture of Gaussian distributions y ∼ 1
4N(2, σ2) + 1

2N(0, σ2) +
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1
4N(−2, σ2) since the channel conditionnal distributions are:





y|(+1,+1) ∼ N(2, σ2)

y|(+1,−1) ∼ N(0, σ2)

y|(−1,+1) ∼ N(0, σ2)

y|(−1,−1) ∼ N(−2, σ2)

(5)

Now that we have stated all the message update rules within the whole graph, we need to

indicate in which order the message computation are performed. We shall consider in this work two

differents schedulings:

• serial scheduling. A decoding iteration for a given user (or “round” [11]) consists in activating

all the variable nodes, and thus sending information to the check nodes, activating all the

check nodes and all the variable nodes again that now send information to the state check

nodes, and finally activating all the state check nodes that send information to the next user.

Once this iteration for one user is completed, a new iteration can be performed for the second

user. In a serial scheduling, a decoding round for user two is not performed until a decoding

round for user one is completed.

• parallel scheduling. In a parallel scheduling, the decoding rounds (for the two users) are

activated simultaneously (in parallel).

2 Mutual information evolution through the state check node

The DE is a general tool that aims to predict the asymptotical and average behavior of LDPC

codes or more general graphs decoded with BP. However, DE is computationally intensive and in

order to reduce the computational burden of LDPC codes optimization, faster techniques have been

proposed, based on the approximations of DE by a one-dimensional dynamical system (see [16, 14]

and reference therein). This is equivalent to considering that the true density of the messages is

mapped onto a single parameter, and tracking the evolution of this parameter along the decoding

iterations.

It is also known that an accurate single parameter is the mutual information between the vari-

ables associated with the variable nodes and their messages [16, 14]. The mutual information

evolution describes each computation node in BP-decoding by a mutual information transfer func-

tion, which is usually referred to as the EXtrinsic mutual Information Transfer (EXIT) function.

For parity-check codes with binary variables only (as for LDPCs or Irregular Repeat Accumu-

late codes), the EXIT charts can be expressed analytically [14], leading to very fast and powerful

optimization algorithms.
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In this section, we will express analytically the EXIT chart of the state check node update,

based on two different approximations. First, we will express a symmetry property for the state

check node, then we will present a Gaussian Approximation (GA) of the messages densities, and

finally we will consider that the messages are the output of an erasure channel (EC).

Similarly to the definition of the messages (see Section 1), we will denote xab the mutual infor-

mation from node a to node b, where (a, b) can either be v for variable node, c for check node or s

for state check node.

2.1 Symmetry property

First of all, let us present one of the main differences between the single-user case and the 2-user

case. For the single user, memoryless, binary-input and symmetric-output channel, the transmission

of the all-one BPSK sequence is assumed in the DE. The generalization of this property for non-

symmetric channels is not trivial and some authors have recently addressed this question [3, 18].

In the 2-user case, the channel seen by each user is not symmetric since it depends on the other

users decoding. However, the asymmetry of the 2-user MAC channel is very specific and much

simpler to deal with than the general case. We proceed as explained below.

Let us denote ΨS(y,m) the state check node map of the BP decoder, that is the equation that

takes an input message m from one user and the observation y and computes the output message

that is sent to the second user. The symmetry condition of a state check node map is defined as:

Definition 1. State check node symmetry condition: the state check node update rule is

said to be symmetric if sign inversion invariance holds i.e.

ΨS(−y,−m) = −ΨS(y, m).

Note that the update rule defined in (4) is symmetric.

In order to state a symmetry property for the state check node, we further need to define some

symmetry conditions for the channel and the messages passed by in the BP decoder.

Definition 2. Symmetry conditions for the channel observation. A 2-user MAC is output-

symmetric if its observation y verifies

p(yt|x[k]
t , x

[j]
t ) = p(−yt| − x

[k]
t ,−x

[j]
t )

where yt is the observation at time index t and x
[k]
t is the tth element of the codeword sent by user

k. Note that this condition holds for the 2-user Gaussian MAC.

