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[1] Hydraulic tomography is a cost-effective technique for characterizing the
heterogeneity of hydraulic parameters in the subsurface. During hydraulic tomography
surveys a large number of hydraulic heads (i.e., aquifer responses) are collected from a
series of pumping or injection tests in an aquifer. These responses are then used to
interpret the spatial distribution of hydraulic parameters of the aquifer using inverse
modeling. In this study, we developed an efficient sequential successive linear estimator
(SSLE) for interpreting data from transient hydraulic tomography to estimate three-
dimensional hydraulic conductivity and specific storage fields of aquifers. We first
explored this estimator for transient hydraulic tomography in a hypothetical one-
dimensional aquifer. Results show that during a pumping test, transient heads are highly
correlated with specific storage at early time but with hydraulic conductivity at late time.
Therefore reliable estimates of both hydraulic conductivity and specific storage must
exploit the head data at both early and late times. Our study also shows that the transient
heads are highly correlated over time, implying only infrequent head measurements
are needed during the estimation. Applying this sampling strategy to a well-posed
problem, we show that our SSLE can produce accurate estimates of both hydraulic
conductivity and specific storage fields. The benefit of hydraulic tomography for ill-posed
problems is then demonstrated. Finally, to affirm the robustness of our SSLE approach, we
apply the SSLE approach to a hypothetical three-dimensional heterogeneous aquifer.
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1. Introduction

[2] Detailed spatial distributions of hydraulic parameters
are imperative to improve our ability to predict water and
solute movement in the subsurface [e.g., Yeh, 1992, 1998].
Traditional aquifer tests like pumping tests and slug tests
only yield hydraulic parameters integrated over a large
volume of geologic media [e.g., Butler and Liu, 1993;
Beckie and Harvey, 2002]. On the other hand, Wu et al.
[2005] reported that the classical analysis for aquifer tests
yields spurious transmissivity estimates and storage coeffi-
cient estimates that reflect local geology. For characterizing
detailed spatial distributions of hydraulic parameters, a new
method, hydraulic tomography [Gottlieb and Dietrich,
1995; Renshaw, 1996; Yeh and Liu, 2000; Liu et al.,
2002; McDermott et al., 2003], which evolved from the
CAT (computerized axial tomography) scan concept of
medical sciences and geophysics, appears to be a viable
technology.
[3] Hydraulic tomography is, in the most simplified

terms, a series of cross-well interference tests. In other
words, an aquifer is stressed by pumping water from or
injecting water into a well, and monitoring the aquifer’s
response at other wells. A set of stress/response yields an
independent set of equations. Sequentially switching the

pumping or injection location, without installing additional
wells, results in a large number of aquifer responses caused
by stresses at different locations and, in turn, a large number
of independent sets of equations. This large number of sets
of equations makes the inverse problem (i.e., using aquifer
stress and response relation to estimate the spatial distribu-
tion of hydraulic parameters) better posed, and the subse-
quent estimate approaches reality.
[4] Interpreting data from hydraulic tomography presents

a challenge, however. The abundance of data generated
during tomography can lead to information overload, and
cause substantial computational burdens and numerical
instabilities [Yeh, 1986; Hughson and Yeh, 2000]. Moreover,
the interpretation can be nonunique. Yeh and Liu [2000]
developed a sequential successive linear estimator (SSLE)
to overcome these difficulties. The SSLE approach eases the
computational burdens by sequentially including informa-
tion obtained from different pumping tests; it resolves the
nonuniqueness issue by providing the best unbiased condi-
tional mean estimate. That is, it conceptualizes hydraulic
parameter fields as spatial stochastic processes and seeks
their mean distributions conditioned on the information
obtained from hydraulic tomography, as well as directly
measured parameter values (such as from slug tests, or core
samples). Using sand box experiments, Liu et al. [2002]
demonstrated that the combination of hydraulic tomography
and SSLE is a propitious, cost-effective technique for
delineating heterogeneity using a limited number of inva-
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sive observations. The work by Yeh and Liu [2000],
nonetheless, is limited to steady state flow conditions,
which may occur only under special field conditions.
Because of this restriction, their method ignores transient
head data before flow reaches steady state conditions.
Transient head data, although influenced by both hydraulic
conductivity and specific storage, are less likely to be
affected by uncertainty in boundary conditions. The
development of a new estimation procedure thus becomes
essential so that all data sets collected during hydraulic
tomography surveys can be fully exploited.
[5] Few researchers have investigated transient hydrau-

