CHARACTERIZATION OF A CYCLIC GROUP RING IN TERMS OF CHARACTER VALUES

Joongul Lee

Abstract

Let G be a cyclic group of prime power order. There is a natural embedding of $\mathbb{Z}[G]$ into a product of rings of integers of cyclotomic fields. In this paper the image of the embedding is determined, and we also compute the index of the image.

1. Introduction

For a finite abelian group G let $\mathbb{Z}[G]$ be the integral group ring of G, and let I_{G} be the augmentation ideal. For each complex character χ of G let $\mathbb{Q}(\chi)$ be the cyclotomic field generated by the values of χ and $\mathbb{Z}[\chi]$ be its ring of integers.

Consider

$$
\begin{aligned}
& \Phi: \mathbb{Z}[G] \longrightarrow \prod_{\chi \in \widehat{G}} \mathbb{Z}[\chi] \\
& \Phi(\alpha)=(\ldots, \chi(\alpha), \ldots)
\end{aligned}
$$

where the domain of χ is extended to $\mathbb{Z}[G]$ by linearity. The map Φ is an injective ring homomorphism. The goal of this paper is to determine $\Phi(\mathbb{Z}[G])$ when G is cyclic of prime power order.

For an element

$$
\beta=\left(\ldots, \beta_{\chi}, \ldots\right) \in \prod_{\chi \in \widehat{G}} \mathbb{Z}[\chi]
$$

let us refer to its components β_{χ} as the character values of β. We find that, when G is cyclic of prime power order, we can express the necessary and sufficient condition for $\beta \in \Phi(\mathbb{Z}[G])$ as congruence relations among the character values of β. As a byproduct, we also compute the index of $\Phi(\mathbb{Z}[G])$ in $\Pi \mathbb{Z}[\chi]$.

There are refined type of conjectures on the values of L-functions (cf. [1], $[2],[4],[5])$ which predict (among others) that certain elements of $\prod_{\chi \in \widehat{G}} \mathbb{Z}[\chi]$ whose character values come from special values of L-functions belong to $\Phi\left(I_{G}^{n}\right)$

[^0]for a prescribed positive integer n. The author hopes that the result of this paper offers an aid in understanding the meaning of those very deep conjectures in concrete situations.

2. Cyclic case

Fix a prime p and a positive integer k. Let G be a cyclic group of order p^{k} with generator σ. Let H be the subgroup of G of order p, and let $\bar{\sigma}$ be the element σ modulo H. Let us choose a complex character χ_{k} of G with order p^{k}, and for $0 \leq i \leq k-1$ we inductively define $\chi_{i}=\chi_{i+1}^{p}$ so that the order of χ_{i} is p^{i}. We may view χ_{i} as complex characters of G / H for $i<k$. We also set $\zeta_{i}=\chi_{i}(\sigma)$ and $\lambda_{i}=\zeta_{i}-1$.

Consider

$$
\begin{aligned}
\Phi: \mathbb{Z}[G] & \longrightarrow \prod_{i=0}^{k} \mathbb{Z}\left[\zeta_{i}\right] \\
\Phi(\alpha) & =\left(\chi_{0}(\alpha), \ldots, \chi_{k}(\alpha)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\Phi}: \mathbb{Z}[G / H] & \longrightarrow \prod_{i=0}^{k-1} \mathbb{Z}\left[\zeta_{i}\right] \\
\bar{\Phi}(\alpha) & =\left(\chi_{0}(\alpha), \ldots, \chi_{k-1}(\alpha)\right)
\end{aligned}
$$

We need the following generalization of the Chinese remainder theorem, the proof of which can be found in [3].
Proposition 1. Let R be a commutative ring with 1 , and I, J be ideals of R. There exists a short exact sequence of R-modules

$$
0 \rightarrow R /(I \cap J) \rightarrow R / I \times R / J \rightarrow R /(I+J) \rightarrow 0
$$

where the first map sends $r \bmod (I \cap J)$ to $(r \bmod I, r \bmod J)$ and the second sends $\left(r_{1} \bmod I, r_{2} \bmod J\right)$ to $r_{1}-r_{2} \bmod (I+J)$.

