
Characterization of a Premeiotic Germ Cell-specific 

Cytoplasmic Protein Encoded by Stra8, 

a Novel Retinoic Acid-responsive Gene 

Mustapha Oulad-Abdelghani, Philippe Bouillet, Didier D6cimo, Anne Gansmuller, Sophie Heyberger, 
Pascal  Doll6, Sylviane Bronner ,  Yves Lutz,  and  Pierre C h a m b o n  

Institut de G6n6tique et de Biologie Mol6culaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de 
la Sant6 et de la Recherche M6dicale/Universit6 Louis Pasteur, Coll~ge de France, B.P. 163, 67404 Illkirch Cedex, C.U. de 

Strasbourg, France 

Abstract. The full-length cDNA corresponding to 

Stra8, a novel gene inducible by retinoic acid (RA) in 

P19 embryonal carcinoma cells, has been isolated and 

shown to encode a 45-kD protein. Both Stra8 m R N A  

and protein were induced in cells treated by all-trans 

and 9-cis retinoic acids. Two-dimensional gel analysis 

and dephosphorylation experiments revealed that the 

two stereoisomers of R A  differentially regulate the 

phosphorylation status of the Stra8 protein, which was 

shown to exist in differently phosphorylated forms. 

Subcellular fractionation and immunocytochemistry 

studies showed that the Stra8 protein is cytoplasmic. 

During mouse embryogenesis, Stra8 expression was re- 

stricted to the male developing gonads, and in adult 

mice, the expression of Stra8 was restricted to the pre- 

meiotic germ cells. Thus, Stra8 protein may play a role 

in the premeiotic phase of spermatogenesis. 

ETINOIDS have been shown to regulate various phys- 
iological functions (for reviews see Blomhoff, 1994; 
Sporn et al., 1994; Kastner et al., 1995a; and refer- 

ences therein). Their effects are mediated through two 
families of receptors that act as ligand-inducible transcrip- 
tional regulatory proteins. The three retinoic acid (RA) 1 
receptors (RARtx, 13, and ~/) bind all-trans (T-RA) and 
9-cis RA (9C-RA), while the three retinoid X receptors 
(RXRet, 13, and ~/) bind only 9C-RA (for review see Cham- 
bon, 1994, 1996; Leid et al., 1992; Mangelsdorf et al., 1994, 
1995). Retinoids are known to be required for vertebrate 
reproduction, and in the male, for the maintenance of nor- 
mal testicular structure and function. Retinol deficiency 
leads to cessation of spermatogenesis and degeneration of 
the seminiferous tubules (Thompson et al., 1964; Howell 
et al., 1963), which have also been found in RARtx-null 
mutant mice (Lufkin et al., 1993; for review see Kastner 
et al., 1995a). Furthermore, it has been reported that RA 
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1. Abbreviat ions  used in this paper, dpc, day postcoitum; Dhh, Desert 
hedgehog; EC, embryonal carcinoma; ES, embryonic stem; ISH, in situ 
hybridization; RA, retinoic acid; RAR,  retinoic acid receptor; T-RA, all- 

trans RA; 9C-RA, 9-c/s RA; RT, reverse transcription. 

affects survival and proliferation of primordial germ cells 
(Koshimizu et al., 1995). The identification of RA-regu- 
lated genes specifically expressed in germ cells would 
therefore be helpful in providing molecular markers for 
further analysis of their development and understanding 
the role of RA in spermatogenesis. 

Using the P19 pluripotent embryonal carcinoma (EC) 
cell line as a model system, we have previously isolated a 
number of novel RA-responsive genes, collectively desig- 
nated as the Stra genes (Bouillet et al., 1995a,b; Oulad- 
Abdelghani et al., 1996; Roy et al., 1995; Taneja et al., 
1996). We describe here the cloning of full-length Stra8 
cDNA and the partial characterization of the correspond- 
ing novel protein. The Stra8 gene encodes a cytoplasmic 
protein that is differentially phosphorylated in P19 cells 
upon addition of T-RA or 9C-RA. Interestingly, Stra8 ex- 
pression is restricted to the male developing gonad during 
mouse embryogenesis, and in the adult, the Stra8 protein 
appears to be expressed in testis premeiotic germ cells. 