lic tomography. Bohling et al. [2002] exploited the steady
shape flow regime of transient flow data to interpret
tomographic surveys. Under steady shape conditions at
late time of a pumping test before boundary effects take
place, the hydraulic gradient changes little with time, a
situation where sensitivity of head to the specific storage
is small. As a consequence, the steady shape method is
useful for estimating hydraulic conductivity but not spe-
cific storage.
[6] Their steady shape method relies on the classical least

squares optimization method and the Levenberg-Marquardt
algorithm [Marquardt, 1963] for controlling convergence
issues [see Nowak and Cirpka, 2004]. This optimization
method is known to suffer from nonuniqueness of the
solutions if the inverse problem is ill posed and regulariza-
tion [Tikhonov and Arsenin, 1977] or prior covariance of
parameters [Nowak and Cirpka, 2004] is not used. The
least squares approach is also computationally inefficient if
every element in the solution domain (in particular, three-
dimensional aquifers with multiple, randomly distributed
parameters) is to be estimated. This inefficiency augments
if the sensitivity matrices required by the optimization are
not evaluated using an efficient algorithm, such as the
adjoint state approach.
[7] These shortcomings may be the reasons that test cases

of Bohling et al. [2002] were restricted to unrealistic,
perfectly stratified aquifers, where the heterogeneity has
no angular variations, and specific storage is constant and
known a priori. The assumption of a spatially constant and
known specific storage value for the entire aquifer makes
the inverse problem almost the same as the steady hydraulic
tomography as explored by Yeh and Liu [2000]. Perhaps
inversion of the transient tomography by Bohling et al.
[2002] is less affected by unknown in boundary conditions.
Nonetheless, for perfectly horizontal layered aquifers, many
traditional hydraulic test methods, without resorting to
hydraulic tomography, can easily estimate hydraulic prop-
erties of each layer using just one borehole.
[8] Similar to Vasco et al. [2000], Brauchler et al. [2003]

developed a method that uses the travel time of a pneumatic
pressure pulse to estimate air diffusivity of fractured rocks.
Similar to X-ray tomography, their approach relies on the
assumption that the pressure pulse travels along a straight
line or a curve path. Thus an analytical solution can be
derived for the propagation of the pressure pulse between a
source and a pressure sensor. Many pairs of sources and
sensors yield a system of one-dimensional analytical equa-
tions. A least squares based inverse procedure developed for
seismic tomography can then be applied to the system of
equations to estimate the diffusivity distribution. The ray

approach avoids complications involved in numerical for-
mulation of the three-dimensional forward and inverse
problems, but it ignores interaction between adjacent ray
paths and possible boundary effects. Consequently, their
method requires an extensive number of iterations and pairs
of source/sensor data to achieve a comparable resolution to
that achieved from inverting a three-dimensional model.
Vesselinov et al. [2001] applied an optimization technique
and geostatistics to pneumatic cross-borehole tests in frac-
tured rocks. Because of the baseline of the pneumatic
properties is unknown, it is difficult to assess the accuracy
of their results.
[9] To our knowledge, few researchers have developed an

inverse method for transient hydraulic tomography to esti-
mate both hydraulic conductivity and specific storage of
aquifers. For general groundwater inverse problems other
than hydraulic tomography, Sun and Yeh [1992] assumed a
specific storage field that was homogeneous and known a
priori. They then developed a stochastic inverse method to
estimate the spatial distribution of transmissivity using only
transient head information. For transient hydraulic tomog-
raphy, Vasco et al. [2000] and Brauchler et al. [2003]
estimated diffusivity, the ratio of hydraulic conductivity to
specific storage, without any attempt to separate the two
parameters.
[10] In this paper, we extended the SSLE developed by