Let $\phi_{i}(x)$ be the p^{i}-th cyclotomic polynomial. Note that there is a natural isomorphism from $\mathbb{Z}[x] /\left(x^{p^{k}}-1\right)$ to $\mathbb{Z}[G]$ that sends x to σ, and from $\mathbb{Z}[x] /\left(\phi_{i}(x)\right)$ to $\mathbb{Z}\left[\zeta_{i}\right]$ sending x to ζ_{i}. Via these identifications, it is useful to view Φ and $\bar{\Phi}$ as the natural maps

$$
\begin{aligned}
& \Phi: \mathbb{Z}[x] /\left(x^{p^{k}}-1\right) \longrightarrow \prod_{i=0}^{k} \mathbb{Z}[x] /\left(\phi_{i}(x)\right), \\
& \Phi: \mathbb{Z}[x] /\left(x^{p^{k-1}}-1\right) \longrightarrow \prod_{i=0}^{k-1} \mathbb{Z}[x] /\left(\phi_{i}(x)\right) .
\end{aligned}
$$

Let us apply Proposition 1 to the case $R=\mathbb{Z}[x], I=\left(x^{p^{k-1}}-1\right), J=\left(\phi_{k}(x)\right)$. We have

$$
x^{p^{k}}-1=\left(x^{p^{k-1}}-1\right) \phi_{k}(x),
$$

hence

$$
I \cap J=I J=\left(x^{p^{k}}-1\right)
$$

as ideals of $\mathbb{Z}[x]$, because $\mathbb{Z}[x]$ is a unique factorization domain and the polynomials $x^{p^{k-1}}-1$ and $\phi_{k}(x)$ have no common irreducible factor. On the other hand, it is clear that

$$
\phi_{k}(x) \equiv p \bmod \left(x^{x^{k-1}}-1\right),
$$

which implies

$$
I+J=\left(\phi_{k}(x), x^{p^{k-1}}-1\right)=\left(p, x^{p^{k-1}}-1\right)
$$

Let us consider the ring homomorphism

$$
\begin{aligned}
\psi_{k}: \mathbb{Z}\left[\zeta_{k}\right] & \longrightarrow \mathbb{Z}[G / H] / p \mathbb{Z}[G / H] \\
\psi_{k}\left(\sum a_{j} \zeta_{k}^{j}\right) & :=\sum a_{j} \bar{\sigma}^{j} \bmod p \mathbb{Z}[G / H] .
\end{aligned}
$$

This map comes from the isomorphisms

$$
\mathbb{Z}[x] /(I+J) \cong(\mathbb{Z}[x] / J) /((I+J) / J) \cong(\mathbb{Z}[x] / I) /((I+J) / I)
$$

hence we may identify $\mathbb{Z}\left[\zeta_{k}\right] /\left(\lambda_{1}\right)$ with $\mathbb{Z}[G / H] / p \mathbb{Z}[G / H] . \quad \psi_{k}$ is surjective with $\operatorname{ker}\left(\psi_{k}\right)=\left(\lambda_{1}\right)$. The following theorem is now a direct consequence of Proposition 1.
Theorem 2. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ be an element of $\prod_{i=0}^{k} \mathbb{Z}\left[\zeta_{i}\right] . \alpha$ is in $\Phi(\mathbb{Z}[G])$ if and only if the following conditions hold;
(i) $\left(\alpha_{0}, \ldots, \alpha_{k-1}\right)=\bar{\Phi}(\eta)$ for some $\eta \in \mathbb{Z}[G / H]$,
(ii) $\eta \in \psi_{k}\left(\alpha_{k}\right)$.

Corollary 3. $\Phi(\mathbb{Z}[G])$ has index $p^{\left(p^{k}-1\right) /(p-1)}$ in $\prod_{i=0}^{k} \mathbb{Z}\left[\zeta_{i}\right]$.
Proof. When $k=0, \Phi$ is clearly surjective so the statement holds. In general, $\Phi(\mathbb{Z}[G])$ has index

$$
|\mathbb{Z}[G / H] / p \mathbb{Z}[G / H]|=p^{p^{k-1}}
$$

in $\bar{\Phi}(\mathbb{Z}[G / H]) \times \mathbb{Z}\left[\zeta_{k}\right]$ which follows from condition (ii) of Theorem 2. We obtain the result by mathematical induction on k.

