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Abstract

Background: The abundance and diversity of antibiotic resistance genes (ARGs) in the human respiratory

microbiome remain poorly characterized. In the context of influenza virus infection, interactions between the virus,

the host, and resident bacteria with pathogenic potential are known to complicate and worsen disease, resulting in

coinfection and increased morbidity and mortality of infected individuals. When pathogenic bacteria acquire

antibiotic resistance, they are more difficult to treat and of global health concern. Characterization of ARG

expression in the upper respiratory tract could help better understand the role antibiotic resistance plays in the

pathogenesis of influenza-associated bacterial secondary infection.

Results: Thirty-seven individuals participating in the Household Influenza Transmission Study (HITS) in Managua,

Nicaragua, were selected for this study. We performed metatranscriptomics and 16S rRNA gene sequencing

analyses on nasal and throat swab samples, and host transcriptome profiling on blood samples. Individuals

clustered into two groups based on their microbial gene expression profiles, with several microbial pathways

enriched with genes differentially expressed between groups. We also analyzed antibiotic resistance gene

expression and determined that approximately 25% of the sequence reads that corresponded to antibiotic

resistance genes mapped to Streptococcus pneumoniae and Staphylococcus aureus. Following construction of an

integrated network of ARG expression with host gene co-expression, we identified several host key regulators

involved in the host response to influenza virus and bacterial infections, and host gene pathways associated with

specific antibiotic resistance genes.
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Conclusions: This study indicates the host response to influenza infection could indirectly affect antibiotic

resistance gene expression in the respiratory tract by impacting the microbial community structure and overall

microbial gene expression. Interactions between the host systemic responses to influenza infection and antibiotic

resistance gene expression highlight the importance of viral-bacterial co-infection in acute respiratory infections like

influenza.

Keywords: Antibiotic resistance, Upper respiratory tract infection, Microbiome, Influenza infection,

Metatranscriptome

Background
Influenza virus infection is commonly followed by second-

ary bacterial infection, leading to increased morbidity and

mortality, particularly among susceptible groups including

the elderly and the immunocompromised [1, 2]. Bacterial

species with the potential to cause infections in the re-

spiratory tract, such as Haemophilus influenza, Staphylo-

coccus aureus, and Streptococcus pneumonia, are often

found in association with influenza virus infections and

have also been isolated from the upper respiratory tract of

healthy individuals [3, 4]. The emergence and spread of

antibiotic resistance strains of these potential pathogens,

such as methicillin-resistant Staphylococcus aureus

(MRSA) and multidrug resistance Streptococcus pneumo-

nia, impact treatment and are of global concern.

Whereas the phenomenon of antibiotic resistance has

been widely studied in the gut microbiome [5, 6], there

have been limited attempts to profile antibiotic resist-

ance gene (ARG) expression in the respiratory tract, the

focus of the current study. The gut microbiome is con-

sidered to be a reservoir of antibiotic resistance, and

studies have reported that antibiotics, by modifying the

microbial community, can indirectly affect the immune

response. This was demonstrated through the display of

microbial-associated molecular patterns to the receptors

on immune and epithelial cells in the host [7]. The pos-

sible consequence of this indirect response is varied

stimulation of toll-like receptors, resulting in an altered

immune response downstream [7]. Whether similar ef-

fects occur in the respiratory tract has not been fully

addressed.

Since influenza virus infection impacts the host im-

mune response and can lead to bacterial co-infection, we

explored the interactions between the systemic host re-

sponse to influenza virus infection and microbiome ac-

tivities, including ARG expression in the airways, to

better understand host-virus-bacteria dynamics during

infection. We used novel data integration methods, such

as Multiscale Embedded Gene Co-expression Network

Analysis (MEGENA) [8], to build a host gene co-

expression network that correlates host modules in in-

fluenza virus infection with microbial profiles, ARG ex-

pression, and microbial gene expression pathways.

Results
Microbial gene expression profiling clusters subjects into

2 groups

We analyzed samples from 37 subjects, including child

index cases and their household contacts who developed

influenza; 25 individuals were infected with influenza A

H3N2 virus, 6 with influenza A H1N1pdm, and 6 with

influenza B (Table S1). We obtained transcriptomic data

of peripheral blood mononuclear cells (PBMCs) for 32

individuals, and metatranscriptomics and 16S rRNA

gene amplicon profiles of respiratory samples for 35 in-

dividuals (Fig. S1).