Definition 3. Symmetry conditions for messages. A message is symmetric if

p(mt|xt) = p(−mt| − xt)

where mt is a message at time index t and xt is the variable that is estimated by message mt.
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Proposition 1. Consider a state check node. Let us assume a symmetric channel observation,

the entire average behavior of the state check node can be predicted from its behavior assuming

transmission of the all-one BPSK sequence for the output user and a sequence with half symbols

fixed at ’1’ and half symbols at ’-1’ for the input user.

Proof. See Appendix B. ¤

2.2 Gaussian approximation of the state check messages (GA)

The first approximation of the DE through the state check node considered in this work assumes

that the input message mvs is Gaussian with density N(µvs, 2µvs), and that the output message

msv is a mixture of two Gaussian densities with means µsv|(+1,+1) and µsv|(+1,−1), and variances

equal to twice the means. The state check node update rule is symmetric and thus we omit the

user index in the notations.

Hence by noticing that msv in (4) can be rewritten as the sum of three functions of Gaussian

distributed random variables:

msv = −mvs + log
(
1 + emvs+ 2y−2

σ2

)
− log

(
1 + e−mvs− 2y+2

σ2

)
(6)

we get the output means: 



µsv|(+1,+1) = F+1,+1

(
µvs, σ

2
)

µsv|(+1,−1) = F+1,−1

(
µvs, σ

2
)

where 



F+1,+1

(
µ, σ2

)
=

1√
π

∫ +∞

−∞
e−z2

log


1 + e

−2
√

µ+ 2
σ2 z+µ+ 2

σ2

1 + e
−2

√
µ+ 2

σ2 z−µ− 6
σ2


 dz − µ

F+1,−1

(
µ, σ2

)
=

1√
π

∫ +∞

−∞
e−z2

log


1 + e

−2
√

µ+ 2
σ2 z−µ− 2

σ2

1 + e
−2

√
µ+ 2

σ2 z+µ− 2
σ2


 dz + µ

(7)

The detailed computation of these functions is reported in Appendix A. Note that these ex-

pressions need to be accurately implemented with functionnal approximations in order to be used

efficiently in an optimization procedure.

As mentioned earlier, it is desirable to follow the evolution of the mutual information as single

paramater, so we make use of the usual function that relates the mean and the mutual information:

for a message m with conditional pdf m|x = 1 ∼ N(µ, 2µ), and m|x = −1 ∼ N(−µ, 2µ) the mutual

information is I(x; m) = J(µ) where

J(µ) = 1− 1√
π

∫ +∞

−∞
e−z2

log2

(
1 + e−2

√
µz−µ

)
dz (8)

Note that J(µ) is the capacity of a binary-antipodal input additive white Gaussian channel (BI-

AWGNC) with variance 2/µ.
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Now that we have expressed the evolution of the mean of the messages when they are assumed

Gaussian, we make use of the function J(µ) (8) in order to give the evolution of the mutual

information through the state check node under Gaussian approximation. This corresponds exactely

to the EXIT chart [16] of the state check node update:




xsv|(+1,+1) = J
(
F+1,+1

(
J−1(xvs), σ2

))

xsv|(+1,−1) = J
(
F+1,−1

(
J−1(xvs), σ2

))

It follows

xsv =
1
2
xsv|(+1,+1) +

1
2
xsv|(+1,−1) =

1
2
J

(
F+1,+1

(
J−1(xvs), σ2

))
+

1
2
J

(
F+1,−1

(
J−1(xvs), σ2

))
(9)

2.3 Erasure channel approximation of the state check messages (EC)

This approximation assumes that the distribution of the messages at the state check node input

(mvs see figure 1) is the output of a binary erasure channel (BEC). Thus when the symbol +1 is

sent, the LLR distribution consists of two mass points, one at zero and the other at +∞. Let us

denote δx, a mass point at x. It follows that the LLR distribution when the symbol +1 is sent is:

