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Abstract. We characterize four classes of geometric membership and 
containment orders--structurally and in terms of forbidden subposets-- 
and present linear- or near linear-time recognition algorithms for each 
class. We also show that recognizing point-halfspace orders in IR d is NP- 
hard for d _> 2. 

1 Introduction 

The study of hierarchical relations among geometrical objects is an area rich 
in mathematical structure. Such relations often provide efficient means for rep- 
resenting and manipulating data. One example is the point-halfspace graphs 
introduced by Scheinerman, Trenk, and Ullman [26]. These are graphs in which 
the vertices are points in IRa and the edges are halfspaces. The same article 
introduces point-halfspace orders, those partially .ordered sets (posets) repre- 
sentable in terms of points and hMfspaces ordered by membership, and asks for 
a characterization of them. We address that question and several closely related 
ones here. The posets we consider are those represented by sets of points and 
various convex subsets of IR d. 

1.1 Re la t ed  Work 

Characterizing properties in terms of obstructions, and in particular forbidden 
restrictions, is well known in discrete mathematics. The most famous such char- 
acterization is Kuratowski's Theorem: The planar graphs are exactly those con- 
taining no subdivisions of K5 or K3,3 (see for instance Bondy and Murty [2]). 
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Others include the observation that the bipartite graphs are those containing no 
odd cycles and Fishburn's characterization of interval orders [15] as those con- 
taining no 2 + 2. Some of the many classes of containment orders that have been 
studied are the sphere orders (balls in IR d as studied, for instance, by Brightwell 
and Winkler [4]) and the angle orders (see for instance Fishburn and Trotter 
[16]). 

Recognition algorithms have also been developed for many classes of graphs 
and posets. Hopcroft and Tarjan [22] presented the first O(n+m)-time algorithm 
to recognize planar graphs (see also [9], [13], [3], [8], and [5]). Besides a planarity 
test, Booth and Lueker [3] also give a linear-time algorithm to recognize inter- 
val graphs, which are also treated in [23,24,25,28]. Other important recognition 
problems include visibility graphs [6,7,14,19], comparability graphs [20,29,24], 
and series-parallel graphs [1,12,32]. A final recognition algorithm--one we will 
use in this paper--is that of Spinrad and Valdes [30], an O(n2)-time algorithm 
for the posets of dimension ]ess than or equal to 2. For more information on 
testing graph properties, please see the survey by Di Battista et al. [10]. 

On the other hand, the recognition problem is difficult for several important 
classes. For example, determining whether a graph has a Hamilton cycle is NP- 
complete (see Garey and Johnson [17]) and Garg and Tamassia [18] have recently 
shown that while graph planarity can be answered in linear time, the problem 
of determining whether a poset has a planar Hasse diagram is NP-complete. 

1.2 Our Results 

In this paper we address membership and containment orders in IR d for points 
and halfspaces and for points and convex sets. In describing algorithms that 
manipulate posets (X, <) we refer to the size of the input in terms of the pa- 
rameters n and m, where n = IXI is the size of the ground set and m = [ _< [ is 
the number of pairs x < y in the partial order. We adopt the same convention 
for graphs, letting n be the number of vertices and rn the number of edges. 

After some preliminary definitions and conventions in section 2, we ascertain 
in sections 3-6 the forbidden restrictions for each of the four classes for d --- 1 
and describe their structures. For the two point-ray classes we provide O(n + m)- 
time recognition algorithms. In the case of point-interval membership orders we 
give a reduction to interval-graph recognition to obtain an O(n2)-time algorithm 
based on the results in Booth and Lueker [3] and Simon [28] and for point-interval 
containment orders we prove the sufficiency of the O(n2)-time algorithm in [30] 

Given the characterizations of these four classes of orders, it is natural to 
ask how the classes are related. In section 7 we present the containment rela- 
tions among them. In section 8 we consider higher dimensions, proving that the 
recognition of point-halfspace orders is NP-hard in IR d for d > 1. 

