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Abstract

Background: Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable
energy carrier as the technology of its production combines the elimination of organic waste with the formation of
a versatile energy carrier, methane. In consequence of the complexity of the microbial communities and metabolic
pathways involved the biotechnology of the microbiological process leading to biogas production is poorly
understood. Metagenomic approaches are suitable means of addressing related questions. In the present work a
novel high-throughput technique was tested for its benefits in resolving the functional and taxonomical complexity
of such microbial consortia.

Results: It was demonstrated that the extremely parallel SOLiD™ short-read DNA sequencing platform is capable of
providing sufficient useful information to decipher the systematic and functional contexts within a biogas-
producing community. Although this technology has not been employed to address such problems previously, the
data obtained compare well with those from similar high-throughput approaches such as 454-pyrosequencing GS
FLX or Titanium. The predominant microbes contributing to the decomposition of organic matter include members
of the Eubacteria, class Clostridia, order Clostridiales, family Clostridiaceae. Bacteria belonging in other systematic
groups contribute to the diversity of the microbial consortium. Archaea comprise a remarkably small minority in
this community, given their crucial role in biogas production. Among the Archaea, the predominant order is the
Methanomicrobiales and the most abundant species is Methanoculleus marisnigri. The Methanomicrobiales are
hydrogenotrophic methanogens. Besides corroborating earlier findings on the significance of the contribution of
the Clostridia to organic substrate decomposition, the results demonstrate the importance of the metabolism of
hydrogen within the biogas producing microbial community.

Conclusions: Both microbiological diversity and the regulatory role of the hydrogen metabolism appear to be the
driving forces optimizing biogas-producing microbial communities. The findings may allow a rational design of
these communities to promote greater efficacy in large-scale practical systems. The composition of an optimal
biogas-producing consortium can be determined through the use of this approach, and this systematic
methodology allows the design of the optimal microbial community structure for any biogas plant. In this way,
metagenomic studies can contribute to significant progress in the efficacy and economic improvement of biogas
production.
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Background
The utilization of fossil fuels on a global scale is limited

by the availability of these resources and by the environ-

mental effects of their excessive exploitation. The produc-

tion of renewable energy carriers is therefore currently

receiving increasing attention worldwide. Biogas is a

promising candidate as the technology of its production

may combine the treatment of various organic wastes with

the generation of an energy carrier for the most versatile

applications [1-4]. Biogas can be converted to heat and/or

electricity, and its purified derivative, biomethane, is suit-

able for every function for which fossil natural gas is used

today. The decomposition of organic materials by a micro-

bial community is carried out under anaerobic conditions

[5]. The great variety of diverse microbes that participate

in the microbial food chain gradually degrade the complex

molecules essentially to a mixture of CH4 and CO2 [6-9].

The actions of the various microbes, involving members

of the Eubacteria and Archaea, are coordinated by envi-

ronmental and internal factors. The composition of this

microbial consortium depends on various factors, such as

substrate ingredients, temperature, pH, mixing, or the

geometry of the anaerobic digester. A clear understanding

of the organization and behavior of this multifarious com-

munity is crucial for optimization of their performance

and attainment of the stable operation of the process.

Classical microbiological methods are principally based on

studies of isolated pure strains of microbes, and hence are

of little help when the goal is elucidation of the relation-

ships among members of a complex microbial consortium

in order to improve the overall performance.

The developent of high-throughput sequencing tech-

nologies has opened up new avenues for such investiga-

tions. Methods with which to reveal the compositions of

microbial communities, based on the generation of 16 S

rRNA gene clone libraries and Sanger sequencing of

the 16 S rDNA amplicons, have recently been devised

[10-13]. Archaeal community members have been iden-

tified and semi-quantitatively enumerated through the

use of the mcrA gene, which codes for one of the key

enzymes in methanogenesis, the α-subunit of methyl-

coenzyme M reductase occurring uniquely in methano-

gens [14]. Alterations in the organization of methanogenic

communities under various conditions have been reported

on the basis of this phylogenetic marker [15-19].

The automated Sanger sequencing approach is fre-

quently referred to as “first generation sequencing”. The

past few years have brought important technical break-

throughs and the “next-generation sequencing” techniques

have been developed. A common feature of these meth-

ods, which employ various chemical reactions for the

rapid determination of DNA sequences [20,21], is the pro-

duction of huge databases prepared from relatively short

sequence fragments and the use of sophisticated

bioinformatics to analyze the results [22]. This metage-

nomic approach allows the real-time study of live consor-

tia in various environments through identification of the

members of these communities [23-25] and/or determin-

ation of the relative abundances of particular physiological

functions, reflected in the occurrence of specific enzymes

[26-28]. Currently the most widespread next-generation se-

quencing method employs 454-pyrosequencing procedures

for metagenomic purposes (Roche). This technique has

been used for the characterization of biogas-producing

communities [29-33], among numerous other applications.

A fundamentally different methodology is offered by the

SOLiD™ (sequencing by oligo ligation and detection) tech-

nology (Applied Biosystems). As indicated by its name,

SOLiD™ is based on a ligation reaction and each nucleotide

is interrogated twice, which significantly reduces the poten-

tial errors arising from misreading and thereby improves

the reliability of the data [34,35]. Since its introduction

onto the market in 2007, a number of systems have been

investigated with the SOLiD™ method [36-39], but as far as

we are aware biogas-producing microbial communities

have not been analyzed by SOLiD™ so far. Besides its ex-

ceptional accuracy, the fundamental differences as com-

pared with the 454-pyrosequencing approach are the

extremely high throughput of the SOLiD system (200 Gb/

run) and the short-read technology (50–75 nucleotides/

read).