E+(ε) ∆= εδ0 + (1− ε)δ∞

Similarly, when−1 is sent, the LLR distribution is E−(ε) ∆= εδ0+(1−ε)δ−∞. The mutual information

associated with these distributions is the capacity of a BEC:

x̃ = 1− ε. (10)

The distribution of channel observation y is not consistent with the approximation presented

here since y is the output of a ternary input additive white Gaussian channel (TIAWGNC) with

input distribution 1
4δ−2+ 1

2δ0+ 1
4δ2 (because of the symmetry property, see Section 2.1) and variance

σ2. The capacity of such a channel is:

CTIAWGNC(µ) ∆=
3
2

− 1
2
√

π

∫ +∞

−∞
e−z2

log2

(
1 +

1
2
e2
√

µz−µ +
1
2
e−2

√
µz−µ

)
dz

− 1√
π

∫ +∞

−∞
e−z2

log2

(
1 + e−2

√
µz−µ

)
dz,

(11)

with µ = 2/σ2.

In order to use coherent hypothesis in the erasure approximation of the state check node, the

real channel is mapped onto an erasure channel with same capacity. The ternary erasure channel

(TEC) used for the approximation has input distribution 1
4δ−2 + 1

2δ0 + 1
4δ2 and erasure probability

p. The capacity of such a TEC is:

CTEC =
3
2
(1− p) (12)
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Therefore the true channel with capacity CTIAWGNC will be approximated by a TEC with erasure

probability p = 1− 2
3CTIAWGNC .

Because of the symmetry property (see Section 2.1), we consider only two cases:

• Under the (+1, +1)-hypothesis and by definition of the erasure channel, the observation y

is either an erasure with probability (w.p.) p or y = 2 w.p. (1 − p). The input message

corresponds to the symbol +1 and its distribution is E+(ε). The output message corresponds

to the symbol +1 and by applying (3), we obtain the output distribution msv|(+1,+1) ∼ E+(p).

• Under the (+1,−1)-hypothesis, the observation of the erasure channel y is either an erasure

w.p. p or y = 0 w.p. (1 − p). The input message corresponds to the symbol −1 and its

distribution is E−(ε). The output message corresponds to the symbol +1 and by applying

(3), we obtain the output distribution msv|(+1,−1) ∼ E+

(
1− (1− p)(1− ε)

)
.

By applying (10), (12) and the assumption CTIAWGNC = CTEC , the mutual information transfer

function through the state check node is thus




xsv|(+1,+1) =
2
3

CTIAWGNC

xsv|(+1,−1) =
2
3

xvs CTIAWGNC

it follows

xsv =
1
2
xsv|(+1,+1) +

1
2
xsv|(+1,−1) =

1
3

(1 + xvs) CTIAWGNC (13)

In Figure 2, we compare the two approximations for the state node EXIT function with equations

(9) and (13), for three different signal to noise ratios. The solid lines show the GA approximation

whereas the broken lines show the EC approximation. We have also indicated with plus signs the

mutual information obtained with Monte Carlo simulations. Our numerical results show that, the

Gaussian a priori GA approximation is more attractive since the mutual information computed un-

der this assumption have the smallest gap to the exact mutual information (Monte Carlo simulation

without any approximation).

3 LDPC code optimization

Using the EXIT charts for the LDPC codes ([4, 14]) and for the state check node under the two

considered approximations (9), (13), we are now able to give the evolution of the mutual information

x along a whole 2-user decoding iteration. The irregularity of the LDPC code is defined as usual by

the degree sequences ({λi}dv
i=2, {ρj}dc

j=2), that represent the fraction of edges connected to variable

nodes (resp., check nodes) of degree i (resp., j). As in the single user case, we wish to have an
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Figure 2: Mutual information evolution at the state check node. Comparison of the approximation

methods with the exact mutual information at the state check node. The solid lines represent

the GA approximation, the broken lines the EC approximation, and plus signs show Monte Carlo

simulations.

optimization algorithm that could be solved quickly and efficiently using linear programming. In

order to do so, we must make different assumptions that are mandatory to ensure that the evolution

of the mutual information is linear in the parameters {λi}:

{H0} : hypothesis equal LDPC codes. Under this hypothesis, we assume that the 2 LDPC codes

belong to the same ensemble ({λi}dv
i=2, {ρj}dc

j=2).