We characterized overall microbial gene expression pro-

files by aligning metatranscriptomic sequence reads to the

Kyoto Encyclopedia of Genes and Genomes (KEGG)-fil-

tered Uniprot database from the Functional Mapping and

Analysis Pipeline for metagenomics and metatranscrip-

tomics studies (FMAP) [9]. Our samples clustered into 2

major groups (Fig. 1a) based on the hierarchical clustering

of overall microbial gene expression profiles. We did path-

way enrichment analysis on the genes differentially

expressed between group 1 and group 2. Several bacterial

pathways, including the ABC transporter pathway and the

bacterial secretion system, were enriched with differen-

tially expressed genes between the two groups (Fig. 1b).

By comparing the metatranscriptomic datasets be-

tween the two groups, we identified several bacterial

genera, including Corynebacterium, Neisseria, and Hae-

mophilus, that were differentially expressed. For ex-

ample, Corynebacterium had a higher relative abundance

of mapped RNA sequence reads in group 1, while Neis-

seria (primarily N. meningitidis) and Haemophilus (H.

parainfluenza) had a higher relative abundance of

mapped reads in group 2 (Fig. 2a).

To characterize antibiotic resistance gene expression pro-

files, we aligned the metatranscriptomic sequence reads

(approximately 7.5 M reads per sample) to an antibiotic re-

sistance database (MEGARes). On average, around 3100

reads per sample are aligned to the ARG database; assign-

ment to an ARG required matches to at least two regions

per gene, with a minimum of 10 mapped reads. Across the

dataset, we identified genes that confer resistance to 13

classes of antibiotics (Fig. 2b) with variations across the
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samples. Genes identified that confer resistance to beta-

lactam, aminoglycoside, tetracycline, and macrolide were

also found to be expressed in another study that focused on

the human gut microbiome [10]. Specific ARGs were also

differentially expressed between the two groups identified

by clustering the microbial gene expression profiles. For ex-

ample, genes conferring resistance to phenicol were overex-

pressed in group 1 compared to group 2 (cutoff of 0.05 for

Benjamini-Hochberg-corrected p values) (Fig. 2b).

Commensal respiratory tract bacteria are correlated with

antibiotic resistance gene expression

To study the correlations between ARG expression and

bacterial taxa, we characterized the relative abundance

of genera for each sample using the 16S rRNA gene pro-

files analyzed with the QIIME pipeline [11]. To deter-

mine whether any bacterial genera contributed to

explaining specific variations in ARG expression, we

used sparse partial least squares regression (spls) analysis

Fig. 1 Microbial gene expression profiling of subjects. a The samples were clustered into two groups, with red indicating group 1 and blue

indicating group 2. The groups were identified by using hierarchical clustering on the Euclidean distance between microbial gene expression

profiles of the samples. b The pathways enriched with differentially expressed genes between group 1 and group 2 were plotted. The intensity of

the color indicates number of genes being overexpressed in one group versus the other

Fig. 2 Associations between microbial gene expression, composition and antibiotic resistance. a Bacterial taxa with metatranscriptomic reads

present at different relative abundance between the two groups were identified using DESeq2 and LEfSe, and plotted with log2 fold change. The

red bars correspond to taxa for which genes were overexpressed in group 1 as compared to group 2, while the blue bars correspond to taxa

overexpressed in group 2 compared to group 1. b Reads were assigned to antibiotic resistance genes (ARGs) by aligning to the MEGARes

database; gene assignments were summarized at the level of classes of antibiotics to which the genes confer resistance. The heatmap shows the

abundance of reads originating from antibiotic resistance genes relative to the total number of metatranscriptomic reads for each sample
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[12], which can perform simultaneous dimension reduc-

tion and variable selection. We did a feature selection

with spls using ARG expression profiles as response var-

iables and the taxonomic assignments of operational

taxonomic units (OTUs) from the 16S rRNA gene data

as the predictors. Several bacterial genera correlated with

specific ARG expression. For example, Streptococcus and

Moraxella had positive correlations with the expression

of beta-lactam resistance genes, while other common re-

spiratory tract bacterial genera, such as Neisseria, had

positive correlations with multidrug resistance gene ex-

pression (Table 1). Conversely, Staphylococcus had nega-

tive correlations with tetracycline resistance gene

expression (Table 2). Metatranscriptomic reads that

mapped to ARGs were further assigned to bacterial taxa

using Kraken, a tool used to make taxonomic assign-

ments from metagenomic type data [13]. A significant

proportion of these reads mapped to Streptococcus,

Staphylococcus, and Neisseria. On average, 47% of the

reads originating from ARGs mapped to Streptococcus,

while 10% of the reads mapped to Staphylococcus (Table

S2). Thirty-four percent of the Streptococcus ARG reads

mapped to Streptococcus pneumonia, while the majority

of the Staphylococcus ARG reads corresponded to

Staphylococcus aureus (Tables S3 and S4).