The aim of the present study was to determine the possi-

bility of applying this short-read next-generation sequen-

cing technology to characterize the composite microbial

consortium developing in a biogas fermenter and to test

whether the results validate those obtained by using the

pyrosequencing approach. Samples were taken from an an-

aerobic fermenter fed primarily with plant biomass and pig

manure slurry so that the conclusions could be compared

with those drawn from other data sets relating to distinct

anaerobic degradation processes with similar substrates.

Results and discussion
Distribution of metabolic functions in the microbial

community

In order to gain an insight into the diverse biochemistry

of the biogas-producing community, the short DNA

sequences generated by parallel sequencing were used to

create environmental gene tags (EGTs) and clusters of

orthologous groups of proteins (COGs). The raw sequence

reads of about 50 bp were assembled into contigs by using

the CLC Bio Genomics Work Bench software [40]. The

generated contigs were uploaded to the MG-RAST server,

where the data were automatically normalized, processed

and evaluated. Those that passed the quality control (see

Materials and Methods) were aligned to sequences stored

in a number of public databases [41]. This permits classifi-

cation in the taxonomic and functional hierarchy. Figure 1. F1
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reflects the reliability of the results. 26,895 contigs

passed the quality control. The contigs were trans-

lated into proteins, yielding 13,545 (52%) predicted

protein sequences. 12,441 (91%) of the annotated fea-

tures could be placed in the functional hierarchy. In

this way, the DNA sequences from the SOLiD™ reads

could be linked to metabolic functions. The results

are depicted in Figure 2.

Most of the COGs are linked to information storage and

the basic metabolisms of the organic macromolecules

(proteins, nucleic acids, lipids, and carbohydrates). Simi-

larly, a large number of COGs related to the biosynthesis

of basic cell components, such as cell wall material, vita-

mins, protective mechanisms and stress responses. These

functions are required for the appropriate performance of

the community, and therefore are expected to manifest

Figure 1 Source hit distribution. Legend: The graph displays the number of features in our examined dataset that were annotated by the
different databases: GenBank- National Institutes of Health Genetic Sequence Database, IMG- Integrated Microbial Genomes at the Joint Genome
Institute, KEGG- Kyoto Encyclopedia of Genes and Genomes, PATRIC- Pathosystems Resource Integration Center, RefSec- National Center for
Biotechnology Information Reference Sequences Database, SEED- The SEED Project, SwissProt- Swiss-Prot Uniport Knowledgebase, TrEMBL-
TrEMBL Uniport Knowledgebase, eggNOG- evolutionary genealogy of genes: Non-supervised Orthologous Groups, COG- eggNOG: Clusters of
Orthologous Groups, KO- KEGG Orthology, NOG- eggNOG: Non-supervised Orthologous Groups, Subsystems- SEDD Subsystem Annotation,
Greengenes- 16 S rRNA Gene Database, SILVA LSU- SILVA Large Subunit rRNA Database, RDP- Ribosomal Database Project, SILVA SSU- SILVA Small
Subunit rRNA Database. The bars represent annotated reads, which are colored according to their e-value range.

Figure 2 Functional hierarchical classification analysis. Legend: The graph shows the abundances of COGs in % using best hits of Subsystems
protein database. The most abundant functions are related to biosynthesis, bioenergetics and housekeeping. The numbers on the top of the
columns indicate filtered hits, for filtration rules see Material and Methods, data normalization and analysis section.
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themselves. The high numbers of protein and DNA me-

tabolism COGs suggest that the cells are mostly active.

Energy generation and storage are further representations

of important functional groups of COGs. These findings

are in line with previous studies which indicated that the

housekeeping mechanisms and carbohydrate metabolism

are predominant. Among the genes involved in the carbo-

hydrate metabolism, those that degrade cellulose are par-

ticularly important for the efficient breakdown of the

cellulosic biomass substrate. The 16 S rDNA hits and

COGs demonstrated that the Firmicutes phylum is of out-

standing importance in cellulose degradation by the biogas

microbial community, corroborating earlier findings [29-

31,42].

Taxonomic profile of the biogas microbial community

The assembled contigs were subjected to taxonomic ana-

lysis through use of the MG-RAST server [43]. The results

were filtered for e-values, percentages of homology and

lengths of homology. The ensuing identification and abun-

dance list clearly showed that prokaryotes comprised the

most abundant domain; the predominant systematic groups

were the Bacteria and Archaea (Figure 3). Within the Bac-

teria domain, the Firmicutes phylum proved most abun-

dant. The classes Clostridia and Bacilli belonging in this

phylum accounted for the majority of the Bacteria in the

biogas fermenter. In the Archaea domain, the Methanomi-

crobiales family provided a preponderance of the identified

species. Members of the above-mentioned systematic

groups have been identified previously in the anaerobic

digestion of maize silage and silage supplemented with ani-

mal manure [29-31,42]. It should be noted that a number

of sequence reads did not exhibit homology to any of the

known and sequenced microbial species, which implies the

presence of numerous so far unidentified microbes in bio-

gas fermenters.

