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In normal individuals, the epithelium of the colon absorbs 1.5–2  l of water a day to 

generate dehydrated feces. However, in the condition of bile acid malabsorption (BAM), 

an excess of bile acids in the colon results in diarrhea. Several studies have attempted to 

address the mechanisms contributing to BAM induced by various bile acids. However, 

none have addressed a potential dysregulation of aquaporin (AQP) water channels, 

which are responsible for the majority of transcellular water transport in epithelial cells, 

as a contributing factor to the onset of diarrhea and the pathogenesis of BAM. In this 

study, we aimed to systematically analyze the expression of AQPs in colonic epithelia 

from rat, mouse, and human and determine whether their expression is altered in a rat 

model of BAM. Mass spectrometry-based proteomics, RT-PCR, and western blotting 

identi�ed various AQPs in isolated colonic epithelial cells from rats (AQP1, 3, 4, 7, 8) 

and mice (AQP1, 4, 8). Several AQPs were also detected in human colon (AQP1, 3, 4, 

7–9). Immunohistochemistry localized AQP1 to the apical plasma membrane of epithelial 

cells in the bottom of the crypts, whereas AQP3 (rat, human) and AQP4 (mice, human) 

were localized predominantly in the basolateral plasma membrane. AQP8 was localized 

intracellularly and at the apical plasma membrane of epithelial cells. Rats fed sodium 

cholate for 72 h had signi�cantly increased fecal water content, suggesting development 

of BAM-associated diarrhea. Colonic epithelial cells isolated from this model had signi�-

cantly altered levels of AQP3, 7, and 8, suggesting that these AQPs may be involved in 

the pathogenesis of bile acid-induced diarrhea.

Keywords: bile acid malabsorption, colonic epithelium, water transport, aquaporins, bile acid diarrhea

INTRODUCTION

Bile acids, synthesized and secreted by liver hepatocytes, are steroid acids that act as surfactants 
and aid solubilization, digestion, and absorption of lipids in the small intestine. �e primary bile 
acids synthesized in the human liver are cholic acid (CA) and chenodeoxycholic acid (CDCA), 
which are conjugated to either taurine or glycine to form bile salts. Various modi�cations of bile 
acids confer di�erent biological properties. Following secretion into the small intestine, 95% 
of bile acids are reabsorbed in the distal ileum via the apical ileal sodium-dependent bile acid 
cotransporter (ASBT, IBAT, or SLC10A2) (1). �ese bile acids are complexed to plasma proteins 
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and recycled back to the liver via the enterohepatic circulation 
for further secretion into the biliary system and gallbladder. �is 
process allows large amounts of bile acids to be secreted into the 
intestine, but a low rate of bile acid synthesis (2, 3). Despite this 
recycling, 400–800 mg of bile acids reach the colon every day. 
Here, they undergo microbial biotransformation to secondary 
bile acids, such as deoxycholic acid (DCA) and lithocholic acid 
(LCA) (2–4). DCA is the most prominent bile acid in the colon 
in humans (2). Di�erent species have various bile acids, which 
constitute a “characteristic bile acid pro�le,” with CA found in 
bile of many mammalian species (5).

In addition to aiding lipid absorption, bile acids also have 
a wide range of other biological activities (5). For example, 
bile acids can regulate gene expression via various intracellular 
(nuclear) receptors, such as the farnesoid X receptor α (FXRα, 
NR1H4). FXRα activation is central in the regulation of bile 
acid production in the liver via a negative feedback system 
involving production of the ileal hormone �broblast growth 
factor 19 (FGF19) (FGF15 in rodents) (6–9). Other intracellular 
receptors for bile acids include the vitamin D3 receptor (VDR, 
NR1I1), pregnane X receptor (PXR, NR1I2), and constitutive 
androstane receptor (CAR, NR1I3) (5, 10). Bile acids also bind 
to the plasma membrane-associated G-protein-coupled bile 
acid receptor 1 (TGR5, M-BAR, GPA, GPR131) stimulating 
cAMP production (11). Bile acid activation of this receptor 
stimulates the release of glucagon like peptide-1 (GLP1) from 
the enteroendocrine L cells of the small intestine, thus a�ect-
ing glucose homeostatis. Locally, bile acids can a�ect colonic 
epithelial cells in a number of ways, e.g., increasing mucosal 
permeability and bacterial uptake (12), cell migration (13), 
apoptosis, and proliferation (14), and due to their antimicrobial 
activity, they contribute to regulation of the gut microbiome 
(4, 15), although not all processes have been described to be 
mediated by speci�c receptors. Furthermore, a fraction of the 
bile acids that returns to the liver via the portal vein escapes 
the transport into hepatocytes and thus reaches the systemic 
circulation (16). Due to the broad tissue localization of their 
receptors, bile acids are in principle capable of inducing e�ects 
outside the intestines, e.g., TGR5 is expressed in the brain, 
endocrine glands, and immune organs (17).

In conditions collectively referred to as bile acid malabsorp-
tion (BAM), an abundance of bile acids in the colon causes 
diarrhea (3). Although these excess bile acids o�en originate 
from diminished reabsorption due to various causes, e.g., ileal 
disease or ileal resection (3), a complete understanding of the 
mechanisms behind how excess bile acids induce diarrhea is 
lacking. High concentrations of bile acids in the colon decrease 
colonic absorption and increase secretion of electrolytes and 
water. �ese e�ects of bile acids, combined with the ability 
to increase colonic motility, are likely mediators of diarrhea 
(1, 18, 19). Although enhanced lubrication of the epithelia via 
increased mucus secretion accelerated colonic peristaltis (3), 
and potentially the ability of bile acids to serve as detergents 
have been proposed to play a role in bile acid-induced diarrhea, 
the most likely cause centers on bile acid-induced alterations in 
mucosal permeability. Several studies have suggested that bile 
acids activate CFTR and induce chloride secretion resulting in 