2 P r e l i m i n a r y  D e f i n i t i o n s  a n d  C o n v e n t i o n s  

Let P = (X, <) be a poset--a set X together with a relation _< on X that is 
reflexive, antisymmetric, and transitive. Alternatively, P may be viewed as the 
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transitive closure of an acyclic digraph with vertex set X and arc set <. Any 
x E X is minimal (resp. maximal) in P provided there is no y E X such that  
y < z (resp. z < y). The set of all minimals (resp. maximals) of P is denoted 
min(P)  (resp. max(P) ) .  A chain in P is a set of elements z l  < . . .  < xt of X. 
The height of P is the size of a maximum chain. 

For any relation R on a set X and any z E X we denote by XR(z) the set 
of all y E X such that  yRz. The downse$ of an element x in P (the set of all 
y E X such that  y _< x) is thus denoted by X<_(z). The strict downset is the 
set X<(z)  : X<_(z) \ {x}. The upset X>_(z) and strict upset X>(x)  are defined 
analogously. If neither z < y nor y < z for z , y  E X, then we call z and y 
incomparable in P and write z II Y. The width of P is the size of a largest set of 
pairwise incomparable elements. 

A linear order is a partial order in which no pair is incomparable. Dushnik 
and Miller [11] defined the dimension of a poset P = (X, <) as the size of a 
smallest set of linear orders on X whose intersection is <. Equivalently, the 
dimension is the smallest d such that  there is an order-preserving embedding of 
P in IR a with 

( x l , . . . ,  x~) <_ ( y l , . . . ,  yd) if and only if (~1 <___ Yl) A' ' "  A (X d <~ Yd)" 

Trotter  [31] provides an excellent introduction to the theory of poset dimension. 
A poset P' - (X',  <_') is a restriction of the poset P = (X, <) provided 

X '  C X and for all z , y  E X' ,  z < '  y whenever z < y. P '  may be obtained 
from P by deleting elements from X and exactly those comparabilities in < 
that  involve the deleted elements. P '  is also called an induced subposet of P .  A 
bipartite poser is an ordered triple (B, T, _<) where ( B U T ,  _<) is a poset in which 
the only comparabilities are of the form b < t and z = z, for b E B, t E T and 
z E B U T .  

A poset P = (X, <)  is a E-containment order for some class 27 of sets if there 
is a function f : X ---+ 27 mapping elements of the ground set to sets in the class 
so that for z, y e X we have z _< y precisely when f ( z )  C ] (y) .  Similarly, P 
is a B-g'-membership order for a set B and a collection 7" of subsets of B if 
there is a function g : X --* B U g" for which z < y precisely when g(z) E B, 
g(y) E g', and g(x) e g(y). Although we choose to use the language of order 
theory, a B-g.-membership order may also be thought of as a hypergraph with 
vertex set B and edge set g'. The functions f and g are called 27-containment 
and B-g.-membership representations, respectively. Note that  every membership 
order has height 2, but  that  containment orders can have large heights. 

Posets are presented in the figures in terms of their Hasse diagrams: digraph 
drawings in which arcs all point upward, so arrowheads are omitted, and any 
arc inferable from transitivity is also omitted. 

In this paper we are concerned with two issues: (1) characterizations of con- 
tainment and membership orders in terms of structural properties and forbidden 
restrictions and (2) efficient recognition algorithms that  can be derived from 
these characterizations. We announce the characterizations here: their proofs 
will appear in a forthcoming publication. 
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3 P o l n t - R a y  M e m b e r s h i p  Orde r s  

We consider first the class of posets isomorphic to some (X,E_), where X is a 
set of points and rays in IR 1 and E is the reflexive closure of the is-a-member-of 
relation E on X. Such a poset is called a point-ray membership order. 

3.1 F o r b i d d e n - R e s t r i c t i o n  C h a r a c t e r i z a t i o n  

We have the following characterization of the point-ray membership orders in 
terms of forbidden restrictions. 

T h e o r e m  1. A bipartite poser is a point-ray membership order if and only if  it 
contains none of the posets in figure 1 as a restriction. 

(a) 2 + 2 + 2 (b) Sz (c) MI 

(d) M. (e) W. 

