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Abstract

The static and dynamic characteristics of a bimorph deformable mirror (DM) for use in an adaptive optics system are described. The DM is

a 35-actuator device composed of two disks of lead magnesium niobate (PMN), an electrostrictive ceramic that produces a mechanical strain in

response to an imposed electric field. A custom stroboscopic phase-shifting interferometer was developed to measure the deformation of the mirror

in response to applied voltage. The ability of the mirror to replicate optical aberrations described by the Zernike polynomials was tested as a

measure of the mirror’s static performance. The natural frequencies of the DM were measured up to 20 kHz using both stroboscopic interferometry

as well as a commercial laser Doppler vibrometer (LDV). Interferometric measurements of the DM surface profile were analyzed by fitting the

surface with mode-shapes predicted using classical plate theory for an elastically supported disk. The measured natural frequencies were found to

be in good agreement with the predictions of the theoretical model.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Originally developed to remove atmospheric distortion from

astronomical imaging systems, adaptive optics (AO) has seen

more recent application to ophthalmologic instruments and

free-space optical communication systems. In each of these

applications, the AO system uses a deformable mirror (DM)

to correct for optical aberrations by removing phase distor-

tions from the incident wavefront. Since the existing DM

technology developed for astronomy is expensive and bulky,

recent research has focused on using micro-electromechanical

(MEMS) technology to create a more compact, low-cost DM.

Several MEMS DM designs have been demonstrated, includ-

ing: membrane-based (OKO Technologies Inc.) [1]; polysilicon

surface-micromachined (Boston Micromachines Inc.) [2]; bulk

silicon (Iris AO Inc.) [3]; and piezoelectric monomorphs Jet

Propulsion Laboratory [4].

The ability of a DM to correct for a particular optical aber-

ration is determined by the aberration’s spatial frequency and

∗ Corresponding author. Tel.: +1 530 752 1778; fax: +1 530 752 4158.

E-mail address: dahorsley@ucdavis.edu (D.A. Horsley).

amplitude. Roughly speaking, the maximum spatial frequency

that a DM may correct is determined by the number of actu-

ators, while the maximum correctable amplitude is dependent

on the type of DM employed. For a segmented DM, the maxi-

mum correction amplitude depends only on actuator stroke and

is independent of spatial frequency, whereas for continuous face-

sheet and bimorph DMs, the correction amplitude depends on

the imposed spatial frequency.

Many MEMS DM designs have been driven by the moti-

vation to produce wavefront correctors with hundreds or

thousands of actuators. For applications which require the

correction of only low-order aberrations (such as defocus,

astigmatism, coma, and spherical aberration), a DM with less

than 100 actuators may be the best choice, as such a device

can be lower in cost and complexity than a DM with higher

actuator count. There is some evidence that such a low order

DM may provide sufficient correction for opthalmological AO

applications. Defocus and astigmatism, which are second-order

aberrations, represent 92% of the total wavefront aberrations

found in subjects with normal vision [5], and the aberration

magnitude diminishes with increasing radial order. The domi-

nant higher order aberrations are coma and spherical aberration,

which are third- and fourth-order aberrations and account for

0924-4247/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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1.8% and 1.6% of the total RMS wavefront error, respectively

[6].

We have chosen to investigate the characteristics of bimorph

DMs in an effort to understand their suitability for opthalmolog-

ical AO applications. This class of DM is capable of correcting

very large amplitude, low-order aberrations, and is simple to

construct, a fact that should ultimately result in a low-cost DM

[7]. The drawback of the bimorph design is that the maximum

correctable amplitude diminishes strongly with increasing spa-

tial frequency [8]. For this reason, the bimorph DM is unlikely to

be suitable for systems requiring correction of very high-order

aberrations. However, the bimorph may satisfy the requirements

of opthalmological AO, where correction of aberrations up to the

fifth radial-order may be sufficient.

We have tested three bimorph DMs manufactured by AOptix

(Campbell, CA), each having similar characteristics with the

exception of small manufacturing differences [9,10]. One of

these units has been successfully employed in an AO system for

in vivo retinal imaging [11]. Additionally, Dalimier and Dainty

recently showed that the AOptix DM was superior to two other

DMs when used to correct for synthetic aberrations typical of

those found in the human eye [12].