Figure 3 Taxonomic distribution of the biogas community. Legend: Allocation of assembled contig sequences to microbial genome. Results were
obtained by best M5nr database hits. Bacteria dominate the community, Archaea represent about 10% of the microbiome. Within Firmicutes the Clostridia
stand out, among Archaea the hydrogenotrophic methanogens were found in highest number. The numbers in parentheses show the abundances, i.e.
the number of sequence features with a hit. The figure was prepared by Krona interactive visualization program (offered by MG-RAST [44]).
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The bacteria domain

More than 1,000 representatives of the Bacteria domain

were identified in the metagenomic database.

The first step in the anaerobic degradation of complex

organic substrates involves the breakdown of large mole-

cules by hydrolysis [45,46]. Certain communities of bac-

teria are capable of the efficient hydrolysis of plant biomass

rich in lignocellulose. Most of these bacteria belong in the

classes of the Clostridia and Bacilli. As expected, the over-

whelming majority of the identified abundant species in

our biogas fermenter were members of the Clostridia

(36%) and Bacilli (11%) classes, together with members of

the Bacteroidia (3%), Mollicutes (3%), Gammaproteobac-

teria (3%) and Actinobacteria (3%) classes (Figure 3). Un-

assigned and unidentified sequences were ignored in this

analysis. The most abundant identified species are listed in

Table 1. and the presence or absence of cellulose degrading

activity and hydrogenase enzymes is indicated.

Among the Clostridia, Clostridium thermocellum oc-

curred most frequently. This species can hydrolyze cellu-

lose efficiently by means of its extracellular cellulases,

which are organized into cellulosomes [47,48]. An out-

standing member of this class is C. kluyveri, which is

unique among the Clostridia, because it uses ethanol

and acetate as sole energy sources and converts these

substrates to butyrate and H2 [49]. A prominent and

well-characterized species is C. acetobutylicum, which

exerts cellulolytic, saccharolytic and H2-producing activ-

ities. The fermentation pathways may yield organic acids

such as acetate and butyrate (acetogenesis), or acetone, bu-

tanol and ethanol (solventogenesis) [50,51]. C. perfingens

generates lactate, acetate and butyrate from sugars, and

through its [FeFe]-hydrogenase, it can also produce H2

[52]. Similarly to C. thermocellum, C. cellulolyticum is a

well-known strain that degrades cellulose to acetate and

evolves CO2 and H2 [53]. C. saccharolyticum additionally

possesses cellulolytic activity. The fermentation products

include acetate, ethanol, H2 and CO2 [54]. C. difficile is

one of the rare pathogens [55] found in a biogas commu-

nity. Thermoanaerobacterium thermosaccharolyticum is a

H2-producing bacterium that has been reported to live

in co-culture with C. thermocellum, the mixed culture

producing more H2 than the pure cultures [56,57]. Rumi-

nococcus albus has been noted for its efficient cellulose-

degrading activity by cellulosomes; the major fermentation

product is ethanol [58]. Both Anaerotruncus colihominis

and Faecalibacterium prausnitzki colonize the intestine

and produce various volatile organic acids from glucose

and acetate, respectively [59,60].

Besides being capable of reductive dechlorination,

Desulfitobacterium hafniense can produce sulfide from

thiosulfate or sulfite, but cannot reduce sulfate. As car-

bon source it prefers to ferment pyruvate and lactate.

This species is also known to contain Hup (hydrogen-

uptake) type of [NiFe]-hydrogenases [61]. Heliobacterium

modesticalum can grow in either photoheterotrophic or

chemotrophic mode. Under chemotrophic conditions it

ferments acetate to H2 and CO2. It also contains a number

of hydrogenases, including [NiFe]- and [FeFe]-hydrogenases

[62]. H2 and acetate are generated by Caldanaerobacter

subterraneus from lactose, glucose or cellobiose as substrate

[63]. Syntrophomonas wolferi ferments long-chain fatty

acids and lives in co-culture with methanogenic Archaea

[64]. Pelotomaculum thermopropionicum too forms a syn-

trophic relationship with methanogens, and its abundance

in the anaerobic digester community is therefore reason-

able. The syntrophic associations play important roles in

efficient biogas formation [65]. The unique members of the

Clostridia class, Alkaliphilus metalliredigens and Desulfoto-

maculum reducens, were detected in unexpectedly high

amounts. These bacteria are known to use lactate and

acetate as electron sources for the reduction of iron and co-

balt in anaerobic respiration [66]. Although it may not be

trivial to explain the occurrence of metal-reducing bacteria

in an anaerobic biogas-producing community, it should be

noted that these bacteria also possess highly active [FeFe]-

hydrogenases [67]. Caldicellulosiruptor saccharolyticus is a

cellulose-degrading and H2-producing bacterium. Addition

of a pure culture of C. saccharolyticus to sewage sludge,

plant biomass, animal manure or a mixture of these sig-

nificantly increased the extent of biogas production [68].

Finegoldia magna has noteworthy substrate specificity, as it

can utilize only fructose from among a range of sugars, and

produces acetate [69]. F. magna also carries the genes for a

putative hydrogenase [70]. The large number and propor-

tion of members of the Clostridiales order are indicative of

the important role of these bacteria in the proper function-

ing of the microbial community in an anaerobic digester

fed with complex substrates. Their contribution to the

breakdown of polysaccharide molecules may be explained

by the high cellulolytic activity of numerous members of

the Clostridiales order, and members of the Clostridiaceae

family are capable of performing diverse fermentation path-

ways. They primarily ferment sugars to organic acids [71].

