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The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of

factors affecting disease progression and severity. The identification of prognostic

biomarkers and physiological processes associated with disease symptoms is relevant

for the development of new diagnostic and therapeutic interventions to contribute to the

control of this pandemic. To address this challenge, in this study, we used a quantitative

proteomics together with multiple data analysis algorithms to characterize serum protein

profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital

discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases

with increasing systemic inflammation in comparison with healthy individuals sampled

prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins

and associated biological processes and disorders associated to COVID-19. These

results corroborated previous findings in COVID-19 studies and highlighted how the

representation of dysregulated serum proteins and associated BPs increases with

COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis

was then focused on novel disease processes and biomarkers that were correlated with

disease symptomatology. To contribute to translational medicine, results corroborated

the predictive value of selected immune-related biomarkers for disease recovery

[Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity

[Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)]

using protein-specific ELISA tests. Our results contributed to the characterization of

SARS-CoV-2–host molecular interactions with potential contributions to the monitoring

and control of this pandemic by using immune-related biomarkers associated with

disease symptomatology.
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INTRODUCTION

Coronavirus disease 19 (COVID-19) is a pandemic caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also
referred as hCoV-19) with immunological dysregulation associated

with disease severity (1, 2). The incidence of this pandemic is still

increasing worldwide and posts a challenge for the understanding of

host and virus-derived factors affecting disease severity and the

identification of prognostic biomarkers and physiological processes

related to COVID-19 symptomatology and relevant for the
development of new diagnostic and therapeutic interventions to

contribute to the control of this pandemic (3–6).

To address this challenge, proteomics constitutes a high-

resolution method for the study of host response to infectious

diseases, including those caused by RNA viruses (7). Quantitative

proteomics has been used for the study of SARS-CoV-2 infection

in various samples (e.g., serum, plasma or urine), tissues (e.g.,
lung), and cells (e.g., peripheral blood mononuclear or Caco-2

cells). This experimental approach has been used for the study of

host anti-viral responses and the identification of biomarkers for

COVID-19 disease severity, diagnostics, and treatment. Examples

of these biomarkers are serum amyloid A-1 (SAA1), serum

amyloid A-2 (SAA2), C-reactive protein (CRP), gelsolin (GSN),
interleukins (IL-1, IL-6), serine protease inhibitors (SERPINs),

progranulin (GRN), apolipoproteins (APOs), complement and

pro-inflammatory factors, coagulation system, and vascular cell

adhesion protein 1 (VCAM-1) (4–23). Results of proteomics

analyses have shown a correlation of disease severity with

inflammatory, immunological, and cancer biomarkers, metabolic

suppression, neutrophil activation, hepatic and lung injury and the
dysregulation of lipid transport, macrophages, platelet degranulation,

and complement system pathways (4–6, 8–13, 18, 20–22, 24).

However, due to the complexity of COVID-19 symptomatology,

it is important to characterize host response to SARS-CoV-2

infection in different cohorts from asymptomatic individuals to

severe patients to better understand disease mechanisms and
symptoms with possible medical complications at different levels,

and the identification of potential diagnostic markers and drug

targets (22–25). Quantitative proteomics approaches alone or in

combination with other omics technologies are key to achieve this

goal (24–27). To contribute in addressing this objective, herein we

used a sequential window acquisition of all theoretical mass spectra
(SWATH-MS) quantitative proteomics to characterize serum

protein profiles in five cohorts of healthy (pre-pandemic sampling)

and SARS-CoV-2-infected asymptomatic, recovered (hospital

discharge), nonsevere (hospitalized), and severe [intensive care

unit (ICU)] individuals. The results advanced our understanding of

the molecular mechanism-driven host–SARS-CoV-2 interactions

and identified immune-related prognostic biomarkers and
physiological processes related to COVID-19 symptomatology.

MATERIALS AND METHODS

Samples From Healthy Individuals and
COVID-19 Patients
A retrospective case–control study was conducted in patients

suffering from COVID-19 and healthy controls sampled at the

University General Hospital of Ciudad Real (HGUCR), Spain

(28, 29). Blood samples from control individuals were collected

prior to the COVID-19 pandemic in April 2019. COVID-19

patients were confirmed as SARS-CoV-2-infected by IgG

antibody titers or reverse transcriptase-polymerase chain

reaction (RT-PCR) and sampled between March and May
2020 (28) (Figure 1). Clinical symptoms and laboratory

determinations associated with COVID-19 were obtained from

patient’s medical records to create cohorts of asymptomatic,

nonsevere (hospitalized), recovered (hospital discharge), and

severe (ICU) individuals (28). Patients were hospitalized for

developing a moderate-severe clinical condition with
radiologically demonstrated pneumonia and failure in blood

oxygen saturation. Patients with acute respiratory failure who

needed mechanical ventilation support were admitted to a

hospital ICU. The patients were discharged from the hospital

due to the clinical and radiological improvement of pneumonia

caused by the SARS-CoV-2, along with the normalization of
analytical parameters indicative of inflammation. Data can be

found at Urra et al. (28) and Supplementary Table 1. Blood

samples were drawn in a vacutainer tube without anticoagulant.

The tube remained at rest for 15–30 min at room temperature

(RT) for clotting. Subsequently, the tube was centrifuged at 1500 × g

for 10 min at RT to remove the clot and obtain serum. Serum

samples were heat-inactivated for 30 min at 56°C and conserved at
−20°C until used for analysis. The use of samples and individual

data was approved by the Ethical and Scientific Committees

(University Hospital of Ciudad Real C-352 and SESCAM C-73).

Serum Proteomics
Serum samples from healthy controls (n = 25) and asymptomatic

(n = 16), nonsevere (n = 28), recovered (n = 26), and severe (n =

25) COVID-19 individuals were randomly clustered in three
biological pools per group (n = 5–10 samples per pool). Protein

concentration in samples was determined using the BCA Protein

Assay with BSA (Sigma-Aldrich) as standard. Protein serum

samples (100 µg per sample) were trypsin digested using the

FASP Protein Digestion Kit (Expedeon Ltd., UK) and sequencing

grade trypsin (Promega, Madison, WI, USA) following the
manufacturer’s recommendations. The resulting tryptic peptides

were desalted onto OMIX Pipette tips C18 (Agilent Technologies,

Santa Clara, CA, USA), dried down, and stored at −20°C until mass

spectrometry analysis. The desalted protein digests were resuspended

in 2% acetonitrile and 5% acetic acid in water and analyzed by

reverse-phase liquid chromatography coupled to mass spectrometry
(RP-LC-MS/MS) using an Ekspert™ nanoLC 415 system coupled

online with a 6600 TripleTOF mass spectrometer (AB SCIEX;

Framingham, US) through Information-Dependent Acquisition

(IDA) followed by Sequential Windowed data independent

Acquisition of the Total High-resolution Mass Spectra (SWATH-

MS). The peptides were concentrated in a 0.1 × 20 mm C18 RP

precolumn (Thermo Scientific) with a flow rate of 5 µl/min during 10
min in solvent A. Then, peptides were separated in a 0.075 × 250mm

C18 RP column (New Objective, Woburn, MA, USA) with a flow

rate of 300 nl/min. Elution was done in a 120-min gradient from 5%

B to 30% B followed by a 15-min gradient from 30% B to 60% B

(Solvent A: 0.1% formic acid in water, solvent B: 0.1% formic acid in
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acetonitrile) and directly injected into the mass spectrometer
for analysis.