Fig. 1. Forbidden restrictions for point-ray membership orders 

3.2 S t r u c t u r a l  C h a r a c t e r i z a t i o n  

A poset (X, <) is a proper arch provided it has a decomposition X = CIUC~ into 
distinct nonempty chains such that  C1 N C2 = {~} = m a x ( e l )  = max(C2) for 
some ~ E X and z II y for all x E C1\{~} and y E C2\{~}. A poset P is an arch-- 
and is said to be arched--provided it is a restriction of a proper arch. Figure 2(a) 
illustrates a proper arch and figures 2(b)-(d) illustrate improper arches. 

T h e o r e m 2 .  A poser is an arch if and only if  it has width at most 2 and it 
contains neither of the posels in figure 3 as a restriction. 

The top containment poser of a height-2 poset P is the set max(P)  ordered 
by containment of strict downsets. 
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(a) (b) (c) (d) 

Fig. 2. Some example arches 

tl ~ t3 
tz 

t l  t2 

(a) V (b) Claw 
Fig. 3. Forbidden restrictions for arches 

T h e o r e m 3 .  A bipartite poser P with top containment poset P~ is a point-ray 
membership order if and only if P does not contain M, as a restriction; P' is an 
arch; and, if P' is proper, then P has no isolated minimals. 

Theorems 1 and 3 provide two elegant characterizations of the point-ray 
membership orders, as well as some insights into their structure. We next show 
how to exploit these insights. 

3.3 Recogni t ion  A lgo r i t hm 

Our algorithm is based on theorem 3. We determine whether a bipartite poset 
P = (B, T, <) is a point-ray membership order and, if so, we construct a rep- 
resentation that also yields an optimal Hasse diagram. The bipartite poser P 
is input as lists (bl , . . . ,br)  and ( t l , . . . , L )  representing B - min(P) and T = 
max(P), respectively, and the adjacency lists T>(bi) and B<(tj), for 1 < i < r 
and 1 < j < s. 

The requirement that P be a bipartite poset is only necessary in applications 
where the distinction between points and rays is critical for any element compa- 
rable to no other element--an isolate. In an application that allows isolates to be 
partitioned arbitrarily between points and rays, any poset may be preprocessed 
in O(n + m) time to test for height 2 and produce a bipartition. In this case, all 
isolates should be assumed to be maximals. 

In its initialization step our algorithm bucket-sorts the maximals tj into 
buckets ~ for 0 < k < r containing all the maximals with strict downsets 
of size k. It then checks each of the three conditions of theorem 3. 

To ensure that the top containment poset P'  of P is an arch we check the 
buckets by decreasing k, trying to build two chains C1 and C2 of downsets 
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ordered by inclusion. Let c~" and c~- be the minimals of C1 and C2, respectively. 
Let Cl + and c + be the maximals of C1 and C2, respectively, unless max(C1) = 
max(C2), in which case, call the maximal of both chains c + and let c + and c + he 
the maximals of C1 - c + and C2 - e +, respectively. It then follows from theorem 2 
that  Pf is an arch if and only if c~" ~ c + and c~ ~ c +. Next, if pt  is a proper 
arch, which is to say if max(C1) = max(C~), we check for an isolated minimal. 

The last step in the algorithm is to test whether P contains M,, which we 
can do in linear time thanks to one more structural result. Define a function a l  
on B such that  a l  (b) = k whenever b appears in C 1 0  flk but not in C1 N ~j for 
any j < k. Define as  analogously for C2. Then we have 

P r o p o s i t i o n 4 .  Let P be a poser of which the top containment poser P~ is an 
arch with chain decomposition C1 U C2. Then P contains M, if and only if there 
exist minimals x and y of P such that al(x) < Otl(y) and c~2(x) < ~2(Y). 

The remaining task of building a point-ray membership representation f of 
P is straightforward. An ascent of C1 and a descent of C~ maps the bottoms onto 
{1 , . . . ,  r}. Then the tops in C1 may be mapped to leftward rays and those in C~ 
to rightward rays. This also provides a blueprint for a Hasse diagram: B may be 
sorted onto the line y = 0 by increasing f and T onto y = 1 by increasing height 
in C1 and then decreasing height in C2. Furthermore, it is not difficult to show 
that  of the tlasse diagrams of P drawn with B on one line, T on another, and 
straight-line edges, those that  follow this blueprint have the smallest possible 
number of edge crossings. 

