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Characterization of Analog Local Cluster Neural
Network Hardware for Control

Joaquin Sitte, Liang Zhang, and Ulrich Rueckert

Abstract—The local cluster neural network (LCNN) was de-
signed for analog realization especially suited to applications in
control systems. It uses clusters of sigmoidal neurons to generate
basis functions that are localized in multidimensional input space.
Sigmoidal neurons are well suited to analog electronic realization.
In this paper, we report the results of extensive measurements that
characterize the computational capabilities of the first analog very
large scale integration (VLSI) realization of the LCNN. Despite
manufacturing fluctuations and the inherent low precision of
analog electronics, the test results suggest that it may be suitable
for use in feedback control systems.

Index Terms—Analog computation, analog very large scale in-
tegration (VLSI), function approximation, neural networks (NNs),
radial basis function (RBF) networks.

I. INTRODUCTION

THE massively parallel computations inherent in neural net-
works (NNs) can only be realized by massively parallel

hardware. Although different NN hardware realizations have
been proposed in the past 20 years none has found broad ap-
plication. The vast majority of the many successful NN applica-
tions simulate their NNs on conventional sequential computers.
Applications of NNs to control stand to benefit most from the
fast parallel computations of NN hardware, provided that such
hardware can be made at low cost and compact. Among the
various types of NNs, feedforward networks are the best un-
derstood. Feedforward NNs find wide application as classifiers
and multivariate function approximators. Function approxima-
tion consists of finding a multivariate function that best interpo-
lates a function that is only known at a set of sample points. With
the appropriate setting of the network weight parameters, a feed-
forward NN can reproduce any well-behaved function. Such
adaptive mappings find wide applications in control for mapping
sensor readings to actuator signals or for plant identification.
With control applications in mind, we choose to realize an NN
in analog electronics. The main elements of an NN can be real-
ized with analog electronic circuits consisting only of a few tran-
sistors. Large parallelism can be achieved by replicating these
small circuits many times in an integrated circuit. An analog NN
has the further advantage of interfacing directly to analog sen-
sors and actuators without the need for analog-to-digital (A/D)
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and digital-to-analog (D/A) conversion, saving space, time, and
power. Low precision of analog hardware is often seen as a dis-
advantage; however, in feedback control precision, it is not crit-
ical, because any deviations will be corrected by using feedback
as long as the direction is approximately right. This is demon-
strated by the many successful bang–bang control schemes.

For feedforward NNs, the designer has a choice of two main
architectures: multilayer perceptrons (MLP) with sigmoidal ac-
tivation functions, and the networks that use localized activation
functions, such as radial basis functions (RBF) [1]–[4].

In the last decade, several analog NN hardware realizations
were reported such as [5]–[14]. These works describe blocks
and circuits for hardware realizations of NNs, but the accuracy
and robustness of these circuits were not discussed in detail.
Therefore, it is difficult to compare these implementations and
to assess their applicability.

In this paper, we examine the performance of an analog very
large scale integration (VLSI) integrated circuit (IC) realization
of the local cluster neural network (LCNN) architecture. The
LCNN architecture was proposed by Geva and Sitte [15] and
realized in an LCX analog chip by Koerner, Rueckert, and Sitte
[16], [17]. Henceforth, we identify this chip as the LCX chip.
The LCNN is a special kind of MLP where sigmoidal neurons
combine in clusters that have a localized response in input space.
LCNNs are more general than RBF NNs and have all the compu-
tational advantages of the latter, while retaining the analog VLSI
implementation advantages of weighted sums and sigmoids.

In Section II, we give the mathematical definition of the
LCNN, and then, follow with the description of its integrated
circuit realization in Section III. In Section IV, we report
comprehensive measurements of the local cluster output for the
full range of its weight parameters. We conclude in Section V
by summarizing the main results of this paper.

II. LCNN DEFINITION

Fig. 1 shows the signal flow diagram for a segment of two
clusters of an LCNN. Like an MLP, it uses sigmoidal neurons in
two hidden layers. Clusters of sigmoids form functions localized
in input space, similar to RBFs, but capable of representing a
wider range of localized functions. Each neuron in the second
hidden layer outputs such a local response function. The LCNN
output is a linear combination of localized scalar functions in

-dimensional input space

(1)

where is the output weight that determines the contribution to
the network output of the th local cluster .