alterations in ionic gradients across colonic epithelial cells and 
enhanced water secretion (20–23). Whether this water secretion 
occurs via a claudin-mediated paracellular pathway or a tran-
scellular pathway mediated by sodium-dependent cotransport 
mechanisms or one of the several aquaporin (AQP) water chan-
nels described to be present in the colon remains unknown (24, 
25). Interestingly, it appears that pathophysiological levels of bile 
acids are required to induce secretory responses in epithelial 
cells (18), whereas physiological concentrations of bile acids may 
decrease colonic secretion (26). Determining the precise mecha-
nism underlying the diarrhea observed in BAM is complicated 
further due to the variety of e�ects of individual bile acids. For 
example, bile acids can also induce morphological changes in 
the gut mucosa, such as rounding of the normally columnar 
epithelial cells, decreasing the height of the crypts of Lieberkühn 
in the colon, and shortening of the villi in the small intestine 
(27). Mucosal barrier function is also altered by changes in the 
composition and/or concentration of bile acids. For example, 
while CA, DCA, and CDCA cause increased intestinal perme-
ability by altering tight junction proteins, ursodeoxycholic acid 
(UDCA) does not (28). Interestingly, while hydrophobic bile 
acids induce colonic epithelial cell apoptosis, co-administation 
with taurin-conjugated UDCA ameliorates the cytotoxicity of 
the hydrophobic bile acids (28).

Despite numerous studies linking colonic expression of 
AQPs with conditions of diarrhea (29, 30), a role for bile acids 
in regulating AQPs in the intestine is currently unknown. We 
hypothesized that various AQPs are present in colon epithelial 
cells and that their abundance is altered in an animal model of 
bile acid-induced diarrhea. Our studies indicate that AQPs have 
a heterogeneous expression pattern in rat, mouse, and human 
colonic epithelial cells. Furthermore, excess levels of bile acids 
can modulate expression of AQP3, AQP7, and AQP8, suggesting 
that these channels may be involved in the pathophysiology of 
bile acid-induced diarrhea.

MATERIALS AND METHODS

Ethical Approval
All animal protocols comply with the European Community 
guidelines for the use of experimental animals. �ey were 
approved and performed under a license issued for the use of 
experimental animals by �e Animal Experiments Inspectorate, 
Ministry of Food, Agriculture and Fisheries – Danish Veterinary 
and Food Administration (Dyreforsøgstilsynet) and methods 
performed in accordance with local guidelines and regulations. 
To determine the normal distribution of AQPs in human tissue, 
specimens of normal human tissue were obtained from fresh and 
healthy resection border of colon pieces that was removed due to 
cancer. Prior to surgery, all patients provided written permission 
to donate a colon sample for research a�er the surgical resection. 
All patient samples and data were anonymous and only age, 
gender, and date was reported at time of tissue isolation. �is 
procedure was aligned with the Danish guidelines for collection 
of biological materials according to the Local Ethical Committee 
(Etisk Komite) (Act number 593 of 14 July, 2011, §2, number 1). 
A minimum of three donors were used.
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Rat Model of Bile Acid-Induced Diarrhea
Ten male Wistar Munich rats were initially housed in standard 
cages in a room kept at a constant temperature of 22°C with a 
12:12-h light:dark cycle. Rats were fed a standard rodent chow 
(Altromin) and had water ad libitum. Animals were switched to 
rat metabolic cages housed in the same room. During an initial 
3-day acclimatization period, the rats were fed standard rodent 
chow and had access to water ad  libitum. Rats were randomly 
assigned to either a control group and fed a standard rodent chow 
or an experimental group that were fed standard rodent chow 
mixed with 1% weight/weight sodium cholate (Sigma). A�er an 
additional 3 days, rats were euthanized by cervical dislocation and 
colonic epithelial cells isolated using the Ca2+ chelation method 
as described below. Physiological parameters, including food and 
water intake, bodyweight, urine volume, and osmolality and feces 
output, were monitored on a daily basis. Feces water content was 
calculated by assessing the original wet weight of the feces relative 
to the weight of the feces a�er drying for 3 days at 60°C. Urine 
volume was measured gravimetrically assuming a density of 1, 
and osmolality was measured using freezing point depression 
(Advanced Instruments).

Isolation of Rat or Mouse Colon Epithelia 
via Mucosal Scraping
Animals were housed in standard cages and fed standard rodent 
chow (Altromin) and had water ad libitum. Animals were eutha-
nized by cervical dislocation. Colons were dissected and �ushed 
repeatedly with PBS to clean o� fecal matter. �e colons were 
cut open and held at one end with a glass slide, while the colonic 
mucosa was scraped o� gently using another glass slide. �e 
scrapings were subjected to RNA extraction (see below).

Isolation of Colonic Epithelia via Ca2+ 
Chelation
Epithelial cells were isolated using a protocol based on a previ-
ously published method (31). Brie�y, colons were divided equally 
into a proximal and a distal region. A�er �ushing extensively 
with PBS, the pieces of colons were inverted, �lled with Ca2+-free 
Ringer solution (127 mM NaCl, 10 mM HEPES, 5 mM KCl, 5 mM 
Na-Pyruvate, 5 mM EDTA, 1 mM MgCl2, 5 mM glucose, pH 7.4), 
and ligated at each end. �e pieces of colons were incubated in 
Ca2+-free Ringer solution for 20 mins at 37°C with constant shak-
ing. �e pieces of colon (mostly muscle and connective tissue) 
were removed and the epithelial cells pelleted by centrifugation 
at 4500 × g for 2 mins. Cell pellets were subjected to RNA extrac-
tion, or for protein analysis, the pellet was homogenized in dis-
section bu�er (300 mM sucrose, 25 mM imidazole, 1 mM EDTA, 
pH 7.2) containing protease inhibitors leupeptin (1 mg/ml) and 
Pefa-block (0.1 mg/ml) (Boehringer Mannheim). SDS-PAGE gel 
samples were generated by addition of Laemmli sample bu�er 
containing 10 mg/ml DTT.

Isolation of Epithelia from Human Colonic 
Tissue
Also, 0.5  cm  ×  0.5  cm pieces of proximal and distal colon for 
immunohistochemistry were �xed by immersion �xation 

overnight at 4°C in 4% paraformaldehyde before embedding in 
para�n. For protein and RNA preparations, tissue pieces were 
manually trimmed to enrich for mucosa. Tissue for RNA isola-
tion was stored in RNAlater® (Invitrogen) at 4°C for 24 h before 
RNA extraction using the RiboPure kit (Ambion) according to 
the manufacturer’s instructions. Protein samples were prepared 
as described above.