Materials and Methods 

Cell Culture and RA Treatment 

P19 cells were cultured and maintained as monolayers in DME enriched 
with 5% FCS (Rudnicki et al., 1988). F9 EC cells and D3 embryonic stem 

(ES) cells were cultured as described (Lufkin et al., 1991; Wang et al., 
1985). RA was added as an ethanol solution at a final concentration of 

1 }xM to induce differentiation. Control cells were treated with an equal 
volume of ethanol. At appropriate incubation times, the cells were washed 
with PBS, scraped, and recovered by centrifugation. 
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DNA Library Screening and Sequencing 

The initial 256-bp Stra8 cDNA fragment (Bouillet et al., 1995a) was used 
as a probe to screen an oligod(T)-primed hZaplI cDNA library prepared 
from P19 cells cultured as monolayers for 24 h in the presence of 1 p,M T-RA. 

105 phage plaques were screened using conventional techniques (Maniatis 
et al., 1982). Positive plaques were isolated and in vivo excision was per- 

formed according to the manufacturer (Stratagene, La Jolla, CA). The re- 
sulting pBluescript SK- plasmids corresponding to the full-length cDNA 

were prepared and sequenced on both strands using the DyeDeoxy termi- 

nator cycle sequencing on an automated DNA sequencer (AB1373A; Ap- 
plied Biosystems, Inc., Foster City, CA). 

Antibody Production and Purification 

Using PCR, Stra8 cDNA sequence was subcloned in the expression vector 
pET15b (Novagen, Madison, WI) to obtain a fusion protein containing six 

histidine residues at the NH2 terminus. Transformation of Escherichia coli 

BL21 (DE3), preparation, and purification of bacterially expressed Stra8 

protein were carried out as described (Oulad-Abdelghani et al., 1996), 
and the recombinant protein was used to immunize rabbits. The anti-Stra8 
polyclonal antiserum was purified on an affinity column prepared by bind- 

ing the Stra8 recombinant protein to a sulfolink column (Pharmacia, Upp- 
sala, Sweden). The affinity-purified antibody preparation was dialyzed 

against PBS containing 20% glycerol and stored at -20°C. 

Nuclear, Cytosolic, and Cytoskeletal Extracts 

Nuclear and cytosolic extracts were prepared from subconfluent P19 cells 
treated or not with i ~M RA for 24 h as described by Rochette-Egly et al. 

(1991). To prepare detergent-soluble and -insoluble fractions, P19 cells 

were extracted with ice-cold Triton buffer (25 mM Hepes, pH 7.4, 2 mM 
MnCl2, 0.1% protease inhibitor cocktail, 0.5% Triton X-100) as described 
(Gronowski and Bertics, 1994), and the mixture was centrifuged at 

100,000 g for I h. 

lmmunocytochemistry and Immunohistochemistry 

The full-length open reading frame of Stra8 was cloned in the sense orien- 
tation downstream of the SV-40 promoter into the expression vector pSG5 

(Green et al., 1988) and transfected into COS-1 cells. Immunocytochemis- 
try was performed in 96-well plates after fixation of the transfected cells 

with 2% paraformaldehyde for 4 rain and permeabilization with 0.1% Tri- 

ton X-100 for two times at 10 min each. Cells were then incubated with the 
affinity-purified anti-Stra8 antibody. The secondary antibody was biotiny- 

lated, and staining was performed using Vectastain ABC-Elite and DAB 
substrate kits (Vector Laboratories, Burlingame, CA). 

Immunohistochemistry was performed on 10-}xm cryostat sections of 
testis fixed with acetone, using the Vectastain ABC-Elite and DAB sub- 

strate kits. Slides were counterstained with haematoxylin and eosin. 

Electron Microscopy 

Adult male CD1 mice were anesthetized and perfused intraaortically with 

a fixative mixture (0.5% glutaraldehyde, 4% paraformaldehyde in PBS). 