Host systemic responses to influenza infection are

associated with microbial composition and gene

expression

To investigate the correlations between the microbiome

in the upper respiratory tract and systemic host responses

stimulated by influenza virus infection, we analyzed host

genes that were differentially expressed during influenza

virus infection and after recovery. We also looked specific-

ally at the correlations between host systemic responses

and the respiratory tract microbiome and ARG expres-

sion. We analyzed patient blood samples collected 1–2

days after onset of symptoms and at 30–45 days—this last

time point as a proxy of a pre-infection baseline—and de-

termined global host transcriptome expression. We per-

formed Multiscale Embedded Gene Co-expression

Network Analysis (MEGENA) [8] on the host transcrip-

tomic data, and correlated corresponding MEGENA mod-

ules with ARG expression, and taxonomic assignments

from the 16S rRNA gene data.

We identified 567 co-expressed host gene modules

(subnetworks); 38 of these were enriched with genes

with a significant response to influenza virus infection

(|FC| > = 2, 5% FDR) (Table S5). The samples were

Table 1 Positive correlations between antibiotic resistance gene

expression and bacterial taxa

Antibiotic resistance genes aTaxa (positive
associations)

P
values

Correlation
values

Beta-lactams g_Salinicoccus 0.026 0.08

f_Gemellaceae 0.030 0.05

g_Granulicatella 0.034 0.04

g_Streptococcus <
0.0005

0.09

g_
Methylobacterium

0.024 0.05

g_Moraxella 0.022 0.09

macrolide-lincosamide-
streptogramin (MLS)

g_Bifidobacterium 0.038 0.05

g_Kaistobacter 0.009 0.06

g_Sphingomonas 0.022 0.07

f_Gemellaceae 0.024 0.08

g_Bulleidia 0.007 0.06

Tetracyclines g_Brachybacterium 0.042 0.06

g_Tannerella 0.006 0.06

f_Planococcaceae 0.034 0.05

f_Aerococcaceae 0.046 0.046

g_Selenomonas 0.010 0.08

g_Leptotrichia 0.033 0.08

g_Sphingomonas 0.004 0.10

g_Deinococcus 0.020 0.06

Multidrug resistance g_Rothia 0.020 0.07

f_Gemellaceae 0.009 0.08

g_Streptococcus 0.045 0.06

g_Leptotrichia 0.019 0.07

g_Neisseria 0.035 0.09

g_Sphingomonas 0.026 0.08

g_Erwinia 0.036 0.09

f_
Enterobacteriaceae

0.041 0.10

af_ and g_ indicate whether the taxonomic assignment was made at the

family or genus level, respectively

Table 2 Negative correlations between antibiotic resistance

gene expression and bacterial taxa

Antibiotic resistance
genes

aTaxa (negative
associations)

P
values

Correlation
values

Beta-lactams g_Staphylococcus 0.047 − 0.04

g_Aerococcus <
0.0005

− 0.04

f_Rhodobacteraceae 0.021 − 0.04

MLS g_Aeromicrobium 0.030 − 0.13

g_Staphylococcus 0.005 − 0.06

f_
Peptostreptococcaceae

0.045 − 0.11

Tetracyclines g_Kocuria 0.049 − 0.07

g_Staphylococcus 0.001 − 0.05

g_Mycoplasma 0.001 − 0.10

af_ and g_ indicate whether the taxonomic assignment was made at the

family or genus level, respectively
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separated into group 1 and group 2 based on the meta-

transcriptomic data, and a differentially expressed gene

(DEG) analysis from the host transcriptome was per-

formed within each of the two groups. By overlapping

the group-based DEGs with the DEGs in the 38 enriched

host modules identified from all samples (Table S5), we

identified some host modules with genes only upregu-

lated or downregulated within one of the two groups

(Table S6), such as modules M44, M45, and M46. This

suggests a correlation between microbial gene expres-

sion and the host response to influenza virus infection.

To further understand the interactions between the

microbiome and the host response, we integrated data

from bacterial taxa, bacterial pathways, and antibiotic re-

sistance gene expression profiles with the top 20 host

gene modules. We found significant correlations

between host modules and bacterial families (Fig. 3). For

example, Veillonellaceae had positive correlations with

many host modules, including M49 and M5, which are

enriched with genes involved in the type I interferon sig-

naling pathway. We also observed correlations between

specific host modules, bacterial pathways, and ARGs.