The Wood-Ljungdahl pathway, also known as the reductive

acetyl-CoA pathway, plays an important role in this process,

which is typical in acetogenic bacteria and in some Archaea

[72]. In this process, CO2 is reduced to CO and then con-

verted to acetyl-CoA, H2 serving as electron donor [73]. In

the anaerobic digester, the aceticlastic Archaea split acetate

to CH4 and CO2 in an energy gaining process [74]. Besides

the acetogenic Clostridia discussed above, Moorella thermo-

acetica and Carboxidothermus hydrogenoformans also ob-

tain energy via the Wood-Ljungdahl pathway. It should

additionally be noted that a large number of Clostridia

actively produce H2, an important substrate for the hydro-

genotrophic methanogens. It is noteworthy that Cr. hydro-

genoformans is able to use CO as carbon source as electron
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Table 1 The 40 most frequently found microbial species in the Bacteria domain

Phylum Class Species Abundance Cellulase H2 production

Firmicutes Clostridia Clostridium thermocellum 406 + +

Firmicutes Clostridia Alkaliphilus metalliredigens 310 - +

Firmicutes Clostridia Desulfitobacterium hafniense 246 - +

Firmicutes Clostridia Caldanaerobacter subterraneus 237 - +

Firmicutes Clostridia Pelotomaculum thermopropionicum 227 - +

Firmicutes Clostridia Finegoldia magna 208 - +

Firmicutes Clostridia Syntrophomonas wolfei 203 - +

Firmicutes Clostridia Clostridium difficile 188 + +

Firmicutes Clostridia Moorella thermoacetica 186 - +

Firmicutes Clostridia Clostridium kluyveri 176 n.d. +

Firmicutes Clostridia Carboxydothermus hydrogenoformans 161 - +

Firmicutes Clostridia Heliobacterium modesticaldum 150 - +

Firmicutes Clostridia Desulfotomaculum reducens 139 - +

Firmicutes Clostridia Clostridium cellulolyticum 126 + +

Firmicutes Bacilli Enterococcus faecalis 112 n.d. +

Firmicutes Bacilli Bacillus cereus 102 + +

Firmicutes Bacilli Streptococcus suis 93 + -

Firmicutes Clostridia Caldicellulosiruptor saccharolyticus 93 + +

Firmicutes Clostridia Clostridium perfringens 87 - +

Firmicutes Clostridia Thermoanaerobacterium
thermosaccharolyticum

86 - +

Firmicutes Clostridia Ruminococcus albus 83 + +

Firmicutes Clostridia Clostridium saccharolyticum 78 + +

Firmicutes Clostridia Clostridium acetobutylicum 63 + +

Firmicutes Bacilli Bacillus thuringiensis 62 + +

Firmicutes Bacilli Streptococcus pneumoniae 61 - n.d.

Firmicutes Bacilli Listeria monocytogenes 61 n.d. n.d.

Firmicutes Bacilli Streptococcus agalactiae 57 n.d. -

Firmicutes Bacilli Enterococcus faecium 57 n.d. +

Firmicutes Clostridia Anaerotruncus colihominis 55 n.d. n.d.

Firmicutes Clostridia Faecalibacterium prausnitzii 54 - +

Firmicutes Clostridia Clostridium carboxidivorans 49 - +

Firmicutes Bacilli Staphylococcus epidermidis 44 + +

Bacteroidetes Bacteroidia Bacteroides capillosus 73 + +

Bacteroidetes Bacteroidia Bacteroides thetaiotaomicron 46 + +

Bacteroidetes Bacteroidia Parabacteroides distasonis 46 - +

Tenericutes Mollicutes Acholeplasma laidlawii 247 - -

Proteabacteria Gammaproteobacteria Escherichia coli 23 - +

Actinobacteria Actinobacteria (class) Slackia heliotrinireducens 70 - +

Actinobacteria Actinobacteria (class) Bifidobacterium longum 46 - -

Unclassified
(derived from Bacteria)

Unclassified
(derived from Bacteria)

Candidatus Cloacamonas
acidaminovorans

889 - +

Results were based on best M5nr database hits. The relative abundance values and presence of cellulose or hydrogenase activities are indicated. n.d. = not

determined, i.e., no information was found in the protein databases or indicated as hypothetical protein.
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donor and water as an electron acceptor, to produce acetate

and H2 [75,76]. Both Cr. hydrogenoformans and M. thermo-

acetica are capable of H2 production [77]. The predomi-

nance of the Clostridia in the anaerobic digester

community triggers the activity of the hydrogenotrophic

methanogens, which must keep the H2 partial pressure in

the system low in order to ensure system stability [78]. The

delicate balance between the Clostridia and hydrogeno-

trophic methanogens must be a determining factor within

the biogas-producing microbial consortium (Figure 3).

The second largest group of bacteria in the anaerobic

degradation community is the class of Bacilli in the Bac-

teria domain. The most abundant species from this class

in our fermenters was Enterococcus faecalis. This strain,

an anaerobic Gram-positive bacterium found in the di-

gestive system, is able to hydrolyze plant polysaccharides

and possesses hydrogenase activity in its formate de-

hydrogenase complex [79]. E. faecium is also common in

the gastrointestinal system. These microbes convert car-

bohydrates such as fructose, maltose, lactose and galac-

tose to acetate and ethanol [80,81]. Bacillus cereus and

B. thuringiensis can carry out both aerobic and anaerobic

metabolism. Under anaerobic conditions, B. cereus fer-

ments glucose to a mixture of acetate, lactate and ethanol,

while B. thuringiensis produces mostly lactate [82,83].