{H1} : hypothesis without interleaver. Under this hypothesis, each and every state check node is

connected to two variable nodes (one in each LDPC code) having exactly the same degree.

Proposition 2. Under hypotheses H0 and H1, the evolution of the mutual information xvc at the

l− th iteration under the parallel scheduling described in section 1 is linear in the parameters {λi}.
Proof. See Appendix C. ¤

From Proposition 2, we can now write the evolution of the mutual information for the entire

graph. More precisely, by using (8), (9), and (13), we finally obtain equations (14) for the Gaussian
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approximation and (15) for the erasure channel approximation:

x(l)
vc =

dv∑

i=2

λiJ

{
J−1

[
1
2
J

(
F+1,+1

{
iJ−1

[
ρ

(
x(l−1)

vc

)]
, σ2

})

+
1
2
J

(
F+1,+1

{
iJ−1

[
ρ

(
x(l−1)

vc

)]
, σ2

})]
+ (i− 1)J−1

[
ρ

(
x(l−1)

vc

)]}

∆= FGA

(
{λi}, x(l−1)

vc , σ2
)

(14)

x(l)
vc =

dv∑

i=2

λiJ

{
J−1

[
CTIAWGNC

3

(
1 + J

{
iJ−1

[
ρ

(
x(l−1)

vc

)]})]
+ (i− 1)J−1

[
ρ

(
x(l−1)

vc

)]}

∆= FEC

(
{λi}, x(l−1)

vc , σ2
)

(15)

with

ρ
(
x(l−1)

vc

)
= 1−

dc∑

j=2

ρjJ
(
(j − 1) J−1(1− x(l−1)

vc )
)

It is interesting to note that, in the equations (14) and (15), the evolution of the mutual information

is indeed linear in the parameters {λi}, when {ρj} are fixed.

As often presented in the literature, we will only optimize the data node parameters {λi}, for

a fixed (carefully chosen) check node degree distribution {ρj}. The optimization criterion is to

maximize R subject to a vanishing Bit Error Rate. The optimization problem can be written,

for a given σ2 and a given ρ(x) as:

maximize
dv∑

i=2

λi/i subject to (16)

(C1)
dv∑

i=2

λi = 1 [mixing constraint]

(C2) λi ∈ [0, 1] [proportion constraint]

(C3) λ2 < exp
(

1
2σ2

)
/

dc∑

j=2

(j − 1)ρj [stability constraint]

(C4) F ({λi}, x, σ2) > x, ∀x ∈ [0, 1[ [convergence constraint]

where (C3) is the condition for the fixed point to be stable (see proposition 3. below) and where

(C4) corresponds to the convergence to the stable fixed-point x = 1, which corresponds to zero error

rate constraint.

Solution to the optimization problem: For a given σ2 and a given ρ(x), the cost function

and the constraints (C1), (C2) and (C3) are linear in the parameters {λi}. The function used in

constraint (C4) is either (14) or (15) which are both linear in the parameters {λi}. The optimization

problem can then be solved for a given ρ(x) by linear programming. We would like to emphasize

the fact that the hypotheses H0 and H1 are necessary to have a linear problem, which is the key

feature of quick and efficient LDPC optimization.

10



These remarks allow us to propose an algorithm that solves the optimization problem (16) in

the class of functions ρ(x) of the type ρ(x) = xn, ∀n > 0.

• First, we fix a target SNR (or equivalently σ2).

• Then, for each n > 0, ρ(x) = xn and we perform a linear programming in order to find a set

of parameters {λi} that maximizes the rate under the constraints (C1) to (C4) (16). In order

to integrate the (C4) constraint in the algorithm, we quantize x. For each quantized value of

x, the equation in (C4) leads to an additional constraint. Hence, for each n, we get a rate.

• Finally, we choose n, that maximizes the rate (over all n).

In practice, the search over all possible n is performed up to a maximal value. This is to insure

that the graph remains sparse.