For example, host module M47, also enriched with genes

involved in interferon signaling, had a positive correl-

ation with the expression of sulfonamide resistance

genes and a negative correlation with the bacterial secre-

tion system. Several key regulators of the network—i.e.,

hubs with high connectivity—were identified for each of

the host modules. These key regulators are genes with

the most impact on neighboring genes in the subnet-

works. GBP1 (guanylate-binding protein 1), for example,

appeared to be a key regulator in host modules M47

Fig. 3 Network analysis of interactions between host gene expression, bacterial taxa, bacterial (metatranscriptome) gene expression, and

antibiotic resistance. The modules indicated by blue triangles are co-expressed gene clusters in response to influenza virus infection. Direct and

indirect interactions between the modules, antibiotic resistance (green diamonds), microbiome expressed functions (orange hexagons), and

bacterial families (light blue squares) were identified by correlation analysis. The red edges indicate positive correlations and the grey dashed

edges indicate negative correlations. The host modules and the pathways enriched with the genes in the modules are listed. Only the host

modules with significantly enriched pathways are shown in the table. o_, p_, f_, and g_ indicate whether the taxonomic assignment was made

at the order, phylum, family, or genus level, respectively
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(Fig. S2) and M5, and was upregulated during influenza

virus infection (FC = 3.5, adjusted P value = 0.003).

GBP1 has a known function against influenza virus in-

fection and it is associated with anti-viral and anti-

bacterial functions. Thus, the correlations observed from

the network between the host modules and the micro-

biome in the upper respiratory tract could be due to the

direct impact of influenza virus infection on the host

and the respiratory microbiome. The network topology

suggests potential connections between specific host

pathways, key regulators, the microbial community com-

position, and gene expression—including ARG expres-

sion—during influenza virus infection.

Discussion
During influenza virus infection, interactions between

the host, the virus, and resident bacteria with pathogenic

potential are known to complicate and worsen disease.

In this study, we identified associations between the

microbiome of the upper respiratory tract, ARG expres-

sion, and host responses to influenza virus infection,

providing some insight into potential interactions that

contribute to disease severity.

We identified several genes as being differentially

expressed between the two subject groups that were

clustered based on their microbial gene expression pro-

files. Pathways found to be enriched included a number

of genes involved in bacterial physiology, such as the

bacterial secretion system, which is one of the strategies

used by pathogenic bacteria to secrete virulence factors

for host invasion [14, 15]. ABC transporters, which con-

tribute to substrate transport across the bacterial mem-

brane and are related to antibiotic resistance [16, 17],

were also enriched with differentially expressed genes

between the two groups. Several bacterial taxa were dif-

ferentially abundant between the two groups, including

Staphylococcus, Pseudomonas, and Moraxella, which

have a number of species that can carry ARGs [18–21].

Incidentally, the microbial composition did not appear

to be influenced by the type or subtype of influenza vi-

ruses that infected the individuals tested (data not

shown).

Previous studies have reported on the dynamics of

antibiotic resistance expression in the gut and in the en-

vironmental microbiome, and have shown the diversity

in ARG expression and niche specificity [10, 22]. Other

studies have shown the presence of ARGs in the lungs

of cystic fibrosis patients [23], and in the stool of indi-

viduals who had never been exposed to antibiotics [24].

In our study, we identified bacteria-expressed genes that

confer resistance to classes of antibiotics that the in-

fected individuals were not taking, according to their

antibiotic use history in the 12 months preceding influ-

enza diagnosis. The three antibiotics reported to have

been prescribed to this group of individuals include

Beta-lactams, macrolides, and Nitroimidazole (Table S1),

but ARGs were also found against classes of antibiotics

that are currently rarely taken, such as phenicol. Al-

though we may not have a complete record of past anti-

biotic use because antibiotics taken over-the-counter are

often not reported, it is also possible that some of the

ARGs expressed are unrelated to antibiotic use by the

individuals in which these were detected and could be

the result of transmission of antibiotic resistant strains

between individuals. Transmission of drug-resistant bac-

teria both within the human population and between en-

vironmental reservoirs and humans is known to occur

[25]. Some of the ARGs we identified in our samples are

also simply efflux pumps that naturally function to ex-

trude toxins and chemicals from the bacteria [26], and

thus antibiotic resistance is a secondary effect.

We determined a number of correlations between

antibiotic resistance and specific bacterial taxa. For ex-

ample, Moraxella and Streptococcus had positive correla-

tions with beta-lactam resistance gene expression. In

several studies, species in these genera, such as Morax-

ella catarrhalis and Streptococcus oralis, were found to

carry beta-lactam resistance genes [27–29]. Given that

harboring ARGs can exact a fitness cost on the host bac-

teria [30], it is possible that other taxa compete with the

bacteria that express or maintain the ARGs, leading to

the observed negative associations. For example, we ob-

served that the relative abundance of Staphylococcus and

Mycoplasma determined from the 16S rRNA gene data

was negatively correlated with tetracycline resistance

gene expression. We also observed previously unre-

ported correlations between ARG expression and several

bacterial taxa, such as multidrug resistance and Rothia.