Streptococcus pneumonia is a pathogen that converts glu-

cose to lactate [84]. Its relative S. suis can ferment glucose,

lactose, maltose and trehalose to a mixture of volatile fatty

acids [85], while S. agalactiae also generates ethanol be-

side the volatile acids [86,87]. Additional pathogenic Ba-

cilli detected in the anaerobic digester community, though

in low abundance, include Staphylococcus epidermis and

Listeria monocytogenes [88].

Over and above the members of the Clostridia and Ba-

cilli classes discussed above, the study revealed add-

itional members of the microbial systematic groups in

the biogas-producing community, though their contribu-

tion to the microbiological food chain is probably lim-

ited relative to that of the Clostridia and Bacilli.

Bacteroidia species were identified in meaningful quan-

tities. Members of the Bacteriodia are common in nature

at sites where degradable organic material is to be found,

such as plants and other forms of biomass. Bacteroides

capillosus is an intestinal bacterium that ferments lactate

and produces H2, and also displays cellulolytic activity

[89]. As an outstanding example of human-bacterium

symbiosis, Bacteroides thetaiotamicron is a constituent

of the intestinal flora, which specializes in hydrolyzing

polysaccharides of plant origin, i.e. cellulose and starch,

as carbon sources [90,91]. Parabacteroides distasionis is

a Gram-negative, non-spore-forming bacterium that

produces volatile organic acids [92].

The members of the Mollicutes are facultative anae-

robes. Under anaerobic conditions, they produce organic

acids, which may be utilized by the acidoclastic metha-

nogens [93]. Acoleplasmatales is the most abundant

among the relatively few Mollicutes class members. Aco-

leplasma laidlawii ferments glucose to produce lactic

acid, saturated fatty acids and acetate [94]. All these fer-

mentation products are subsequently converted to bio-

gas by the acetoclastic Archaea in the methanogenic

consortium. Although Gammaproteobacteria are fre-

quently found in diverse habitats, they do not appear to

dominate in the biogas-producing community. Escheri-

chia coli, one of the most widespread and certainly the

most thoroughly studied bacterium, was present in the

anaerobic community. E. coli, a facultative anaerobe, has

a highly versatile metabolism. Under anaerobic condi-

tions, it produces lactate, succinate, ethanol, acetate, H2

and CO2 in a mixed acid fermentation [95]. Various

[NiFe]-hydrogenases are involved in the metabolism of

H2 , and a syntrophic relationship often develops with

H2 consumers in order to keep the H2 partial pressure

low in the entire system [96]. Members of the Actino-

bacteria class are commonly found in soils and natural

waters. Some of them effectively break down complex

organic material such as cellulose, and thereby play an

important role in the carbon cycle [97]. Furthermore,

members of this group are known to produce lignin-

degrading enzymes [98]. Two species of Actinobacteria

were identified in our biogas fermenter samples: Slackia

heliotrinireducens and Bifidobacterium longum. Sl. helio-

trinireducens is a Gram-positive anaerobic bacterium

which can reduce nitrate to ammonia if there are elec-

tron donors (H2 or formate) in the system. This organ-

ism has also been reported to produce acetic acid and

lactic acid, and contains a hydrogenase [99,100]. Bf.

longum is a Gram-positive bacterium found as a sym-

biont in the human normal intestinal flora [101]. It

metabolizes oligosaccharides and releases lactic acid,

which helps control the normal microflora.

In addition to the known phylogenetic categories, 7%

of the sequences belong to the Bacteria domain, but

lacks detailed classification. In this group candidatus

Cloacamonas acidaminovorans was found in remarkably

high abundance. This species was also identified in sev-

eral anaerobic digester microflora [31,102]. c. Cm. acida-

minovorans gains energy from sugars in the Embden-

Meyerhof pathway and from the fermentation of amino

acids. It is a fermentative H2 producer, containing a

[FeFe]-hydrogenase, which is an indication of syntrophic

metabolism [103].

The archaea domain

The volatile organic acids, CO2 and H2 generated by the

acetogens are the substrates of methanogenesis carried

out by special Archaea [104,105]. Aceticlastic and hydro-

genotrophic methanogens are distinguished in biogas
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fermentors [106]. The hydrogenotrophic Archaea are

capable of reducing CO2 to CH4, H2 being used as an

electron donor. The CO2-reducing pathway starts with

the formation of N-carboxymethanofuran from CO2 and

the C1-carrier methanofuran, which is subsequently

reduced to formyl-methanofuran. The reductant is pro-

vided from reduced F420 (8-hydroxy-5-deazaflavin) and

hydrogenases. The central electron carrier in hydrogeno-

trophic methanogenesis is coenzyme F420 [107]. As the

first step in the inverse Wood-Ljungdahl pathway, ace-

tate is activated to acetyl-CoA with the participation of

phosphotransacetylase and acetate kinase in acetotrophs

[108]. Carbon monoxide dehydrogenase (CODH)

then breaks down acetyl-CoA to CO, a methyl group

and CoA [109]. CO is oxidized to CO2, which gener-

ates the electrons for reduction of the methyl radical

to CH4 [110].

