

Materials Science and Engineering B 123 (2005) 20-30

www.elsevier.com/locate/mseb

Characterization and process effects of HfO₂ thin films grown by metal-organic molecular beam epitaxy

Myoung-Seok Kim^a, Young-Don Ko^a, Minseong Yun^a, Jang-Hyuk Hong^b, Min-Chang Jeong^b, Jae-Min Myoung^b, Ilgu Yun^{a,*}

^a Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Republic of Korea ^b Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Republic of Korea

Received 2 October 2004; received in revised form 13 December 2004; accepted 14 June 2005

Abstract

HfO₂ dielectric layers were grown on the p-type Si(100) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetrabutoxide [Hf(O·t-C₄H₉)₄] was used as a Hf precursor and argon gas was used as a carrier gas. The microstructure and thickness of HfO₂ films were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The electrical characteristics of the HfO₂ layers were evaluated by high frequency (HF) capacitance–voltage (*C*–*V*) and current–voltage (*I*–*V*) measurements. The surface morphology, crystal structure, and chemical binding states of HfO₂ films were also examined by atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements. HF *C*–*V* and *I*–*V* measurements have shown that HfO₂ layer grown by MOMBE has higher dielectric constant (*k*) of 20–22 and lower leakage current density of ~10⁻⁸ A/cm² compared with the conventional SiO₂. In addition, it has been shown that the HfO₂ layer has fixed oxide charge of about 8 × 10¹¹ cm⁻² and interfacial state density of about 1 × 10¹² eV⁻¹ cm⁻². The electrical characteristics and surface morphology of HfO₂ films are affected by O₂/Ar gas flow ratio. Finally, post-metallization annealing (PMA) was carried out to reduce the interface state density. © 2005 Elsevier B.V. All rights reserved.

Keywords: HfO2; Gate dielectric; Thin film; Electrical property; MOMBE

1. Introduction

The demands of scaling down for complementary metal–oxide–semiconductor (CMOS) technology require the reduction of gate dielectric thickness. With the reduction of gate dielectric thickness to a few nanometers, higher dielectric constant material than the conventional SiO₂ is needed to overcome the problem of an exponential increase in the leakage current level due to direct tunneling. The new insulator should meet the requirements such as high breakdown, low leakage current at operating voltage, low oxide traps, and high thermal stability on silicon. Many researches for high-*k* dielectric constant materials such as ZrO_2 , Ta_2O_5 , Al_2O_3 , HfO_2 , TiO_2 , silicates ($ZrSi_xO_y$ and $HfSi_xO_y$), and ferroelectric materials [Pb(Zr, Ti)O₃ and (Ba,Sr)TiO₃] [1–5] have been

performed. Among these candidates, HfO2 is one of the most highlighted high-k gate insulators to replace the SiO_2 because of its high dielectric constant (25-30), wide band-gap energy (5.68 eV), high breakdown field (15-20 MV/cm), and good thermal stability on Si substrate. The growth method of high-k materials is also an important factor to determine the property of gate dielectric layer. In our experiments, we searched appropriate experimental conditions and examined the characteristics of HfO2 films using metal-organic molecular beam epitaxy (MOMBE) system. MOMBE is one of the powerful techniques obtaining abrupt interface and controlled thickness of films, mainly due to source evaporation at a controlled rate under ultra high vacuum condition [6]. In this paper, the electrical characteristics of HfO₂ films grown by MOMBE are investigated. The effects of process variation (O2/Ar ratio and substrate temperature) and post-metallization annealing (PMA) on the properties of HfO₂ films are also analyzed. The electrical

^{*} Corresponding author. Tel.: +82 2 2123 4619; fax: +82 2 313 2879. *E-mail address:* iyun@yonsei.ac.kr (I. Yun).

 $^{0921\}text{-}5107/\$$ – see front matter 0 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.mseb.2005.06.012

characteristics of HfO₂ films are analyzed by high frequency (HF) capacitance–voltage (C–V) and current–voltage (I–V) measurements. The film characteristics and surface morphology are examined by using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements.

2. Experiment

HfO₂ thin film was grown on a p-type Si(100) substrate, of which the native oxide was chemically eliminated by (50:1) H₂O:HF solution prior to growth by MOMBE. Hafnium-tetra-butoxide $[Hf(O \cdot t - C_4H_9)_4]$ was chosen as the MO precursor because it has a appropriate vapor pressure and relatively low decomposition temperature. High-purity (99.999%) oxygen gas was used as the oxidant. Hf-t-butoxide was introduced into the main chamber using Ar as a carrier gas through a bubbling cylinder. The bubbler was maintained at a constant temperature to supply the constant vapor pressure of Hf-source. The apparatus of the system is schematically shown in Fig. 1. High-purity Ar carrier gas passed through the bubbler containing the Hf-source. The gas line from the bubbler to the nozzle was heated to the same temperature. The mixture of Ar and metal-organic gases heated at the tip of the nozzle flows into the main chamber. The intro-