For IDA experiments, the mass spectrometer was set to scan

full spectra from 350 m/z to 1400 m/z (250 ms accumulation

time) followed by up to 50 MS/MS scans (100–1500 m/z).

Candidate ions with a charge state between +2 and +5 and

counts per second above a minimum threshold of 100 were

isolated for fragmentation. One MS/MS spectrum was collected
for 100 ms, before adding those precursor ions to the exclusion

list for 15 s (mass spectrometer operated by Analyst TF 1.6,

ABSciex). Dynamic background subtraction was turned off. Data

were acquired in high sensitivity mode with rolling collision

energy on and a collision energy spread of 5. A total amount of

4 µg of total proteins was injected.

FIGURE 1 | Individual cohorts and study design. COVID-19 patients included cohorts of asymptomatic (n = 16), recovered (hospital discharge; n = 26), nonsevere

(hospitalized; n = 28), and severe (ICU; n = 25) cases with increasing systemic inflammation. Healthy individuals sampled before the COVID-19 pandemic were

included in the analysis (n = 25). Female-to-male (F/M) ratio and average ± S.D. age (y/o) are shown. Additional information can be found in Urra et al. (28). A

SWATH-MS proteomics approach was used for data acquisition and analysis. A retrospective case–control study was conducted in patients suffering from COVID-

19 and healthy controls sampled at indicated dates using standard procedures. Serum from three pools of 5–10 individuals each with three technical replicates were

used for proteomics using SWATH-MS protein identification and quantitation and data analysis using Metascape and networks of interactions between proteins and

BPs using Graph Theory algorithms to identify dysregulated proteins in response to COVID-19.
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For SWATH quantitative analysis, 45 independent samples

(three technical replicates from each of the three biological

replicates for each of the five experimental groups) (8 mg each)

were subjected to the cyclic data independent acquisition (DIA)

of mass spectra using the SWATH variable windows calculator

(V 1.0, AB SCIEX) and the SWATH acquisition method editor
(AB SCIEX), similar to established methods (30). A set of 50

overlapping windows was constructed (containing 1 m/z for the

window overlap), covering the precursor mass range of 400–1250

m/z. For these experiments, a 50-ms survey scan (350–1400 m/z)

was acquired at the beginning of each cycle, and SWATH-MS/

MS spectra were collected from 100 to 1500 m/z for 70 ms at high
sensitivity mode, resulting in a cycle time of 3.6 s. Collision

energy for each window was determined according to the

calculation for a charge +2 ion-centered upon the window with

a collision energy spread of 15.

To create a spectral library of all the detectable peptides in the

samples, the IDA MS raw files were combined and subjected to
database searches in unisonusing ProteinPilot software v. 5.0.1 (AB

SCIEX) with the Paragon algorithm. Spectra identification was

performed by searching against the UniProt human proteome

database (75,074 entries in October 2020) with the following

parameters: iodoacetamide cysteine alkylation, trypsin digestion,

identification focus on biological modification, and thorough ID as

search effort. The detected protein threshold was set at 0.05. To
assess the quality of identifications, an independent FalseDiscovery

Rate (FDR) analysis with the target-decoy approach provided by

Protein Pilot was performed. Positive identifications were

considered when identified proteins reached a 1% global FDR.

The mass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the PRIDE (31) partner
repository with the dataset identifier PXD024549 and

10.6019/PXD024549.

Quality Control of Proteomics Data
Quality of proteomics data was controlled at multiple levels.

First, a rat ileum digest was used for the evaluation of instrument

performance. Buffer A samples were run as blanks every three

injections to prevent carryover. Three technical replicates were
injected for each sample. For validation of serum proteomics

data, protein representation for previously identified biomarkers

for COVID-19 and proteomics studies were used to show

correlation with disease severity (Supplementary Figures 3, 4).

An enrichment analysis was conducted using the Coronascape

COVID database (https://metascape.org/COVID) (32) to identify
proteins found in our study as differentially represented in response

to COVID-19 and reported in previous COVID-19 omics datasets.

Data Analysis
For SWATH processing, up to 10 peptides with seven transitions

per protein were automatically selected by the SWATH
Acquisition MicroApp 2.0 in the PeakView 2.2 software with

the following parameters: 15 ppm ion library tolerance, 5 min

XIC extraction window, 0.01 Da XIC width, and considering

only peptides with at least 99% confidence and excluding those

that were shared or contained modifications. However, to ensure

reliable quantitation, only proteins with three or more peptides

available for quantitation were selected for XIC peak area

extraction and exported for analysis in the MarkerView 1.3

software (AB SCIEX). Global normalization according to the

Total Area Sums of all detected proteins in the samples was

conducted (Supplementary Data 1).
The Student’s t-test (p < 0.05) was used to perform two-sample

comparisons between the averaged area sums of all the transitions

derived for each protein across the nine replicate runs for each group

under comparison, in order to identify proteins that were

significantly differentially represented between groups

(Supplementary Data 1). Protein representation was also
compared between groups by Welch’s unpaired t-test (p < 0.05;

https://www.graphpad.com/quickcalcs/ttest1/?Format=C) and by

one-way ANOVA test followed by post-hoc Bonferroni and Holm

multiple comparisons (p < 0.05; https://astatsa.com/OneWay_

Anova_with_TukeyHSD/) (4). Proteins with significant differences

between healthy individuals and one of the COVID-19 cohorts only
were selected for heatmap analysis of z-score using complete linkage

and Spearman rank correlation (http://www.heatmapper.ca/

expression/). Data were separately analyzed for overrepresented

and underrepresented proteins using the Metascape gene

annotation and analysis resource (https://metascape.org/gp/index.

html#/main/step1) (Supplementary Figure 1).