Stability of the solution. Finally, the stability condition of the fixed point for the 2-user MAC

channel is given in the following proposition.

Proposition 3. The local stability condition of the DE for the 2-user Gaussian MAC is the same

as that of the single user case:

λ2 < exp
(

1
2σ2

)
/

dc∑

j=2

(j − 1)ρj

The proof is given in Appendix D.

4 Results

In this section we present results for codes designed according to the two methods presented in

section 2, for rates from 0.3 to 0.6, and we compare the methods on the basis of the true thresholds

obtained by DE and finite length simulations.

Table 1 shows the performance of LDPC codes optimized with the Gaussian approximation. Table

2 shows the performance of LDPC codes designed according to the Erasure channel approximation.

In both tables are indicated the code rate, the check nodes degrees ρ(x) =
∑dc

j=2 ρj−1
j , the optimized

parameters {λi}dv
i=2 and the gap to the 2-user Gaussian MAC Shannon limit.

We can see that the LDPC codes optimized for the 2-user MAC channel are indeed very good

and have decoding thresholds very close to the capacity. Our numerical results show that, the

Gaussian a priori approximation is more attractive since the codes designed under this assumption

have the smallest gap to Shannon limit.

An interesting result is that the codes obtained for R = 0.3 and R = 0.6 are worse that the

ones obtained for R = 0.5. Our opinion is that it does not come from the same reason. For small

rates (R = 0.3), the multiuser problem is easy to solve because the system load (sum-rate) is lower
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GA

Rate 0.3 0.4 0.5 0.6

ρ(x) x7 x8 x9 x10

λ(x) λi i λi i λi i λi i

2.749809e− 01 2 2.786702e− 01 2 3.170178e− 01 2 4.393437e− 01 2

2.040936e− 01 3 2.306721e− 01 3 2.312804e− 01 3 1.305465e− 01 3

5.708851e− 03 4 5.059420e− 02 9 4.241393e− 02 17 2.508237e− 02 20

1.817382e− 02 5 4.229097e− 04 10 1.714436e− 01 18 2.462773e− 01 21

1.891399e− 02 6 1.608676e− 01 12 2.378443e− 01 100 1.587501e− 01 100

2.682255e− 02 7 2.787730e− 01 100

7.317063e− 02 8

1.130643e− 01 13

2.650713e− 01 100

δ − Sl 0.22 0.15 0.19 0.52

Table 1: Optimized LDPC codes for the 2-user Gaussian channel obtained with the Gaussian

Approximation of the state check node. The distance between the (Eb/N0) threshold δ (evaluated

with true DE) and the Shannon limit Sl is given in dBs.

than 1, but the approximations of DE become less and less accurate as the rate decreases. R = 0.3

gives worse codes than R = 0.5 because of the LDPC part of the multiuser graph. For larger rates

(R = 0.6), the DE approximations are fairly accurate, but the multiuser problem we address is

more difficult, as the system load is larger than 1 (equal to 1.2). R = 0.6 gives worse codes than

R = 0.5 because of the multiuser part of the graph (state check node).

In order to verify the asymptotical results obtained with DE, we have made extensive simulations

for a finite length equal to N = 50000. The codes have been build with an efficient parity check

matrix construction. Since the progressive edge growth algorithm [6] tends to be inefficient at

very large code lengths, we used the ACE algorithm proposed in [17] which helps to prevent the

apparition of small cycles with degree two bitnodes. The ACE algorithm generally lowers greatly

the error floor of very irregular LDPC codes (like the ones in tables 1 and 2).