Table 1	
Experimental cond-	itions

Experimental conditions	
Process variables	Range
Substrate temperature	300–550 °C
Bubbler temperature	130 °C (fixed)
Nozzle temperatrue	270 °C (fixed)
Base pressure	10^{-9} Torr
Working pressure	10^{-7} Torr
Gas flow (Ar)	2–6 sccm
Gas flow (O_2)	1–8 sccm
Growth time	30 min
Post-metallization annealing temperature	$250^{\circ}C$ (in O_2 ambient)

duced Hf-source decomposed into Hf and ligand parts when it reached a substrate maintained at high temperature and the Hf ion was combined with O₂ gas supplied from another nozzle. The base pressure and working pressure were $\sim 10^{-9}$ and $\sim 10^{-7}$ Torr, respectively. Annealing at 700 °C for 2 min in N₂ ambient was carried out following the growth of the films to diminish the density of the interfacial charged particles [7]. Detailed experimental conditions are listed in Table 1. After metal deposition was performed, the post-metallization annealing (PMA) at 250 °C was carried out in O2 ambient. In turn, I-V and HF (1 MHz) C-V measurements were executed to analyze the electrical characteristics of dielectric layers. To carry out the I-V characteristics, Keithley 236 source measure unit (SMU) was used. The C-V measurements were also performed with the Keithley 590 C-V analyzer at room temperature.

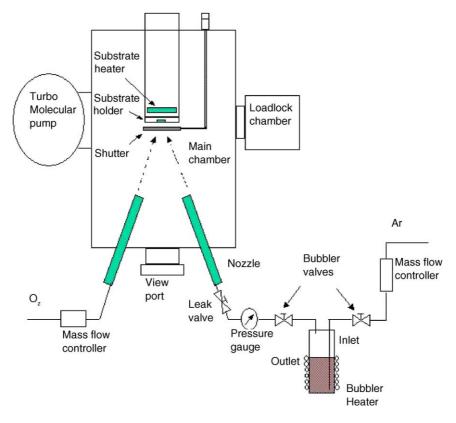


Fig. 1. Schematic illustration of MOMBE system.

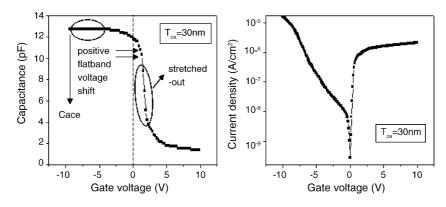


Fig. 2. High frequency C-V and I-V characteristics of HfO₂ film grown by MOMBE.

3. Results and discussion

The metal–oxide–semiconductor (MOS) capacitor structure Au/HfO₂/p-type Si was fabricated to measure its electrical characteristics. The high frequency (1 MHz) *C–V* curve and *I–V* curve of HfO₂ films grown by MOMBE are shown in Fig. 2. From measured capacitance and physical thickness, the dielectric constant and the equivalent oxide thickness can be obtained. Actually, total capacitance must be calculated as series connection of HfO₂ layer capacitance and SiO₂ layer capacitance because an unexpected SiO₂ layer between HfO₂ and p-Si substrate shown in Fig. 3 affects the total capacitance strongly [8]. The thickness of SiO₂ layers was measured by HRTEM and had a value of 10–20 Å with experimental conditions. It can be identified by TEM images that the formation of SiO₂ was affected by experimental conditions such as the growth time [9], Ar/O₂ gas ratio, and substrate temperature (not shown here). The formation of SiO₂ layer is attributed to the excess oxygen during the film growth and should be eliminated or minimized because of its low dielectric constant. In addition, HfO₂ samples grown at substrate temperature of 400 °C showed an amorphous nature in Fig. 3(a) and (c). However, when the substrate temperature was at 450 °C, a large portion of the HfO₂ film was crystallized and some of the grain boundaries were observed in Fig. 3(b). Ignoring the depletion region effect, the dielectric constant (k = 20–22) can be calculated. This relative low dielectric constant compared with the bulk HfO₂ dielectric constant (k = 25–30) may be

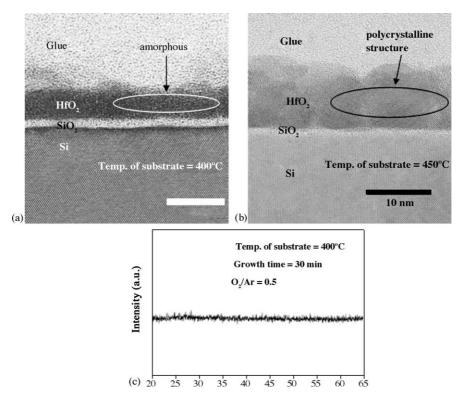


Fig. 3. HRTEM image of HfO₂ film grown by MOMBE (400 and 450 °C).