1045-9227/$25.00 © 2007 IEEE



SITTE et al.: CHARACTERIZATION OF ANALOG LCNN HARDWARE FOR CONTROL 1243

Fig. 1. LCNN with two clusters and four inputs.

Fig. 2. Two sigmoids: �(k; h ) and �(k; h ).

is the matrix of weights, is the -dimensional position vector
of the reference point (center) of the cluster, is the -dimen-
sional input vector, and is the parameter that controls the steep-
ness of the sigmoid.

Each local function is the result of applying
a sigmoidal window to a sum of -dimensional
ridge functions

(2)

The constant allows shifting the function with respect
to the window. is a sum of ridge functions

(3)

The vector is the th column of the weight matrix .
Ridge functions are built from the difference of two opposing

-dimensional sigmoid functions

(4)

Fig. 3. Ridge l(~w; ~r; ~x): difference of two sigmoids.

The arguments and for the sigmoids in (4) are chosen to
displace their inflection hyperplanes by a distance to the
left and to the right of the position along the direction of , as
shown in Fig. 2

(5)

(6)

The difference of the two sigmoids determines the shape of
the ridge function (4), as shown in Fig. 3.

For , we choose the logistic sigmoid function

(7)

where is an affine transform of

(8)

We can rewrite the sigmoid function as

(9)
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Fig. 4. Dependence of ridge shape on j~wj for constant d = 1. j~wj = (0:1�1)
in steps of 0.1.

where
(10)

(11)

The weights and are now scaled by . Because the
weights will be determined by a training process, it does not
matter whether the training is for or . Equation (11) is of
the same form as (8), only the values of the parameters will
be different; therefore, we can use the scaled (8) ignoring the
primes. The expression for can be rewritten as

(12)

showing that represents times the distance from to the
inflection hyperplane of the sigmoid.1 determines the steep-
ness of the sigmoid and determines the displacement of
the inflection hyperplane from the reference position . The
magnitude of the weight vector controls both the steepness and
the position of the inflection plane. Thus, we have two parame-
ters and that determine two quantities: the steepness and
the position of the inflection hyperplane of the sigmoid.

The two parameters and in combination determine the
shape of the ridge function. Fig. 4 shows the variation of ridge
cross-section shape when is fixed at 1 and is varied. The
width of the ridge decreases as the length of the weight in-
creases. Fig. 5 in turn shows how the ridge shape varies with
for constant .

The weight vector , and therewith its length , is deter-
mined by training. The parameter plays the role of a shape
parameter that we consider fixed by design. The value
gives a bell shape close to a Gaussian function. Fig. 5 shows
that larger values of produce trapezoidal or box-like functions
useful for classification tasks. Therefore, the LCNN can repre-
sent a wider range of functions than an RBF network.

The ridge functions derive their name from their shape in
-dimensional input space. Fig. 6 shows a ridge in

2-D.

1The inflection hyperplane is the locus of ~x such that the argument of the
sigmoid function (7) is zero.

Fig. 5. Dependence of the ridge shape on d with fixed w for w = 0:3, d =
(0:2; 2) step 0.2.

Fig. 6. Ridge function (difference of two displaced sigmoids) in 2-D.

Fig. 7. Addition of two ridges in 2-D. f(W; ~r; k; ~x).

Adding -dimensional ridge functions that have the same
but different vectors produces the function [see
(3)] that has a peak around where the ridges intersect. Fig. 7
shows this for 2-D. We call the ridge functions combined in
this way a local cluster.

Removing the ridges that radiate outwards from the center
leaves the peak, which is the localized function we are after.

The removal is done by applying an offset sigmoidal windowing
function to . Fig. 8 shows the result in 2-D.



SITTE et al.: CHARACTERIZATION OF ANALOG LCNN HARDWARE FOR CONTROL 1245

Fig. 8. local function L(~w;~r; k; ~x) resulting after removing the outward
radiating ridges.