To evaluate the network of interactions between proteins and
BPs, a network was built using data for each protein and the BPs in

which it is involved (Supplementary Data 2). This network

reflects the importance of each protein on each BP according to

its representation. The purpose was to obtain a general framework

based on previous network developments using Graph Theory

algorithms, which were revealed to be adequate for the purpose of
representing these relationships (33). Networks exhibit nodes and

the relationships between these components (links). Each node

represents a protein or a BP. The network is directed, as each edge

links each protein “to” one or multiple BPs. Several indices

measure network properties from which the relationships

among proteins and BPs are derived. The weighted degree

(WG) is one of the most basic measures of a network,
representing the number of links leaving (or arriving at) a given

node after weighting by the total number of records containing

this interaction. In this context, a protein always links to a BP with

a “strength” derived from its representation. The WG provides an

estimation of the strength of the association but does not evaluate

the importance of each node in the context of the network. We
used the Page Rank (PR) index to calculate the importance of each

node in the complete network (34). This index calculates the

number of links of each protein to one or several BPs, together

with its weighted degree. The PR of each protein is calculated

according to the authority (i.e., the relative importance) of each

BP. The PR is an index that assigns a universal rank to nodes based

on the importance of the other nodes to which it is linked and the
WG. We calculated PR for each cohort (healthy, asymptomatic,

recovered, nonsevere, and severe COVID-19 cases) and built

separate networks for each condition. Then, we calculated how

PR of both proteins and BPs changed in each group. We were

looking for prominent changes in the nodes of the network, using
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an approach based on the distribution of values and the semantic

rules of Fuzzy Logic (35). For each node of the network, we

selected all the nodes that were in the first quintile (i.e., lowest

values) of the PR’s distribution of groups “healthy” and

“asymptomatic” and that were in the last quintile (i.e., high

values) of distribution of groups “nonsevere” and “severe”. The
opposite selection (highest versus lowest) was also carried out.

After relating these queries by the operator “AND” according to

Fuzzy Logic rules, each node was ranked between 0 (no change)

and 1 (maximum change). We arbitrarily removed the nodes with

values lower than 0.5. We also evaluated the weighted nestedness

of each network as a measure of structuring. A network is more
coherent and robust (i.e., resilient to node removal) if structuring

is high. Nestedness is a measure in ecological system networks that

emanates from the way elements are linked. It should be noted

that the absence of nestedness does not mean the absence of a

pattern. Nestedness is not a feature of the network, but a

consequence of the WD sequences (36). Since most of the
available algorithms evaluate the nestedness using only the

pattern presence/absence (i.e., interaction/not interaction), we

adhered to the approach provided by the software WINE (37)

since it also accounts for the weights of the interactions in

quantitative data matrices (proteins and BPs in our application)

that include the number of events of each interaction and the

strength of such interaction, or the representation of the proteins
involved in each BP.

Determination of IL-1 and IL-4 Serum Levels
Serum levels of IL-1 and IL-4 were determined by ELISA

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions. Briefly, 96-microwell plates coated in duplicate with

anti-human IL-1b or IL-4 were washed twice with 400 µl/well of

wash buffer and 100 µl of human IL-1b or IL-4 standard (20.00
pg/ml) at serial dilutions (1:2, 1:4, 1:8, 1:16, and 1:32), 100 µl/well

of sera at 1:2 dilution, and 100 µl/well of sample diluent as

negative control. Then, 50 µl/well of biotin conjugate were added

to all wells. After incubation for 2 h at RT and three washes with

400 µl/well of wash buffer, 100 µl/well of streptaviding-HRP were

added to all wells. After incubation for 1 h at RT and three
washes with 400 µl/well of wash buffer, 100 µl/well of 3,3′,5,5′-

Tetramethylbenzidine or TMB substrate solution were added to

all wells. As soon as the Standard 1 well reached an O.D. of 0.9 at

620 nm, the colorimetric reaction was stopped with 100 µl/well

of stop solution and the absorbance was measured in a

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) at an O.D. of 450 nm; 0.05 Human IL-1b or IL-4

concentration (pg/ml) in each sample was calculated from the

obtained standard curve. The results were compared between

different groups by one-way ANOVA test with post-hoc Tukey

Honestly Significant Difference (HSD) (https://astatsa.com/

OneWay_Anova_with_TukeyHSD/; p = 0.05).

Validation of Selected Serum
Protein Biomarkers
Serum samples from cohorts included in the proteomics analysis

plus additional samples of healthy controls (n = 37) and

asymptomatic (n = 18), nonsevere (n = 29), recovered (n =

27), and severe (n = 25) COVID-19 individuals were used for

validation analysis. Serum levels of PZP, SELENOP, CBP2, and

PON1 were determined by ELISA (MyBioSource, Inc., San

Diego, CA, USA, provided by bioNova Cientıfíca S.L., Madrid,

Spain) following the manufacturer’s protocol available online
(PZP, MBS2706073, https://www.mybiosource.com/human-

elisa-kits/pregnancy-zone-protein-pzp/2706073; SELENOP,

MBS163893, https://www.mybiosource.com/human-elisa-kits/

selenoprotein-p-se-p/163893; CPB2, MBS703133, https://www.

mybiosource.com/cpb2-human-elisa-kits/carboxypeptidase-b2-

plasma/703133; PON1, MBS2883206, https://www.mybiosource.
com/pon1-human-elisa-kits/serum-paraoxonase-arylesterase-1/

2883206). The results were compared between different groups

by one-way ANOVA test with post-hoc Tukey HSD (https://

astatsa.com/OneWay_Anova_with_TukeyHSD/; p = 0.05).

Proteomics and ELISA data were compared by Spearman’s

Rho (rs) correlation analysis (https://www.socscistatistics.com/
tests/spearman/default2.aspx; p = 0.05).

RESULTS

Variations in Differential Serum Protein
Profiles and Affected Biological Processes
According to COVID-19 Disease
Symptomatology
The study was conducted using a SWATH-MS quantitative

proteomics to characterize serum protein profiles in COVID-

19 patient cohorts from asymptomatic to recovered (hospital

discharge), nonsevere (hospitalized), and severe (ICU) cases with
increasing systemic inflammation in comparison with healthy

individuals sampled prior to the COVID-19 pandemic

(Figure 1). A total of 189 proteins were identified in serum

samples from all cohorts included in the study (Supplementary

Data 1). Of them, 49, 113, 124, and 129 proteins were

significantly dysregulated in asymptomatic, recovered,

nonsevere, and severe cases when compared to healthy
controls, respectively (Figure 1; Supplementary Figure 1 and

Data 1). As expected, immunoglobulins, high-density

lipoproteins (HDL) and complement cascade represented 32%

(60/189), 23% (44/189), and 12% (22/189) of identified serum

proteins, respectively (Supplementary Data 1).

Of the significantlydysregulatedproteins,Pregnancyzoneprotein
(PZP) and Alpha-1-antitrypsin (SERPINA1) were identified as

underrepresented in asymptomatic cases only (Figures 2A, B).