due to the polycrystalline nature of the grown HfO₂ films and Hf–silicate interfacial layer (not identified in HRTEM image but other research showed that HfO₂/SiO₂ interface are marginally unstable with respect to formation of silicates [10]) that has lower dielectric constant compared with the bulk HfO₂. Generally, the thickness resulted from *C–V* curve is slightly higher than that from TEM. This may be due to two major quantum effects: (i) additional band bending because of surface electrons (or holes) above the edge of conduction band and (ii) presence of charge centroid [7]. The leakage current density of HfO₂ film at positive gate bias (0–2 V) is approximately 10^{-9} A/cm² and at negative gate bias (0 to -2 V) is approximately 10^{-7} A/cm². Leakage current density of 10^{-9} and 10^{-7} A/cm² is a relatively low level compared with that of the conventional SiO₂.

Comparing with an ideal C-V curve of a general MOS structure, our curve extracted from experimental data showed positive directed "flat-band voltage shift" and "stretched-out" characteristics. It means that HfO₂ films grown by MOMBE have negative fixed oxide charges and interface traps [11]. The density of fixed oxide charges can be calculated from flat-band voltage shift measurements. The ideal flat-band capacitance of HfO₂ films can be calculated from the following formula [12]:

$$C_{\rm FB} = \frac{\varepsilon_{\rm f}}{d + (\varepsilon_{\rm f}/\varepsilon_{\rm s})L_{\rm D}}$$

where $\varepsilon_{\rm f}$ and $\varepsilon_{\rm s}$ are the permittivity of the film and substrate, respectively. In this formula, $L_{\rm D}$ is the extrinsic Debye length given by

$$L_{\rm D} = \left(\frac{kT\varepsilon_{\rm s}}{q^2N_{\rm a}}\right)^{1/2}$$

where N_a is the concentration of acceptors in the semiconductor and about 4×10^{15} cm⁻³. In our experiments, the extrinsic Debye length was about 40 nm. In our HfO₂ films grown by MOMBE, flat-band voltage shift (ΔV_{FB}) varied in the range of 0.7–3.1 V with experimental condition. Fig. 4 showed that the density of fixed oxide charges calculated by flat-band voltage shift (ΔV_{FB}) was about 8×10^{11} cm⁻², and not affected by the thickness of film [13]. The density of interface states, D_{it} , was estimated at flat-band voltage (flat-band condition)

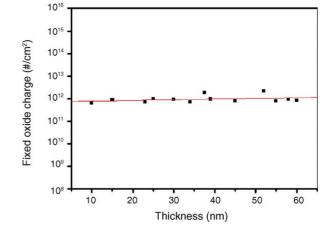


Fig. 4. Fixed oxide charges concentration vs. thickness of HfO_2 film in different experimental conditions.

using Lehovec's method for evaluation of built-in charges from C-V plots [14], which gives

$$D_{\rm it} = \left[\frac{(C_0 - C_{\rm FB})C_{\rm FB}}{3(\delta C/\delta V)_{\rm FB}qkTA}\right] - \left[\frac{C_0^2}{(C_0 - C_{\rm FB})Aq^2}\right]$$

where *A* is the area of the electrode, *k* the Boltzmann's constant, *T* the absolute temperature, *q* the electron charge, and $(\delta C/\delta V)_{\text{FB}}$ is the slope at flat-band voltage. The calculated density of interface states (*D*_{it}), attributed to the interfacial traps, was approximately $1 \times 10^{12} \text{ eV}^{-1} \text{ cm}^{-2}$.

The *C*–*V* characteristics of the films grown at different O_2/Ar ratios are shown in Fig. 5(a). Comparing with the each capacitance in accumulation region, the capacitance at unity O_2/Ar ratio (=1) is lower than other cases. It indicates that the growth rate, film thickness in same growth time, has maximum value when O_2/Ar is unity. In our previous work [15], the growth rate of ZrO₂ films had a maximum value when O_2/Ar ratio was about 1, and the explanation for this phenomenon and statistical modeling were shown. If we remind that HfO₂ and ZrO₂ are II–VI compounds which have similar chemical properties, same explanation may be available for HfO₂ films grown by MOMBE. It could be also identified that as O_2/Ar ratio increased, magnitude of flat-band voltage shift decreased. However, when the O_2/Ar ratio was beyond 1, the

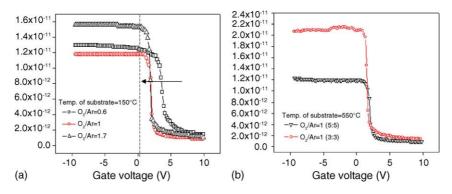


Fig. 5. HF C-V characteristics of HfO₂ films grown at different O₂/Ar gas flow ratios and at different gas volume.