III. HARDWARE IMPLEMENTATION OF LCNN

A hardware realization of the LCNN requires modules for
carrying out the following operations on the input signals:

• subtraction of the position vector of each cluster from the
input vector ;

• computation of the dot product of each of the weight
vectors in the weight matrix of each cluster with the result
from the previous step: ;

• calculation of two displaced sigmoid functions for each dot
product: and ;

• subtraction of the two sigmoids to get the ridge function
;

• summation of the ridge function outputs
;

• passing the summation of the ridge functions through a
sigmoidal windowing function to extract the localized peak
resulting from the overlap of the ridges and removing of the
ridges: ;

• multiplication of each output of the windowing module by
the corresponding output weight ;

• summation of the resulting values in the last op-
eration to calculate the LCNN output

.
All of mathematical functions used in the LCNN can be real-

ized in analog current mode complementary metal–oxide–semi-
conductor (CMOS) VLSI circuits. By current mode, we mean
that currents, not voltages, represent the signals. The LCX
integrated circuit, described in this paper, is such an analog
electronic implementation of the LCNN. The LCX chip was
designed by combining simple basic circuits with transistors
working in the subthreshold mode. The major blocks of the
LCX chip are the multiplier matrix, the ridge generator circuits,
and the output sigmoid circuit. For the weights, however, we
opted for digital storage because an analog storage technology
such as floating gate transistors was beyond our reach. The
prototype integrated circuit we describe in this paper consists
of eight equal clusters. Each cluster has six inputs, one output
and 8-bit digital weight storages. This number of inputs and
clusters is already adequate for many control applications.
Fig. 9 shows the block diagram of the LCX chip and Fig. 10
shows the structure of a cluster.

Fig. 9. LCNN with eight clusters on the LCX chip.

Fig. 10. Structure of a local cluster.

Each cluster has 45 digital weights grouped as follows:

cluster center vector:

weight matrix:

bias:

output weight:

The bias (or offset) consists of two registers: the 8-bit wide
and the 3-bit extension , which gives a total range for

of ( 1023, 1023). The range of values for weight , , and
is ( 127, 127). In total, the LCX chip has 360 weight registers
(8 clusters 45 weights). The storage locations do not have ad-
dresses. The digital weight store is a single big shift register,
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Fig. 11. LCNN chip test setup.

where the values are shifted in and out serially. The indices in
the previous matrix indicate the weights’ position in the shift
register.

The chip’s inputs and output is voltage for ease of interfacing.
The voltage range for each input is from 1 to 2 V and each
cluster receives the same six inputs. All clusters have the same
functionality. The chip output is the weighted sum of all cluster
outputs.

IV. TEST PROCEDURES AND RESULTS FOR LCNN CHIP

Analog circuits are much more susceptible to manufacturing
inaccuracies and fluctuations than digital circuits. Any devia-
tion from design specification in a circuit component translates
directly into a deviation from the designed signal input–output
behavior. Because of transistor parameter fluctuations, circuits
will not only deviate from their expected design behavior but
each one will deviate differently. Signal offsets, deviations, and
distortions are the result. The LCX chip contains many identical
circuits that will all behave slightly different. Therefore, the first
task with the new LCX chips was to thoroughly test them to
determine the absolute deviations from the design specification
as well as the relative intrachip and interchip fluctuations. The
main results of these tests are summarized and discussed in this
section.

A. Test Setup for the LCNN Chip

Fig. 11 shows a block diagram of the test setup for the LCNN
chip. For testing the LCX chip, we used a purposedly built
development board that can host up to four LCNN ICs and
it connects to a personal computer over the parallel port. The
LCNN development software on the PC controls the measure-
ment process, loading weights onto the chips, generating input
signals for the chips, and capturing the outputs. The develop-
ment board provides the D/A conversion of the digital input
values generated on the PC and A/D conversion of the outputs.
In addition to the cluster outputs, diverse strategic test points in
the network can be read.