These proteins are involved in biological processes (BPs) of female

pregnancy and tissue protection. In recovered COVID-19 cases, 11

proteins were exclusively significantly dysregulated and grouped in

two clades of overrepresented (n = 8) and underrepresented (n = 3)
proteins (Figures 2C, D). Patient’s recovery was associated with

dysregulation of immune response; increased complement

activation, inflammatory response, and oxidant defense; and

decrease in cholesterol transfer/esterification.

The exclusively significantly dysregulated serum proteins in

nonsevere (n = 9) and severe (n = 15) patients affected multiple
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BPs (Figures 3A–D). In nonsevere cases, overrepresented proteins

(n = 7) are involved in complement activation, immune response,

and blood coagulation while underrepresented proteins (n = 2)

reduce protection against oxidative damage and disease. Severe

cases showed dysregulation of BPs such as immune response,

metabolic processes, complement activation, and response to
carbohydrate associated with overrepresented proteins (n = 12).

Exclusively underrepresented proteins in severe cases (n = 3) are

involved in immune response and complement activation.

Proteins with multiple differential representation in sera from

COVID-19 cases when compared to healthy controls (n = 128)

were grouped into two clades of proteins with a tendency towards

increase (n = 93) and decrease (n = 35) in representation

according to disease severity (Figure 4).

Of the multiple BPs affected by significantly dysregulated serum

proteins, somewere only enriched in symptomatic cases while others

were enriched in asymptomatic cases (Figures 5A–D and 6A–D).

For overrepresented proteins, enrichment increased with disease
severity for BPs such as negative regulation of epithelial cell

proliferation, FOXA1 transcription factor network (HNF3A

pathway M285) coordinating function of primary airway epithelial

cells, IL-6-mediated signaling events (M183), response to inorganic

substance, blood coagulation, acute-phase response, cytolysis,

binding and uptake of ligands by scavenger receptors, and reactive

A B

D

C

FIGURE 2 | Exclusive differential representation of proteins in sera from COVID-19 asymptomatic and recovered cases. (A) Heatmap of proteins significantly dysregulated

(Z-scored original value) in asymptomatic cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological process (BP) is shown for each protein. (B) Change in levels of

two selected proteins with significant differences between asymptomatic cases and healthy controls (*p < 0.05; unpaired two-sided Welch’s t-test). (C) Heatmap of proteins

significantly dysregulated (Z-scored original value) in recovered cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological processes (BPs) are shown for each cluster

of proteins differentially represented in response to COVID-19 (cluster 1, overrepresented; cluster 2, underrepresented). (D) Change in levels of two selected proteins with

significant differences between recovered cases and healthy controls (*p < 0.05, **p < 0.01; unpaired two-sided Welch’s t-test).
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oxygen species metabolic process (Figure 5A). Underrepresented

proteins were enriched only in both asymptomatic (e.g., common

pathway of fibrin clot formation, acute-phase response,

complement and coagulation cascade, hyaluronan metabolic

process, positive regulation of lipase activity, renal system

process, positive regulation of immune effector process and
M5884 ensemble of genes encoding core extracellular matrix

including ECM glycoproteins, collagens, and proteoglycans) and

symptomatic (e.g., regulation of plasma lipoprotein oxidation,

response to nutrient levels, tissue homeostasis, positive regulation

of cell death, and phagocytosis) cases (Figure 6A).

The network of interactions between proteins and BPs was

characterized using Graph Theory algorithms (Supplementary

Figure 2 andData 2). While visually similar, networks have deep

A

B

D

C

FIGURE 3 | Exclusive differential representation of proteins in sera from COVID-19 nonsevere and severe cases. (A) Heatmap of proteins significantly dysregulated

(Z-scored original value) in nonsevere cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological processes (BPs) are shown for each cluster of proteins

differentially represented in response to COVID-19 (cluster 1, overrepresented; cluster 2, underrepresented). (B) Change in levels of three selected proteins with

significant differences between nonsevere cases and healthy controls (*p < 0.05, **p < 0.01; unpaired two-sided Welch’s t-test). (C) Heatmap of proteins significantly

dysregulated (Z-scored original value) in severe cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological processes (BPs) are shown for each cluster of

proteins differentially represented in response to COVID-19 (cluster 1, overrepresented; cluster 2, underrepresented). (D) Change in levels of two selected proteins

with significant differences between severe cases and healthy controls (***p < 0.001, ****p < 0.0001; unpaired two-sided Welch’s t-test).
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differences in their structure. Other than obvious changes of the
proteins involved (presence/absence and representation), therefore

affecting the BPs, nestedness showed a decreasing magnitude

according to the patient cohorts. Nestedness is maximum for

healthy and asymptomatic individuals (nestedness of 12.2 and

12.1, respectively), which reflects a high structuring of the clusters

(Figure 7 and Supplementary Data 2). However, networks built
using proteins and BPs for nonsevere and severe patients show a

clear de-structuring (nestedness of 5.1 and 3.8, respectively). The

networking built with data of recovered patients shows an

intermediate structure without clear differences with other cohorts

in this analysis (nestedness of 10.1). These results point to a clear

pattern in which some proteins (rate of change > 0.900;

Supplementary Data 2) such as neutrophil defensin 3, serum
amyloid A (SAA) SAA2-SAA4 readthrough, Apolipoprotein C-

IV, and Fibrinogen gamma chain are associated with nonsevere and

severe COVID-19 patients, therefore increasing the PR index value

of the BPs. It seems that overrepresentation of selected proteins in

patients with higher COVID-19 symptomatology is blocking the

normal regulation of these BPs, which resulted in higher PR values
in these cohorts. Networks resulting from these cohorts are de-

structured, and the structure with clear clusters observed in healthy

individuals is not evident. Therefore, the networks produced with

proteins and the BPs in the five cohorts show critical changes. These

changes include the overrepresentation of some BPs such as
negative regulation by a host of viral processes, negative

regulation of mononuclear cell proliferation, positive regulation of

interleukins, positive regulation of chemokine production, and

positive regulation of respiratory burst involved in inflammatory

response that remained unaltered in healthy and recovered

individuals. These results support the idea that a network
construct, based on pure statistical rules, reflects the clinical status

commonly observed in critical COVID-19 patients.