Figure 3 shows the simulation results for three rates R ∈ {0.3, 0.5, 0.6} and for the two different

approximations of the state check node EXIT function presented in this paper: GA and EC. The

curves are in accordance with the threshold computations, except the fact that codes optimized

with the EC approximation tend to be better than the GA codes for the rate R = 0.3. We confirm

also the behavior previously discussed in that the codes with R = 0.5 are closer to the Shannon

12



EC

Rate 0.3 0.4 0.5 0.6

ρ(x) x7 x8 x9 x10

λ(x) λi i λi i λi i λi i

2.762791e− 01 2 2.792405e− 01 2 3.165084e− 01 2 4.388191e− 01 2

2.321906e− 01 3 2.456371e− 01 3 2.339989e− 01 3 1.303074e− 01 3

7.870900e− 02 9 1.020663e− 01 13 4.285469e− 02 18 1.649224e− 01 20

1.077795e− 01 10 8.130383e− 02 14 1.713483e− 01 19 1.093493e− 01 21

3.050418e− 01 100 2.917522e− 01 100 2.352897e− 01 100 1.566018e− 01 100

δ − Sl 0.38 0.26 0.21 0.59

Table 2: Optimized LDPC codes for the 2-user Gaussian channel obtained with the Erasure Channel

Approximation of the state check node. The distance between the (Eb/N0) threshold δ (evaluated

with true DE) and the Shannon limit Sl is given in dBs.

Limit than the codes with R = 0.3 and R = 0.6.

Conclusion

This paper has tackled the optimization of LDPC codes for the 2-user Gaussian MAC and has

shown that it is possible to design good irregular LDPC codes with very simple techniques, the

optimization problem being solved by linear programming. We have proposed 2 different analytical

approximations of the state check node update, one based on a Gaussian approximation and one

very simple based on an Erasure Channel approach. The codes obtained have decoding thresh-

olds as close as 0.15dB away from the Shannon limit, and can be used as initial codes for more

complex optimization techniques based on true Density Evolution. Future work will deal with the

generalization of our approach to more than two users and/or users with different powers.

13



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
it 

er
ro

r 
ra

te

EC approximation
GA approximation

S
l
(0.3) S

l
(0.5) 

S
l
(0.6) 

R=0.3 R=0.5 R=0.6 

Figure 3: Simulation results for the optimized LDPC codes given in table 1 and 2. The codeword

length is N = 50000. The maximum number of iterations is set to 200. For comparison, we have

indicated the Shannon limit for the three considered rates.

APPENDIX

A Computation of functions F+1,+1 and F+1,−1

We proceed to compute the state check node update rule for the mean of the messages.

Let us first consider hypothesis Z = [+1,+1]T . Under the Gaussian assumption, the conditional

input distributions are: 



y|(+1,+1) ∼ N(2, σ2)

mvs|(+1,+1) ∼ N(µvs, 2µvs)

Therefore 



mvs + 2y−2
σ2 |(+1,+1) ∼ N

(
µvs + 2

σ2 , 2µvs + 4
σ2

)

mvs + 2y+2
σ2 |(+1,+1) ∼ N

(
µvs + 6

σ2 , 2µvs + 4
σ2

)

Since for a Gaussian random variable x ∼ N(µ+a, 2µ+ b), where a and b are real valued constants,

E
[
log

(
1 + e±x

)]
=

1√
π

∫ +∞

−∞
e−z2

log
(
1 + e±(

√
4µ+2bz+µ+a)

)
dz
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and by using (6), we get

E
[
msv|Z = [+1,+1]T

]
= −µvs+

1√
π

∫ +∞

−∞
e−z2

log


1 + e

+2
√

µvs+ 2
σ2 z+µvs+ 2

σ2

1 + e
−2

√
µvs+ 2

σ2 z−µvs− 6
σ2


 dz = F+1,+1

(
µvs, σ

2
)

Similarly we get F+1,−1

(
µvs, σ

2
)
.

B Proof of Proposition 1

To prove Proposition 1, we first need to show the following lemmas.

Lemma 1. Consider a state check node. Let us assume a symmetric input message and a symmetric

channel observation. The output message is symmetric.

Proof of Lemma 1. We consider a state check node that verifies the symmetry condition (see

Definition 1). Without loss of generality we can assume k to be the output user and j the input

user.