B. Test Procedure for the LCNN Chip

The aim of the tests is first to determine how closely the
input–output transfer mapping of the chip matches the ideal
mathematical model described in Section II and, second, the
amount of variation found in the local clusters within a chip (in-
trachip) and between chips (interchip). The input space for each

Fig. 12. Effect of the bias b of the windowing sigmoid function on the cluster
output in an ideal cluster. b = (�1:0; 2:0) with 0.1 interval.

cluster is a 6-D cube. The output of each cluster depends on the
45 digital weight parameters described in Section III. It is prac-
tically impossible to test the chip exhaustively over the 45-D
parameter space and, therefore, a test strategy is required that is
capable of characterizing the chip’s capabilities appropriately
without having to sample exhaustively the parameter space.

The testing strategy we follow emphasizes the visualization
of the key functional dependencies that determine the network
output. The tests consist of measuring the network output as a
function of the network inputs at selected points in parameter
space. Inputs will be varied along specific trajectories, or over
2-D hyperplanes, in input space. Mostly, these will be straight
lines parallel to one of the axes of the input space or planes
aligned with the axes.

C. Positioning of the Windowing Sigmoid for the Cluster
Output

The most critical parameter in a cluster is the offset of the
windowing sigmoid function in (2). If this window is misplaced,
then there will be a distorted output from the cluster, or no output
at all. Fig. 12 shows the effect on the output of varying the bias

of the windowing sigmoid function in the ideal network. As
increases, the window shifts down and the output peak moves

into the window from below growing until it is squashed (cut)
at the top. Then, the ridges appear and move up until they reach
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Fig. 13. Dependence of cluster output height on b.

Fig. 14. Effect of the bias b of the windowing sigmoid function on a cluster
output. b = (�960; 960) with interval of 64.

the top of the window. The amplitude of the windowing sigmoid
should be about twice the amplitude of the ridge sigmoid. This
allows positioning of the center of the windowing sigmoid at
the maximum of the sum of the ridge functions [function in
(2)] so that the top of the local cluster function falls into the
linear part of the windowing sigmoid and is not distorted. Fig. 13
shows that in the ideal case the maximum height of the cluster
output peak is attained at the inflection point of the windowing
sigmoid. For the ideal network, the value of is the same for all
clusters and can be calculated. It only depends on the number
of active inputs, that is, on how many ridges are added. On the
chip, the best value for has to be found experimentally for each
cluster. There is no dependency on the number of inputs because
all inputs are always active. When there are fewer input signals
than input lines on the chip, the unused inputs have to be held
at the neutral input value of 1.5 V.

Fig. 14 shows how the output varies with the offset as mea-
sured on the chip. The optimal value of can be read off from
Fig. 15 as the value of where the output height has its max-
imum. At that point, the top has not been flatted and the tails are
just about to appear.

Fig. 15. Dependence of cluster output height on b.

The results show that the output sigmoid can be positioned
quite accurately. Variations in the output sigmoid amplitude do
not affect the output peak because only the lower half of the
input range is used. Variations in slope affect the height of the
output peak but this can be compensated with the adaptation of
the output weight of the cluster.

D. Output Dependence on the Weights

The shape of the ridge functions , built by subtracting two
displaced sigmoids as defined in (4), determines the shape of
the localized cluster output function. The individual ridge gen-
erators (see Fig. 1) can be tested by setting the weight matrix
of the cluster to a diagonal matrix. In that case, the ridges are
aligned with the axes in input space and each ridge depends on
a single parameter. By scanning the range of one of the inputs,
while holding all other inputs constant, the network output fol-
lows the cross section of the ridge associated with that input.
The different ridges of a cluster can be compared by setting all
weights on the diagonal to the same value . Furthermore, if the
values of the output weight for all the clusters are the same,
ridges can be compared across clusters.

The shape of the ridge functions tested in this way is affected
by the error in the position of the peak of the local cluster output.
In order to obtain the maximum amplitude for the ridge function,
the cross section has to go through the peak in input space. In the
mathematical model, this is the case if . On the chip, there
is no guarantee that the cross section passes through the peak
as the maxima of the ridges may be displaced from their ideal
positions. Instead, the components of have to be set at values
such that the maximum of the ridge function is at the center of
the ridge’s input range.