Testes were removed and cryoprotected by immersion in 15% buffered 
sucrose, and then in 25% buffered sucrose overnight before being embed- 
ded in Tissue-Teck (Miles Laboratories, Inc., Elkhart, IN) and frozen. 

Cryostat sections (30 Ixm) were collected onto gelatin/chrome-alum- 

coated slides, treated with acetone for 5 min at 4°C, and then treated with 
4% formaldehyde in PBS for another 5 rain at 4°C. Labeling and detection 
were performed by using the Vectastain ABC-Elite and DAB kits. 

Stained sections were then fixed with 2.5% glutaraldehyde in PBS, post- 

fixed in 1% osmium tetroxide for 30 min, and dehydrated with ethanol 
and propylene oxide. After overnight infiltration in Epon resin, sections 

were flattened between micrQscope slides, polymerized at 60°C for 24 h, 
and finally glued onto plastic blocks. Thin-sections were cut and collected 

on 200-mesh uncoated grids and examined with an electron microscope 
(208; Philips Electronic Instruments, Inc., Mahwah, NJ) at 80 kV without 

counterstaining. 

SDS-PA GE, Two-dimensional PAGE, and 
Western Blotting 

Protein extracts were analyzed by SDS-PAGE on a 12% polyacrylamide 
gel as described in Laemmli (1970). Two-dimensional gel electrophoresis 

(IEF in the first dimension and SDS-PAGE in the second dimension) was 

performed as described in Oulad-Abdelghani et al. (1991). Western blot 

analyses were carried out according to standard techniques (Towbin et al., 
1979) with purified anti-Stra8 polyclonal antibody. An mAb against cellu- 

lar retinoic acid-binding protein II (anti-CRABPII 1CRA4C9, manu- 

script in preparation) and a polyclonal anti-actin (Sigma Chemical Co., St. 
Louis, MO) were also used. Secondary antibodies were conjugated with 

HRP and revealed using an ECL kit (Amersham Intl., Little Chalfont, UK). 

RNA Extraction and Reverse 
Transcription-PCR Analysis 

Total RNA from cultured cells and organs was prepared according to 
Auffray and Rougeon (1980). Reverse transcription (RT)-PCR were car- 

ded out as described (Bouillet et al., 1995a). Oligonucleotide primers used 

in this study were 5 ' -GCCAGAATGTATTCCGAGAA-3 '  (nucleotides 
429-448) and 5 ' -CTCACTCTFGTCCAGGAAAC-3 '  (nucleotides 1079- 

1060). Amplification products were separated on 2% agarose gels, trans- 

ferred onto Hybond N membranes (Amersham Intl.), and revealed by 
Southern blotting (Maniatis et al., 1982). 

In Situ Hybridization 

The Stra8 cDNA sequence cloned in pBluescript SK- (Stratagene) was 

used in T7 polymerase in vitro transcription reactions including digoxige- 

nin-11-UTP (Boehringer Mannheim GmbH, Mannheim, Germany) or 
[35S]CTP (Amersham Intl.) to produce antisense riboprobes (manufac- 

turer's reagents and instructions). Probe length was reduced by a 45-min 
alkaline hydrolysis with NaCO 3 (pH 10.2). In situ hybridization on cryo- 

sections was carried out as described in D6cimo et al. (1995). 

Results 

Stra8 cDNA and Putative Protein Sequences 

Using a differential subtractive hybridization cloning strat- 
egy based on biotin-streptavidin affinity and PCR, we iso- 
lated 50 partial cDNA clones corresponding to transcripts 
from RA-inducible genes in P19 cells (Bouillet et al., 1995a). 