Immunoblotting
Standard procedures were utilized for sample preparation and 
SDS-PAGE. Immunoblots were developed using ECL-detection 
and signal intensity in speci�c bands quanti�ed using Image 
Studio Lite (Qiagen) densitometry analysis.

Immunohistochemistry
Dissected pieces of colon were immersion �xed overnight at 
4°C in 4% paraformaldehyde before embedding in para�n. 
All procedures have been described in detail previously (32). 
Labeling was visualized by use of peroxidase-conjugated second-
ary antibodies for light microscopy (Dako, Glostrup, Denmark). 
Imaging was performed on a Leica DMRE light microscope with 
PL APO 63×/1.32–0.6 and PL Fluotar 25×/0.75 oil immersion 
objectives, and a Leica DC 300 digital camera. PAS staining 
was performed on sections by incubation in 1% periodic acid 
followed by rinsing and incubation with Schi� ’s reagent. �e 
sections were rinsed and incubated with Mayer’s Hematoxylin 
before mounting.

PCR, RT-PCR, and Real-time Quantitative 
RT-PCR
RNA extraction was performed with the RiboPure kit (Ambion) 
according to the manufacturer’s instructions. All procedures, 
including determination of product speci�city, have been 
described in detail previously (33). Primer pairs, which spanned 
an exon–exon junction, are detailed in Table 1.

Reverse-Phase Liquid Chromatography 
Fractionation, Nano-Liquid 
Chromatography, and Mass Spectrometry 
Analysis
Epithelial cell samples from rat distal or proximal colon were 
reduced, alkylated, and digested using trypsin and desalted using 
C18 columns (Waters) prior to further fractionation as previously 
described (34). �e peptides were separated by high-pH RPLC 
using a Dionex Ultimate 3000 LC system (�ermo Scienti�c) 
with a ZORBAX Extended-C18 LC column (2.1 mm × 150 mm, 
5 μm, Agilent). Bu�er A (25 mM NH4FA in 100% H2O, pH = 10) 
and B (25 mM NH4FA in 90% ACN, pH = 10) were used for gra-
dient separation. �e gradient was 0–10% B (0–10 min), 10–35% 
B (10–50  min), and 35–80% B (50–64  min), with 32 fractions 
collected every 2 min. �e 32 fractions were further pooled into 
8 by mixing equal-time-interval fractions, for example, fraction 
1, 9, 17, and 25 were mixed together. �e resulting eight fractions 
were lyophilized in a SpeedVac, and then resuspended in 0.1% FA 
for LC–Mass Spectrometry (MS)/MS analysis. Analysis was by 
nano-liquid chromatography (nLC) (EASY-nLC 1000, �ermo 
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TABLE 1 | Primer pairs used in the study.