Mapping of the ARG reads to the bacterial taxa data-

bases also revealed an enrichment of Streptococcus, Neis-

seria, and Staphylococcus, especially clinically important

bacterial species, such as Streptococcus pneumonia and

Staphylococcus aureus. Indirect correlations suggest that

although some taxa present in the respiratory tract do

not specifically express ARGs, they could play an indir-

ect role in ARG expression by affecting microbial com-

position and function.

Using gene co-expression network analysis, we charac-

terized associations between host responses to influenza

virus infection and the microbiome, as well as ARG ex-

pression in the upper respiratory tract. By integrating the

microbiome information, we observed correlations be-

tween specific host modules and microbial community

composition and gene expression. For example, Veillonel-

laceae, a family commonly represented in the respiratory

tract, had positive correlations with some of the host mod-

ules that were enriched with genes involved in the re-

sponse to viral and bacterial invasion, such as type I
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interferon signaling. Influenza virus is known to stimulate

type I interferons and promote bacterial colonization in

mice; type I interferon signaling is also known to have

both protective and detrimental responses to bacterial in-

fections depending on the invading pathogens [31]. The

host module M47, enriched with genes involved in inter-

feron signaling, also had strong correlations with ARGs

against the sulfonamides and the bacterial secretion sys-

tem. One of the key regulators in this host module, GBP1,

was upregulated during influenza infection. GBP1 is a

GTPase induced by interferon with antiviral and anti-

microbial activities [32, 33] that can recruit NADPH en-

zyme components and antimicrobial peptides to help

bacterial killing [34]. A recent study determined that even

when there is no identifiable bacterial co-infection or

super-infection following influenza virus infection, host

responses to “bacterial” patterns are detected in whole

blood transcriptomic analysis [35]. While the subjects in

our study were not tested for bacterial infection, we ob-

served correlations between host responses to influenza

virus infection and specific bacterial taxa. Observations

from the network analysis could be the result of how in-

fluenza virus infection impacts the host and the microbial

community, and how, in return, the host alters the micro-

biome in the respiratory tract. The expression of some

ARGs is regulated by signal transduction systems, such as

the two-component systems, which are also involved in

other physiological processes, such as adhesion and au-

tolysis [36]. Correlations between the host response and

ARG expression indicate an effect of the host on the

microbiome, which in turn impacts ARG expression that

can be regulated by the bacterial response to stress. Thus,

the network suggests several specific connections between

the host modules (especially the interferon signaling path-

way and GBP1), the respiratory tract microbial compos-

ition, and the microbial gene expression.

The novel method we used to integrate information

from the host responses to influenza infection with mi-

crobial composition and gene expression highlights the

complex interplay between the microbial community

and the influenza-infected host. However, there were a

number of limitations to this study: First, the analysis

was limited to sequence similarity to known ARGs, and

thus novel antibiotic resistance genes could not be de-

tected. It also did not include the analysis of point muta-

tions that are known to be associated with antibiotic

drug resistance, thus the profiling of ARG expression

was conservative. Secondly, for the correlation analyses,

we were unable to test for familial effects because of the

limited number of index-household contact pairs. In a

follow-up study that is currently ongoing, we collected

respiratory samples from more than 50 subjects in 10

households, with multiple contact cases within house-

holds, including from healthy controls. This expanded

study will also allow us to determine whether ARG

transmission is a common occurrence and the respira-

tory tract an important reservoir of antibiotic resistance

genes, as implicated by our current analysis.

Conclusions
The analysis of individuals from a Nicaraguan household

study reveals how host response to influenza virus infec-

tion could indirectly impact antibiotic resistance gene ex-

pression in the respiratory tract by affecting the

microbiome. It highlights the importance of understand-

ing these associations in individuals infected with influ-

enza virus and possibly other respiratory viruses. The

correlations identified between host responses to influenza

infection and the bacteria present in the airways show the

possible effects of the host responses on the microbiome.

This is important as both the host response and the

microbiome can influence the risk of secondary bacterial

infections because of interactions between potentially

pathogenic bacteria and the commensals present in the re-

spiratory tract. This analysis also suggests that the respira-

tory tract is possibly an important reservoir of antibiotic

resistance genes in humans and should be further ex-

plored, especially regarding inter-host transmission of

antibiotic resistance genes during influenza epidemics.