Around 10% of the identified microbes in the biogas-

producing community belonged in the Archaea (Figures 3

and 4). This correlated well with findings in previous stud-

ies [30,42]. In the domain of the Archaea the Methanomi-

crobiales order predominates in the community. Within

this order, the most abundant species is Methanoculleus

marisnigri [111]. Interestingly, the same Archeon has

been found in several methanogenic consortia [112,113].

M. marisnigri JR1 is the only member of the Methanocul-

leus genus, which has been sequenced so far [114], and it

cannot be excluded that several members of the same

genus produce the high abundance of Methanoculleus-

related reads [42]. Besides Methanoculleus, other represen-

tatives of Methanomicrobiales contribute to the plethora

of hydrogenotrophic methanogens, e.g. Methanospirillum

hungatei [115], Methanosphaerula palustris [116], Metha-

noregula boonei [117], Methanocorpusculum labreanum

[118] and Methanoplanus petrolearius [119]. From the

class of Methanococci, Methanococcus maripalidus is also

a hydrogenotrophic methanogen [120] (Figure 5). Among

the aceticlastic methanogens, Methanosarcina acetivorans

[121] was present in a relative majority. An unidentified

archaeon detected among rice rhizophere methanogens

was also found in the anaerobic biogas community. This

species was described as having a unique aerotolerant H2/

CO2 dependent lifestyle and enzymes for carbohydrate

metabolism and assimilatory sulfate reduction [122].

The predominance of the hydrogenotrophic methano-

gens strongly suggests that methane is generated mainly by

the hydrogenotrophic pathway and aceticlastic methan-

ogenesis plays a secondary role in the anaerobic digestion

process (Figures 3 and 4.). H2 is produced for the hydroge-

notrophic methanogens by the acetogens, e.g. Clostridia as

shown above, or by syntrophic acetate oxidation [103,

123,124]. At any rate the close proximity of the participat-

ing microbes and the very delicately balanced H2 metabol-

ism are a must in these communities in order to keep the
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Figure 4 Most abundant Archaea strains. Legend: Identification was based on M5nr database. At species level the hydrogenotrophic
methanogens dominate. Acetotrophic methanogens show relatively low representation in the biogas community.
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H2 concentration low and favor CH4 formation [68,106].

Acetate stimulates the growth of Methanospirillum hunga-

tei [115], Methanosphaerula. palustris [117], Methanore-

gula boonei [118], Methanocorpusculum labreanum [118],

Methanococcus maripalidus [118] and Methanoplanus pet-

rolearius [119]. In contrast, Methanoculleus marisnigri can

only use CO2 as carbon source [110]. Accordingly, ad-

equate acetate supply is required for the growth of hydroge-

notrophic and aceticlastic methanogenesis and syntrophic

acetate oxidizers [103,118,119,121].

All of the identified Methanomicrobiales possess H2-

activating membrane-associated hydrogenases [42,117,119,

125], and the relative wealth of hydrogenase-specific DNA

reads corroborates the importance of these enzymes in

the anaerobic degradation of organic material (Table 1 and

Figure 5). Although the contributions of Eubacteria and Ar-

chaea cannot be distinguished in Figure 5, the widespread

presence of H2-activating enzymes underlines their import-

ance in the physiology of the biogas-producing community.

A highly efficient interspecies H2 transfer [126] must take

place between the H2-forming and consuming partners.

Besides the hydrogenases other genes encoding important

redox proteins and likely to be connected to H2 metabolism

were detected in the biogas fermenter, e.g. coenzyme M het-

erodisulfide heptanyl threonine phosphate (CoM-S-S-HTP)

oxidoreductase, formate dehydrogenase and coenzyme

F420 hydrogenase. CoM-S-S-HTP oxidoreductase catalyzes

the conversion of CoM-S-S-HTP to HS-HTP (7-mercapto-

heptanyl-L-threonine phosphate), which is a unique meth-

anogenic cofactor in all methanogens [127]. Formate

dehydrogenase extracts the hydrogen from formate and

releases CO2 [128]. Reduced F420 is oxidized by a mem-

brane bound electron transport system. When F420 is oxi-

dized, an equimolar amount of CoM-S-S-HTP is reduced.

CoM-S-S-HTP oxidoreductase is common in all methano-

gens but formate dehydrogenase and coenzyme F420 are

only typical to hydrogenotrophic methanogens [108].

Comparison of the 454-pyrosequencing and SOLiD™

metagenomic results

Previous studies designed to improve the understanding of

microbial communities in biogas-producing anaerobic

digestors, based on next-generation sequencing methods,

relied exclusively on the pyrosequencing technique [29-

31,42]. The substrates fed into the fermentors included ani-

mal manure and green plant biomass (maize or green rye

silage), commonly employed in German biogas facilities.

Our laboratory fermenters were fed with a substrate mix

with a similar composition, but our operational parameters,

sample handling, DNA extraction protocols and sequence

data collection and analysis methods were different.

The SOLiD™ sequencing method produces short indi-

vidual reads (50 nucleotides) in a significantly higher

number than does pyrosequencing. We have generated

and analyzed 23,897,590 individual reads representing

1,194,879,500 bases. In previous studies, two versions of

454-pyrosequencing were employed and compared: GS

FLX and Titanium [12]. The latter provides somewhat

longer reads and increased throughput relative to GS

FLX (454 GS FLX resulted in 616,072 sequence reads

with an average read length of 230 bases, while Titanium

resulted in 1,347,644 reads with an average read length

of 368 bases). As a general rule of thumb, the longer the

read sequence and the higher the number of indepen-

dent reads, the more reliable the data.