Let y (z resp.) denote the observation vector when the codewords x[k], x[j] (−x[k],−x[j] resp.)

are sent. Now note that a symmetric-output 2-user MAC can be modeled as (see Lemma 1 in [11]))

y = −z

since p(yt|x[k]
t , x

[j]
t ) = p(−yt| −x

[k]
t ,−x

[j]
t ) and since we are interested in the performance of the BP

algorithm i.e. the densities of the messages.

Similarly we denote m
[j]
t ,m

[k]
t (r[j]

t , r
[k]
t resp.) the input and output messages of the state check

node at position t when the codewords x[k], x[j] (−x[k],−x[j] resp.) are sent.

Let us assume a symmetric input message i.e. p(m[j]
t |x[j]

t ) = p(−m
[j]
t |−x

[j]
t ). Here again we can

model this input message as

m
[j]
t (y) = −r

[j]
t .

The state check node update rule is denoted ΨS(yt,m
[j]
t ).

The output message verifies

m
[k]
t = ΨS(yt,m

[j]
t )

= ΨS(−zt,−r
[j]
t )

= −ΨS(zt, r
[j]
t )

= −r
[k]
t (z)

where the second equation is due to the symmetry conditions of the channel and the input message

and the third equation follows from the symmetry condition of the state check node map.
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This can be rewritten as

p(m[k]
t |x[k]

t , x
[j]
t ) = p(−m

[k]
t | − x

[k]
t ,−x

[j]
t ) (17)

and therefore

p(m[k]
t |x[k]

t ) = p(−m
[k]
t | − x

[j]
t ) (18)

by marginalizing the probability with respect to x
[j]
t and by using (17).

Equation (18) implies that with symmetric observation and symmetric input message, the mes-

sage at the state check node output is also symmetric. The symmetry is conserved through the

state check node which completes the proof of Lemma 1. ¤
Lemma 2. Consider a state check node. Let us assume a symmetric channel observation. At any

iteration, the input and output messages of the state check node are symmetrics.

Proof of Lemma 2. Lemma 1 shows that the state check node conserves the symmetry condition,

Lemma 1 in [11] shows the conservation of the symmetry condition of the messages through the

variable and check node. At initialization, the channel observation is symmetric therefore a proof

by induction shows the conservation of the symmetry property at any iteration with a BP decoder.

¤
Proof of Proposition 1. A consequence of Lemma 1, is that the number of cases that need to

be considered to determine the entire average behavior of the state check node can be divided by

a factor 2. We can assume that the all-one sequence is sent for the output user. However all the

sequences of the input user need to be considered and therefore on the average we can assume an

input sequence with half symbols fixed at ’1’ and half symbols at ’-1’. ¤

C Proof of Proposition 2

Lemma 3. Under the parallel scheduling assumption described in section 1 and by using hypothesis

H0 (see section 3), the entire behavior of the BP decoder can be predicted with one decoding

iteration (i.e. half of a round).

Proof of Lemma 3. Under the parallel scheduling assumption described in section 1, two decoding

iterations (one for each user) are completed simultaneously. Hence by using hypothesis H0 (same

code family for both users), the two decoding iterations are equivalent in the sense that they provide

messages with the same distribution. This can be easily shown by induction. It follows that a whole

round is entirely determined by only one decoding iteration (i.e. half of a round). ¤
Therefore in the following we omit the user index.

Proof of Proposition 2. We now proceed to compute the evolution of the mutual information

through all nodes of the graph. By assuming that the distributions at any iteration are Gaussian,
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we obtain similarly to method 1 in [14] the mutual information evolutions as




x
(l)
vc =

dv∑

i=2

λiJ
(
J−1

(
x(l−1)

sv

)
+ (i− 1)J−1

(
x(l−1)

cv

))

x
(l)
cv = 1−

dc∑

j=2

ρjJ
(
(j − 1)J−1

(
1− x(l−1)

vc

))

x
(l)
vs =

dv∑

i=2

λ̃iJ
(
iJ−1

(
x(l)

cv

))

x
(l)
sv = f

(
x

(l)
vs , σ2

)

(19)

where λ̃i denotes the fraction of variable nodes of degree i (λ̃i = (λi/i)/(
∑

j λj/j)) and where

f(xsv, σ2) =
1
2
xsv|(+1,+1) +

1
2
xsv|(+1,−1)

with xsv defined either in (9) or (13), depending on the approach used.