One of these clones, referred to as Stra8 (256 bp), was sub- 
sequently used as a probe to screen an oligod(T)-primed 
cDNA library from RA-treated P19 cells. Several positive 
clones were isolated, the longer being 1,455 nucleotides in 
length (Fig. 1). This cDNA, which was sequenced on both 

strands, contains an open reading frame of 393 amino ac- 
ids starting with an ATG codon at nucleotide 102 and ter- 
minating by a T A A  stop codon at nucleotide 1281. The se- 
quence 5' of the initiation site contains an in-frame TGA 
stop codon at nucleotide position 12. Two putative poly- 
adenylation signals were found in the 3' untranslated re- 
gion at positions 1309 and 1435. 

The Stra8 protein contains a 51-amino acid domain that 
is rich in glutamic acid (38 out of 51 amino acids are 
glutamic acid), conferring a high acidity to the Stra8 pro- 
tein. In this domain glutamic acids form stretches of two to 
10 residues separated by one or two different amino acids. 
In particular, four E E E G  repeats were found in this d o -  
main. Glutamic acid-rich domains are found in several 
proteins such as the centromere autoantigen protein B, 
troponin T, or neurofilaments L, M, and H. The deduced 
Stra8 protein sequence does not exhibit any significant ho- 
mology with sequences of the Swissprot and NBRF data- 
bases outside of this glutamic acid-rich domain. Several 
putative phosphorylation sites for protein kinases A and 
C, casein kinase 2, and proline-dependent kinases are 
present in Stra8 protein (Fig. 1; Kemp and Pearson, 1990). 
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Figure 1. Nucleotide and de- 
duced amino acid sequence 
of the mouse Stra8 cDNA. 
Numbers (right) refer to the 
position of nucleotides and 
amino acids. Putative phos- 
phorylation sites for protein 
kinases A and C, casein ki- 
nase 2, and proline-depen- 
dent kinases (Kemp and 
Pearson, 1990) (shaded boxes). 
The glutamic acid-rich do- 
main (double underline). Pu- 
tative polyadenylation sites 
(underlined). (Asterisks) Stop 
codons. These sequence data 
are available from Genbank/ 
EMBL/DDBJ under acces- 
sion number Z75287. 

Stra8 Gene Expression in EC Cells, ES Cells, 
and Adult Organs 

The regulation of Stra8 gene expression by RA in P19, F9, 

and ES cells was investigated using the RT-PCR tech- 
nique. Stra8 transcripts accumulated in P19, F9, and ES 
cells upon T-RA treatment and, in P19 cells, even more 
strongly upon 9C-RA treatment (Fig. 2 A). Control exper- 
iments (not shown) on the same RNA samples did not 
show any significant variation in the content of the invari- 
ant 36B4 RNA (Bouillet et al., 1995a). Kinetics experi- 
ments in P19 cells treated with either 10 -8 or 10 -6 M T-RA 
showed that Stra8 transcript accumulation starts as early 
as 2 h after T-RA addition and that it reaches a plateau 
level by 12 h (not shown; see Bouillet et al., 1995a). 

RT-PCR was also used to investigate the possible ex- 
pression of the Stra8 gene in several mouse adult tissues, 
including brain, heart, lung, liver, kidney, spleen, ovary, 
and testis. Stra8 gene expression was clearly restricted to 
the testis (Fig. 2 B). 

Characterization of  the Stra8 Protein and Its 
Phosphorylated Forms 

The Stra8 protein was expressed in E. coli, purified, and 
used to produce rabbit polyclonal antibodies. Cytosolic 
extracts from P19 cells treated or not with 1 I~M RA were 
subjected to SDS-PAGE, and the presence of the Stra8 
protein was investigated by Western blotting. An immu- 
noreacting species with an apparent molecular mass of 

46 __+ 1 kD, consistent with that expected for the Stra8 
cDNA-deduced protein (45 kD), was detected (Fig. 3). As 
its cognate mRNA, the Stra8 protein was induced by both 
T-RA and 9C-RA. Note that no significant immunoreac- 
rive Stra8 protein was detected in P19 cell nuclear extract 
(not shown), indicating that this protein is essentially cyto- 
plasmic (see below). 