Yeh and Liu [2000] to transient hydraulic tomography for
estimating randomly distributed hydraulic conductivity
and specific storage in 3-D aquifers. This paper begins
with the derivation of the SSLE for use with transient
hydraulic heads. We introduce a loop iteration scheme to
improve the accuracy of sequential usage of head data.
We then verify our new approach by applying it to a
synthetic one-dimensional heterogeneous aquifer. During
this one-dimensional test, temporal variation of cross corre-
lation between transient heads and parameters, as well as
temporal correlation of transient heads, is investigated.
Results of this investigation lead to a better understanding
of effects of conditioning using head measurements on
estimates of hydraulic conductivity and specific storage,
and an effective sampling strategy, as opposed to utilizing
an entire drawdown time history, for efficient inversion of
the transient hydraulic tomography data. Finally, the new
SSLE is applied to a hypothetical three-dimensional, hetero-
geneous aquifer to demonstrate the robustness of our new
approach.

2. Method

2.1. Groundwater Flow in Three-Dimensional
Saturated Media

[11] In the following analysis, we assume that ground-
water flow in three-dimensional, saturated, heterogeneous,
porous media can be described by the following equation:

r � K xð ÞrH½ � þ Q xp
� �

¼ Ss xð Þ @H
@t

ð1Þ

subject to boundary and initial conditions:

H G1
j ¼ H

1
; K xð ÞrH½ � � n G2

j ¼ q; and H t¼0 ¼ H0j ð2Þ
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where in equation (1), H is total head (L), x is the spatial
coordinate (x = {x1,x2,x3}, (L), and x3 represents the
vertical coordinate and is positive upward), Q(xp) is the
pumping rate (1/T) at the location xp, K(x) is the saturated
hydraulic conductivity (L/T), and Ss(x) is the specific
storage (L
1). In equation (2), H1 is the prescribed total
head at Dirichlet boundary G1, q is the specific flux (L/T) at
Neumann boundary G2, n is a unit vector normal to the
union of G1 and G2, and H0 represents the initial total head.
The equations are solved by a 3-D finite element approach
developed by Srivastava and Yeh [1992] in the following
analysis.

2.2. Sequential Successive Linear Estimator

[12] The SSLE approach is an extension of the SLE
(successive linear estimator) approach [Yeh et al., 1996;
Yeh and Zhang, 1996; Zhang and Yeh, 1997; Hanna and
Yeh, 1998; Vargas-Guzman and Yeh, 1999, 2002; Hughson
and Yeh, 2000]. The SLE approach is essentially cokriging
[Yeh et al., 1995] (Bayesian formalism [Kitanidis, 1986])
that seeks mean parameter fields conditioned on available
point data as well as geologic and hydrologic structures
(i.e., spatial covariance functions of parameters and
hydraulic heads, and their cross-covariance functions).
Different from cokriging, SLE uses a linear estimator
based on differences between observed and simulated
hydraulic heads successively to update both conditional
means and covariances of the estimates such that the
nonlinear relation between information and parameters is
considered. As a stochastic estimator analogous to the
direct method of the deterministic approach [Yeh, 1986],
SLE is conceptually the same as but methodologically
different from the maximum a posterior [McLaughlin and
Townley, 1996] and the quasi-linear geostatistical inverse
approach [Kitanidis, 1995].
[13] The SSLE approach relies on the SLE concept to

sequentially include data sets and update covariances and
cross covariances in the estimation process. The sequential
method avoids solving huge systems of equations and
therefore reduces numerical difficulties. The approach has
been successfully applied to parameter estimations in var-
iably saturated media [e.g., Zhang and Yeh, 1997; Hanna
and Yeh, 1998; Hughson and Yeh, 2000], steady hydraulic
tomography [Yeh and Liu, 2000; Liu et al., 2002], electrical
resistivity tomography [Yeh et al., 2002]; and stochastic
information fusion [Yeh and Šimůnek, 2002; Liu and Yeh,
2004]. In this study, we extend this inverse approach to
incorporate transient hydraulic head data to estimate both
hydraulic conductivity and specific storage fields. As the
majority of the SSLE method used in this study remains
similar to that in our previous works, we present only a brief
summary, but a sensitivity analysis for transient flow, and a
new loop iteration scheme are given in detail below.
[14] To characterize the heterogeneity of geologic forma-