Let us analyze condition (ii) of Theorem 2 in more detail. Define

$$
\begin{aligned}
\kappa_{k}=Z\left[\zeta_{k}\right] & \longrightarrow\left(\prod_{i=0}^{k-1} \mathbb{Z}\left[\zeta_{i}\right]\right) / \bar{\Phi}(p \mathbb{Z}[G / H]) \\
\kappa_{k}\left(\alpha_{k}\right) & :=\bar{\Phi}\left(\psi_{k}\left(\alpha_{k}\right)\right) \bmod \bar{\Phi}(p \mathbb{Z}[G / H])
\end{aligned}
$$

As $\bar{\Phi}$ is injective, condition (ii) of Theorem 2 holds if and only if

$$
\begin{equation*}
\left(\alpha_{0}, \ldots, \alpha_{k-1}\right) \in \kappa_{k}\left(\alpha_{k}\right) \tag{1}
\end{equation*}
$$

For $\alpha_{k}=\sum a_{j} \zeta_{k}^{j}$ and for $0 \leq i \leq k-1$, let

$$
\kappa_{k}\left(\alpha_{k}\right)_{i}=\sum a_{j} \zeta_{i}^{j}
$$

Each element $\kappa_{k}\left(\alpha_{k}\right)_{i}$ is not well defined in general, but

$$
\left(\kappa_{k}\left(\alpha_{k}\right)_{0}, \ldots, \kappa_{k}\left(\alpha_{k}\right)_{k-1}\right)
$$

is well defined modulo $\bar{\Phi}(p \mathbb{Z}[G / H])$ and it belongs to $\kappa_{k}\left(\alpha_{k}\right)$, hence $\kappa_{k}\left(\alpha_{k}\right)_{i}$ is defined modulo p.

Relation (1) is now equivalent to the following congruence relation

$$
\begin{equation*}
\left(\alpha_{0}, \ldots, \alpha_{k-1}\right) \equiv\left(\kappa_{k}\left(\alpha_{k}\right)_{0}, \ldots, \kappa_{k}\left(\alpha_{k}\right)_{k-1}\right) \bmod \bar{\Phi}(p \mathbb{Z}[G / H]) \tag{2}
\end{equation*}
$$

The following theorem is now a direct consequence of the above discussion, and enables us to determine $\Phi(\mathbb{Z}[G])$ inductively.

Theorem 4. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ be an element of $\prod_{i=0}^{k} \mathbb{Z}\left[\zeta_{i}\right]$. α is in $\Phi(\mathbb{Z}[G])$ if and only if the following conditions hold;
(i) $\left(\alpha_{0}, \ldots, \alpha_{k-1}\right)$ is in $\bar{\Phi}(\mathbb{Z}[G / H])$,
(ii) $\alpha_{i} \equiv \kappa_{k}\left(\alpha_{k}\right)_{i}(\bmod p)$ for $0 \leq i \leq k-1$,
(iii) $\frac{1}{p}\left(\alpha_{0}-\kappa_{k}\left(\alpha_{k}\right)_{0}, \ldots, \alpha_{k-1}-\kappa_{k}\left(\alpha_{k}\right)_{k-1}\right)$ is in $\bar{\Phi}(\mathbb{Z}[G / H])$.

3. A few cases

In this section, we record the explicit condition for α to be in $\Phi(\mathbb{Z}[G])$, following Theorem 4.

Corollary 5. $(k=1) \alpha=\left(\alpha_{0}, \alpha_{1}\right)$ is in $\Phi(\mathbb{Z}[G])$ if and only if

$$
\alpha_{0} \equiv \kappa_{1}\left(\alpha_{1}\right)_{0} \quad(\bmod p)
$$

α is in $\Phi(p \mathbb{Z}[G])$ if and only if the following conditions hold;
(i) $\alpha_{i}=p \beta_{i}$ for some $\beta_{i} \in \mathbb{Z}\left[\zeta_{i}\right]$ for $i=0,1$,
(ii) $\beta_{0} \equiv \kappa_{1}\left(\beta_{1}\right)_{0}(\bmod p)$.