2. Methods

Tests were performed using a commercial laser-Doppler

vibrometer (LDV) and a custom-built stroboscopic phase-

shifting interferometer, described below. Our first objective was

to characterize the maximum correction amplitude that the DM

could produce as a function of spatial frequency. To this end, we

developed a method to use the DM to reproduce optical aber-

rations described by the Zernike polynomials [13]. Next, we

studied the dynamic characteristics of the DM and experimen-

tally measured the natural vibration modes.

2.1. Bimorph DM design

The layout of the AOptix DM is illustrated in plan view and

cross-section in Fig. 1. The device is composed of two 160 �m

thick layers of the electrostrictive ceramic lead magnesium nio-

bate (PMN). Metal electrodes are deposited onto the PMN and

the two layers are bonded together with a 25 �m thick layer

of conductive adhesive. The metallization on the back face of

the DM is patterned to produce 36 electrodes, while the uniform

metallization on the front face of the DM produces a single front

face electrode. The DM is 20 mm in diameter, with only the cen-

ter 10.2 mm of the DM used as an optical surface in order to

reduce the effect of the edge supports on the DM surface profile.

As illustrated in the figure, voltage is applied to the elec-

trodes on the front and back faces of the DM, with the inner

bonded electrodes serving as ground contacts for both layers.

The electrodes on the back face of the DM consist of a central

pad surrounded by four annular rings of electrodes. The central

pad and the electrodes in the two inner rings (channels 1–19) are

used to generate local curvature in the mirror surface, while the

electrodes in the outer ring (channels 20–35) produce a slope

at the edge of the DM. The curvature and slope electrodes are

Fig. 1. Layout of the AOptix DM: plan view of electrodes (top) and cross-

sectional view (bottom). The numbering of the actuator channels is indicated on

the plan view.

separated by the third annular electrode ring which defines the

10 mm pupil. The completed mirror assembly is mounted in a

housing with manual tip-tilt adjustment and a 10.2 mm clear

aperture.

PMN is a relaxor ferroelectric material that displays elec-

trostrictive behavior near room temperature [14]. Like piezo-

electric materials such as lead zirconium titanate (PZT), elec-

trostrictive materials deform mechanically when an electric field

is applied to the material. In contrast to piezoelectrics, in which

the direction of deformation reverses with the polarity of the

applied field, in electrostriction the deformation direction is

independent of the sign of the applied electric field. Although

a wide variety of dielectrics possess electrostrictive properties,

the effect is particularly large in the relaxor ferroelectrics like

PMN. When an electric field is applied to PMN, the material

contracts along the transverse axes. In comparison with PZT,

PMN has the advantage of greater linearity and lower hysteresis

at room temperature.

In the bimorph structure, voltage applied across the top layer

generates a tensile stress in the top layer, causing the bimorph to

undergo a concave curvature. Similarly, voltage applied across

the bottom layer results in convex curvature. Because the front

face electrode has a capacitance that is more than 36 times greater
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Fig. 2. Cross-sectional view of the DM mount (top) and simplified mechanical

model for the DM edge supports (bottom).

than the capacitance of the individual back face electrodes,

driving this electrode at high frequencies requires considerably

greater power and current from the high voltage drive amplifiers.

As a result, when employed in a high bandwidth AO system, the

front face electrode is normally biased at a constant voltage, and

only the back-face electrode voltages are varied. In the absence

of any residual stress in the two layers, the DM surface is flat

whenever an equal voltage is applied across both the top and

bottom layers. Local convex (or concave) surface deformations

are then produced by setting the potential on the individual back

face electrodes above (or below) the potential on the front face

electrode. To allow symmetric convex/concave actuation, the

front-face potential is normally set to approximately the middle

of the output span of the high-voltage amplifiers. Residual stress

from the manufacturing process results in a slight parabolic cur-

vature to the DM surface when all the electrodes are at the same

potential. This initial curvature is removed by applying a small

voltage difference between the front and back face electrodes.

We have tested three DM units and each required slightly dif-

ferent voltage settings to flatten the DM.

Mounting a bimorph DM is a challenging problem, since

any constraint at the edges of the DM will reduce the curva-

ture which can be achieved. The AOptix DM is mounted using

two rubber o-rings which are preloaded by multiple set-screws

arrayed at the outer edge of the mirror [15], as illustrated in

Fig. 2. The o-ring mount produces translational compliance and

near-zero rotational compliance at the DM edge, as described

further below.