tions, the SSLE algorithm treats the natural logs of saturated
hydraulic conductivity and specific storage as stochastic
processes. We therefore assume lnK = K + f and lnSs = S +
s, where K and S are mean values, and f and s denote the
perturbations. The transient hydraulic head response to a
pumping test in transient hydraulic tomography is repre-
sented by H = H + h, where H is the mean and h is the
perturbation. Substituting these stochastic variables into (1),

taking the conditional expectation, and conditioning with
some observations of head and parameters generates the
mean flow equation as

r � Kcon xð ÞrHcon

� �
þ Q xp

� �
¼ Scon xð Þ @Hcon

@t
ð3Þ

where Kcon, Hcon, and Scon are conditional effective
hydraulic conductivity, hydraulic head and specific storage,
respectively [Yeh et al., 1996]. Similar to our previous work,
we seek the conditional effective fields of hydraulic
conductivity and specific storage, conditioned on the
information from transient hydraulic tomography and some
direct measurements of K and Ss.
[15] The estimation procedure starts with a weighted linear

combination of direct measurements of the parameters and
transient head data at different locations to obtain the first
estimate of the parameters. The weights are calculated based
on statistical moments (namely, means, and covariances) of
parameters, the covariances of heads in space and time, the
cross covariances between heads and parameters. The first
estimate is then used in the mean flow equation (3) to
calculate the heads at observation locations and sampling
times (i.e., forward simulation). Differences between the
observed and simulated heads are determined subsequently.
A weighted linear combination of these differences is then
used to improve the previous estimates. Iterations between the
forward simulation and estimation continue until the im-
provement in the estimates diminishes to a prescribed value.
2.2.1. Sensitivity Analysis of Transient Flow
[16] In the above estimation procedure, the head covari-

ance in space and time and its cross covariances with
parameters are evaluated using a first-order approximation,
which involves evaluation of sensitivity matrices of the
governing flow equation. The sensitivity matrices are eval-
uated as follows. Transient hydraulic heads are expanded in
a Taylor series about the mean values of parameters. After
neglecting second- and higher-order terms, the transient
hydraulic head is

Hðx; tÞ ¼ Hðx; tÞ þ f ðxÞ @Hðx; tÞ
@ ln KðxÞ K;S

��� þ sðxÞ @Hðx; tÞ
@ ln SsðxÞ K;S

��� ð4Þ

The sensitivity terms
@H

@ ln K K;S

��� and
@H

@ ln Ss
K;S

��� in

equation (4) are calculated by the adjoint state method
[Sykes et al. 1985; Li and Yeh, 1998]. We briefly describe
the method here (refer to Li and Yeh [1998, 1999], Sun
and Yeh [1992] for a detailed derivation). The marginal
sensitivity of a performance measure P to a parameter c
is defined as

dP

dc
¼

Z
T

Z
W

@G

@c
þ @G

@H

@H

@c

� �
dWdt ð5Þ

where T and W represent time and spatial domain,
respectively. The first term of the integral in equation (5)
indicates the direct dependence of P on c, while the
second term indicates the implicit dependence of P on c
through the heads [Sykes et al., 1985]. In this case,

G ¼ Hd x
 xkð Þ t 
 tlð Þ ð6Þ

representing the hydraulic head at location xk and time tl,
where d is Kronecker delta function which equals unity if
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x equals xk and t equals tl, and equals zero otherwise. We
choose an arbitrary function f* that satisfies

S
@f*
@t

þr � Krf*ð Þ 
 d x
 xkð Þ t 
 tlð Þ ¼ 0 ð7Þ

with boundary and final conditions:

f* G1
j ¼ 0; K xð Þrf*½ � � n G2

j ¼ 0; f* t¼Te ¼ 0j ð8Þ

(note that equations (7) and (8) are called adjoint state
equations); we further assume that the initial condition is
known a priori, such that fjt=0 = 0, and hydraulic
conductivity and specific storage are not correlated to
each other. Thus the sensitivities of the hydraulic head at
location xk and time tl to f and s at location xn are given
by