In a comparison of the Bacteria domain, a remarkably

good match was found between the data sets obtained by

the various next-generation sequencing methods. In all

cases, the class Clostridia comprised the most widespread

group of microbes in the biogas fermenters. The Clostridia

are noted for their highly effective cellulose degradation

potential [129], and are therefore essential in the break-

down of lignocellulosic substrates in the biogas process. It

should also be noted that the majority of Clostridia possess

highly active hydrogenases. This is in line with the observa-

tion that hydrogenases have been found in large quantity

among the redox enzymes in the biogas producing com-

munity (Figure 5.). Thus, the Clostridia may contribute to

the widening of at least two bottlenecks in the biogas

process, through the hydrolysis of large polymeric sub-

strates and the in situ production of H2, an important re-

ductant for the hydrogenotrophic methanogens [70,130].

The positions of the most abundant strains in the meth-

anogenic microbial food chain are summarized in Figure 6.

At the level of resolution of the abundances of individ-

ual strains, the most frequently occurring species likewise

Figure 5 Energy and hydrogen metabolism related enzyme functions in the biogas producing community. Legend: The results were
extracted from the Subsystem database. The numbers on the top of the columns indicate filtered hits, for filtration rules see Material and
Methods, data normalization and analysis section.
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displayed a good correlation. Strains noted for their highly

efficient polysaccharide degradation capabilities, such as

Clostridium thermocellum, C. cellulolyticum and Caldicel-

lulosiruptor saccharolyticus, are found to be the most

abundant, regardless of the sequencing method used for

their identification.

Similarly to the Bacteria, the members of the Archaea

domain demonstrate a markedly comparable community

structure, which is clearly reflected in any next-generation

sequencing dataset. The analysis of the data at the species

level revealed a strong correlation between the findings of

the 454-pyrosequencing and SOLiD™ next-generation se-

quencing technology platforms. The Methanomicrobiales

were indicated to constitute the majority of the Archaea in

this environment by the sequencing with the 454 GS FLX

[29-31], 454 Titanium [42] and SOLiD™ platforms alike.

Within this taxon, the predominant genus is Methanocul-

leus, and the most abundant species according to our

SOLiD™ results is M. marisnigri. Exactly the same picture

was revealed by the 454-pyrosequencing approach [29-

31,42]. It is worth noting that the Methanomicrobiales are

hydrogenotrophic methanogens, which are capable of re-

ducing CO2 with H2 to produce additional CH4 in the bio-

gas-producing consortium. The DNA-based community

structure analysis of anaerobic degradation samples has

already demonstrated the enormous importance of hydro-

genotrophic methanogens.

Conclusions
The metagenomic analysis of biogas-producing microbial

communities is a novel approach by which to study the

complex interaction among microbes in an environment

that is important for both basic research and the practical

aspects of improvement of renewable energy production

from biomass. In the present study, the Applied Biosys-

tems’ SOLiD™ sequencing platform was used to collect

relevant data. This next-generation DNA sequencing ap-

proach has not been used previously to characterize the

microbial consortium of a biogas fermentor. Similar data

sets determined with the Roche 454-pyrosequencer have

been analyzed and reported [29-31,42]. SOLiD™ differs

from the 454 technique in several important technical

aspects. SOLiD™ sequencing is based on ligation reactions,

operates with a short read length and a much higher

throughput than that of the 454 technique, and each nu-

cleotide is read twice by the system, which makes the data

highly accurate. Metagenomics is a special application and

poses a real challenge since the complexity of the samples

requires both high throughput and long reads. It is there-

fore important to compare the results obtained on a simi-

lar microbial community by using different analytical

approaches; this can validate the various methodologies. It

should be emphasized that a contribution is also made by

microbes that are unknown or undetermined in the data-

bases. These are not available for study by any of the

current methods, but the rapid increase in available gen-

ome information justifies the exploitation of novel, high-

throughput genomic methods in the field of community

analysis.

One conclusion drawn from this study is that the sets

of metagenomic information deduced from the data-

bases via the various methods correlate well with each
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Figure 6 The most abundant members of the biogas producing food-chain. Legend: The identified microbes are arranged according to
their known physiological roles in the steps of the anaerobic degradation process. For detailed explanation see text.
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other. In this way, the databases generated through use

of either of the investigated next-generation sequencing

approaches have been validated and appear reliable and

reproducible.

Although the anaerobic fermentation conditions (fer-

menter size, feedstock composition and origin, mixing,

inoculum composition, etc.) were somewhat different,

the SOLiD™ and 454-pyrosequencing data appear to lead

to the same fundamental conclusions. Members of the

Firmicutes and Bacteroides phyla play the most impor-

tant role in the hydrolysis of the plant biomass and in

the secondary fermentation. In particular, many Clostrid-

ium species were identified which possess cellulolytic

and H2-producing activities, both properties probably

being essential for the efficient degradation of the bio-

mass. In the Archaea domain, Methanomicrobiales is

the most abundant order that uses CO2 as a carbon

source and H2 as an electron donor for methanogenesis.