PCR primers

Primer pair Forward primer sequence 5′–3′ Reverse primer sequence 5′–3′

Human

AQP1 GCCATCCTCTCAGGCATCAC ACACCATCAGCCAGGTCATTG

AQP2 TTGGGATCCATTACACCGGC TCCAGAAGACCCAGTGGTCA

AQP3 ACCAGCTTTTTGTTTCGGGC GGCTGTGCCTATGAACTGGT

AQP4 GTGCTTTGGCCATATCAGCG CACTGGGCTGCGATGTAGAA

AQP5 GCTCACTGGGTTTTCTGGGTA CTTTGATGATGGCCACACGC

AQP6 TCGTAGGCTCCCACATCTCT CTGTTCCGGACCACGTTGAT

AQP7 GGGGACACAGGGATAGCTGA GTTTGCGTTCTTGGGGTGTC

AQP8 primer pair 1 CAGCCATGTCTGGTCGAACT TGTCCACCACTGATATTCCCC

AQP8 primer pair 2 TTGGACTGCTCATTAGGTGCTT AATGCAGGAACTCCCCTGTC

AQP9 GTGTCTCTGGTGGTCACATCA AATGCCAAAGACGGTTGCAG

FXR GGGTCTGCGGTTGAAGCTAT GTCAGAATGCCCAGACGGAA

TGR5 TCAGCCAGGACACCAGACAT AGGGTCCTTCCTGGGAGATGG

RNA polymerase II subunit RPB1 ACGCTGCTCTTCAACATCCA GGCAGACACACCAGCATAGT

Mouse

AQP1 ACCTGCTGGCGATTGACTAC TGGTTTGAGAAGTTGCGGGT

AQP2 TGGCTGTCAATGCTCTCCAC GGAGCAGCCGGTGAAATAGA

AQP3 TGCCTTGCGCTAGCTACTTT GCCACAGCCAAACATCACAA

AQP4 ATTGGGAGTCACCACGGTTC CGTTTGGAATCACAGCTGGC

AQP5 CGCTCAGCAACAACACAACA CCGGTGAAGTAGATCCCCAC

AQP6 GGCCACCTCATTGGGATCTAC ATCGCTGGGCTACAGTCTTG

AQP7 AACAAGTGTTCAGAGCCGGA GATCCTGTGGTATGCTGGGG

AQP8 TGGTGAATGTCCCCAGTCCT CATTGGTGTCTGCTCCCCAG

AQP9 GAAACTGAGCGAGCAGACCT AGCCACATCCAAGGACAATCA

FXR TGAGGGCTGCAAAGGTTTCT CATACATTCAGCCAACATCCC

TGR5 GATGTACCCTCAACCCTGGC ACAGAGTTCCAGGCCCTAGT

β-actin ACATGGCATTGTTACCAACTGG CGGACTCATCGTACTCCTGCTT

Rat

AQP1 CCTGCTGGCCATTGACTACA TGGTTTGAGAAGTTGCGGGT

AQP2 TTTCACCGGTTGCTCCATGA GTCCGATCCAGAAGACCCAG

AQP3 AAGTGTCTGGAGCCCACTTG CAGCTTGATCCAGGGCTCTC

AQP4 TGGACAGCTGTAAGTGTGGAC ATGAGCATGGCCAGGAACTC

AQP5 CATGAACCCAGCCCGATCTT AGAAGACCCAGTGAGAGGGG

AQP6 GGGCCATCTCATTGGGATTC GCTACGGTCTTGGTGTCAGG

AQP7 GTTTGCGTTGTTGGGGTGTC TTCCCGGCACTGAACACTTT

AQP8 AACATCAGCGGTGGACACTT CCAGACGCATTCCAGAACCT

AQP9 CCGGATAGCGAAGGAGACAC TGATGTGGCCCCCAGAGATA

FXR GTGACAAAGAAGCCGCGAAT TTCGGAAGAAACCTTTGCAGC

TGR5 CACTTGGCCCCCAACTTTTG GGTAGGGGGCTGGGAAGATA

Mouse and rat

Enteric smooth muscle actin 2 TGGACGGGATCTCACAGACTAC ACAATTTCTCTCTCAGCTGTGGTCA

Collagen type I α 1 GAGAGGTGAACAAGGTCCCG AAACCTCTCTCGCCTCTTGC

Human, mouse, and rat

18S rRNA GGATCCATTGGAGGGCAAGT ACGAGCTTTTTAACTGCAGCAA

4
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Scienti�c) coupled to a mass spectrometer (Q Exactive, �ermo 
Fisher Scienti�c) through an EASY-Spray nano-electrospray ion 
source (�ermo Scienti�c). A pre-column (Acclaim®PepMap 
100, 75 μm × 2 cm, nanoviper �tting, C18, 3 μm, 100 Å, �ermo 
Scienti�c) and analytical column (EASY-Spray Column, PepMap, 
75 μm ×  15  cm, nanoviper �tting, C18, 3 μm, 100  Å, �ermo 
Scienti�c) were used to trap and separate peptides, respectively. 
For nLC separation, bu�er A was 0.1% FA and bu�er B was 
95% ACN/0.1% FA. A 30-min gradient of 1 to 35% bu�er B was 
used for peptide separation. MS constituted of full scans (m/z 
300–1800) at a resolution of 70,000 (at m/z 200) followed by up to 
10 data-dependent MS/MS scans at a resolution of 17,500. HCD 
collision energy was 28%. Dynamic exclusion of 30 s as well as 

rejection of precursor ions with charge state +1 and above +8 
was employed.

MS Data Analysis and Data Inclusion 
Criteria
Raw �les were, respectively, searched against rat and mouse 
protein databases (rat RefSeq database downloaded August 
2015 containing 42,925 sequences, mouse RefSeq database 
downloaded October 2014 containing 58,513 sequences) using 
the SEQUEST algorithm embedded in Proteome Discoverer 
(PD) so�ware (�ermo Scienti�c, version 1.4). Precursor mass 
tolerance was set as 10 ppm, and fragment mass tolerance was 
set as 0.02  Da. Number of maximum miss cleavage sites was 
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FIGURE 1 | Ca2+ chelation provides a pure population of colonic 

epithelial cells. RT-PCR of colonic epithelial cells from rat (A) or mouse (B) 

isolated using Ca2+ chelation or mucosal scrapings using a marker of 

connective tissue, Col1a1 (alpha-1 type I collagen), or a marker of smooth 

muscle, Actg2 (actin, gamma 2, smooth muscle, enteric). (C) Bright�eld 

microscopy of rat samples from Ca2+ chelation showing puri�cation of both 

single cells and whole crypts. ± indicates reverse transcriptase enzyme 

included in RT reaction. PC, proximal colon; DC, distal colon.
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set to 2. Carbamidomethylation of cysteine was set as static 
modi�cation. N-terminal acetylation, methionine oxidation, as 
well as phosphorylation of serine, threonine, and tyrosine were 
included as variable modi�cations. False discovery rate (FDR) 
was calculated using Percolator. Only rank 1 and high con�dence 
(with a target FDR q-value below 0.01) peptides were included in 
the �nal results. Proteome GO-term molecular function analysis 
was performed using the Automated Bioinformatics Extractor1 
(ABE) (35).

Antibodies for Immunohistochemistry and 
Western Blotting
Rabbit anti-AQP1 was originally characterized by Nielsen et al. 
(36), including preadsorption controls, and has been used in 
multiple publications and knockout mice (37–39). Rabbit poly-
clonal anti-AQP3 (ab135694, Abcam) is a commercial antibody. 
Rabbit anti-AQP3 (8249) has been characterized previously (40, 
41). Rabbit anti-AQP4, 249-323 (Alomone) has been used in a 
number of publications, e.g., Ref. (42). Rabbit anti-AQP7, 1246, 
has been characterized with the use of knockout animals (43, 
44). Mouse monoclonal anti-AQP8 (ab77198, Abcam) is a com-
mercial antibody. Rabbit anti-AQP8 1262 has been characterized 
previously with preadsorption controls for western blotting and 
immunohistochemistry in rat samples (45). Rabbit anti-actin 
A2066 was purchased from Sigma.

Statistics
Statistical signi�cance of qPCR data was determined using the 
Relative Expression So�ware Tool V2.0.13 (REST 2009) with 
4000 randomizations (46). Relative changes in RNA expression 
between groups was performed as described (47). For each ani-
mal treatment group, n = 5. Technical replicates were performed 
on each cDNA sample for qPCR. Other data were tested for 
normal distribution using the D’Agostino–Pearson omnibus test 
and Graphpad Prism So�ware. Data �tting a normal distribution 
were analyzed using multiple t-tests, and statistical signi�cance 
(P < 0.05) was determined using the Holm–Sidak method. All 
data are presented as mean ± SE.

RESULTS

Isolation of Colonic Epithelial Cells
Two methods to isolate colonic epithelia are mucosal scraping (29) 
or Ca2+ chelation (31). To determine which procedure provided 
the most pure population of epithelial cells, RT-PCR was used to 
compare the mRNA levels of alpha-1 type I collagen (Col1a1), 
a marker for connective tissue, and actin gamma 2 (Actg2), a 
marker of smooth muscle in samples isolated from both rats and 
mice using the two techniques. In contrast to mucosal scrapings, 
in epithelial cell samples prepared by Ca2+ chelation, Col1a1 and 
Actg2 were undetectable (Figures 1A,B). Bright�eld microscopy 
of samples isolated by Ca2+ chelation revealed single cells and full 
length crypts (Figure  1C) further demonstrating their purity. 
Additional isolations from other animals had similar results, 

1 https://hpcwebapps.cit.nih.gov/ESBL/ABE/ 

demonstrating the reproducibility of the technique. �e remain-
ing experiments were thus performed on samples prepared by the 
Ca2+ chelation method.