4 Point -Ray  Conta inment  Orders 

For the next class of posets we augment the "point E ray" relations of the 
previous section with "ray C ray" relations. More precisely, we consider the 
point-ray containment orders, those posets isomorphic to (X, C) for some X C 
{{x} Ix E JR} U {rays along JR}. 

4.1 F o r b i d d e n - R e s t r i c t i o n  C h a r a c t e r i z a t i o n  

We enumerate the forbidden restrictions in figure 4 using a modified Hasse- 
diagram convention: the solid circles represent minimals and the open circles 
nonminimals. Thus each open circle must be understood to have at least one 
element below it. 

T h e o r e m  5. A poset is a poznt-ray containment order if and only if it contains 
none of the posers in figure 4 as a restriction. 

4.2 Recognition Algorithm 

This algorithm is similar to the one for point-ray membership orders in sec- 
tion 3.3. We determine whether a poset P = (X, <) is a point-ray containment 
order and, if so, we construct a representation. 
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0 o o 

(c) (d) 

[NOTE: Minimals are shown solid and nonminimals open.] 

Fig. 4. Forbidden restrictions for point-ray containment orders 

P is input as a list ( z t , . . . ,  zn) representing X and the adjacency lists X< (zi) 
and X>(zi) for 1 < i < n. We initialize the input by labeling each zi as minimM 
or nonminimal. We bucket-sort the nonminimals into buckets ~3k for 0 < k < n 
containing all the nonminimals xj for which [X<(zj)[ = k. We then determine 
whether P is a point-ray containment order in two phases. In the first phase we 
check for the obstructions in figure 4(a)-(c) and in the second we check for the 
one in figure 4d. This can all be done in O(n + m) time. 

5 Po in t - In terva l  M e m b e r s h i p  Orders  

The next class of posets we consider is again constrained to height 2. We replace 
the rays of the point-ray membership orders with intervals to obtain the point. 
interval membership orders. 

5.1 Structural Characterization 

Let P = (X,<_) be a height-2 poset with min(P) = {bl , . . . ,b ,} .  The top- 
intersection graph of P is the graph with vertex set max(P) in which any two 
elements of max(P) are adjacent if and only if they are above a common minimal. 
If P is bipartite, we define the augmentation of P as the poset obtained by adding 
for each bi a new top above bi and nothing else. The augmented top-intersection 
graph of P is the top-intersection graph of the augmentation of P. As we show 
in the following theorem, this graph provides a nice structural characterization 
of point-interval membership orders. 

T h e o r e m 6 .  A bipartite poser is a point-interval membership order if and only 
if its augmented top-intersection graph is an interval graph. 

5.2 Forbidden-Restriction Characterization 

The forbidden restrictions for point-interval membership orders consist of two 
explicit posets and three infinite families. In the I-Iasse diagrams in figure 5 we 
have highlighted certain vertices and edges to clarify patterns in the obstruc- 
tions. This highlighting is only to clarify similarities among the posets. All three 
infinite families are elaborations on the same fence of size n--the zigzagging 
poset indicated by the solid circles and edges. 



241 

T h e o r e m  7. A height-2 poser is a point-interval membership order i f  and only 
i f  it contains none of the posers in figure 5 as a restriction. 

F 

1 2 . . .  n 

Crownn, n -> 3 

1 2 . . .  n -1  n 

Jn, n >- 3 

H 

/ "t 
1 2 3 "'" n 

Mn, n >-3 

Fig. 5. Forbidden restrictions for point-interval membership orders 

5 .3  R e c o g n i t i o n  A l g o r i t h m  

It is not clear how one might exploit the forbidden-restriction characterization 
in theorem 7 to obtain a recognition algorithm for point-interval membership 
orders. But a straightforward algorithm follows from theorem 6. One simply 
builds the augmented top-intersection graph, which requires ~9(n ~) time, and 
then checks whether it is an interval graph. The second step can be done quickly 
using algorithms published in [3] or [28]. 

6 P o i n t - I n t e r v a l  C o n t a i n m e n t  O r d e r s  

The final class of real-line orders we consider is the point-interval containment 
orders. 

T h e o r e m  8. The point.interval containment orders are exactly the interval con- 
tainment orders, which is to say the posers of dimension at most 2. Moreover, 
every poser of dimension at most 2 has a point-interval containment representa- 
tion that maps all its minimals to points. 