In correspondence with these BPs, the network of enriched

terms showed that the most represented processes in proteins

overrepresented in COVID-19 cohorts are protein activation

cascade, phagocytosis, receptor-mediated endocytosis, platelet

degranulation, blood coagulation, acute-phase response, negative
regulation of proteolysis, Staphylococcus aureus infection,

cytolysis, regulation of insulin-like growth factor (IGF), binding

and uptake of ligands by scavenger, opsonization, cell killing,

antimicrobial humoral response, platelet activation, activation of

complement C3 and C5, plasma lipoprotein assembly, regulation of

endocytosis, and reactive oxygen species metabolic process
(Figures 5B, C). For underrepresented proteins, the most enriched

processes were protein activation cascade, enzymes and their

regulators involved in the remodeling of the extracellular matrix

(NABA ECM regulators), platelet degranulation, complement and

FIGURE 4 | Multiple differential representation of proteins in sera from COVID-19 cases. Heatmap of proteins significantly dysregulated (Z-scored original value) in

multiple COVID-19 cohorts (p < 0.05; unpaired two-sided Welch’s t-test). Clusters of proteins differentially represented in response to COVID-19 (cluster 1,

overrepresented; cluster 2, underrepresented) are shown. Protein levels of four selected proteins with significant differences on each cluster were compared between

groups by one-way ANOVA test followed by post-hoc Bonferroni and Holm multiple comparisons (f-values and p-values are shown) and unpaired two-sided Welch’s

t-test (*p < 0.05, **p < 0.01, (***p < 0.001, ****p < 0.0001).
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FIGURE 5 | Enrichment ontology clusters for differentially overrepresented proteins in sera from COVID-19 cases. (A) Statistically enriched terms (GO/KEGG

biological processes; GO : BP). Accumulative hypergeometric p-values and enrichment factors were calculated and used for filtering. Remaining significant terms

were then hierarchically clustered into a tree based on Kappa-statistical similarities among their protein memberships (as used in DAVID Bioinformatics Resources

6.8; https://david.ncifcrf.gov). A 0.3 Kappa score was applied as the threshold to cast the tree into term clusters. The term with the best p-value within each cluster

was selected as its representative term and displayed in a dendrogram. The heatmap cells are colored by their p-values; white cells indicate the lack of enrichment

for that term in the corresponding gene list. BPs in which enrichment increased with disease severity only in symptomatic cases are shown. (B) Network of enriched

terms. We selected a subset of representative terms from the full cluster and convert them into a network layout. More specifically, each term is represented by a

circle node, where its size is proportional to the number of input genes that fall into that term, and its color represents its cluster identity (i.e., nodes of the same color

belong to the same cluster). Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score). The network is

visualized with Cytoscape (v3.1.2) with “force-directed” layout and with edge bundled for clarity. One term from each cluster is selected to have its term description

shown as label. (C) Network of enriched terms colored by p-value. The same enrichment network has its nodes colored by p-value, as shown in the legend. The

darker the color, the more statistically significant the node is (see legend for p-value ranges). (D) Quality control and association analysis. Protein lists were identified

in the ontology categories Transcription_Factor_Targets. All genes in the genome were used as the enrichment background. Terms with a p-value < 0.01, a

minimum count of 3, and an enrichment factor (ratio between the observed counts and the counts expected by chance) > 1.5 were collected and grouped into

clusters. The algorithm used here is the same as that used in the other enrichment analyses.
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FIGURE 6 | Enrichment ontology clusters for differentially underrepresented proteins in sera from COVID-19 cases. (A) Statistically enriched terms (GO/KEGG

biological processes; GO : BP). Accumulative hypergeometric p-values and enrichment factors were calculated and used for filtering. Remaining significant terms

were then hierarchically clustered into a tree based on Kappa-statistical similarities among their protein memberships (as used in DAVID Bioinformatics Resources

6.8; https://david.ncifcrf.gov). A 0.3 Kappa score was applied as the threshold to cast the tree into term clusters. The term with the best p-value within each cluster

was selected as its representative term and displayed in a dendrogram. The heatmap cells are colored by their p-values; white cells indicate the lack of enrichment

for that term in the corresponding gene list. BPs enriched only in symptomatic or asymptomatic cases are shown. (B) Network of enriched terms. We selected a

subset of representative terms from the full cluster and convert them into a network layout. More specifically, each term is represented by a circle node, where its

size is proportional to the number of input genes that fall into that term, and its color represents its cluster identity (i.e., nodes of the same color belong to the same

cluster). Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score). The network is visualized with Cytoscape

(v3.1.2) with “force-directed” layout and with edge bundled for clarity. One term from each cluster is selected to have its term description shown as label.

(C) Network of enriched terms colored by p-value. The same enrichment network has its nodes colored by p-value, as shown in the legend. The darker the color,

the more statistically significant the node is (see legend for p-value ranges). (D) Quality control and association analysis. Protein lists were identified in the ontology

categories Transcription_Factor_Targets. All genes in the genome were used as the enrichment background. Terms with a p-value < 0.01, a minimum count of 3,

and an enrichment factor (ratio between the observed counts and the counts expected by chance) > 1.5 were collected and grouped into clusters. The algorithm

used here is the same as that used in the other enrichment analyses.
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coagulation cascades, regulation of IGF, protein–lipid complex

remodeling, phagocytosis, scavenging of heme from plasma,
regulation of plasma lipoprotein oxidation, acute-phase response,

terminal pathway of complement, pathway of fibrin clot formation,

FOXA2 and FOXA3 transcription factor networks (HNF3B pathway

M106), positive regulation of cytokine production, tissue homeostasis,

hyaluronan metabolic process, positive regulation of lipase activity,

response to nutrient levels, renal system process, and positive

regulation of cell death (Figures 6B, C). The quality control and
association analysis showed that network representation of nuclear

receptor subfamily 1, group H, member 4 (NR1H4) target genes

increased with disease severity (Figures 5D, 6D). Protein–protein

interaction enrichment analysis resulted in complement, coagulation,

and clotting cascades for overrepresented proteins and lipoprotein

particle remodeling, reverse cholesterol transport, and peptide ligand-
binding receptors for underrepresented proteins (Supplementary

Figure 1).

Identification of Prognostic Biomarkers in
Proteins Associated With COVID-19
Disease Symptomatology
For validation of serum proteomics data, an enrichment analysis
was conducted using the Coronascape COVID database (https://

metascape.org/COVID) to identify proteins found in our study

as differentially represented in response to COVID-19 and

reported in previous COVID-19 omics datasets as a correlate
of disease severity (Supplementary Figures 3, 4). This analysis

also identified proteins dysregulated in COVID-19 patients

and potentially not previously associated with disease

symptomatology (Supplementary Figure 5). Of these proteins,

several were previously identified as biomarkers of severe

COVID-19 in non-omics studies and were not included in

further analyses (Supplementary Figure 5).
However, other proteins not previously identified in COVID-

19 patients or with differences in the representation profile

compared to our study were proposed as novel in relation to

disease symptomatology and were used for prognostic

biomarkers identification (Table 1 and Supplementary Figure

5). Of them, coagulation factor XII (F12) and transmembrane
protein 198 (TMEM198) showed an unsupportive profile for

biomarker prediction (Table 1 and Figure 7). TMEM198 has

been associated with diabetes as observed in comorbidities of

COVID-19 symptomatic cohorts included in the study

(Supplementary Table 1).