Proteome of Rat and Mouse Colonic 
Epithelial Cells
As an initial screen to identify AQPs and other potential 
modulators of bile acid signaling in colonic epithelia, proteomic 
pro�ling of puri�ed epithelial cells from mouse or rat distal and 
proximal colon was performed using LC-ESI MS/MS. In mouse, 
unique peptides corresponding to 6563 proteins were identi�ed 
from proximal colon samples and 5746 proteins from distal 
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colon samples (Figure 2 and Data Sheet S1 in Supplementary 
Material). Together, this relates to 7878 unique proteins in 
mouse colon epithelial cells. Analysis of only high con�dence 
identi�cations (minimum of 2 unique peptides identi�ed per 
protein) suggested that 712 proteins were unique to distal colon, 
with 1228 unique to proximal colon. In rat proximal colon 
samples, 6561 proteins were identi�ed and 6737 from distal 
colon samples (Figure 2 and Data Sheet S1 in Supplementary 
Material), thus making a total of 8188 unique proteins in rat 
colon epithelial cells. Analysis of only high con�dence identi�-
cations suggested 802 proteins were unique to distal colon, with 
658 unique to proximal colon. All proteins identi�ed (including 
protein accession number, gene symbol, and number of peptide 
identi�cations) are available online.2,3,4,5

Proteome GO-term molecular function analysis using 
Panther (48) highlighted a number of major processes and 
protein classes highly enriched in rat and mouse colonic epi-
thelial cells (Data Sheets S2 and S3 in Supplementary Material). 
Additional GO-term analysis in mouse (Figure  2) highlighted 
115 proteins with known transporter activity (including AQP1, 
AQP2, and AQP4), 2 adenylate cyclase isoforms, 9 steroid recep-
tors (including the FXR and VDR), and 18 GPCRs (including 
the G-protein-coupled bile acid receptor 1). Further analysis 
of the mouse colon proteome versus published databases (49) 
identi�ed multiple E1 and E2 enzymes of the ubiquitin/sumo 
conjugation cascade, in addition to at least 212 E3 ligases and 44 
proteins with known deubiquitylation activity. Similar GO-term 
analysis in rat (Figure 2) highlighted 114 proteins with known 
transporter activity (including AQP3 and AQP8), 3 adenylate 
cyclase isoforms, 10 steroid receptors (including the FXR and 
VDR), and 36 GPCRs (including the G-protein-coupled bile acid 
receptor 1).

Targeted Identi�cation of AQPs in Mouse, 
Rat, and Human Colon Samples
To supplement the identi�cation of AQPs in rat and mouse 
colonic epithelial cells using protein MS, a more sensitive RT-PCR 
approach was utilized to speci�cally identify whether AQP1–9 
were expressed in rat- and mouse-isolated colonic epithelial cells 
(Figure 3). In rats, AQP1, 3, 4, 7, and 8 were expressed, whereas in 
mouse AQP1, 4, and 8 were identi�ed. In human colon biopsies, 
AQP1, 3, 4, 7, 8, and 9 were identi�ed by RT-PCR (Figure 4). 
Expression of AQP3, 4, 7, and 8 were con�rmed in rat colonic 
epithelial cell samples by western blotting, alongside AQP4 and 
AQP8 in mouse samples (Figure 5). In human samples, we con-
�rmed expression of AQP3, 7, and 8 (Figure 5).

Immunohistochemical Analysis of AQPs in 
Rat, Mouse, and Human Colon
Aquaporins identi�ed at the mRNA level were examined by 
immunohistochemistry using speci�c antibodies to con�rm their 

2 http://interpretdb.au.dk/database/Colon/Mouse_Distal.html 
3 http://interpretdb.au.dk/database/Colon/Mouse_Proximal.html 
4 http://interpretdb.au.dk/database/Colon/Rat_Distal.html 
5 http://interpretdb.au.dk/database/Colon/Rat_Proximal.html 

expression at the protein level in epithelial cells and to determine 
their subcellular localization.

AQP1

In rat proximal and distal colon, positive staining of AQP1 was 
observed in the apical pole of epithelial cells at the base of the 
crypts (Figures  6A,B,D,E). Strong AQP1 immunoreactivity 
was also detected in endothelial cells (stars Figure 6D), known 
for their high AQP1 expression levels (50, 51). In mouse colon 
(Figures  6G,H,J,K), in addition to apical labeling of epithelial 
cells at the base of crypts, there was also cytoplasmic vesicular-
like labeling on the apical side of the nucleus in surface epithelial 
cells. In human proximal and distal colon, AQP1 was localized 
to the apical membrane of epithelial cells at the base of crypts 
in (Figures  6M,N,P,Q), with some areas demonstrating the 
appearance of basolateral staining. Labeling of AQP1 in the 
kidney proximal tubule brush border and basolateral membrane 
(Figures 6C,F,I,L,O,R) con�rmed antibody speci�city (36, 52).

AQP3

In rat proximal colon, AQP3 was localized to the basolateral mem-
brane of a subsection of surface epithelial cells (Figures 7A,B). 
�e surface epithelial cells expressing AQP3 were localized 
in “patches,” with a gradual increase in the number of labeled 
cells from proximal to distal colon. In the distal colon, AQP3 
was abundant in the basolateral membrane of nearly all surface 
epithelial cells (Figures  7D,E). Strong staining of the kidney 
collecting duct principal cells’ basolateral plasma membranes 
using this antibody con�rmed the speci�city of the staining 
(Figures  7C,F). In human colon sections, the most prominent 
AQP3 labeling was in cells in the distal part of colon, but in the 
connective tissue (lamina propria) rather than in epithelial cells 
(Figures  7G,H,J,K). Weak lateral labeling of AQP3 could be 
detected among some cells’ lining the crypts in the distal colon. 
Positive and speci�c staining of the human kidney collecting duct 
principal cell basolateral plasma membranes con�rmed antibody 
speci�city (Figures 7I,L).