Materials and methods
Sample collection

Samples were collected from 37 individuals participating

in the Household Influenza Transmission Study (HITS)

in Managua, Nicaragua. Respiratory specimens consisted

of pooled nasal and throat swabs collected at 1–2 days

post illness onset from individuals with influenza-like

symptoms between July 2013 and October 2014 in

Managua, Nicaragua. Samples were shipped to the Cen-

ter for Genomics and Systems Biology, New York Uni-

versity, and stored at − 80 °C. The HITS sample cohort

included child index cases enrolled in the Nicaraguan

Influenza Cohort Study and their family members who

developed influenza. An acute blood sample was col-

lected from all participants at enrollment into the study,

and a convalescent sample was collected 30–45 days

later. Blood samples were immediately transferred to the

Centro Nacional de Diagnostico y Referencia, the Nicar-

aguan National Laboratory, where peripheral blood

mononuclear cells (PBMC) were separated using Leuco-

sep tubes (Greiner Bio-One) containing 3 mL of Ficoll

Histopaque (Sigma) following established protocols [37].

The PBMCs were stored in liquid nitrogen until ship-

ment. The HITS study was approved by the institutional

review boards at the Nicaraguan Ministry of Health and

the University of Michigan. Informed consent or paren-

tal permission was obtained for all participants and chil-

dren aged 6 years and older provided assent.
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RNA extraction and library preparation for

metatranscriptome sequencing

Total RNA was isolated from 80% of the volume of each

respiratory sample with the QIAGEN RNeasy Micro Kit

(QIAGEN, Hilden, Germany) according to the manufac-

turer’s recommendations and stored at − 80 °C. No

mRNA enrichment or rRNA depletion steps were per-

formed due to the limited biomass of the starting material.

Double-stranded cDNA was synthesized and amplified

from 200–500 pg of input RNA with the NuGEN Ovation

RNA-seq V2 kit (NuGEN Technologies, Inc., San Carlos,

CA) and purified using the QIAquick PCR Purification Kit

(QIAGEN, Hilden, Germany). cDNA was sheared to 250

bp using the S220 Focused-ultrasonicator (Covaris Inc.,

Woburn, MA) and purified using Agencourt RNAClean

XP beads (Beckman Coulter, Inc., Brea, CA). Sequencing

libraries were prepared from 100 ng of purified, sheared

cDNA with the NuGen Ovation Ultralow System V2 1-16

(NuGEN Technologies, Inc., San Carlos, CA). Libraries

were quantified by qPCR using the KAPA Library Quanti-

fication Kit (KAPA Biosystems, Wilmington, MA) on a

Roche 480 LightCycler (Roche, Basel, Switzerland); their

size distributions were measured on a 2200 TapeStation

using a D1000 ScreenTape (Agilent Technologies, Santa

Clara, CA). Libraries were diluted to 2 nM in dilution buf-

fer (10mM Tris, pH 8.5) and combined with equimolar

input into 4 sequencing pools (9 libraries per pool).

Paired-end sequencing (2 × 100 bp) was performed at the

Genomics Core Facility (Center for Genomics and Sys-

tems Biology, New York University) on the Illumina HiSeq

2500 instrument with TruSeq SBS V3 chemistry according

to the manufacturer’s instructions (Illumina, Inc., San

Diego, CA). Each pool was run on one lane of a High Out-

put flowcell.

Host transcriptome library preparation and data

processing

RNA was extracted from PBMCs with the RNeasy Mini

Kit (QIAGEN, Hilden, Germany) according to the man-

ufacturer’s recommendations and stored at − 80 °C. Se-

quencing libraries were prepared with the TruSeq RNA

Library Prep Kit v2 (Illumina, San Diego, CA) according

to the low sample (LS) protocol and with 1 μg input

mass. Libraries were quantified by qPCR using the

KAPA Library Quantification Kit (KAPA Biosystems,

Wilmington, MA) on a Roche 480 LightCycler (Roche,

Basel, Switzerland); their size distributions were mea-

sured on a Fragment Analyzer using the Standard Sensi-

tivity NGS Fragment Analysis Kit (Advanced Analytical

Technologies, Ankeny, IA). Libraries were diluted to 2

nM in dilution buffer and combined with equimolar in-

put into 4 sequencing pools (14 libraries per pool).

Paired-end sequencing (2 × 100 bp) was performed at

the Genomics Core Facility (Icahn School of Medicine at

Mount Sinai) on the Illumina HiSeq 2500 instrument

with TruSeq SBS V3 chemistry according to the manu-

facturer’s instructions (Illumina, Inc., San Diego, CA).