The Stra8 protein contains several putative serine and 
threonine phosphorylation sites (Fig. 1). To investigate 
whether Stra8 phosphorylated forms could exist, cytosolic 
extracts from P19 cells (treated or not with 1 ~M T-RA or 
9C-RA) were analyzed by two-dimensional gel electro- 
phoresis and Western blotting (Fig. 4). The Stra8 protein 
exhibited a migration typical of phosphoproteins (Creigh- 
ton, 1990). Nine phosphorylated forms of Stra8 (1-9) 

could be detected in the different extracts. All of these 
phosphorylated forms disappeared when the P19 cell ex- 

tracts were treated with alkaline phosphatase and more 
basic polypeptides of the same molecular mass appeared 
(not shown). The nine phosphorylated forms were de- 
tected in P19 cells treated with T-RA, whereas only forms 
2 and 3 were clearly found in cells treated with 9C-RA 
(Fig. 4). Note also that the labeling corresponding to forms 
2 and 3 was much less intense in T-RA-treated cells than 
in 9C-RA-treated cells. 

Cytoplasmic Localization of  Stra8 Protein 

To confirm the cytoplasmic localization of Stra8 protein, 
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Figure 2. Expression of Stra8 in P19, F9, and ES cells and adult 
organs. Total RNA was isolated from cells (A) and adult organs 
(B) and analyzed by RT-PCR and Southern blotting. (A) P19 and 
F9 cells were treated for 24 h with either ethanol (C), 1 ~M T-RA, 
or 1 p.M 9C-RA. ES cells were grown for 24 h in the presence of 
ethanol (C) or for 12, 24, and 48 h in the presence of T-RA (10 nM). 
(B) Stra8 RNA expression in adult mouse organs. 

the c D N A  sequence of Stra8 was cloned in the pSG5 ex- 

pression vector and transfected into COS-1 cells, and the 

expressed protein was immunocytochemically detected us- 

ing anti-Stra8 antibody. The cytoplasm of transfected cells 

was highly labeled (Fig. 5 A), while no significant signal 

was detected in the nucleus. 

As glutamic acid stretches are found in some proteins of  

the cytoskeleton, such as Neurofilaments (Levy et al., 1987) 

Figure 4. Immunodetection of phosphorylated forms of the Stra8 
protein. Cytosolic extracts from P19 ceils treated for 24 h with 
ethanol (Control), 1 ~M T-RA, or 1 ~M 9C-RA were subjected 
to two-dimensional gel electrophoresis (IEF and SDS-PAGE) 
and Western blotting using an anti-Stra8 antibody. The phosphor- 
ylated forms of Stra8 protein (1 to 9) are indicated. The thick 
spots observed in the upper right side correspond to an artifac- 
tual cross-reaction between the secondary antibody and an abun- 
dant P19 protein. 

Figure 3. Immunodetection of endogenous Stra8 protein in P19 
cells. Cytosolic extracts from P19 cells incubated for 24 h with ei- 
ther ethanol (C), 1 p~M T-RA, or 1 ~M 9C-RA were subjected to 
SDS-PAGE and Western blotting using a polyclonal antibody 
raised against bacterially expressed Stra8 protein. 

or Troponin T (Fyrberg et al., 1990), we examined whether 

the Stra8 protein could be a component  of the cytoskele- 

ton. P19 cells were extracted using Triton X-100, and the 

detergent-soluble and -insoluble (cytoskeletal) fractions 

were subjected to S D S - P A G E  and anti-Stra8 immuno- 

blotting. A n  immunoreactive species corresponding to the 

molecular mass of Stra8 was clearly detected in the Triton 

X-100-soluble fraction of RA-trea ted  P19 cells only (Fig. 5 

B). In control experiments carried out on the same ex- 

tracts, the soluble C R A B P I I  was also found only in the 

Triton-soluble fractions, whereas actin, which is known to 

be both soluble and associated with the cytoskeleton, was 

detected in both Triton-soluble and -insoluble fractions 

(Fig. 5 B). Thus, Stra8 protein does not appear to be a 

component  of the cytoskeleton. 