2.2. Phase-shifting interferometer

Dynamic and static measurements of the surface profile of the

DM were collected using a stroboscopic phase-shifting interfer-

ometer. A block-diagram of the instrument is illustrated in Fig. 3.

The instrument is a Twyman–Green interferometer in which a

piezoelectric stage (Polytec PI P-753.11C) translates a reference

mirror in order to introduce a controlled phase-shift between the

Fig. 3. Stroboscopic interferometer block-diagram. RM: reference mirror,

HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam-splitter,

POL: polarizer, DM: deformable mirror, HVA: high voltage amplifier, DD: dig-

ital delay.

light passing through the reference and measurement arms of

the interferometer. Surface height variations in the DM create

interference fringes when the reference and measurement beams

are recombined, producing an interferogram that is captured and

digitized using a CCD camera (Cohu 6612-1000) and a frame-

grabber card (Matrox Meteor-II). The surface profile of the DM

is reconstructed using five interferograms collected at four dis-

tinct phase shifts (0, �/2, �, 3�/2) using Hariharan’s algorithm

[16]. The use of a similar instrument for dynamic characteriza-

tion of millimeter-sized MEMS devices was first described by

Hart et al. [17]. The instrument is capable of measuring the sur-

face profile with an RMS accuracy of approximately 6 nm and

an absolute accuracy of ±60 nm across a 10 mm pupil.

The interferometer was outfitted with a pulsed diode laser to

allow the DM surface profile to be measured in response to time-

varying voltage inputs. The 10 mW laser (Hitachi HL6320G) is

driven with a custom current source capable of producing opti-

cal pulses of less than 1 �s duration. Strobing the illumination

source gates the image, allowing motion at frequencies much

faster than the CCD frame rate (30 Hz) to be measured. The

strobed illumination is synchronized to the high voltage line used

to drive one of the actuators on the DM, and a programmable

digital delay unit (Directed Energy model PDG-2510) is used to

control the time delay (�t) between the applied voltage and the

optical pulse. By varying �t, images of the DM surface at var-

ious times throughout the actuation cycle are obtained. Ideally,

the optical pulse is sufficiently fast that the DM is essentially

motionless during the measurement interval; any motion of the

mirror surface during this interval reduces the contrast of the

interference fringes and introduces error in the surface mea-

surement. Assuming that the DM undergoes a 1 �m amplitude,

10 kHz sinusoidal oscillation, the maximum motion of the mir-

ror surface over a 1 �s interval is approximately 63 nm. This
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is approximately λ/10 for a 635 nm diode laser, representing a

small but acceptable reduction in contrast.

2.3. Open-loop generation of Zernike modes

To characterize the dependence of the DM stroke on the

spatial frequency of deformation, a simple open-loop control

method was developed. In this approach, the deformation of

the DM surface is modeled as a weighted combination of the

deformations contributed by each actuator channel, known as

the actuator influence function. The deformation of the DM sur-

face, w(r, θ), is described by

w(r, θ) =

N
∑

i=1

f (vi)ϕi(r, θ) (1)

where N represents the number of actuators on the DM, ϕi(r, θ)

is the influence function and vi is the control voltage applied to

the i-th actuator, while f (vi) represents the normalized actuator

displacement as a function of applied voltage. In the special

case that the actuator displacement varies linearly with applied

voltage, f (vi) may be replaced by (vi/vmax) in (1). In vector-

matrix form, (1) becomes:

w(r, θ) = f (�v)�ϕ(r, θ)T (2)

where �ϕ(r, θ) = [ϕ1(r, θ), ϕ2(r, θ), . . . , ϕN (r, θ)] and

�v = [v1, v2, . . . , vN ]. In electrostrictive and piezoelectric

bimorphs, the displacement is a nonlinear function of applied

voltage. To approximate f (vi), we drove all the actuators at

the same voltage and measured the DM displacement as a

function of applied voltage. This method does not account for

any variation between different actuators, but does account for

the general saturation characteristics of the PMN ceramic.

The influence function for each of the N = 35 back face elec-

trodes was measured by applying vmax to the desired channel and

interferometrically measuring the resulting DM surface shape.

The guard ring was not utilized in these tests and was held at

a constant potential equal to that of the front face electrode.