flat-band voltage shift did not vary significantly. Smaller flatband voltage shift indicates a reduction in the density of fixed oxide charges. The density of fixed oxide charge depends on oxidation, annealing condition, and silicon orientation. In addition, it has been suggested that excess silicon (trivalent silicon) or the loss of an electron from excess oxygen centers (nonbridging oxygen) near the Si-oxide interface is the origin of fixed oxide charge [12]. Varying O₂/Ar ratio changed the oxidation condition of HfO2 and had an influence on the generation of fixed oxide charge in the HfO₂ film. Comparing with the slope of transition region in different O_2/Ar ratio cases, it was observed a steeper slope at higher O2/Ar ratio (=1.7) than at lower O₂/Ar ratio (=0.6). Steeper slope at the depletion region indicates a decline in the number of interfacial charged particles. So, it can be assumed that large O₂/Ar ratio (or sufficient O2 gas flow) reduces the density of fixed oxide charges and the number of interfacial charged particles in HfO₂ film grown by MOMBE. The C-V characteristics of HfO₂ films at same O₂/Ar ratio but different volume of gas flow is shown in Fig. 5(b). It was observed that flat-band voltage shift was affected significantly not the magnitude of each O_2 and Ar gas flow but the O_2 /Ar gas ratio. The slope of transition region at larger gas volume was slightly steeper than that at smaller gas volume. It also indicates that the interfacial trap density is mainly influenced by not the magnitude of O₂ and Ar gas flow but the O2/Ar ratio. At same O2/Ar ratio, it was identified that the more gas flows, the higher growth rate.

The *C*–*V* characteristics of HfO₂ films grown by MOMBE at different substrate temperature are shown in Fig. 6. It was observed that the growth rate of HfO₂ at substrate temperature of $450 \,^{\circ}$ C was higher than that at substrate temperature of $550 \,^{\circ}$ C. It was also observed that the flat-band voltage shift in *C*–*V* curve increased as the substrate temperature increased.

To examine the effect of the substrate temperature on HfO_2 films, XRD spectra of HfO_2 films grown in a different substrate temperature are shown in Fig. 7. HfO_2 films have been found to exist in monoclinic phase, tetragonal phase, cubic phase, and amorphous structure [16–19]. This crystal structure depends on the growth method and experimental

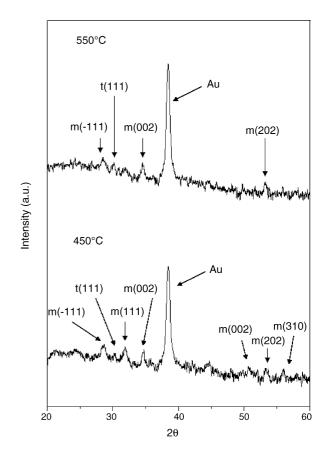


Fig. 7. XRD spectra of HfO₂ films at different substrate temperature: (a) 450 °C and (b) 550 °C.

condition of HfO_2 films. It was found that there were monoclinic (m) and tetragonal (t) phase in our HfO_2 films grown at the same annealing condition by MOMBE system, and monoclinic phase (m) was dominant. Through XRD spectra, it was shown that the crystal structure of HfO_2 films was changed with the substrate temperature. At 450 °C, various crystal phase and crystal direction were shown in XRD spectrum. However, at 550 °C, overall XRD spectrum became simple and some peaks disappeared. To investigate the relationship

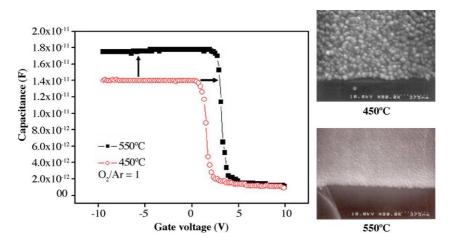


Fig. 6. HF C-V characteristics of HfO2 films grown at different substrate temperature.

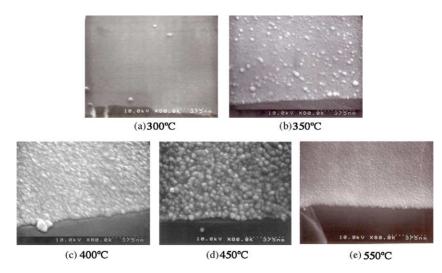


Fig. 8. SEM images of HfO₂ films at different substrate temperature (300, 350, 400, and 450 °C).

between the crystal structure and the substrate temperature more, SEM images of HfO₂ films grown by MOMBE at different substrate temperature (300-550 °C) were shown in Fig. 8. As shown in Fig. 8(a), it was found that HfO₂ film was not grown under the temperature of 300 °C because Hf source was not effectively decomposed. At the temperature of 350 °C, HfO₂ films began to grow, and the crystallization of HfO₂ films was enhanced as the substrate temperature increased, shown in Fig. 8(b), (c) and (d). However, it was found that the crystallite size and degree of crystallization of HfO₂ film were slightly reduced at 550 °C of the substrate temperature shown in Fig. 8(e). Generally, the crystallization of films depends on the growth temperature and film thickness. In our MOMBE system, the HfO2 film was fully crystallized at substrate temperature of 450 °C, shown in Fig. 8(d). Thus, it can be assumed that the substrate temperature is one of the critical factors changing the crystal structure of HfO₂ films, and also affects the growth rate in our experiments.