First notice that this system is not linear in the parameters {λi}. But by using hypothesis H1,

the input message msv of a variable node of degree i results from a variable node with the same

degree. It follows that the third equation in (19) reduces to

x(l)
vs = J

(
iJ−1

(
x(l)

cv

))

Finally the global recursion in the form (14-15) is obtained by combining all four equations and

the global recursion is linear in the paremeters {λi}. ¤

D Proof of Proposition 3

Similarly to the definition of the message (see Section 1) and of the mutual information (see Sec-

tion 2), we will denote P
(l)
ab the distribution of the messages from node a to node b in iteration l,

where (a, b) can either be v for variable node, c for check node or s for state check node.

We follow in the footsteps of [12] and analyze the local stability of the zero error rate fixed point

by using a small perturbation approach. Let us denote ∆0 the dirac at 0 i.e. the distribution with

0.5-BER and ∆+∞ the distribution with zero-BER when the symbol ’+1’ is sent.

From Lemma 3 (see Appendix C) we know that only half of a complete round needs to be

performed in order to get the entire behavior of the BP decoder. All distributions of the DE are

conditional densities of the messages given that the symbol sent is +1. From the symmetry property

of the variable and check nodes, the transformation of the distributions can be performed under

the assumption that the all-one sequence is sent. However for the state check node, different cases

will be considered as detailed below.
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We consider the DE recursion with state variable of the dynamical system Pvc. In order to

study the local stability of the fixed-point ∆∞, we initialize the DE recursion at the point:

P (0)
vc = (1− 2ε)∆∞ + 2ε∆0

for some small ε > 0, and we apply one iteration of the DE recursion. Following [12] (and also in

[14]), the distribution P
(0)
cv can be computed which leads to P

(0)
vs as

P (0)
vs = ∆∞ + O(ε2). (20)

For the sake of brevity, we omit the now well known step-by-step derivation and focus on the

transformation at the state check node. Note that (20) holds with and without the hypothesis H1

(without interleaver) since it follows from the fact that a i-fold convolution of the distribution P
(0)
cv

is performed with i ≥ 2 in both cases.

From the symmetry property (Proposition 1) of the state check node, the entire behavior at

a state check node can be predicted under the two hypotheses called (+1,+1) and (+1,−1) i.e.

when the output symbol is +1 and when the input symbol is either +1 or −1 with probability 1/2

each. In the following, we seek for the output distribution P
(0)
sv , for a given input distribution P

(0)
vs

(conditional distribution given that the input symbol is +1) and a given channel distribution.

Hypothesis (+1,+1) w.p. 1
2 . From (20) and (5) we get





m
(0)
vs ∼ P

(0)
vs = ∆∞ + O(ε2)

y ∼ N(2, σ2)

Hence, by applying (4) we have

m(0)
sv =

2 + 2y

σ2
∼ N

(
2
σ2

,
4
σ2

)
(21)

Hypothesis (+1,−1) w.p. 1
2 . From (20) and from the symmetry property of the input message

at the state check node, we have

m(0)
vs ∼ P (0)

vs (−z) = ∆−∞ + O(ε2)

and from (5) we get 



m
(0)
vs ∼ ∆−∞ + O(ε2)

y ∼ N(0, σ2)

Hence, by applying (4) we have

m(0)
sv =

−2y − 2
σ2

∼ N

(
2
σ2

,
4
σ2

)
(22)
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Combining (21) and (22), we obtain

P (0)
sv = N

(
2
σ2

,
4
σ2

)
.

It follows that at convergence, the channel seen by one user is P
(0)
sv which is exactly the LLR

distribution of a BIAWGNC with noise variance σ2. It follows that at convergence the DE recursion

is equivalent to the single user case and the stability condition is therefore [12]

λ2 < exp
(

1
2σ2

)
/

dc∑

j=2

(j − 1)ρj

¤
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