Selected identified candidate prognostic immune-related

biomarker proteins, PZP, Selenoprotein P (SELENOP),
Carboxypeptidase B2 (CPB2), and Serum paraoxonase/

arylesterase 1 (PON1) (Table 1), were validated by ELISA

FIGURE 7 | Prognostic biomarker proteins related to COVID-19 symptomatology. Network analysis of interactions between proteins and BPs reflects nestedness or

structuring of the cluster’s magnitude decreasing with COVID-19 symptomatology. SWATH-MS quantitative serum proteomics identified proteins involved in

physiological disorders and processes associated with COVID-19 and novel biomarker proteins with potential implications for the development of new diagnostic and

therapeutic interventions to contribute to the control of this pandemic. *Unsupportive protein profile for prognostic biomarker. Selected serum biomarkers (PZP,

SELENOP, CBP2, and PON1) were validated by ELISA. Change in protein serum levels with significant differences in comparison to healthy controls (*p < 0.05, **p <

0.01; one-way ANOVA test with post-hoc Tukey HSD). Proteomics and ELISA data were compared by Spearman’s Rho (rs) correlation analysis (ŏp < 0.05, ŏŏp < 0.01).
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using sera from individuals of all cohorts included in the study

(Figure 7). The results corroborated the predictive value of these

biomarkers for disease recovery (SELENOP and PON1), severity

(CBP2), and symptomatology (PZP).

Characterization of Differentially
Represented Proteins in Response to
COVID-19 and Associated to Other Human
Diseases and Conditions to Monitor Risk
Factors for Disease Symptomatology
An enrichment analysis was conducted using the DisGeNET

discovery platform (https://www.disgenet.org) provided by

Metascape (https://metascape.org) to identify proteins

differentially represented in response to COVID-19 and

associated to other human diseases and conditions with major

affected physiological processes resulting in macrophage

activation and coagulopathy (Figure 7 and Supplementary

Figure 6). The results showed two main types of pathologies

enriched with disease severity, renal insufficiency (acute kidney

injury, acute kidney insufficiency, proteinuria, and nephrotic

syndrome) and blood coagulation alterations (factor V Leiden

mutation, activated protein C resistance, and lupus anticoagulant

disorder). Alterations in blood coagulation are a consequence of the
SARS-CoV-2 infection and the associated pro-inflammatory

processes (52, 53). Three of the identified pathologies (factor V

Leiden mutation, activated protein C resistance, and lupus

anticoagulant disorder) are related to pro-coagulant alterations

and have been clinically associated with COVID-19 coagulopathy

(54). Renal insufficiency has been associated with poor COVID-19

prognosis (55), and the results correlated with renal disease

comorbidity in COVID-19 symptomatic cohorts included in the

study (Supplementary Table 1). Drug toxicity and adverse

reaction to drug are likely associated with the patient’s response

to drugs, which were supplied to all symptomatic patients

(Supplementary Table 1). Hyperlipidemia but not complement
deficiency disease correlated with clinical conditions in COVID-19

cohorts (Supplementary Table 1). Inflammation is a common

condition in COVID-19 patients with increasing symptomatology

with disease severity (Figure 1). Several of these disorders and

COVID-19 disease severity are associated with positive regulation of

interleukins (e.g., IL-6) (56) (Supplementary Figure 5A,
Supplementary Data 2). However, in this study, we did not

identify interleukins in the serum proteomics dataset, likely due to

low protein levels in healthy and asymptomatic cases and

interventions to control the so-called “cytokine storm” in

symptomatic COVID-19 patients (Supplementary Figure 7).

Other identified diseases such as amyloidosis, complement
deficiency disease, age-related macular degeneration, and glycogen

storage disease type II have not been previously directly associated

with COVID-19 at least as evidenced in this study. These diseases

and conditions may be used to monitor risk factors for COVID-19

disease symptomatology.

DISCUSSION

In this study, SWATH-MS quantitative serum proteomics
together with multiple data analysis algorithms was used to

TABLE 1 | Candidate prognostic biomarker proteins related to COVID-19 disease symptomatology.

Proteins Results of our study Previous findings Biomarker predictor Refs

Selenoprotein P (SELENOP) Overrepresented in recovered cases Lower levels in COVID-19

patients

Disease recovery

Validated by ELISA

(38)

Coagulation factor IX (F9) Overrepresented in all COVID-19 patients. Correlation with

symptomatology

Decrease in protein levels from

nonsevere to severe patients

Disease progression (22,

39,

40)

Coagulation factor XII (F12) Overrepresented in all but nonsevere COVID-19 patients Not identified Unsupportive profile (40)

Carboxypeptidase B2 (CPB2) Overrepresented in all but asymptomatic COVID-19

patients

Not identified Disease severity

Validated by ELISA

(41)

Transmembrane protein 198 (TMEM198) Underrepresented in asymptomatic and severe COVID-19

patients

Not identified Unsupportive profile (42,

43)

ATP-binding cassette sub-family F

member 1 (ABCF1)

Overrepresented in asymptomatic and underrepresented

in nonsevere and severe COVID-19 patients

Not identified Symptomatology and

disease progression

(44)

Insulin-like growth factor-binding protein

complex acid labile subunit (IGFALS)

Underrepresented in all COVID-19 patients Increase in protein levels from

nonsevere to severe patients

SARS-CoV-2 infection (22,

44)

(45)

(46)

(47)

Serum paraoxonase/

arylesterase 1 (PON1)

Underrepresented in nonsevere and recovered COVID-19

patients

Increase in protein levels from

nonsevere to severe patients

Disease recovery

Reduction in

thyroiditis

Validated by ELISA

(22,

48,

49)

Pregnancy zone protein (PZP) Underrepresented only in asymptomatic cases Not identified Symptomatology

Validated by ELISA

(50)

Vitamin K-dependent protein S (PROS1) Overrepresented in recovered, nonsevere, and severe

COVID-19 patients but with lower levels in severe cases

Associated with COVID-19

coagulopathy

Disease progression

Symptomatology

(51)

Proteins related to COVID-19 symptomatology and used for the identification of candidate prognosis biomarkers. Protein representation refers to significant differences when compared to

healthy controls. Full data are disclosed in Supplementary Data 1 and Figures 5, 7.
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characterize host response to SARS-CoV-2 infection in different

cohorts from asymptomatic individuals to severe patients. Due to

the complexity of COVID-19 symptomatology, this approach

contributed to a better understanding of disease mechanisms and

symptoms with possible medical complications at different levels

and the identification of potential diagnostic/prognostic
biomarkers and drug targets (22–25). The results corroborated

previous findings in COVID-19 studies and highlighted how the

representation of dysregulated serum proteins and associated BPs

increases with COVID-19 disease symptomatology from

asymptomatic to severe cases (4–6, 8–13, 18, 22–25). However,

the analysis was focused on results that provided new insights
into COVID-19 disease symptomatology and potential biomarker

proteins for diagnostic and therapeutic interventions (Figure 7).