Each measured influence function was then approximated with

an M-dimensional combination of Zernike polynomials through

a least-squares fit [18]:

ϕi(r, θ) =

M
∑

j=1

aijzj(r, θ) (3)

where zj(r, θ) is the j-th Zernike polynomial, and the aij’s are

the coefficients used to fit the i-th influence function. Piston, the

0-th order polynomial, was discarded after the least-squares fit.

Expressed in vector-matrix form:

�ϕ(r · θ)T = A�z(r · θ)T (4)

where �z(r · θ) = [z1(r · θ), z2(r · θ), . . . , zM(r · θ)] is the 1 × M

vector of Zernike polynomials and A is the N × M influence

matrix. The present work explores using the DM to generate 20

Zernike mode shapes up to the fifth radial order, so the maximum

fit length was M = 20, resulting in a 35 × 20 A matrix. When A is

decomposed using the singular-value decomposition (SVD), the

magnitude of each singular value provides an indication of the

DM’s ability to reproduce each Zernike mode—singular values

near zero indicate modes which are not controllable with the

DM. The SVD is used to compute A*, the pseudo-inverse of A,

which in turn is used to calculate the vector of control voltages, �v,

required to reproduce the desired combination of Zernike mode

shapes. If the 1 × M vector �e represents the desired combination

of Zernike modes, the required control voltages can be calculated

from:

�v = f−1(�eA∗) (5)

Since f (vi) is not generally invertible, the function is approxi-

mated using a fifth-order polynomial fit of the measured voltage

to displacement curve and the inversion is performed using a

look-up table which maps actuator displacement to control volt-

ages. In the case where the actuator displacement varies linearly

with applied voltage, (5) becomes:

�v = vmax�eA
∗ (6)

2.4. Modal response model

To study the dynamic response of the mirror surface to input

voltage pulses, the free vibration of the DM was analyzed using

classical plate theory. Approximating the DM as a thin, uniform,

circular plate of PMN, the free vibration of the DM, w(r, θ, t),

is described by the following fourth-order differential equation:

D∇4w(r, θ, t) + ρh
∂2w(r, θ, t)

∂t2
= 0 (7)

where D = Eh3/(12(1 − ν2)) denotes the flexural stiffness, and

E, ν, ρ, h are the Young’s modulus (61 GPa), Poisson’s ratio

(0.3), density (7.8 g/cm3), and thickness of the DM (345 �m).

When the plate deflection is decomposed into a spatially vary-

ing and a temporally varying component, so that w(r, θ, t) =

u(r, θ) exp(jωt), the spatial solutions to (7) are mode shapes of

the following form:

umn(r, θ) = Amn[Jm(βmnr) + BmnIm(βmnr)]cos mθ (8)

where Amn is a normalization constant, Bmn a mode shape param-

eter, βmn an eigenvalue, Jm and Im denote the m-th order Bessel

function of the first kind and the m-th order hyperbolic Bessel

function of the first kind, respectively. The eigenvalues of (8)

are related to the natural frequencies of the DM by

fmn =

(

1

2π

) (

βmn

R

)2
√

D

ρh
(9)

where R is the radius of the DM.

Values for the constants Amn, Bmn, and βmn can be calculated

by applying the boundary conditions imposed by the DM mount.

These constants were computed using the solution developed

by Zagrai and Donskoy for a plate with elastic supports [19].

The translational stiffness of the o-ring support was modeled

by first computing the deflection, δ, of the o-ring due to a load

per unit length, p, using a Hertzian contact model of a cylinder
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compressed between two flat surfaces [20]:

δ(p) = 2pV

{

1 + ln

[

2(2πR)2

Vpd

]}

(10)

where V = (1 − ν2)/(πE), ν is Poisson’s ratio for the rubber o-

ring (0.5), E the Young’s modulus for rubber (1.7 MPa), d the

cross-sectional diameter of the o-ring (1 mm), and R is the radius

of the o-ring (10 mm). These material constants for the o-ring

were estimated based on typical o-ring characteristics and result

in reasonable agreement with the experimental data. A linearized

compliance per unit length, CT, was calculated from the slope

of the load-deflection model (10) at a given pre-load per unit

length, p0:

CT =
dδ(p)

dp

∣

∣

∣

∣

p=p0

= 2V ln

[

2(2πR)2

Vp0d

]

(11)