6.1 R e c o g n i t i o n  A l g o r i t h m  

As an immediate result of theorem 8, the point-interval containment orders can 
be recognized in O(n 2) time using the algorithm in [30]. 
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7 Containments Among the Classes 

In theorems 9 through 11 we detail the containment relationships among the four 
classes of posets that  we have considered so far. These containments are sum- 
marized in figure 6. The posets included in the figure are certificates that  each 
of the illustrated regions is nonempty. The dashed circle in the figure indicates 
that ,  as stated in theorem 10, the containment is true only of those point-interval 
containment orders that  have height 2 or less. 

i 1 
Fig. 6. Containments among the classes 

T h e o r e m 9 .  Point-ray membership orders and point-ray containment orders a r e  

all point-interval containment orders. 

T h e o r e m  10. The height-2 dimension-P posets form a proper subset of the point- 
interval membership orders. 

T h e o r e m  11. Every point-interval membership order has dimension 3 or less. 

8 Point-Halfspace Orders in 2 and More Dimensions 

In this section we show that  the recognition of point-halfspace orders in IRa is 
NP-hard for all d >_ 2. Thus it is unlikely that  any simple characterization exists 
for these orders. We begin with the 2-dimensional case and then extend that  
result to d > 2. 
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The point-halfplane result is obtained by a reduction from a variant of a 
problem called PSEUDOLINE STRETCHABILITY (see Shot [27]). A pseudoline is 
(the Cartesian graph of) a continuous function lb : lit ~ fit . A set of pseudolines 
is a collection provided any pair of elements that intersect do so at exactly 
one point, where they cross. A collection of pseudolines is simple provided no 
three of them are concurrent and every pair intersect. It is stretchable if its 
arrangement--the partition of ]R 2 induced by the pseudolines, together with all 
the incidences--is isomorphic to an arrangement of (straight) lines. 

We now formally state the recognition problem for the 2-dimensional case: 
POINT-HALFPLANE ORDER 

INSTANCE: A bipartite poset P -- (B, T, _<). 
QUESTION: Is there an injection f from BUT to ]R2U{halfplanes} with f (B)  C 
IR 2 and f (T) C {halfplanes} such that  for all b 6 B and t 6 T, f(b) E f(t) if 
and only if b < t? 

T h e o r e m 1 2 .  POINT-HALFPLANE ORDER is NP-hard. 

Proof. Both PSEUDOLINE STRETCHABILITY and the variant in which the input 
collection of pseudolines is required to be simple are NP-hard [27]. We demon- 
strate a polynomial reduction from this variant. The arrangement is input as 
an allowable sequence, as defined by Goodman and Pollack [21]. We assign to 
every cell a unique bit string that encodes its position relative to each pseudoline 
and build a bipartite poset P such that  min(P) is the cell labels and max(P)  
the pseudolines, and c < lb precisely when cell c is above lb. This construc- 
tion, which is illustrated in figure 7, can be done in polynomial time and P is a 
point-halfplane order if and only if the collection is stretchable. II 

3 2 

3 

2 4 
1 

a) Arrangement of Pseudolines 

1,11/X. l lOl 

1 '~-" 0000 4 

b) Cell Labels 

1 2 3 4 

c) Bipartite Poset P d) Isomorphic Line Arrangement 

Fig. 7. Reduction from PSBUDOLmIE STRETCHABILITY 
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Not surprisingly, the problem remains hard in higher dimensions. We make 
this assertion precise with 

T h e o r e m l 3 .  Recognition of point-halfspace orders in I~ ~ is NP-hard for d >_ 2. 

Proof. We prove the case d = 3 with a reduction from POINT-HALFPLANE OR- 
DER. The higher dimensions are handled inductively. Given a bipartite poset 
P = (B, T, _<), produce the poser P' = (B U t3", T, <') by adding a twin for 
every minimal of P,  and then produce P "  = (B U/3*, T U {to}, <")  such that  
(B U B*)<,,(to) = t3". Clearly, P "  can be constructed in polynomial time and is 

a point-halfspace order in IR 3 if and only if P is a point-halfplane order. [ 
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