@Hðxk ; tlÞ
@ ln KðxnÞ

¼
Z
T

Z
W

@KðxÞ
@ ln KðxnÞ

@f*
@xi

@H

@xi

	 

dtdW ð9Þ

@Hðxk ; tlÞ
@ ln SsðxnÞ

¼
Z
T

Z
W

@SðxÞ
@ ln SsðxnÞ

f*
@H

@t

	 

dtdW ð10Þ

where lnK(xn) and ln Ss(xn) are the lnK and lnSs at element n,
respectively, when the study domain is discretized. Note that
the adjoint state equations are also transient problems and
need to be solved backwardly in time. Also, the mean
transient hydraulic headsmust be derived beforehand in order
to evaluate the sensitivities. The mean flow equation is given
by equation (3). After f* and the mean head are calculated,
the sensitivities obtained from equations (9) and (10) can be
used to calculate head covariances and its cross covariances
with parameters, using a first-order approximation [Hughson
and Yeh, 2000].
2.2.2. Loop Iteration Scheme
[17] As indicated by Vargas-Guzman and Yeh [2002] and

Yeh and Šimůnek [2002] in previous SSLE approaches, the

method of adding different data sets sequentially works best
for linear systems. The relations between transient head and
hydraulic parameters, however, are nonlinear; the sequential
approach cannot fully exploit the head information. For
instance, assume two data sets, A and B, are used in an
inversion problem. The B data set is added after the A data
set reaches convergence. The SSLE then stops after the B
data set converges. While the final estimates meet the
convergence criteria for the B data set, they may not now
meet the convergence criteria for the A data set. In addition,
adding data sets in different sequences may lead to different
results. Therefore we introduced a new loop iteration
scheme.
[18] In this loop iteration scheme, the next data set is

added after all the data sets already incorporated meet the
converge criteria within one loop. Specifically, a data set is
fed into SSLE first, and SSLE then iterates until this data set
meets a converge criterion. A new data set is added
afterward, and SSLE again iterates until the new estimate
convergences. Instead of adding the next new data set, the
scheme goes back to check the convergence for the first data
set. If the converge criterion is not met, the program starts a
loop iteration in which the iteration involves both the first
and second data sets. That is, the first data set is iterated
once, and then the second data set is incorporated and
iterated once also; we call this process a loop. The loop
iteration continues until both data sets meet the converge
criterion within one loop. Then, the next new data set is
added. The algorithm treats this new data set similarly to the
second data set, except the loop iteration now involves three
data sets. Additional data sets are added in a similar way. As
a consequence, our inverse approach improves estimates
throughout the loops, maximizes the usefulness of data sets,
and alleviates the problems associated with our previous
SSLE approach.
[19] During a transient pumping test, one can record a

large number of head observations at different times. As
stated by Sun and Yeh [1992], simultaneous inclusion of

Figure 1. Cross correlation between h at x = 9.5 m and f at
different locations for three selected times during a pumping
test.

Figure 2. Cross correlation between h at x = 9.5 m and s
at different locations for three selected times during a
pumping test.
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transient head data at different times improves the estimates
and decreases the head misfit because simultaneous
inclusion considers the temporal correlation of transient
heads. In our approach, we included in the estimation some
selected observed heads at different times during a pumping
activity. The head responses from different pumping tests
are included sequentially.

3. Numerical Examples

3.1. One-Dimensional Flow

[20] To test our inverse approach, a hypothetical, one-
dimensional, horizontal, heterogeneous, confined aquifer
was used. The aquifer was 20 m long and was discretized
into twenty elements. Each element was 1 m long. The left
and right sides of the aquifer were set as prescribed head
conditions with hydraulic heads of 100 m. Each element
was assigned a hydraulic conductivity value and a specific
storage value using a stochastic random field generator
[Gutjahr, 1989]. The geometric mean of hydraulic con-
ductivity was 0.0026 m/s and the geometric mean of
specific storage was 0.0001 m
1. The variance of lnK was
0.5 and the variance of lnSs was 0.2. The correlation scales

for both parameters are 5 m and lnK and lnSs are assumed to
be independent from each other, representing the worst
scenario.
[21] Using this one-dimensional aquifer, a pumping test