Of the significantly dysregulated proteins, selected immune-

related proteins PZP, SELENOP, PON1, and CBP2 were

validated as candidate prognostic biomarkers for COVID-19

symptomatology (Table 1 and Figure 7). Of them, PZP was
underrepresented in asymptomatic cases only. This protein is

a broad-spectrum immunosuppressive protein that suppresses

T-cell function during pregnancy to prevent fetal rejection, and

its overrepresentation correlates with airway infection and

bronchiectasis disease severity (50). Consequently, serum PZP

protein levels may be used as a biomarker for COVID-19 disease

symptomatology and prognosis of asymptomatic carriers.
Selenoprotein levels related to selenium (Se) status affect

immune defense and tissue homeostasis through its effect on the

trafficking of tissue macrophages (57, 58), and thus SELENOP

may be used as a biomarker for disease recovery. PONs have the

capacity to protect cells from oxidative stress and are implicated in

the pathogenesis of inflammatory diseases (59, 60). Findings
suggest a role for PON1 against atherosclerosis and obesity and

protective capacity against bacterial, parasitic, and viral infectious

diseases (59). Regarding COVID-19, PON1 has been shown to

increase in protein levels from nonsevere to severe patients (22)

and we found the protein underrepresented in nonsevere and

recovered patients, thus suggesting a biomarker for disease

recovery. CPB2 appears to have a role in innate immunity
through inactivation of complement component C5a, which can

induce inflammatory pathways via C5aR receptor (41, 61). In our

study, CPB2 was overrepresented in all but asymptomatic

COVID-19 patients, thus providing a candidate biomarker for

disease severity. As expected, the serum levels of these biomarkers

correlated with the anti-SARS-CoV-2 Spike IgG levels previously
shown to significantly increase from asymptomatic to severe

cohorts included in this study (28).

Enrichment analyses were used to identify prognostic

biomarker proteins and association to other human diseases

and conditions (Figure 7 and Supplementary Figure 6). The BP

enrichment and association analyses showed that network

representation of nuclear receptor subfamily 1, group H,
member 4 (NR1H4) target genes increased with COVID-19

disease severity (Figure 7). The farnesoid X receptor (FXR,

NR1H4) encodes a ligand-activated transcription factor, which

shares structural features in common with nuclear hormone

receptor family that functions as a receptor for bile acids (BA)

and regulation of the expression of genes involved in bile acid

synthesis and transport, lipid and glucose homeostasis, and

innate immune and inflammatory responses (62). NR1H4 is

essential for BA homeostasis while FXR and its hepatic and

intestinal target genes transcriptionally regulate BA synthesis,

detoxification, secretion, and absorption in the enterohepatic
circulation. Furthermore, FXR agonists as well as a fibroblast

growth factor 19 (FGF19) analogue are currently tested in

clinical trials for different cholestatic liver diseases (57). The

FOXA1 transcription factor network (HNF3A pathway M285)

BP with overrepresented proteins in response to COVID-19

increased in enrichment with disease severity (Figure 7). This
pathway (https://www.gsea-msigdb.org/gsea/msigdb/cards/PID_

HNF3A_PATHWAY) coordinates function of primary airway

epithelial cells (63) and has been associated with more aggressive

breast (64) and prostate cancer (65). Accordingly, considering

disorders and processes associated with COVID-19, these

proteins may be proposed as candidate prognosis biomarkers
for disease progression and severity (Figure 7).

The network of interactions between proteins and BPs

characterized using Graph Theory algorithms reflected patterns

in correlation with COVID-19 disease severity (Figure 7 and

Supplementary Figure 2). A distinctive finding using this

approach was the acute-phase response SAA2–SAA4 (SAA2–4)

readthrough proteins, whose overrepresentation was associated
with nonsevere and severe COVID-19 patients (Figure 7). The

SAA2 has been used to monitor the severity of COVID-19 and as

a biomarker for SARS-CoV-2 infection (4). However, the

increase in the expression of SAA2–4 coding acute-phase

reactant genes or serum protein levels has not been directly

associated with COVID-19 patients but with clear cell renal
carcinoma (66) and lung cells (67). Therefore, these proteins

constitute biomarkers for SARS-CoV-2 infection and prognosis

of disease severity (Figure 7).

Other novel prognostic biomarker proteins related to COVID-

19 disease symptomatology were identified (Table 1 and Figure 7)

(22, 68). These biomarkers included potential prognostic tools for

SARS-CoV-2 infection, disease symptomatology, progression and
recovery, and reduction in thyroiditis. To contribute to the

application of these findings in the clinic, some of these

prognostic biomarkers were validated using protein-specific

ELISA tests (Figure 7) and could be incorporated into the daily

routine for disease diagnosis/prognosis. Recently, the glycoprotein

Galectin-9 (Gal-9) involved in innate immunity and associated
with cytokine release syndrome was identified as a surrogate

diagnostic biomarker in SARS-CoV-2 infection (69). In our

proteomics study, Gal-9 was not identified, but in accordance

with these results, the Galectin-3-binding protein (Gal-3BP)

with a role in innate immune response to viruses (70) was

significantly overrepresented in all symptomatic COVID-19

cohorts (Supplementary Data 1).
At the level of other human diseases and conditions, findings

revealed potential disorders associated with COVID-19

(Figure 7 and Supplementary Figure 6). Hyperlipidemia and

other forms of dyslipidemia have been associated with COVID-

19 severity (71) and may be related to FXR and NR1H4 BP
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enrichment. Amyloidosis in its different forms is caused by

deposition of immunoglobulin light chains and have not been

previously associated with COVID-19 except for the

management of patients with this condition (72). Accordingly,

immunoglobulin lambda and kappa variable light chains were

overrepresented in nonsevere and severe patients when
compared to healthy individuals (Figures 3A, C). Another

interesting finding was the complement deficiency disease

(Figure 7). The complement cascade that is directly associated

with blood coagulation alterations (73, 74) has been implicated

in COVID-19 pathology (Supplementary Figure 4) (75).