The predominance of the Methanomicrobiales and many

hydrogenases suggests that the hydrogenotrophic path-

way leading to CH4 formation may be more significant

than recognized earlier [131-134]. Methanoculleus mar-

isnigri proved to be the principal species among the

archaeal habitants in the biogas fermenter. Interestingly,

the same Archaeon has been identified as the most

abundant in an anaerobic digester operated under differ-

ent conditions [29-31,42,113,114]. It is therefore con-

cluded that an optimized balance between H2 producers

and consumers is critical for the efficient operation of

the biogas microbial community.

Methods
Fermentation conditions

The anaerobic digestion experiments were performed in

6-liter, continuously stirred tank reactors with a working

volume of 5 liters. The fermenters were designed and

constructed by Biospin Ltd, Hungary and installed at the

Department of Biotechnology, University of Szeged

[135]. The reactors were fed periodically with maize sil-

age (68% oTS) added to pig manure slurry to sustain an

average 15% oTS. Mixing of three fermenters operated

in parallel was achieved with a single electronic engine

through belt transmission in order to maintain identical

mixing conditions. Heating was maintained by an elec-

tronically heated jacket which surrounded the cylindrical

apparatus. Temperature was measured with a bimetallic-

type sensor, and was maintained constant at 37 ± 1.0 °C.

Electrodes for continuous monitoring of pH and redox

potential were inserted into the fermentor in sealed

sockets. The evolved gas left the fermentor through flex-

ible neoprene tubing connected to the top plate, where

ports for gas sampling through silicone rubber septa

were also installed. Gas volume was measured with ther-

mal mass flow controllers (DMFC, Brooks) attached to

each gas exit port. The hydraulic retention time 60 days.

The pH was maintained between 7.9-8.4. Acetate con-

centration was 0.1 g/mL, The volatile fatty acid content

varied between 1.5 and 1.6 g HAceq/L, the buffering

capacity was 9.21-9.28 g CaCO3/L. Data were collected,

stored and analyzed with special software developed by

Merat Ltd., Hungary. The key parameters (temperature,

mixing speed and pH) were controlled continuously by

the software. Biogas production was 610 LN/ kg oTS (or-

ganic total solids) with 52% methane content.

Purification of total DNA from biogas fermenter

A 2-ml liquid fermentation sample was utilized to pre-

pare total community DNA by applying a CTAB based

DNA extraction buffer [136-138]. Cell lysis was carried

out at 55 °C overnight. Phenol:chloroform (1:1) was used

to extract contamination, and the genomic DNA was

precipitated with ethanol (90%). The DNA pellet was

resuspended in 100 μl of TE buffer [139]. Its quantity

was determined in a NanoDrop ND-1000 spectropho-

tometer (NanoDrop Technologies, Washington, USA).

DNA purity was tested by agarose gelelectrophoresis.

This method yielded a pure (A260/A280= 1.8) and suffi-

cient amount of total DNA (200–800 ng/μl).

Sequencing the DNA of the biogas fermenting microbial

community

Sequencing was performing using an Applied Biosystems

SOLiD™ 4 sequencing platform. Primary data analysis

was carried out with software provided by the supplier

(base-calling). The 50 nucleotide reads were analyzed,

quality values for each nucleotide were determined, and

the reads were assembled into contigs through use of

the CLC Bio Genomics Workbench 4.6 program [40].

The preset parameters were as follows: minimum contig

length = 200, similarity = 0.8, length fraction = 0.5, inser-

tion cost = 3, deletion cost = 3, mismatch cost = 2, color

space elignment = yes, color error cost = 3.

In the contig assembly process, 288 large contigs con-

taining more than 1,000 bp were identified. The average

length of the assembled contigs was 333 bp. The cumu-

lative number of all contigs was 26,892, which amassed

8,978,367 bp. The contig size distribution is presented in

Figure 7.

Data normalization and analysis

The assembled contigs were further analyzed by using

the MG-RAST software package [140], which is a modi-

fied version of RAST (Rapid Annotations based on Sub-

system Technology).

The MG-RAST server initially runs a quality control

test. If the data appear reliable, the system automatically

screens for sequences of potential protein encoding

regions (PEGs) via a BLASTX [141] search against the
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SEED comprehensive non-redundant database compiled

from various publicly available sequencing centers and

other sources [142]. These databases include several

rDNA datasets too, e.g. GREENGENES [143], RDP II

[144], and European 16 S RNA [145], among other in-

formation sources. To identify the gene content of the

biogas reactor, all contigs were functionally annotated by

means of the clusters of orthologous groups (COGs) of

proteins made automatically by the MG-RAST server

using the eggnog and COG databases. The generated

matches to external databases were used to compute the

derived data. The phylogenetic reconstruction of the

contig sets was performed by using both the phylogen-

etic information contained in the SEED nr database and

the similarities to the ribosomal RNA database. Func-

tional classifications of the PEGs were computed by pro-

jecting against SEED FIGfams [146] and subsystems

based on these similarity searches [142]. These func-

tional assignments served as the raw input for an auto-

matically generated initial metabolic reconstruction. The

user interface provided a means of altering some of the

parameters employed for the functional and metabolic

reconstruction computation [140]. The acceptable per-

centage of identity was set to be >70%, the minimum

read length was >35 nucleotides and the e-value cut-off

was <10-6. The contigs formed from the sequence reads

were compared with the M5nr database for phylogenetic

analyses [147], which integrated the previously men-

tioned databases into a single, searchable database

offered by MG-RAST.
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