Fig. 16 shows the ridge shapes from four different clusters
(clusters 4 to 7) for all input channels (channels 0 to 5) when
weight is 96, is 96, and is 640. The values for were
chosen for each ridge as to position the maximum of the ridge
function at the center of the input range. As can be seen, the
widths and heights of the ridge functions vary considerably on
the same chip.

The statistical analysis of the variations of the ridge function
could be done by extracting a set of characteristic parameters
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Fig. 16. Fluctuations of the ridge cross sections in different clusters and input channels on the same LCX chip. The diagonal elements are all w = 96, the output
weights were also 96, and b = �640.

from the measured functions. These could be, for example, the
parameters that will best fit a ridge function [see(4)] to the mea-
sured functions. Instead, we choose a simple characterization in
terms of the height and width of the measured ridge function.
Figs. 17 and 18 show the results for the ridges in Fig. 16.

The magnitude of the weight vector affects the width of the
ridge function. Fig. 4 shows how in the mathematical model the
width of the bell-shaped ridge functions decreases as the mag-
nitude of the weight vector increases. This dependence on
can be observed on the chip by scanning, as before, the inputs
for different values of elements in the diagonal weight matrix.
Figs. 19 and 20 show a typical result for one ridge on the chip.

The height of the output peak of the local function can be
adjusted with the weight . In this way, differences in the height
of the ridges can be compensated with . Fig. 21 shows how a
cluster output function changes with . Fig. 22 shows that the
amplitude of the cluster output is closely linear as it should be.

Fig. 17. Output fluctuations in the height of ridges in four clusters on the same
chip. � cluster 4, � cluster 5, cluster 6, and � cluster 7.
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Fig. 18. Output fluctuations in the width of the ridges in four clusters on the
same chip. � cluster 4, � cluster 5, cluster 6, and � cluster 7.

Fig. 19. Dependence of cluster output on weightw in cluster 7.w = (32; 127)
with intervals of 8.

Fig. 20. Width of the ridge as a function of j~wj.

As mentioned before, the position of the peak is at the inter-
section of all ridges, and therefore, the position depends on the
position of the maxima of the ridges. According to the mathe-
matical model for , the peak of the output of a local cluster

Fig. 21. Dependence of cluster output on weight v in cluster 7. v = (8; 127)
with interval of 8.

Fig. 22. Amplitude of output peak as function of v.

Fig. 23. Dependence of output with the variation of weight r in cluster 4. r =
(�127;127) with interval of 32.

is at the origin of input space. In the LCX chip, the maxima of
the ridge functions are shifted from this reference position by
various amounts. Two test are indicated here. First is linearity of
the displacement dependence on the corresponding component
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Fig. 24. Distance of ridge maximum from input range center over the full range
of r.

Fig. 25. Center of weight r in different clusters. � cluster 4, � cluster 5,
cluster 6, and � cluster 7.

of , and second the offset of the position from the reference po-
sition. This can be measured in the same way as before for each
ride function.

Fig. 23 shows the shape and position of a ridge function over
the whole range of . Fig. 24 shows that the displacement of
the peak of the ridge function is a fairly linear function of the
value of the ridge’s component of . Fig. 25 shows the offset
required for the ridge’s component of such that the peak of
the ridge function is in the center of the input range. There are
considerable displacements; however, they will be compensated
by training the components of .

E. Visualization in 2-D

The output of the network can be visualized by varying
two inputs, and holding the remaining inputs constant.
Fig. 26(a) and (b) shows the 2-D LCNN output in channel
4 and channel 5. The bump increases in height when the output
weight increases. Fig. 27(a) to (d) shows the effect of in
2-D. Finally, Fig. 28(a) and (b) shows, in 2-D, the LCX chip’s
capability of representing general functions. These functions
were obtained by training the LCX chip with two different
training sets.