However, in our study, complement, coagulation, and clotting
cascades were clearly directly associated with COVID-19

severity, which may explain the association with complement

deficiency disease and thrombosis disorders. One of the

pathologies identified in our analysis was the age-related

macular degeneration (Figure 7). This pathology is directly

associated with dysregulation of complement regulators such
as factor H, which is treated with these factors as therapeutic

interventions (76) and has not been associated with COVID-19

but with the primary systemic amyloidosis identified here as

enriched with disease severity (Figure 7) (77). Another

pathology identified as a correlate of disease severity was

glycogen storage disease type II, a lysosomal disease not

previously related to COVID-19. The immunity to glycan
Gala1-3Galb1-(3)4GlcNAc-R (a-Gal), which was recently

related to tick bites and allergic reactions to mammalian meat

consumption (alpha-gal syndrome) (78, 79), has been implicated

in the protective response to COVID-19 (28, 80). Complement

component C3 and hemoglobin subunit beta (HBB) were

associated with the immune response to a-Gal in the zebrafish
animal model (81) and were both significantly overrepresented

in COVID-19 patients when compared to healthy individuals

(Supplementary Data 1). In humans, the endogenous source of

a-Gal is gut bacteria (78), and glycan metabolism has a key role

in shaping microbiota composition (82). Therefore, the

dysregulation in C3 and HBB serum protein levels observed in

COVID-19 cohorts and previously reported in response to a-
Gal51 may be due to gut microbiota dysbiosis associated to SARS-

CoV-2 infection and COVID-19 severity (83, 84) (Supplementary

Figure 8). Apolipoprotein A (APOA) isoforms A-I, A-II, and A-

IV were significantly dysregulated in COVID-19 patients and

serum protein levels decreased with disease symptomatology

(Figure 4 and Supplementary Data 1). Lipoprotein(a)-
containing APOAs are endogenous triggers of innate immunity

and can induce trained immunity (TRIM) (85), thus suggesting

that TRIM associated with bacillus Calmette-Guérin (BCG)

vaccination may be affected in COVID-19 patients (86, 87)

(Supplementary Figure 8). Altogether, these disorders and

physiological processes should be considered to improve

monitoring of COVID-19 symptomatology and as potential
targets for therapeutic interventions to reduce the risk for severe

symptoms and mortality (23, 24).

A better understanding of COVID-19 on human molecular

pathophysiology is required for the identification of new

biomarkers and diagnostic and therapeutic targets. By August

9, 2021, 56 publications appear in PubMed with search keywords

“covid AND serum AND proteomic” (https://pubmed.ncbi.nlm.

nih.gov/?term=covid+serum+proteomic&sort=date). These

publications confirmed previous results in studies with

different cohorts, populations, and settings and/or provided

new serum biomarkers related to disease progression and
symptomatology. For example, among the latest publications

on this list, Pavel et al. (88) confirmed the association between

Th2/Th1 cytokine imbalance and COVID-19 risk mortality;

Singh et al. (89) confirmed the increase in serum inflammatory

markers in COVID-19 patients; Mitamura et al. (90) confirmed

cytokine storm in severe COVID-19 patients; Lazari et al. (91)
confirmed and validated SAA1 and SAA2 proteins as biomarkers

in low- and high-risk COVID-19 patients; Völlmy et al. (92)

proposed various serum proteins as biomarkers to predict

mortality in COVID-19 patients; Geyer et al. (93) showed a

functional association between serum proteins, biological

processes, and clinical parameters between COVID-19 patients
and symptomatic but PCR-negative individuals; Laudanski et al.

(94) identified serum proteins with potential role in COVID-19

pathology; and Gutmann et al. (95) found mannose binding

lectin 2 and pentraxin-3 (PTX3) of the innate immune system as

positively associated with COVID-19 mortality.

Our study is the first to provide serum proteomic profiles of

cohorts of SARS-CoV-2-infected recovered (hospital discharge),
nonsevere (hospitalized), and severe (ICU) cases with increasing

systemic inflammation in comparison with healthy individuals

sampled prior to the COVID-19 pandemic. The results not only

confirmed previous results but provided new serum biomarkers,

BPs, and physiological disorders related to disease progression

and symptomatology (Figure 7). The confirmation of previous
results in studies conducted with different cohorts and

populations as shown here for the first time in Spain is

important to validate diagnostic and therapeutic interventions

at a global scale affecting this pandemic. The new prognostic

biomarkers associated with COVID-19 reported here not only

serve in conjunction with diagnostic RNA, antigen, and antibody

detection tests to complement other previously identified
biomarkers such as IL-6, but also provide the possibility of

using highly abundant serum proteins for prognosis of disease

severity (e.g., CBP2, up to 0.1 mg/ml), asymptomatic carriers

(e.g., PZP, up to 350 ng/ml), or disease recovery (e.g., PON1, up

to 160 ng/ml). The disorders and processes associated with the

new biomarkers identified in this study provide clinical tools for
the evaluation and treatment of SARS-CoV-2 infection and

disease symptomatology and progression (Figure 7). For

example, detection of high HNF3A levels in nonsevere or

severe patients suggests their diagnosis and treatment to

reduce airway dilatation with production of large cysts

associated with function of airway epithelial cells (96).

The main limitations of this study include the following (a)
possible effect on serum protein representation of

immunosuppressive treatments to control the cytokine storm in

symptomatic COVID-19 patients (Supplementary Table 1); (b)

impact of comorbidities associated or not to COVID-19

(Supplementary Table 1); (c) serum samples were collected when
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the main circulating SARS-CoV-2 variant was WIV04/2019 and

thus possible differences with other variants in the serum protein

response to infection and caused pathologies should be considered;

(d) although serum proteomics analysis was conducted with

samples on each cohort including three pools of 5–10 individuals

each (Figure 1), studies with a larger number of samples and/or on
individual cases may provide case-by-case differences in serum

protein representation; and (e) as samples were collected from a

retrospective study (28), the effect of some factors such as age (oldest

in nonsevere cases; Figure 1) but not sex ratio (similar in all groups;

Figure 1) may affect protein representation. However, because age

did not show significant differences between severe and
asymptomatic or heathy cohorts, possible differences in age-

related serum protein representation should not affect the main

results of the study.

In conclusion and despite these limitations, the SWATH-MS

quantitative serum proteomics used in our study together with

multiple data analysis algorithms contributed to the
characterization of SARS-CoV-2–host molecular interactions

and advanced translational medicine by identifying prognostic

biomarker proteins and physiological disorders with potential

implications for disease diagnosis/prognosis contributing to the

control of the COVID-19 pandemic. The identified biomarkers

for disease recovery (SELENOP and PON1), severity (CBP2),

and symptomatology (PZP) could be used for disease prognosis.
For example, in some cases, hospitalized nonsevere patients

could progress to disease recovery (hospital discharge) or

severity (ICU). In our study, the results showed that some of

these biomarkers may be used to evaluate the risk of hospitalized

patients to develop severe symptoms.
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