CT is relatively insensitive to changes in the pre-load since it

has a logarithmic dependence on this parameter. We assumed

a pre-load per unit length of 0.16 N/mm. Taking into account

the o-rings on both surfaces of the mirror and multiplying the

stiffness per unit length by the circumference of the o-rings, the

total translational stiffness of the mount was found to be:

KT = 2

(

2πR

CT

)

= 35 N/mm (12)

In addition to the flexural natural frequencies described by (9),

the DM also has a rigid-body mode due to the DM vibrating in

the mirror mount. The natural frequency of this mode is given

by

f0 =

(

1

2π

)

√

KT

m
= 1.1 kHz (13)

where m denotes the mass of the mirror (0.85 g).

3. Results and discussion

3.1. Static measurements

Preliminary measurements of the nominally flat DM surface

were obtained with the front face and all back face electrodes

set to 100 V. The resulting surface height map, illustrated in

Fig. 4, shows a variation of 600 nm peak-to-valley and 120 nm

RMS. To isolate the effects of low spatial frequency variations

which could theoretically be removed in a closed-loop AO sys-

tem from the high spatial frequency surface roughness of the

mirror, the data were fit using a fifth-order Zernike approxima-

tion. The residual error after this fit is illustrated in the figure and

shows that a variation of 200 nm peak-to-valley and 13 nm RMS

remains. The primary source of this residual surface roughness is

small pits with a depth of approximately 150 nm and a diameter

of 100–200 �m. These pits are attributed to defects in the sur-

face produced when the ceramic surface of the DM is polished

during manufacturing.

3.1.1. Maximum stroke

Although the front face electrode is nominally biased at 100 V

and the back face electrodes are used to control the DM shape,

the maximum parabolic deformation is obtained when the elec-

tric field-induced stress in either the top or bottom ceramic layer

is minimized (by setting the potential across this layer to 0 V)

while the stress in the other layer is maximized (by setting the

potential to vmax = 300 V). This fact was utilized to character-

ize the maximum stroke available for defocus. The maximum

convex deformation, measured at 20.8 �m, is produced when

the front face electrode is driven to 300 V while all back face

electrodes (channels 1–35 and the guard ring) are grounded.

Similarly, the maximum concave deformation, measured at

19.3 �m, is produced when the front face electrode is grounded

while all back face electrodes are driven to 300 V. These

parabolic deformations correspond to defocus values of −3.2

Diopters and +3.0 Diopters when measured across the 10.2 mm

pupil.

Fig. 4. Measurements of flat DM. Left: measured mirror surface. Right: the residual error after a fifth order Zernike fit to the measured surface.
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Fig. 5. Measurement of actuator linearity and hysteresis. The front face and

guard ring electrodes are held at 100 V while all the remaining back face elec-

trodes (channels 1–35) are driven from 0 to 300 V.

3.1.2. Linearity

The linearity and hysteresis of the actuator characteristics

were measured by holding the front face and guard ring elec-

trodes at the nominal 100 V bias voltage and driving all the back

face electrodes from 0 to 300 V and back again. The results of

this test are shown in Fig. 5. At voltages below approximately

50 V, the mirror deformation displays a quadratic dependence on

the applied voltage. Voltages from 50 to 200 V result in a nearly

linear displacement characteristic, and the polarization of the

ceramic begins to saturate above 200 V, with very little displace-

ment occurring for voltages above 250 V (E ≈ 1500 V/mm). The

actuator hysteresis was measured to be 0.3 �m, approximately

2% of the full-scale peak-to-peak displacement of 16 �m.

3.2. Reproduction of Zernike mode shapes

Eq. (5) was used to calculate the control voltages required

to generate each Zernike mode shape up to the fifth order.

To determine the maximum peak-to-valley (PV) displacement

achievable for each mode, the amplitude of each mode was pro-

gressively increased in the input vector �e until the computed

control voltage on any one actuator channel exceeded the maxi-

mum limits available from the high-voltage amplifier. The results

of the open-loop mode shape generation tests are summarized

in Fig. 6 and Table 1.

As expected for a bimorph DM, the maximum amplitude is

observed to be approximately proportional to the inverse square

of the mode’s radial order, e.g. the amplitude for second order

modes is approximately 8 �m, for third order modes it dimin-

ishes by about (2/3)2 to 3.5 �m, for fourth order it falls by (2/4)2

to 2 �m, and for fifth order modes it drops by (2/5)2 to 1.3 �m.