was simulated at location x = 9.5 m with a pumping rate of
0.005 m3/s. The flow approached a steady state condition
after 19 s of pumping; about 95% of total drawdown
occurred in the first 8 s of the pumping test. The cross
correlation between head and parameters during the pump-
ing test was evaluated using a first-order approximation and
then examined. Figure 1 depicts behaviors of the cross
correlation between observed h at x = 9.5 m and f at
different locations in the aquifer at three selected times (2,
4, and 6 s). Likewise, Figure 2 depicts behaviors of the
cross correlation between h and s at the three times. The
cross correlation between h and f generally decreased with
the distance away from the head observation location (x =
9.5 m) but the cross correlation over the entire aquifer
increased with time. Also, the number of f values having
significant cross correlation (say, cross correlation values
greater than 0.4) with the head at the observation location
increased. Shapes of the cross-correlation functions are
different from those in uniform flow [Mizell et al., 1980]
due to converging flow and boundary conditions. Under
uniform flow conditions, a head is negatively correlated
with the hydraulic conductivity values down gradient and
positively correlated with the hydraulic conductivity up
gradient. Figure 2 shows that the cross correlation between
the h and the s field decreased with time. At early time,
strong cross correlations between h and s are confined to
the vicinity of the observed head location. These cross
correlations, nevertheless, dropped drastically at late time.
Such results suggest that a head measurement in a well at
late time can provide good estimates of f over a large
portion of the aquifer. On the other hand, head measure-
ments in a well can only yield information of the s nearby
and only early time data are useful for the estimate of s.
This finding supports the conclusion by Wu et al. [2005]
that the storage coefficient estimate from a traditional
aquifer test based on the drawdown time data in an
observation well, induced by pumping at another well, is
dominated by the local geology between the pumping well
and the observation well. Furthermore, to obtain good
estimates of f and s during hydraulic tomography tests,
head information, encompassing the entire pumping
process, including early time and late time, should be
used. The resolution of the estimated f field will be better
than that of the s field because of the localized influence
of a head measurement on the estimate of s field.

Figure 3. Temporal correlation of transient heads at x =
7.5 m during a pumping test.

Figure 4. Estimated and true hydraulic conductivity fields
in the 1-D deterministic case.

Figure 5. Estimated with true specific storage fields in the
1-D deterministic case.
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[22] The temporal correlation of transient heads was also
evaluated. Figure 3 shows the contours of the temporal
correlation of the head at x = 7.5 m from the beginning of
the pumping test to 8 s. As indicated in Figure 3, the heads
at different times were highly correlated, especially at later
time. The high correlation suggests that the heads at a given
observation location at different times provide overlapping
information. In particular, inclusion of heads at all time
steps would be very computational time consuming for our
estimator because the adjoint equations (7) and (8) must be
solved once for each head observation in time. Because of
the overlapping head information, choosing heads at several
time steps instead of using heads at all time steps would
significantly reduce the computation burdens and keep the
usefulness of head information.
[23] On the basis of the cross correlation and temporal

correlation analysis, we thereafter tested our inverse ap-
proach for a well-posed inverse problem (deterministic

inverse problems [Yeh et al., 1996]). The head responses
of all elements were collected at 2, 4, and 6 s, representing
early, middle, and late times of the pumping test,
respectively. One direct hydraulic conductivity measure-
ment and one specific storage measurement were also
assumed to be known at element 20 (i.e., the boundary
fluxes are known). Therefore the necessary and sufficient
conditions for inverse modeling (i.e., the transient head
responses of all elements at two time steps, as well as
boundary conditions) are fully specified [Sun, 1994; Yeh
and Šimůnek, 2002]. The inverse problem thus becomes
well posed and both parameter fields can be uniquely
determined. Figures 4 and 5 compare the true hydraulic
conductivity field and specific storage with estimates,
respectively. The comparisons indicate that our new
algorithm produces accurate estimates for both parameter
fields for the deterministic case, and the accuracy of our
SSLE method is thus ensured.

Figure 6. Estimated hydraulic conductivity field from
transient hydraulic tomography from (a) the first pumping
test, (b) inclusion of the second test, (c) the third test, and
(d) the fourth tests.