Each pool was run on one lane of a High Output flow-

cell. The raw sequencing reads were aligned to the hu-

man hg19 genome using star aligner (version 2.4.0 g1)

guided by the Ensembl transcriptomic annotation model

of GRCh37.70. After read alignment, featureCounts [38]

was used to quantify expression at the gene level. Genes

with at least 5 reads in at least 4 samples were consid-

ered expressed and hence retained for further analysis.

The gene level read counts data was normalized using

the trimmed mean of M-values normalization (TMM)

method [39] to adjust for sequencing library size differ-

ences. Normalized read counts were further adjusted for

batch effect using a linear model. The residuals from the

regression model were used for downstream analysis.

Differentially expressed genes were determined between

acute and convalescent blood samples using linear

models together with empirical Bayes statistics from the

LIMMA R package [40]. DEGs were considered signifi-

cant with a fold change (FC) cutoff of |FC| ≥ 2 and an

FDR-corrected p value of 0.05 or less.

DNA extraction and 16S rRNA gene sequencing

Genomic DNA was isolated from the remaining volume

of each sample with the PowerSoil DNA Isolation Kit

(Qiagen) and stored at − 20 °C. The 16S rRNA gene V4

region was amplified according to previously published

methods [41] using Q5 Hot Start High-Fidelity DNA

Polymerase (New England BioLabs Inc., Ipswich, MA).

Reactions were purified using 0.65× volumes of Agen-

court RNAClean XP beads (Beckman Coulter, Inc., Brea,

CA). Each sample was quantified using the Qubit 2.0

Fluorometer (ThermoFisher Scientific, Inc., Waltham,

MA), pooled with equal input mass and repurified with

0.65× volumes of AMPure XP beads (Beckman Coulter,

Inc., Brea, CA). The final sequencing pool was quantified

by qPCR with the KAPA Library Quantification Kit

(KAPA Biosystems, Wilmington, MA) on a Roche 480

LightCycler (Roche, Basel, Switzerland). The library was

sequenced at the Genomics Core Facility (Center for

Genomics and Systems Biology, New York University)

using an Illumina PE 2 × 250 V2 kit on an Illumina

MiSeq Sequencer (Illumina, Inc., San Diego, CA).

Metatranscriptome gene expression profiling and

antibiotic resistance gene identification

The metatranscriptomic sequencing reads were demulti-

plexed, and quality was assessed using the FastQC Toolkit

(http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Contaminating human, ribosomal RNA, and

adaptor sequences were removed from each dataset using

DeconSeq [42], SortMeRNA [43], and Trimmomatic [44],
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respectively. The duplicated reads were removed by using

Fastuniq [45]. The filtered reads were assigned to the

orthologous gene families using the FMAP bioinformatics

tool (FMAP: Functional Mapping and Analysis Pipeline

for metagenomics and metatranscriptomics studies) and

with the default KEGG-filtered Uniref90 reference cluster

[9]. The reads were mapped to the database using the

DIAMOND [46] mapping program with default parame-

ters. The KEGG orthologous gene family abundance file

for each sample was generated using the FMAP_quantifi-

cation.pl script with default parameters. The pathways

enriched with differentially expressed microbial genes be-

tween the two groups were also identified using the

FMAP_comparison.pl and FMAP_pathway.pl scripts with

5% FDR.

The antibiotic resistance genes were annotated by

aligning the filtered metatranscriptomic reads to the

antibiotic resistance gene database, MEGARes [47]. The

reads assigned to genes that confer resistance only by

mutation were removed from the final results (as these

genes are unrelated to antibiotic resistance when they do

not carry mutations). The alignment was done on the

Burrows-Wheeler Aligner (BWA) [48] using the BWA-

MEM alignment method and default parameters. The

alignments were filtered such that each antibiotic resist-

ance gene needed to have matching reads in at least two

regions for the reads to be kept, and the antibiotic resist-

ance gene matrix was filtered so that each gene needed

to have at least ten matching reads.

16S rRNA gene taxonomy assignments and

multidimensional scaling (MDS)

The 16S rRNA gene sequencing data was processed

through the Quantitative Insights into Microbial Ecology

(QIIME) [11] pipeline. The reads were joined by using

join_paired_ends.py and demultiplexed with split_library_

fastq.py, and the chimeric sequences were identified and

filtered out with ChimeraSlayer [49]. The sequences were

clustered into operational taxonomic units (OTUs) at a

97% similarity threshold with the closed reference OTU

picking method and the greengene database (gg_13_8_

otus) [50]. A negative control with water replacing DNA

was used to detect potential contamination from the re-

agents; however, no bacterial sequence passed the quality

filter in the pipeline. Taxonomic assignment of the repre-

sentative sequence from each OTU was made using the

Ribosomal Database Project (RDP) classifier [51]. Taxo-

nomic information was summarized at the genus and fam-

ily levels using summarize_taxa.py. The biom file output

from QIIME was analyzed in Rstudio [52] using the phylo-

seq [53] R package. Bray-Curtis dissimilarities were calcu-

lated, and the MDS plot was generated, based on the

distance matrix on the samples (data not shown).