It is shown the bi-directional (forward and backward) C-V characteristics of HfO₂ films in Fig. 9. It was observed the hysteresis in the bi-directional C-V characteristics, and the magnitude of hysteresis decreased as O₂/Ar ratio increased. The hysteresis shown in the C-V curve verified that interfa-

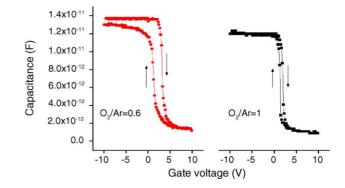


Fig. 9. Bi-directional HF C-V characteristics of HfO₂ films at different O₂/Ar gas flow ratios.

cial traps existed in HfO₂ films. An interfacial layer, traps, and mobile ions in thermally grown insulating films may give rise to voltage shift [20,21]. In our experiments, the hysteresis voltage width was not affected by different sweep rates, indicating that the obtained C-V curve was in steady state and also suggesting that the present C-V hysteresis was caused by interfacial traps [11]. In addition, the clockwise hysteresis in the C-V curve indicates a positive carrier injection (or pos-

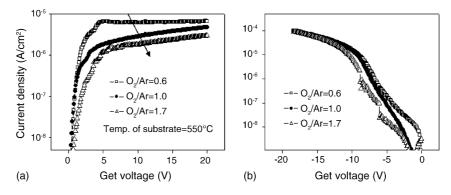


Fig. 10. I-V characteristics of HfO₂ films grown at different O₂/Ar gas flow ratios: (a) positive gate voltage and (b) negative gate voltage.

itive trapped charge) into the HfO₂ films [12,22]. The density of state recharged during each bias cycle (N_{it}), i.e. interface states that are occupied and freed by injected and re-emitted charges during each bias cycle, is given by

$$N_{\rm it} = \frac{C_{\rm acc} V_{\rm H}}{qA}$$

where $V_{\rm H}$ is the amount of hysteresis during a cycle. In our experiment, it was observed that $V_{\rm H}$ was about 0.1 V at higher O₂/Ar ratio (\geq 1), and about 2 V at lower O₂/Ar ratio (\ll 1). It showed a good agreement with above results that higher O₂/Ar gas ratio reduced the interface state density.

Leakage current densities of HfO₂ films grown by MOMBE in different O_2/Ar gas ratio are shown in Fig. 10. The leakage current at a positive gate voltage decreased with increasing O₂/Ar ratio. In addition, the leakage current in a log scale showed a linear dependence on the square root of gate voltage at all O₂/Ar ratio. This feature is consistent with the Schottky emission mechanism where the charge conduction is dominated by the interface between HfO₂ and Si substrate [23]. Interfacial layer formation increases with increasing O₂/Ar ratio shown in Fig. 11, and it can result in the decrease in the leakage current. At the negative gate voltage region, much higher leakage current was observed, and the leakage current level was invariant as O2/Ar ratio varied. It indicates that the Au-HfO2 interface has a high level of defect densities [24]. The difference in the leakage current level between positive and negative gate bias was observed in other HfO₂ films, which were grown in different experimental conditions. The difference is about two orders of magnitude in log scale.

The leakage current density at a different substrate temperature is shown in Fig. 12. The leakage current density increased as the substrate temperature increased. However, more detailed examination about the relationship between the substrate temperature and the leakage current and its physical analysis is needed. It will be remained as our future work.

The surface morphology was strongly affected by the O_2/Ar ratio, as shown in Fig. 13. More smooth HfO_2 films were grown at $O_2/Ar = 1.7$ (rms = 12.1 Å), while

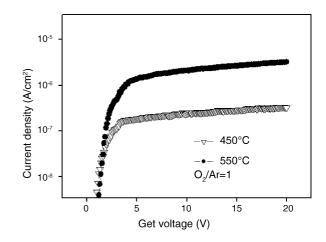


Fig. 12. *I–V* characteristics of HfO₂ films grown at different substrate temperature.

much rougher HfO₂ films were grown at $O_2/Ar = 0.6$ (rms = 38.5 Å). In other similar work, the surface morphology of ZrO₂ films grown by PECVD was strongly affected by the O_2/Ar ratio [25]. As the O_2/Ar ratio was varied, an ionic species that dominate the deposition process can be also varied, and it can affect characteristics of HfO2 films such as dielectric constant, surface morphology, and fixed charge concentration. As shown in Fig. 14, it was also observed that the substrate temperature had an influence on the surface morphology of HfO₂ films grown by MOMBE. Each rms roughness in Fig. 12 was (a) 38.5 Å, (b) 11.6 Å, (c) 12.1 Å, and (d) 5.1 Å, respectively, where each thickness was (a) 43 nm, (b) 50 nm, (c) 35 nm, and (d) 40 nm, respectively. HfO₂ films grown at higher substrate temperature had more smooth surface morphology. In addition, HfO2 films grown at higher substrate temperature had smaller variation of rms roughness at different O₂/Ar ratio than at lower substrate temperature.