Figure 7. Estimated specific storage field from tran-
sient hydraulic tomography from (a) the first pumping
test, (b) inclusion of the second test, (c) the third test, and
(d) the fourth tests.
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[24] Next, we applied transient hydraulic tomography to
the one-dimensional heterogeneous aquifer to demonstrate
the benefit of a transient hydraulic tomography test. Four
locations in the one dimensional aquifer were selected as
pumping and observation wells. These four wells were
located at x = 3.5 m, 7.5 m, 11.5 m, and 15.5 m. The first
pumping activity was initiated at x = 3.5 m, and the
corresponding head responses at all four wells were

recorded. The pumping rate, pumping time, and observation
times were the same as the pumping test of the previous
deterministic case. The three additional pumping tests had
the same configuration as the first one, except the pumping
was initiated at x = 7.5 m, x = 11.5 m, and x = 15.5 m for
the second, third, and fourth pumping test, respectively. As
a result, a total of 48 head responses were collected to
estimate both parameters. Comparisons of the estimated

Figure 8. Estimated hydraulic conductivity field after (a) two, (b) four, (c) six, and (d) eight pumping
tests and (e) the synthetic true hydraulic conductivity field of the 3-D aquifer.

Figure 9. Estimated specific storage field after (a) two, (b) four, (c) six, and (d) eight pumping tests and
(e) the synthetic true specific storage field of the 3-D aquifer.
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hydraulic conductivity and specific storage with true param-
eters are shown in Figures 6 and 7, respectively. Figures 6
and 7 show that with only four head observation locations
out of a total of 20 elements of the entire aquifer, the
hydraulic tomography with our SSLE approach produces
close estimates of the true spatial patterns for both param-
eters. As demonstrated in Figures 6a, 6b, 6c, 6d, 7a, 7b, 7c,
and 7d, the estimates progressively improved as more head
responses from tomographic pumping tests were incorpo-
rated into our SSLE approach. However, the improvement
of estimates from the third to the fourth pumping test was
small, which indicates that excessive pumping tests only
offer negligible improvements for the given number of
observation wells. These findings are similar to those
reported by Yeh and Liu [2000].

3.2. Three-Dimensional Heterogeneous Aquifer

[25] We subsequently applied our SSLE to transient
hydraulic tomography in a synthetic three-dimensional
heterogeneous confined aquifer. The geometry of this syn-
thetic heterogeneous aquifer had dimensions of 15 m �
15 m � 15 m, and was discretized into 3375 elements. Each
element had a uniform size of 1 m � 1 m � 1 m. The
bottom and the top boundaries were set as no-flow, and the
remaining four sides were assumed to be a prescribed
hydraulic head of 100 m. A three-dimensional Cartesian
coordinate system was used for spatial references. The
coordinates of the bottom corner at the inner center of
the cube (see Figure 8) were assigned to be (0, 0, 0) and the
upper corner opposite to the bottom corner was assigned to
be (15, 15, 15). The heterogeneous parameter fields again

were generated by the spectral method [Gutjahr, 1989]. The
geometric mean of K was 0.34 m/d and the variance of lnK
was 0.5, while the geometric mean of Ss was 0.0002 m
1

and the variance of lnSs was 0.1. The correlation scales in
the x, y, and z directions were 20 m, 20 m, and 2 m,
respectively.
[26] Four fully penetrating, multilevel wells were placed

vertically in the aquifer. The horizontal coordinates for the
four wells were (3.5, 3.5), (11.5, 3.5), (3.5, 11.5), and (11.5,
11.5). Each well had seven head observation ports whose
vertical coordinates were 1.5 m, 3.5 m, 5.5 m, 7.5 m, 9.5 m,
11.5 m, and 13.5 m, respectively. Each well also had two
pumping ports whose vertical coordinates were 4.5 m and
10.5 m, respectively. One direct hydraulic conductivity
measurement and one specific storage measurement were
assumed to be known at location (3.5, 3.5, 8.5). A pumping
test was performed at one of the pumping ports with a
constant pumping rate of 150 m3/d. The pumping test was
simulated for 0.01 day with a time step of 0.0005 day. The
head responses at all 28 observation points were monitored
at time 0.002 day, 0.006 day, and 0.01 day. Seven additional
pumping tests were simulated, using the same pumping rate
and pumping time period, but different pumping ports. A
total of 672 head observations were used in our SSLE
approach to simultaneously estimate hydraulic conductivity
and specific storage.
[27] The SSLE was implemented on a parallel computing

platform using the LINUX operating system; the interpre-
tation of the hydraulic tomography tests was carried out

Figure 10. Frequency distributions of estimation errors:
(a) hydraulic conductivity field and (b) specific storage field
of the 3-D aquifer.