AQP4

In rat, AQP4 mRNA levels determined by RT-PCR were low 
(Figure 3). Immunolabeling of AQP4 in rat proximal and distal 
colon revealed a distinct labeling toward the apical pole of epithe-
lial cells, in the regions corresponding to immediately below the 
tight junctions. �is labeling was apparent on surface epithelia 
and in crypts (Figures  8A,B,D,E). Less abundant labeling of 
AQP4 was observed in the basolateral membrane. Some staining 
of smooth muscle was observed (not shown). Abundant labeling 
of basolateral membranes of kidney collecting duct principal cells 
con�rmed speci�city of the antibody (Figures 8C,F). In mouse 
proximal and distal colon, abundant AQP4 labeling was observed 
in the basolateral membrane of surface epithelial cells, which 
also extended into crypts (Figures 8G,H,J,K). In human, AQP4 
labeling of the epithelial cells was generally weak (Figure  8). 
However, occasional strong labeling of single cells in the crypts of 
the epithelia with an intracellular and basal staining (subnuclear) 
was observed (Figures 8P,Q). AQP4 was also detected in smooth 
muscular layers.

http://www.frontiersin.org/Nutrition
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FIGURE 2 | Summary of proteomic data and GO-term analysis of rat and mouse colonic epithelial cells. Only high con�dence identi�cations (minimum of 

two unique peptides identi�ed per protein) were used to segregate between expression in proximal or distal colon.
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FIGURE 3 | RT-PCR to determine the expression of AQP1–9 in rat and mouse colonic epithelial cells isolated by Ca2+ chelation. ± indicates reverse 

transcriptase enzyme included in RT reaction. PC, proximal colon; DC, distal colon; Kid, kidney; SG, salivary gland; Liv, liver.
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AQP7

AQP7 was detected at low levels by RT-PCR in rat and human 
colon samples. However, antibodies that reliably detected AQP7 
in kidney sections, where it is localized to the brush border of 
the proximal tubules (43), were not available. �us immunohis-
tochemical analysis of AQP7 in colon was not performed.

AQP8

In rats and human, AQP8 was abundantly detected in colon 
by RT-PCR, whereas it was of low expression levels in mouse 
colon (Figure 3). Immunohistochemistry of AQP8 demonstrated 
positive immunolabeling of proximal and distal colon, with 
more prominent staining of the distal colon. Labeling was 
abundant in the apical brush border of surface epithelial cells, 
with additional labeling of supra nuclear vesicles in the surface 
and crypt epithelia (Figures  9A,B,D,E). Labeling of the apical 
pole of pancreatic acinar cells (53, 54) con�rmed speci�city of 
the antibody (Figures 9C,F). In humans, labeling of AQP8 was 
apparent at the apical brush border of epithelial cells in both 

proximal and distal colon (Figure  9). Labeling of the apical 
pole of pancreatic acinar cells (55) con�rmed speci�city of 
the antibody in humans (Figures  9I,L). In mouse, a similar 
distribution of AQP8 at the apical surface of both proximal and 
distal colon epithelial cells, alongside intracellular labeling of 
distinct structures (possibly mitochondria), was observed using 
high concentrations of antibody (Figures  9M,P). However, a 
lack of consistent labeling of AQP8 in mouse liver or pancreas 
indicates that the immunohistochemical localization of AQP8 
presented here must be interpreted with caution.

AQP9

In human colon, AQP9 could be detected by RT-PCR (Figure 3). 
Using a variety of di�erent AQP9 antibodies, positive labeling 
of plasma membranes within hepatocytes was observed (56). 
However, a lack of consistent results using these antibodies on 
human colon sections (not shown), including diverse labeling of 
various cell types, prevents solid conclusions to be drawn regard-
ing the localization of AQP9 in human colon epithelial cells.
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FIGURE 4 | RT-PCR to determine the expression of AQP1–9 in human colon biopsies. ± indicates reverse transcriptase enzyme included in RT reaction. PC, 

proximal colon; DC, distal colon; Kid, kidney; Liv, liver.

FIGURE 5 | Western blotting was used to assess expression of AQPs at the protein level. Western blotting of colon epithelial cells puri�ed by Ca2+ chelation 

from two male Wistar rats and four female mice. Human samples were not prepared by Ca2+ chelation. PC, proximal colon; DC, distal colon.
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FIGURE 6 | Immunohistochemistry of AQP1 in rat, mouse, and human colon sections. (A,B) Proximal rat colon. (D,E) Distal rat colon. (C–F) Rat kidney. 

(G,H) Proximal mouse colon. (J,K) Distal mouse colon. (I–L) Mouse kidney. (M,N) Proximal human colon. (P,Q) Distal human colon. (O–R) Human kidney. 

Scalebar = 100 μm. *indicates labeling of endothelial cells lining vasculature in the connective tissue.
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FIGURE 7 | Immunohistochemistry of AQP3 in rat and human colon sections. (A,B) Proximal rat colon. (D,E) Distal rat colon. (C–F) Rat kidney. 

(G,H) Proximal human colon. (J,K) Distal human colon. (I–L) Human kidney. Scalebar = 100 μm.

11

Yde et al. Bile Acids Regulate Colonic AQPs

Frontiers in Nutrition | www.frontiersin.org October 2016 | Volume 3 | Article 46

Feeding of Bile Acids Induces Diarrhea 
in Rats
A rat model of BAM was generated by feeding animals 1% 
sodium cholate mixed in standard rodent chow for 3  days. 
Animals were housed in metabolic cages throughout the 
acclimatization and experimental period in order to collect 
physiological information regarding their response to treatment 

compared to control animals receiving standard rodent chow. 
Within 24 h, sodium cholate-fed rats developed a mild diarrhea, 
as demonstrated by signi�cantly increased wet weight of stools 
and increased water content (Figure 10). Similar observations 
were apparent up until 72  h. �e rats partially compensated 
for this additional water loss in the stools by reducing their 
urine output, and overall water loss in stools and urine was not 
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FIGURE 8 | Immunohistochemistry of AQP4 in rat, mouse, and human colon sections. (A,B) Proximal rat colon. (D,E) Distal rat colon. (C–F) Rat 

kidney. (G,H) Proximal mouse colon. (J,K) Distal mouse colon. (I–L) Mouse kidney. (M,N) Proximal human colon. (P,Q) Distal human colon. (O–R) Human 

kidney. Scalebar = 100 μm.
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FIGURE 9 | Immunohistochemistry of AQP8 in rat, human, and mouse colon sections. (A,B) Proximal rat colon. (D,E) Distal rat colon. (C–F) Rat pancreas. 