Fig. 15(a) shows the XPS spectra for Hf 4f level that were calibrated from C 1s peak at 284.5 eV. Each spectrum was represented the result at different O_2 gas flow ranging from 2 to 8 sccm and Ar gas flow was fixed at 2 sccm. As shown in Fig. 15(a), the Hf 4f_{5/2} and Hf 4f_{7/2} peaks, which have binding

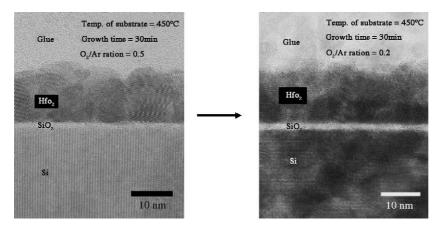


Fig. 11. TEM images of SiO₂ layer in HfO₂ films grown at different O₂/Ar ratio.

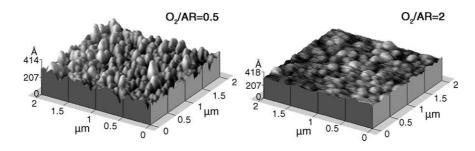


Fig. 13. AFM images of HfO₂ films grown at different O₂/Ar gas flow ratios.

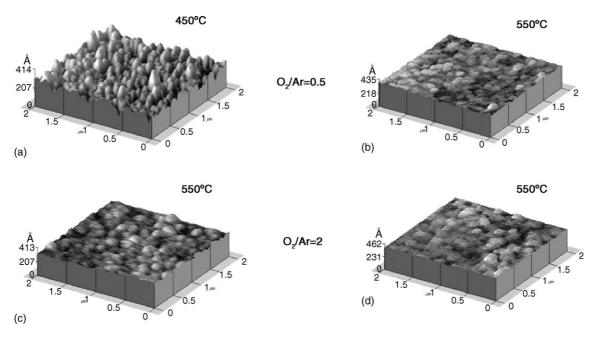


Fig. 14. AFM images of HfO₂ films grown at different O₂/Ar gas flow ratios and substrate temperature.

energies of 16.05 and 17.76 eV, respectively related to Hf–O bonding in HfO₂, shifted to the higher binding energy with increasing of O_2 gas flow. The origins of binding energy shift are suggested as a number of factors such as charge trans-

fer effect, presence of electric field, environmental charge density, and hybridization. Among these, charge transfer is regarded as a dominant mechanism causing a binding energy shift. According to the charge transfer mechanism, removing

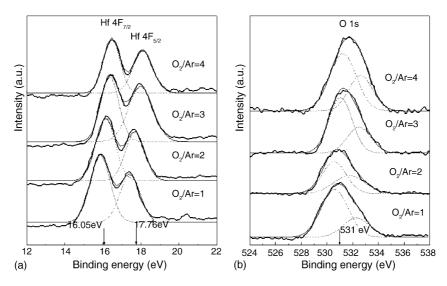


Fig. 15. XPS spectra of HfO_2 film grown by MOMBE: (a) Hf and (b) O.

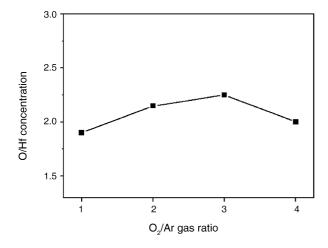


Fig. 16. O/Hf relative concentration at different O₂/Ar gas flow ratios.

an electron from the valence orbital generates the increment in core electron's potential and finally leads a chemical binding energy shift [26]. Therefore, it is considered that the Hf $4f_{5/2}$ and Hf $4f_{7/2}$ peaks shift ($\Delta BE = 0.6 \text{ eV}$) originated from the enhanced charge transfer with increasing O2 gas flow, *i.e.*, the larger portion of Hf atoms was fully oxidized with increasing O_2 gas flow. Fig. 15(b) shows the O 1s core level peaks also demonstrated binding energy shift with changing of O₂ gas flow. Each peak can be split into two sub-peaks by Gaussian fitting which represent the Hf–O bonding at \sim 531 eV and O-C or O-Si bonding at ~532.5 eV [27,28]. The relative quantities of Hf and O elements incorporated in the layer can be obtained by comparing the areas of Hf 4f peak and O 1s sub-peak for Hf-O bonding. Using the atomic sensitivity factors (Hf 4f: 2.221, O 1s: 0.711), the relative concentration ratio (O/Hf) was calculated. The relative concentration ratio (O/Hf) is shown in Fig. 16. It can be inferred that the appropriate stoichiometry can be achieved in our experiments and the relative concentration ratio can be controlled by Ar/O₂ gas ratio.