Additionally, the measured amplitudes are comparable to those

obtained by Dalimier and Dainty [12]. However, the amplitude

Fig. 6. Replication of Zernike mode shapes using the open-loop control method. The maximum PV amplitude and RMS residual error (ER) are indicated for each

mode.



D.A. Horsley et al. / Sensors and Actuators A 134 (2007) 221–230 227

Table 1

Summary of maximum stroke and RMS error for generated Zernike modes

Radial order Angular frequency Description Peak-valley (�m) RMS error (�m)

2

−2 Astigmatism (−45 and +45) 7.464 0.164

0 Defocus 3.232a 0.264

+2 Astigmatism (0 and 90) 6.078a 0.304

3

−3 Trefoil 1 4.205 0.151

−1 Vertical Coma 2.510 0.139

+1 Horizontal Coma 2.186 0.156

+3 Trefoil 2 3.357 0.153

4

−4 Quadrafoil 1 2.749 0.156

−2 Secondary astigmatism 1 1.718 0.121

0 Spherical aberration 1.295 0.125

+2 Secondary astigmatism 2 1.578 0.090

+4 Quadrafoil 2 2.279 0.143

5

−5 Pentafoil 1 1.511 0.166

−3 Secondary Trefoil 1 1.161 0.110

−1 Secondary Coma 1 1.399 0.114

+1 Secondary Coma 2 1.063 0.110

+3 Secondary Trefoil 2 1.480 0.143

+5 Pentafoil 2 1.474 0.143

a Limited by saturation of a single actuator. The actual limit is expected to be approximately 8 �m.

of several modes, including defocus (Z0
2) and 90◦ astigmatism

(Z+2
2 ), is limited by saturation of a single actuator. This is a

limitation of the open-loop control method, and the measured

amplitudes for these modes do not reflect the maximum capa-

bility of the DM. In the earlier test used to characterize actuator

stroke, where all back face electrodes were driven with a com-

mon voltage, a parabolic deformation of approximately ±8 �m

was generated. This earlier result is consistent with the 7.5 �m

amplitude achieved for the 45◦ astigmatism mode (Z−2
2 ), so it

is expected that this represents the true amplitude achievable

for second order aberrations. We have since demonstrated a

closed-loop AO system incorporating this DM and confirmed

this prediction [21].

The RMS error for each mode shape is approximately con-

stant for all mode shapes, and is nearly equal to the RMS error

present in the flat mirror surface. This is not unexpected, as the

model proposed in (1) does not account for any initial deforma-

tion in the mirror surface when the control voltages are set to

zero. As a result, any initial deformation in the mirror surface

will be present in all replicated surfaces.

While the RMS error for most of the mode shapes appears to

be distributed somewhat randomly over a variety of spatial fre-

quencies, the four third order modes show distinctive coupling

to their fifth order counterparts. This fact is illustrated in Fig. 7,

which shows the RMS error for these four modes (Trefoil 1, Hor-

izontal Coma, Vertical Coma, and Trefoil 2) decomposed using

the first 20 Zernike coefficients. In the figure, the Zernike polyno-

mials are numbered sequentially, using the single-index notation

from Malacara [18]. The figure shows that the RMS error for

each third order mode is mainly due to a strong component of

the corresponding fifth order mode (i.e. the RMS error of Tre-

foil 1, Z−3
3 , is mainly contributed by Secondary Trefoil 1, Z−3

5 ).

No similar coupling was observed between second and fourth

order modes, where the RMS errors were distributed roughly

randomly between the various Zernike modes.

3.3. Dynamic characterization

The dynamic characteristics of two DMs were measured

experimentally. Initial measurements were obtained using a

laser Doppler vibrometer (LDV, Polytec OFV-512). Frequency

response measurements were obtained using a dynamic signal

analyzer (Stanford Research Systems SR780) which was cou-

pled to the front-face electrode of the DM through a high voltage

amplifier (Piezo Systems EPA-104-115). The velocity and dis-

placement of the mirror surface in response to a step voltage

input are shown in Fig. 8. The initial settling behavior is domi-

nated by a lightly damped mode at approximately 2.6 kHz. After

Fig. 7. RMS error for four of the mode shapes decomposed using the first 20

Zernike coefficients.
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Fig. 8. Step response measurements. The initial response is accurately described by an underdamped second order model with fn = 2.67 kHz and Q = 18 (a). Following

the initial 10 ms transient response, the DM displays a slow creep of 1% of full-scale displacement over the next 60 ms (b).

the initial 10 ms settling time, a slow creep of approximately

1% of the full-scale displacement was observed over a 60 ms

interval. In addition to the dominant mode at 2.6 kHz, the DM

frequency response contains three other modes below 20 kHz,

as shown in Fig. 9.