Sample clustering by gene expression profiles and

statistical analysis

The samples were clustered by using the gene expression

profiles with hierarchical clustering on the Euclidean dis-

tance. DESeq2 [54] was used to identify differentially

expressed ARG genes between the groups. The FDR-

corrected p value of 0.05, combined with a log2 fold

change greater than 2 or smaller than − 2, was used as

thresholds to filter the significantly differentially expressed

genes. The bacterial taxa with differential abundant meta-

transcriptomic reads between the two groups were identi-

fied by overlapping the results from DESeq2 and linear

discriminant analysis effect size (LEfSe) [55].

Taxonomy assignments on reads classified as antibiotic

resistance genes and the metatranscriptomic datasets

The metatranscriptomic reads classified as antibiotic re-

sistance genes were extracted from the datasets; taxo-

nomic assignments were made to these reads using

Kraken [13] with default parameters. The percentage of

reads assigned to each taxon was calculated. Taxonomy

assignments on all the metatranscriptomic reads in the

datasets were also made by using Kraken.

Associations between antibiotic resistance gene

expression and bacterial genera

The genus-level assignments from the 16S rRNA gene

profiles were centered log-ratio (clr) transformed, and

filtered to the genera, which are highly variable. The

analysis was performed by combining the compPLS [56]

and spls packages in Rstudio [52] with the antibiotic re-

sistance gene expression profiles as the response matrix,

and the filtered 16S rRNA gene profiles as predictors.

Feature selection in spls was done using 10-fold cross

validation to tune the parameters (sparsity); the latent

component number was decided by decomposing the

covariance. Bootstrapping and random permutation

were used to determine the significance of a feature’s

contribution to the model. The bacterial genera with

bootstrapping p values smaller than 0.05 were consid-

ered statistically significant. As only genes conferring re-

sistance to beta-lactam, tetracyclines, MLS, and

multidrug resistance are abundant enough to yield good

predictions, these four classes of antibiotics were kept

with the identified associations.

Gene co-expression network analysis

Multiscale Embedded Gene Co-Expression Network Ana-

lysis (MEGENA) [8] was performed to identify host mod-

ules of highly co-expressed genes in influenza infection.

The MEGENA workflow comprises 4 major steps: (1) Fast

Planar Filtered Network construction (FPFNC), (2) Multi-

scale Clustering Analysis (MCA), (3) Multiscale Hub Ana-

lysis (MHA), and (4) Cluster-Trait Association Analysis
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(CTA). The total relevance of each consensus module to

influenza infection was calculated by summarizing the

combined enrichment of the differentially expressed gene

(DEG) signatures and trait correlations: G j ¼
Y

i

g ji ,

where gji is the relevance of a consensus j to a signature i;

gji is defined as ð max jðrjiÞ þ 1−rjiÞ=
X

j

rji, where rji is the

ranking order of the significance level of the overlap be-

tween the consensus module j and the signature.

Correlation between gene co-expression network

modules and traits

Correlations between modules and traits (ARG expression,

bacterial taxa abundance, and metatranscriptome expres-

sion) were calculated as follows: Spearman’s correlation be-

tween the first principal component of the module gene

expression and the corresponding traits was determined. In

the case of metatranscriptome expression, KEGG reactions

were considered as traits. In a second step, KEGG reactions

that were significantly correlated with a particular module

were then further tested for enrichment with KEGG path-

ways. All module/trait correlation p values were corrected

using perturbation of the input data.

Identification of enriched DEGs, pathways, key regulators

in the host modules, and bacterial genera associated with

host modules

To functionally annotate gene signatures and gene mod-

ules identified in this study, enrichment analysis using

Fisher’s exact test (FET) was performed of the established

pathways and signatures—including the gene ontology

(GO) categories and MSMicrobial gene expression profil-

ing of subjectsigDB—and the subject area-specific gene

sets—including influenza host factors, Inflammasome,

Interferome, and InnateDB. The hub genes in each sub-

network were identified using the adopted Fisher’s inverse

chi-squared approach in MEGENA; Bonferroni-corrected

p values smaller than 0.05 were set as the threshold to

identify significant hubs.
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