Restricted Expression of  Stra8 mRNA and Protein in 
the Mouse Testis 

Using an antisense R N A  probe, ISH was performed to de- 

termine the expression pattern of the Stra8 gene in mouse 
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Figure 5. (A) Localization of Stra8 protein by immunocytochem- 
istry in transfected COS-1 cells. COS-1 cells transfected with a 
Stra8 expression vector were stained by the HRP method with 
anti-Stra8 antibody. (B) Detection of Stra8 protein in Triton-sol- 
uble and -insoluble (cytoskeleton) fractions. P19 cells incubated 
for 24 h with ethanol (control) or with 1 IxM T-RA were ex- 
tracted with 0.5% Triton buffer and centrifuged at 100,000 g for 
1 h. The pellet and supernatant were analyzed by SDS-PAGE 
and Western blotting using antibodies against Stra8, CRABPII, 
or actin as indicated, c, cytoplasm; n, nucleus; Ts, Triton-soluble; 
Ti, Triton-insoluble. Bar, 20 p.m. 

tubules. Indeed, individual tubules were either strongly, 
weakly, or not labeled (Fig. 6 C). Similar heterogeneous 
labeling was observed in prepubertal (1--4-wk-old) and 
adult (5-mo-old; Fig. 6 D) testes. Stra8 transcripts were 
clearly restricted to the basal cell layer of the seminiferous 
tubules (Fig. 6 E). The considerable variation of signal in- 
tensities between individual tubules (Fig. 6 D) suggests 
that Stra8 gene expression is restricted to certain stages of 
the spermatogenic cycle (Russell et al., 1990). Consistent 
with the RT-PCR results, no ISH signal was detected on 
adult ovary sections (Fig. 6 F), thereby confirming that 
Stra8 expression is specific to male germ cells. 

We have also used the anti-Stra8 antibody to analyze 
the distribution of the corresponding protein in the adult 
mouse testis (Fig. 7 A). The staining observed in the tu- 
bules from adult testis was consistent with the results of in 
situ hybridization experiments (Fig. 6 D). Indeed, expres- 
sion of the Stra8 protein was restricted to the peripheral 
layer of the tubule, although not all of the cells from this 
layer were labeled. This suggested that Stra8 protein was 
not present in Sertoli cells, since the cytoplasmic processes 
of these cells extend in the luminal portions of the semini- 
ferous tubule. As previously reported for CRBPI (Kato et al., 
1985), immunoreaction with a cytoplasmic protein ex- 
pressed in Sertoli cells results in a signal extending radially 
toward the lumen, which was never observed with anti- 
Stra8 antibody. Note that no specific Stra8 protein staining 
could be detected in the interstitial cells (Leydig cells). 
That Stra8 is not expressed in Sertoli cells was confirmed 
by immunohistochemistry at the EM level on cryosections 
of adult testis. An intense immunoperoxidase reaction 
could be detected in the cytoplasm of germ cells located in 
direct contact with the basal lamina and displaying fea- 
tures of spermatogonia (these cells harbor a large round or 
oval nucleus). The immunostained cells were detected as 
isolated cells (Fig. 7 C) or groups of cells (Fig. 7 B), pre- 
sumably corresponding to the progeny of a single stem 
cell. Note that in Fig. 7 C, the section was across the cyto- 
plasm of the spermatogonia and did not show any part of 
the nucleus, thus explaining why the whole cell appeared 
immunostained. Sertoli cells (which can be easily recog- 
nized by their typical nucleus and a prominent reticular 
nucleolus) were not immunostained (Fig. 7 C). Thus, al- 
though the present optical resolution is not good enough 
to precisely identify which type of germ cells express Stra8, 
Stra8 expression is clearly restricted to premeiotic germ 
cells (spermatogonia and possibly preleptotene spermato- 
cytes). 