(G,H) Proximal human colon. (J,K) Distal human colon. (I–L) Human pancreas. (M,N) Proximal mouse colon. (O,P) Distal mouse colon. Scalebar = 100 μm.
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FIGURE 10 | Continued
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signi�cantly di�erent between the groups. Sodium cholate-fed 
animals ate signi�cantly less food, but their bodyweight a�er 
72  h was not signi�cantly di�erent from controls. Together, 
the physiological data indicated that feeding rats additional 
bile acids in their diet was successful for creating a model 
of BAM resulting in diarrhea. PAS staining of the distal and 
proximal colon demonstrated no obvious gross morphological 
di�erences in the colonic mucosa from control- and bile acid-
treated groups (Figure  11).

Altered mRNA Expression of AQP3, 7, and 
8 in Colonic Epithelial Cells Isolated from 
Bile Acid-Fed Rats
Initially, standard RT-PCR was used to examine if AQPs not 
detectable in rat colonic epithelial cells under basal conditions 
would increase in abundance to a detectable level following treat-
ment of rats with bile acids. However, only the AQPs originally 
expressed under basal conditions were detected (data not shown). 
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FIGURE 10 | Physiological parameters of either controls or rats treated with bile acids. Time points indicate time elapsed after shift in dietary intake (see 

Materials and Methods).
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Subsequently, RT-qPCR was used to measure changes in the expres-
sion of AQP1, 3, 4, 7, and 8 mRNAs in the colonic epithelial cells 
isolated from both the proximal and the distal colon. Signi�cant 
increases in AQP3, 7, and 8 were detected in the bile acid-treated 
group compared to the control group (Figure 12). In parallel, the 
protein levels of AQP7 and AQP8 were increased in the bile acid-
treated group (Figures 13A,B), but in contrast to mRNA levels, 
AQP3 protein levels decreased in the treated group compared 
to the control group. Examination of colon tissue using immu-
nohistochemistry did not reveal clear di�erences in the cellular 
or subcellular distribution of AQP3 or AQP8 following bile acid 
treatment (data not shown). Pearson product–moment correlation 
coe�cients of AQP colonic abundance (western blotting level) and 
the measured physiological parameters showed various signi�cant 
associations (Table 2). For example, there was a signi�cant cor-
relation between feces water content and analyzed AQPs (with the 
exception of AQP7 in the proximal colon). Spearman’s rank cor-
relation coe�cients con�rmed a signi�cant correlation between 
feces water content and AQP expression (data not shown).

DISCUSSION

Perfusion of human colon with bile acids results in secretion of 
water and electrolytes (18), and BAM can cause severe diarrhea. 

In the present study, we hypothesized that altered expression of 
AQPs in the colonic epithelium may be involved in the increased 
water �uxes elicited by bile acids. Our results demonstrate that 
variety of di�erent AQPs, and several target proteins for bile 
acids, are expressed in colonic epithelial cells. Furthermore, we 
observed that bile acid administration to rats altered the expres-
sion of three of these AQPs (AQP3, AQP7, and AQP8), suggesting 
that these AQPs may be involved in the pathophysiology of bile 
acid-induced diarrhea.

�e colon is highly water permeable, absorbing approximately 
1.5–2 l of water each day via the crypt and surface epithelia (57). 
Various mechanisms for how water reabsorption occurs exist. 
Although paracellular transport along the osmotic gradient 
generated via the active transport of sodium by the Na-K-ATPase 
is thought to be a major route, tight epithelial layers of the colon 
suggest transcellular routes for water also exist. In this study, the 
identi�cation of several AQPs in mouse, rat, and human colonic 
epithelial cells makes transcellular water transport via AQP water 
channels a distinct possibility. In particular, the clear segmental 
heterogeneity of predominant AQP3 expression in the distal 
colon could suggest a major role for this water channel in the 
dehydration of feces occuring in this segment. Furthermore, 
although others have identi�ed AQPs in colons isolated from 
various species (45, 54, 58–69), our observations that AQP1 and 
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FIGURE 11 | PAS staining of rat colon isolated from control- and bile acid-treated rats.
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AQP8 are localized to the apical plasma membrane and AQP3 
or AQP4 are localized basolaterally in surface epithelial cells of 
the distal colon suggest that, in the segment where the majority 
of water reabsorption occurs (57, 70), a direct water transport 
pathway across epithelial cells exists. Such a role for AQPs in 
transepithelial water transport in the colon are supported by 
studies from AQP4 knockout mice, which have a signi�cantly 
higher stool water content (71), and a study in rats where 1  h 
a�er rectally administered HgCL2 (non-selective AQP inhibitor) 
fecal water content was signi�cantly increased (72).

Following bile acid treatment, AQP3, AQP7, and AQP8 were 
increased in mRNA expression alongside a concatenate increase 
in AQP7 and AQP8 protein levels. However, AQP3 protein levels 
decreased. �is contradictory e�ect of bile acids on AQP3 mRNA 

expression and protein abundance may be a result of various 
posttranscriptional processes or protein degradation (73), or 
simply due to a biphasic response of AQP3 to bile acid exposure 
(initial downregulation of AQP3 followed by a compensatory 
upregulation). Roles for AQP3 and AQP8 in the pathogenesis 
of bile acid-induced diarrhea are supported by previous studies, 
with AQP3 mRNA levels increased in a cell model of secretory 
diarrhea induced by vasoactive intestinal polypeptide (released 
by enteric neurons) (74), and inhibition of AQP8 by siRNA in 
isolated super�cial colonocytes resulting in decreased water per-
meability (65). Despite technical di�culties in localizing AQP7 in 
this study, its role in bile acid-induced diarrhea is also supported 
by previous studies localizing AQP7 to the apical membrane of 
surface cells within the colon (64, 75).
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FIGURE 13 | Protein changes of AQP3, AQP7, and AQP8 in control 

rats versus rats treated with bile acids. (A) Quanti�cation of western 

blotting from the animal experiment. (B) Western blots corresponding to the 

quanti�cation. Actin is shown as loading control. *indicates signi�cant 

difference to control, P < 0.05%.