The *I*–*V* curves of the HfO₂ film before and after PMA were shown in Fig. 17(a). It was observed that as the annealing time increased, leakage current at the same voltage was increased. It can be explained by the creation of new leaky paths in HfO₂ films during PMA process resulted from the

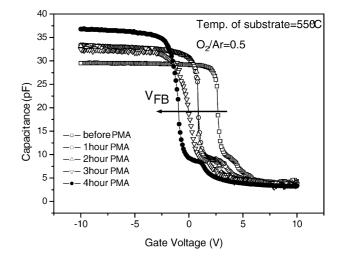


Fig. 18. HF C-V characteristic of HfO2 film before and after PMA process.

excess thermal energy. The oxide breakdown of the dielectric layer was also examined by I-V measurements. As shown in Fig. 17(b), the breakdown is indicated by the sudden increase of the gate leakage currents in the positive voltage region. It was found that increase of the annealing time causes reduction of dielectric breakdown field.

Fig. 18 shows the HF C-V characteristics of HfO₂ film before and after annealing treatment. It was observed that the capacitance in accumulation region varied with PMA time. Variation of accumulation capacitance can be interpreted as the change of dielectric constant [29], the creation of Hf-silicate layer, or the variation in film thickness [30]. However, in our PMA experiment the temperature is fixed at 250 °C, which is relatively low temperature to change the dielectric constant of a bulk HfO₂. Therefore, it can be assumed that the change in accumulation capacitance indicates the reduction of the oxide layer thickness and the creation of Hf-silicate layer. As shown in other previous work [31], the annealing process may give rise to the reduction of film thickness, which is identified by TEM. It shows that thermal energy in the annealing process enhances the crystalline nature of the films and makes the films denser. In addition, as indicated in other reference [32], the variation in accumulation capacitance can be due to the formation of Hf-silicate

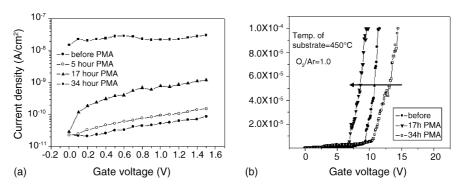


Fig. 17. Leakage current density and breakdown field of HfO2 film before and after PMA process.

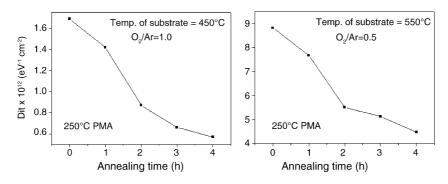


Fig. 19. Interface state density versus the PMA process time of HfO₂ film.

(HfSi_xO_y) which has relatively low dielectric constant compared with HfO₂ films. In addition, flat-band voltage shift (ΔV_{FB}) was reduced as PMA time increased, suggesting that PMA treatment reduces the oxide charges in HfO₂ layer.

The decrease of interface state density was observed with increasing the annealing time, shown in Fig. 19. It implies that the quality of the interfacial layer of HfO_2 seems to be improved by the annealing. It is attributed to reduction of the number of oxygen vacancy as the annealing time increases. Since oxygen vacancies often act as shallow donors in oxide layer, annealing in O₂ ambient removes oxygen vacancies in the layer [31]. Here, the PMA treatment can be considered as another reason for the reduction of stress in oxide layer. The formation of interface trap is affected by the reaction between the hot electrons and weak bonds in HfO_2/Si . These weak bonds can be induced from the existing stress of Hf—O bonds in HfO_2/Si . Thus, the PMA treatments can reduce the existing stress in oxide layer, and cause the reduction in interface state density.

4. Conclusion

The characteristics of the HfO₂ dielectric layer on the p-type Si substrate by MOMBE process were investigated. The calculated dielectric constant (k = 20-22) was lower than the expected value, known bulk dielectric constant (25–30). Based on the C-V curve of HfO₂ films grown by MOMBE, negative fixed oxide charges and interface traps in the film were examined. Through bi-directional C-V curve, the existence of interface traps can be identified by hysteresis. As the O₂/Ar gas ratio increased, the density of interface states and negative fixed charges decreased. It was also observed that the surface morphology was improved as O₂/Ar ratio increased. In addition, it was observed that the crystal structure was affected by the substrate temperature. It was revealed that the HfO₂ film grown by MOMBE had monoclinic and tetragonal phase. It could be also identified that the leakage current level was decreased with increasing the O_2/Ar gas ratio at a positive gate bias. Finally, post-metallization annealing reduced the interface state density and flat-band voltage shift in the

HfO₂ films. However, PMA process increased the leakage current level and reduced the breakdown field strength.