embryos and adult tissues. ISH was performed on mouse 
embryos at various developmental stages (6.5 d postcoi- 
tum [dpc] to neonates), and no signal was detected else- 
where than in the developing gonads (Fig. 6 A; data not 
shown). Stra8 transcripts were found in the genital ridges 
at 12.5 dpc, i.e., before the differentiation of the gonadal 
anlage (data not shown). Later in development, Stra8 
transcripts were strongly expressed in some cells of devel- 
oping testes (Fig. 6, A and B; 14.5 dpc). On the other hand, 
no signal was detected in the developing ovaries at 16.5 
dpc (data not shown). ISH of newborn testis sections 
showed heterogeneous Stra8 labeling among seminiferous 

Discussion 

Using a differential subtractive hybridization cloning pro- 
cedure, we have previously isolated several murine cDNA 
clones corresponding to RA-induced genes (Bouillet et al., 
1995a). One of these partial cDNAs, Stra8, was used as a 
probe to screen an oligod(T)-primed cDNA library from 
RA-treated P19 cells. A full-length Stra8 cDNA that en- 
codes a putative protein with a molecular mass of 45 kD 
was cloned. The deduced Stra8 protein does not appear to 
be related to any of the protein sequences already present 
in the databases, with the exception of a glutamic acid-rich 
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Figure 6. In situ hybridization analysis of the expression of Stra8 transcripts. (A) Sagittal section of a 14.5-dpc mouse fetus showing a 
signal restricted to the developing gonad (white arrow). (B) High power magnification of the gonad (boxed in A) that has histological 
features of a developing testis and shows heterogeneous labeling, presumably in germ cells. GO, gonad; ME, differentiating mesoneph- 
ros; ST, stomach. (C) Section of a newborn testis (TE). Note the variable signal intensities among individual tubules, and the absence of 
signal in the epidydimis (EP). (D) Section of an adult (5 too) testis. (E) High power magnification of the field boxed in D showing both 
labeled and unlabeled seminiferous tubes. Note that the labeling was always restricted to the basal cell layer. (F) Section of an adult 
ovary. The weak signal in the upper right side corresponds to an artifact and was not reproducibly observed. In all cases, the lefthand 
panels are bright-field views showing the histology, and the righthand panels are dark-field views showing the hybridization signal grain 
in white. Bars: (A) 2.5 ram; (B) 350 Ixm; (C) 600 ~m; (D) 1.4 mm; (E) 330 Ixm; (F) 600 Ixm. 

domain. Subcellular fractionation studies of P19 cell pro- 

teins and immunocytochemistry have revealed that the 

Stra8 protein is localized in the cytoplasm, and they have 

also shown that this protein may not be a component  of 

the cytoskeleton. In addition, Stra8 protein was enriched 

in membrane-deprived cytosolic fraction (Fig. 3) and was 

not detected in membrane  preparations (not shown). This 

suggests that Stra8 protein may be a cytoplasmic soluble 
protein rather than a structural protein. 

Two-dimensional-gel analysis and dephosphorylation 

experiments have revealed that Stra8 can exist in several 

phosphorylation states. The phosphorylated forms that are 

present after R A  treatment differ depending on the R A  

stereoisomer that is used. Seven of  these forms are found 

essentially only in T-RA- t rea ted  cells, and the two others 

(forms 2 and 3; Fig. 4) are found in cells treated with both 
isomers, although at a much higher relative level in 9C- 

RA- t rea t ed  cells. Since it is known that T - R A  used at a 
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Figure 7. Stra8 protein localization in the testis. (A) Stra8 protein localized by immunohistochemistry with an anti-Stra8 antibody on 10- 
~m cryosections of testis from adult mouse. (B and C) EM localization of Stra8 protein on cryosections of adult testis, without counter- 
staining. The dark immunoperoxidase staining was restricted to the cytoplasm of putative spermatogonia (see text). Note that there 
was no positive signal detected in Sertoli cells (C, right), c, cytoplasm; n, nucleus; nu, nucleolus; S, Sertoli cell; Sg, spermatogonia. 
Bars: (A) 160 txm; (B and C) 2.5 ~m. 