FIGURE 12 | mRNA expression levels of aquaporins in controls or rats 

treated with bile acids for 72 h. (A) Proximal colon. (B) Distal colon.
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Previous studies of colonic AQP expression in various 
conditions of diarrhea support that AQPs may be di�erentially 
regulated by bile acids. For example, although we failed to detect 
mRNA for AQP3 in mice, others have reported that AQP3 and 
AQP8 mRNA levels increased in colonic scrapings isolated from 
the residual colon of mice subjected to resection of 80% of the 
distal small bowel (29). Such resection is likely accompanied by 
BAM. Interestingly, in conditions that cause diarrhea and are 
accompanied by in�ammation, opposing e�ects on AQP expres-
sion have been observed. For example, it has been observed that 
(1) in a mouse model of rotavirus-induced diarrhea, the levels 
of AQP1, AQP4, and AQP8 are decreased, whereas AQP3 levels 
are increased (30); (2) in a mouse model of diarrhea induced by 
the chemotherapeutic drug 5-�uoracil and accompanied by an 
abnormal in�ammatory response, the mRNA levels of AQP4 
and AQP8 are decreased (76); (3) in humans or mouse models, 
ulcerative Crohn’s colitis or infectious colitis (in�ammatory dis-
eases) is accompanied by signi�cant reductions in AQP4, AQP7, 
and AQP8 levels (64); (4) treatment of rats with rheinanthrone, 
which triggers macrophage activation, resulted in diarrhea and 
decreased expression of AQP3 (77); and (5) rectal treatment of 
rats with trinitrobenzene sulfonic acid to induce colitis (mimick-
ing Crohn’s disease) resulted in reduced mRNA expression of 
AQP3 and AQP8 (78). Combined, these studies indicate that 
fundamentally di�erent mechanisms, linked to the underlying 
cause of the diarrhea, may be responsible for the variable changes 
in AQP expression.

In theory, bile acids could be modulating the expression 
levels of AQPs in the colon by multiple pathways. Proteomic 
analysis of isolated colonic epithelial cells identi�ed the FXR and 
VDR, which are known bile acid modulated steroid receptors. 
�erefore, it is possible that bile acids a�ect AQP gene transcrip-
tion directly via these receptors. Bile acids may also indirectly 
a�ect AQPs in colonic epithelia via modulation of the enteric 
nervous system (ENS), perhaps via the enteroendocrine cells 
(79, 80) or via mast cell activation (81). Evidence for bile acids 
to acutely (within hours) promote secretion via the ENS has 
been documented in the small intestine of cat (82) and rat (83). 
As in�ammation can be both a cause and an e�ect of diarrhea, 
and in�ammation per se can a�ect the expression of AQPs, e.g., 
mimicking in�ammatory bowel disease by treatment of intestinal 
cell cultures with IFNγ suppresses the expression of AQP1 (84), 
we cannot rule out that the changes in AQPs observed in our 
studies are due to secondary e�ects. Studies directly assessing 
the modulation of AQPs in cultured cells following stimulation 
with bile acids would help resolve this issue. Furthermore, it 
is also possible that alterations in AQP abundances occur via 
other indirect mechanisms, such as from bile acid-induced 
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alterations in the colon microbiome. �e composition of the 
microbiome is a�ected by the size of the bile acid pool and the 
composition of bile acids (85, 86), and although alterations in 
the microbiome may take a longer time than the period studied 
here, a previous study of germ-free mice and conventional mice 
indicated that AQP4 expression can be modulated via alterations 
in gut bacteria (87).

In summary, our studies demonstrate that AQPs have a het-
erogeneous expression pattern in colonic epithelial cells. During 
bile acid-induced diarrhea, the expression levels of AQP3, AQP7, 
and AQP8 are altered, suggesting that these channels are involved 
in the pathophysiology of BAM.
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TABLE 2 | Pearson product–moment correlation coef�cients of various physiological parameters from metabolic cage studies and AQP expression in 

rat colon.

Proximal AQP3 Distal AQP3 Proximal AQP7 Distal AQP7 Proximal AQP8 Distal AQP8

Pearson  

r

P  

values

Pearson 

 r

P  

values

Pearson  

r

P  

values

Pearson  

r

P  

values

Pearson  

r

P  

values

Pearson  

r

P 

values

Feces wet weight  

(output/g per g BW)

−0.798 0.010 −0.720 0.029 0.299 0.434 0.748 0.021 0.668 0.049 0.488 0.183

Feces dry weight  

(output/g per g BW)

0.414 0.268 0.273 0.477 −0.752 0.019 −0.381 0.312 −0.477 0.194 −0.759 0.018

Feces water content  

(g per g BW)

−0.893 0.001 −0.775 0.014 0.513 0.158 0.834 0.005 0.786 0.012 0.696 0.037

Total water output  

(g/day/g BW)

−0.646 0.060 −0.357 0.346 0.028 0.943 0.103 0.792 0.421 0.260 0.168 0.666

Water intake  

(intake/g per g BW)

−0.621 0.074 −0.462 0.210 0.080 0.837 0.207 0.593 0.294 0.442 0.312 0.414

Food intake  

(intake/g per g BW)

0.657 0.055 0.593 0.093 −0.658 0.054 −0.488 0.183 −0.816 0.007 −0.742 0.022

Urine output  

(output/g per g BW)

−0.202 0.602 0.054 0.891 −0.268 0.486 −0.371 0.325 0.012 0.976 −0.218 0.572

Fractional urine output 0.311 0.415 0.524 0.147 −0.426 0.253 −0.708 0.033 −0.303 0.428 −0.611 0.081

Feces (output/g  

per g BW)

−0.711 0.032 −0.519 0.152 0.110 0.777 0.615 0.078 0.607 0.083 0.233 0.546

Urine osmolar excretion 0.752 0.019 0.772 0.015 −0.676 0.045 −0.801 0.009 −0.678 0.045 −0.898 0.001

BW, bodyweight.
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