Figure 11. Variograms of (a) the estimated hydraulic
conductivity and true fields and (b) the estimated specific
storage and true fields in the 3-D aquifer.
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using a 10-node PC cluster (Pentium 4, 2.8 GHz CPU each);
the total computing time for the interpretation was
610 minutes.
[28] Figures 8a, 8b, 8c, and 8d plot the estimated

hydraulic conductivity after two, four, six, and eight pump-
ing tests, respectively, and the true hydraulic conductivity
field is shown in Figure 8e. The estimated specific storage
fields after two, four, six, and eight pumping tests are
illustrated in Figures 9a, 9b, 9c, and 9d, with the true field
shown in Figure 9e. Both Figures 8 and 9 show that the
general pattern of heterogeneity of the aquifer was already
captured by just from the first two pumping tests; after
eight pumping tests greater details were revealed, but the
improvement rate diminished as more pumping tests were
conducted.
[29] Figure 10a shows a frequency distribution with the

mean and variance of the difference between the true log
hydraulic conductivity field and that estimated (i.e., estima-
tion errors) after eight pumping tests and the distribution of
the estimation error of log specific storage and their mean
and variance are illustrated in Figure 10b. The error dis-
tributions are approximately normal, indicative of unbias-
ness of our estimator. The slight bias in the estimates can be
attributed to the effective nature of the estimated parameters
[Yeh et al., 1996; Hanna and Yeh, 1998]. The horizontal
and vertical variograms of estimated and true hydraulic
conductivity and specific storage fields are depicted in
Figures 11a and 11b, respectively. Generally speaking,
variograms of the estimates have similar spatial patterns as
those of the true fields, in both horizontal and vertical
directions. The variances of the estimates are expected to be
lower and their correlation scales were longer than true ones
(see Table 1). This difference is due to the conditional
expectation approach embedded in the SSLE method and
insufficient data.
[30] Robust as they are, neither the hydraulic tomography

nor our SSLE is a perfect method. The more head obser-
vations are collected, the higher the resolution of the
estimates will be (i.e., there is no optimal). Inaccurate head
observations and hydraulic property measurements (i.e.,
noises) during hydraulic tomography unequivocally can
lead to an inaccurate estimate or instability of the estimate.
While our SSLE can overcome the impacts of noise, the
estimates become smooth, which means there is a loss of
effectiveness of information. These issues have been dis-
cussed by Yeh and Liu [2000].

4. Conclusions

[31] The synthetic cases show that transient hydraulic
tomography is a promising and viable tool for detecting
detailed spatial variations of hydraulic parameters with a
limited number of wells. Our SSLE can provide unbiased
estimates of multiple parameters simultaneously, and reveal

their detailed spatial distributions. In addition, our SSLE
permits sequential inclusion of head data from different
pumping tests, such that the size of the covariance matrix is
small and can be solved with relative ease. By using a loop
iteration scheme, our new SSLE improves estimates
throughout the loops and maximizes the usefulness of head
information.
[32] The cross correlation analysis shows that the corre-

lation between head and specific storage is high at early
time, diminishes rapidly with time, and is confined to the
vicinity of the head observation location. On the contrary,
the correlation between head and hydraulic conductivity
increases and the area with high correlations broadens with
time. To simultaneously estimate hydraulic conductivity and
specific storage parameters, head data at both early and late
times thus should be used.
[33] The transient heads are highly temporally correlated,

especially at later times. Such a temporal correlation struc-
ture allows our SSLE to use only a few selected heads at
some time steps, instead of all available heads at all time
steps, to reduce computational cost, while keeping the
usefulness of the head information.
[34] Our SSLE approach involves backward calculation

of adjoint equations during the sensitivity analysis for
transient flow. For the same number of observation loca-
tions, a transient pumping test generates much more head
information than a steady state pumping test. Even when
head data are used for only a few selected time steps,
instead of all time steps, the computational burden of
transient hydraulic conductivity is significantly greater
than steady state hydraulic tomography. More computa-
tionally efficient methodologies must be developed to
improve the analysis of transient hydraulic tomographic
surveys. Finally, a 2-D version of SSLE for the transient
hydraulic tomography is available at http://tian.hwr.arizona.
edu/yeh/download.
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