In order to identify the mode shapes associated with each

natural frequency, the stroboscopic interferometer was used to

record the surface deformation of a second DM in response to

step changes in the voltage applied to the back face electrodes.

The voltage on all the back face electrodes was initially set to

0 V, causing the mirror to assume a parabolic shape. The voltage

on the back face electrodes was then set to the voltage required to

flatten the DM surface, producing a step disturbance to the mir-

ror. Surface height measurements, w(r, θ, t), were recorded every

10 �s over a 1 ms interval, for a total of 100 surface measure-

ments. After removing the tilt from each surface, the resulting

data set was analyzed by fitting each surface profile measurement

with the first four mode shapes defined by (8) using a least-

squares fitting algorithm. Mathematically, this can be expressed

as

w(r, θ, t) =
∑

mn

Amn(t)umn(r, θ) + e(r, θ, t) (14)

Fig. 9. DM frequency response measured with the LDV.

Fig. 10. FFT magnitude of measured modal amplitude coefficients.

where mn = 01, 11, 21, 02, and e(r, θ, t), represents the resid-

ual error after the least-squares fit. The frequency content of

each mode shape was then identified by computing the FFT of

the amplitude coefficients, Amn(t). The magnitude of the FFT of

each of these coefficients is displayed in Fig. 10. The dominant

frequency component of each amplitude coefficient is summa-

rized in Table 2 along with the natural frequencies measured

with the LDV and with the theoretical values predicted from the

Table 2

Modal frequencies

Mode Model (kHz) LDV (kHz) Interferometer (kHz)

Rigid body 1.1 1.15 –

01 2.8 2.6 3

11 6.7 6.5 6.2

21 11.3 – 12.3

02 13.1 14.5 15.4
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solution of (9) and (13). The coefficient for the 02 mode shape,

A02, appears to contain components from the 01 and 21 modes.

We attribute this to the fact that the surface profile measurements

obtained with the interferometer only capture the center 10 mm

of the DM, making it difficult to entirely resolve the difference

between the various mode shapes. In addition, the interferometer

is incapable of resolving the rigid-body mode, since the analy-

sis software only accounts for relative difference in the height

across the DM, rather than rigid-body translation of the entire

DM. The LDV measurements did not capture the 21 mode, sug-

gesting that the LDV measurement beam may have been located

on a node for this mode.

4. Conclusion

As expected for a bimorph DM, the AOptix device is capa-

ble of generating large displacements at low spatial frequencies.

At a constant front-face voltage of 100 V, the measured peak-

to-valley surface displacement was approximately ±8 �m for

the second order aberrations of defocus and astigmatism, corre-

sponding to a defocus of ±1.2 Diopters over the 10.2 mm DM

pupil. For comparison, this is four times the range of defocus

and eight times the range of astigmatism recently reported by

Fernandez for the OKO DM [22]. In addition, by varying the

potential of the front-face electrode, the AOptix device can gen-

erate an even larger range of ±3 Diopters of defocus. Although

the maximum deformation that the DM can generate diminishes

approximately with the square of the mode’s radial order, we

were able to generate fifth order modes with 1–1.5 �m of peak-

to-valley deformation. Because this range of deformations is

comparable to that expected from the 2 �m stroke Boston Micro-

machines DM, it is expected that both DM’s will display similar

capabilities for correcting aberrations up to the fifth radial order.

The transient response of the DM is dominated by a 2.6 kHz

mode. Although the lowest natural frequency of this mirror was

measured to be 1.1 kHz, we attribute this to a rigid-body mode

of the DM. Since the DM and wavefront sensors are located at

conjugate planes in a typical AO system, the rigid body mode is

unlikely to have a measurable impact on the closed-loop perfor-

mance of the DM. The remaining measured natural frequencies

are within 15% of the predictions of a model based on classical

plate theory.
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