Acknowledgements

This research was supported by the MIC (Ministry of Information and Communication), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institute of Information Technology Assessment).

References

- M. Copel, M. Gribelyuk, E. Gusev, Appl. Phys. Lett. 76 (4) (2000) 436.
- [2] G.B. Alers, R.M. Fleming, Y.H. Wong, B. Dennis, A. Pinczuk, G. Redinbo, R. Urdahl, E. Ong, Z. Hasan, Appl. Phys. Lett. 72 (11) (1998) 1308.
- [3] Stefan Jakschik, Uwe Schroeder, Thomas Hecht, Dietmar Krueger, Guenther Dollinger, Andreas Bergmaier, Claudia Luhmann, Johann W. Bartha, J. Appl. Surf. 211 (2003) 352.
- [4] Q. Fang, J.Y. Zhang, Z.M. Wang, J.X. Wu, B.J. O'Sullivan, P.K. Hurley, T.L. Leedham, H. Davies, M.A. Audier, C. Jimenez, J.-P. Senateur, W. Boyd Ian, Thin Solid Films 427 (2003) 391.
- [5] J.P. Chang, Y.S. Lin, Appl. Phys. Lett. 79 (22) (2001) 3666.
- [6] G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed., Academic Press, San Diego, USA, 1999.
- [7] Alvin Chi-hai Ng, Jun Jun Xu, J.B. Xu, W.Y. Cheung, Proceedings of the Electron Device Meeting, IEEE, Hong Kong, 2001, p. 101.
- [8] G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89 (2001) 5243.
- [9] T. Moon, M. Ham, M. Kim, I. Yun, J. Myoung, Appl. Surf. Sci. 240 (2005) 105.
- [10] Maciej Gusowski, John E. Jaffe, Chun-Li Liu, Matt Stoker, Rama I. Hegde, Raghaw S. Rai, Philip J. Tobin, Appl. Phys. Lett. 80 (11) (2002) 1897.
- [11] E.H. Nicollian, J.R. Brews, MOS (Metal–Oxide–Semiconductor) Physics and Technology, Wiley/Interscience, 1981.
- [12] S.M. Sze, Physics of Semiconductor and Devices, 2nd ed., Wiley/Interscience, 1981.
- [13] W.S. Lindenberger, A.R. Tretola, W.D. Powell, A.K. Sinha, Solid State Electron. 23 (1980) 1179.
- [14] K. Lehovec, A. Slobodskoy, Solid State Electron. 7 (1964) 59.
- [15] M. Kim, Y. Ko, J. Hong, M. Jeong, J. Myoung, I. Yun, Appl. Surf. Sci. 227 (2004) 387.

- [16] M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, Thin Solid Films 354 (1999) 19.
- [17] K. Kukli, J. Ihanus, Appl. Phys. Lett. 68 (1996) 3737.
- [18] J. Wang, J. Mater. Sci. 27 (1992) 5397.
- [19] J. Aarik, A. Aidla, Appl. Surf. Sci. 173 (2001) 15.
- [20] T. Sawada, H. Hasegawa, Thin Solid Films 56 (1979) 183.
- [21] E.H. Snow, A.S. Grove, B.E. Deal, C.T. Sah, J. Appl. Phys. 36 (1965) 1664.
- [22] Q.X. Jia, Z.Q. Shi, W.A. Anderson, Thin Solid Films 209 (1992) 230.
- [23] J.R. Yeargan, H.L. Taylor, J. Appl. Phys. 39 (1968) 5600.
- [24] B.O. Cho, J. Wang, L. Sha, J.P. Chang, Appl. Phys. Lett. 80 (2002) 1052.

- [25] B.O. Cho, J. Wang, C.P. Chang, J. Appl. Phys. 92 (2002) 4238.
- [26] P.S. Bagus, F. Illas, G. Paccghioni, F. Parmigiani, J. Electron Spectrosc. Related Phenom. 100 (1999) 215.
- [27] H.Y. Yu, X.D. Feng, D. Grozea, Z.H. Lu, R.N.S. Sodhi, A.M. Hor, H. Aziz, Appl. Phys. Lett. 78 (2001) 2595.
- [28] J.P. Chang, Y.S. Lin, J. Appl. Phys. 90 (2001) 2964.
- [29] N. Zhan, K.L. Ng, H. Wong, M.C. Poon, C.W. Kok, Proceedings of the 2003 IEEE Conference on Electron Devices and Solid-State Circuits, 2003, p. 431.
- [30] Asuha, T. Yuasa, O. Maida, H. Kobayashi, Appl. Phys. Lett. 80 (2002) 4175.
- [31] G.D. Wilk, D.A. Muller, Appl. Phys. Lett. 83 (2003) 3984.
- [32] J.P. Chang, Y.S. Lin, Appl. Phys. Lett. 79 (2001) 3666.