F. Dynamic Response

All the data presented so far characterize the static behavior
of the LCX chip. For control applications, it is of interest to
know how fast the output can follow changes in the input and
how big the signal propagation delay is. The measurement of
the dynamic response of the circuit is complicated by the non-
linearity in the sigmoids. Simulations showed that the various
subcircuits have quite different frequency response. While the
multiplier circuit output only dropped between 1% and 5% at 1
Mhz compared to the static output, this occurred at 250 kHz for
the ridge generators and at 125 kHz for the output sigmoid.

The frequency response of the LCX chip was tested with a si-
nusoidal input signal of 1 V over the range of 10–150 kHz. The
3-dB attenuation for the multipliers is around 150 kHz. For the
cluster output, it was measured at 50 kHz. There is no attenua-
tion of the output at up to 15 kHz. The input-to-output propaga-
tion delay was measured to be about 1 s. The limit of 15 kHz
for the undistorted operation is due to the low output currents
available to buffer external capacitances.

The frequency of 15 kHz seems small compared to giga-
hertz clock speeds for digital circuits; however, it has to be
remembered that in one cycle the whole input range is trans-
versed twice. Because of the nonlinearities, the output contains
frequencies up to ten times the input frequency. According to
the Nyquist sampling theorem, a digital circuit would have to
sample the output at 300 kHz. This leaves a digital processor
around 3 s to do all the computations for all eight clusters on
the chip. Estimating the number of operations conservatively at
around 1000, a piplined processor with a clock speed of 300
MHz would be needed to the same job as the LCX chip, and at
a much higher power consumption.

V. CONCLUSION

The software version of LCNN has proven its versatility in
function approximation and classification tasks. The mathemat-
ical operations of the LCNN can be implemented in analog NN
hardware allowing the parallel computation inherent in the NN
model to be realized at low cost. However, analog circuits are
susceptible to manufacturing fluctuations and noise. We investi-
gated the accuracy and precision of an analog hardware realiza-
tion of the LCNN. The results give an indication of the magni-
tude and nature of the deviations of the function performed by
the integrated circuit from the desired ideal mathematical be-
havior. We found that although the computations of the analog
NN match the mathematical model quite accurately, the param-
eters that characterize the clusters have large variations across
the clusters on the same chip. Therefore, it is not possible to pre-
dict the output of a cluster for a given set of weights. However,
values for the weights can be found so that cluster output func-
tion closely matches the mathematical model. The implication
of this is that sets of weighs are not transferable between the
different LCX chips, and therefore, each chip has to be trained
separately to approximate a given function. With his proviso, the
analog LCNN provides a fast, low-power, and low-cost hard-
ware solution for function approximation. The training algo-
rithms and results for the LCX chip are the subject of a separate
forthcoming paper.
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Fig. 26. Change in network output with increasing value of v. (a) The 2-D LCNN in v = 64, w = 127, and b = �896. (b) The 2-D LCNN in v = 127,
w = 127, and b = �896.

Fig. 27. Cluster output in 2-D for different positions of the output sigmoid in cluster 5 and channel 3 and 4. (a) The 2-D LCNN in v = 96, w = 96, and
b = �128. (b) The 2-D LCNN in v = 96, w = 96, and b = �384. (c) The 2-D LCNN in v = 96, w = 96, and b = �640. (d) The 2-D LCNN in v = 96,
w = 96, and b = �896.

The test results indicate that the LCX chip is suitable for feed-
back control applications. As an example, consider the well-
known cartpole control problem. The purpose of the controller
is to balance an inverted pendulum mounted on a mobile plat-

form (cart) such that balancing is achieved at prescribed target
position for the cart. This control task has four-state variable,
pole angle, pole angular velocity, cart position, and cart speed.
The control output is the acceleration of the cart. A simple state-
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Fig. 28. General functions formed by linear combination of several local clusters. (a) Linear combination of two local cluster functions in 2-D. (b) Linear combi-
nation of six local cluster functions in 2-D.

space feedback controller of the form [18] has
been shown. The function is amenable to be generated by the
LCX chip. These variables can be derived from analog sensors
and input directly to the LCX chip and the output can be used
directly to a power amplifier for a direct current (dc) motor. No
digital processor is needed.
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