Corollary 6. $(k=2) \alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ is in $\Phi(\mathbb{Z}[G])$ if and only if the following conditions hold;
(i) $\alpha_{0} \equiv \kappa_{1}\left(\alpha_{1}\right)_{0}(\bmod p)$,
(ii) $\alpha_{i} \equiv \kappa_{2}\left(\alpha_{2}\right)_{i}(\bmod p)$ for $i=0,1$,
(iii) $\left(\alpha_{0}-\kappa_{2}\left(\alpha_{2}\right)_{0}\right) / p \equiv \kappa_{1}\left(\left(\alpha_{1}-\kappa_{2}\left(\alpha_{2}\right)_{1}\right) / p\right)_{0}(\bmod p)$.

Therefore α is in $\Phi(p \mathbb{Z}[G])$ if and only if the following conditions hold;
(iv) $\alpha_{i}=p \beta_{i}$ for some $\beta_{i} \in \mathbb{Z}\left[\zeta_{i}\right]$ for $i=0,1,2$,
(v) $\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ satisfies the above conditions (i)-(iii).

Corollary 7. $(k=3) \alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is in $\Phi(\mathbb{Z}[G])$ if and only if the following conditions hold;
(i) $\alpha_{0} \equiv \kappa_{1}\left(\alpha_{1}\right)_{0}(\bmod p)$,
(ii) $\alpha_{i} \equiv \kappa_{2}\left(\alpha_{2}\right)_{i}(\bmod p)$ for $i=0,1$,
(iii) $\left(\alpha_{0}-\kappa_{2}\left(\alpha_{2}\right)_{0}\right) / p \equiv \kappa_{1}\left(\left(\alpha_{1}-\kappa_{2}\left(\alpha_{2}\right)_{1}\right) / p\right)_{0}(\bmod p)$,
(iv) $\left(\alpha_{0}-\kappa_{3}\left(\alpha_{3}\right)_{0}, \alpha_{1}-\kappa_{3}\left(\alpha_{3}\right)_{1}, \alpha_{2}-\kappa_{3}\left(\alpha_{3}\right)_{2}\right)$ satisfies condition (iv), (v) of Corollary 6.

Remark. The congruence relations in $\mathbb{Z}\left[\zeta_{i}\right]$ can be made more explicit using the integral basis $\left\{1, \lambda_{i}, \lambda_{i}^{2}, \ldots, \lambda_{i}^{l-1}\right\}$ where $l=p^{i-1}(p-1)$. Let

$$
\alpha=\sum_{j=0}^{l-1} a_{j} \lambda_{i}^{j}, \quad a_{j} \in \mathbb{Z} \text { for } 0 \leq j \leq l-1 .
$$

Using the discrete valuation on $\mathbb{Z}\left[\zeta_{i}\right]$ with local uniformizer λ_{i}, it is easy to see that

$$
\alpha \equiv 0 \quad(\bmod p) \Longleftrightarrow a_{j} \equiv 0 \quad(\bmod p) \text { for } 0 \leq j \leq l-1
$$

References

[1] D. Burns, Congruences between derivatives of abelian L-functions at $s=0$, Invent. Math. 169 (2007), no. 3, 451-499.
[2] B. H. Gross, On the values of abelian L-functions at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177-197.
[3] J. Lee, Congruences of L-values for cyclic extensions, Honam Math. J. 32 (2010), no. 4, 791-795.
[4] B. Mazur and J. Tate, Refined conjectures of the "Birch and Swinnerton-Dyer type", Duke Math. J. 54 (1987), no. 2, 711-750.
[5] K. Rubin, A Stark conjecture "over \mathbf{Z} " for abelian L-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33-62.

Department of Mathematics Education
Hongik University
Seoul 72-1, Korea
E-mail address: jglee@hongik.ac.kr

[^0]: Received August 20, 2014.
 2010 Mathematics Subject Classification. 16S34, 20C05.
 Key words and phrases. group rings.
 This work was supported by 2013 Hongik University Research Fund.