high concentration can be converted in vivo into its 9-c/s 
isomer (Levin et al., 1992; Heymann et al., 1992), it is pos- 
sible that these two latter phosphorylated forms could in 
fact be specifically induced by 9C-RA. Thus, T-RA and 
9C-RA may not only differentially control gene expres- 
sion at the RNA level (Durand et al., 1992), but also dif- 
ferentially regulate posttranslational modifications. This 
action of T-RA or 9C-RA on protein phosphorylation 
may reflect effects on kinases and/or phosphatases. Inter- 
estingly, the expression of the gene encoding alkaline 
phosphatase has been shown to be regulated by RA in 
RCT-1 and F9 cells (Heath et al., 1992; Gianni et al., 
1993), whereas RA induces a decrease in the expression of 
p34 cdc2, a serine/threonine kinase that has an important 
role in controlling cell cycle progression (Gaetano et al., 
1991). RA has also been shown to increase the phosphory- 

lation of RAR[31 and RARI33 isoforms (Rochette-Egly et 
al., 1992). Thus, Stra8 may provide a good model to study 
protein phosphorylation during RA-induced differentia- 
tion. 

In the adult mouse the expression of Stra8 RNA ap- 
pears to be restricted to the testis. In situ hybridization and 

immunocytochemistry demonstrate that the expression of 
Stra8 is limited to the basal layer of seminiferous tubules 
where the Sertoli and premeiotic germ cells are localized. 
Immunoelectron microscopy reveals that Stra8 protein is 
found only in the cytoplasm of ceils that lie in close contact 
with the basal lamina, and these cells were identified as 
spermatogonia and possibly preleptotene spermatocytes. 
Stra8 gene is not expressed in all of the tubules present in 
a given testis section, suggesting that its expression de- 
pends on the stage of the spermatogenic cycle. A similar 
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restricted expression has already been observed for sev- 
eral genes such as RXRct, CRBPI, or TAK1 (Kastner et al., 

1995b; Rajan et al., 1990; Hirose et al., 1995). This can be 
explained by the fact that the process of spermatogenesis 
is synchronized, with waves of activity occurring sequen- 
tially along the length of each tubule (Russell et al., 1990). 

Stra8 expression is limited to the premeiotic germ cells 
of the adult testis. To date, c-kit gene is the only gene that 
was shown to have this specificity of expression in the sem- 
iniferous epithelium (Manova et al., 1990). In contrast, it 
should be noted that c-kit gene is also expressed in Leydig 
cells at all ages examined (Manova et al., 1990), whereas 
Stra8 expression was never detected in these cells. This 
makes Stra8 a very interesting marker of premeiotic germ 
cells and should prove to be very useful in identifying this 

population in studies of germ cell development. 
In the mouse embryo, Stra8 transcripts were detected 

only in the male developing gonad from 12.5 dpc. Several 
other genes have previously been shown to exhibit a male- 
specific expression in the gonad. Sry, which is located on 
the Y chromosome, is thought to be the major factor of sex 
determination and is expressed in the Sertoli cell precur- 

sors of the developing gonad from 10.5 to 12 dpc, at the 
time when testis begins to form (Koopman et al., 1990; 

Hacker et al., 1995). Desert Hedgehog (Dhh) begins to be 
expressed in the pre-Sertoli cells of the developing male 
gonad at 11.5 dpc, and this expression persists in the adult 
testis, whereas no expression is detected in the female go- 
nad (Bitgood et al., 1996). Since Dhh begins to be ex- 
pressed shortly after the activation of Sry, it has been pro- 
posed that it may be a direct target gene for Sry. Interestingly, 
male Dhh homozygous null mutants are infertile and har- 
bor a gross germ cell deficiency that can already be de- 
tected at 18.5 dpc (Bitgood et al., 1996). The expression of 
another gene displaying male-specific transcription in the 

Leydig cells, Patched, has been shown to be lost in Dhh 
null mutants (Bitgood et al., 1996). Since Stra8 expression 
starts shortly after the onset of Dhh expression, it would 
be interesting to study its expression in Dhh null mutant 
embryos between 12.5 and 18.5 dpc to determine whether 
Stra8 could be a component of Dhh signaling pathway. 
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