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CHAPTER 1 

Review of the Literature 

1.1  The toxicity of arsenic 

Arsenic (As) is a toxic metalloid that displays some of the properties of both 

metals and nonmetals. Arsenic has two biologically important oxidation states, As(V) 

and As(III). Arsenate is also called arsenic acid (H3AsO4). And arsenite is called 

arsenous acid (H3AsO3) or arsenic trioxide (As2O3). Arsenic is widely distributed in the 

whole biosphere, which our life is dependent on. Human are exposed to arsenic by 

drinking water or eating food contaminated with arsenic. Antimony (Sb) is another toxic 

metalloid in the same group as arsenic in the period table. They share similar chemical 

properties. Chronic exposure to arsenic is related to skin lesions, neurological effects, 

high blood pressure, diabetes mellitus, diseases of the respiratory system, 

cardiovascular disease, and cancers typically involving the skin, lung, and bladder 

(Rahman et al., 2009).   

1.1.1 Ubiquitous existence of arsenic in the environment 

Arsenic is widely distributed throughout the earth’s crust at an average 

concentration of 2-3 mg/kg; arsenopyrite (FeAsS) is the most abundant arsenic-

containing mineral (Cullen and Reimer, 1989; Peters et al., 1996). Natural processes 

like weathering of rocks and volcanic emissions, and human activities such as 

combustion of fossil fuels, mining, smelting of ores or the application of arsenical 

pesticides, herbicides and wood preservatives, are the main sources which contribute to 

arsenic contamination in the environment.  
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Weathering of rocks leads to mobilization of the soluble oxoanions, arsenite and 

arsenate, and these are the dominant forms of arsenic in fresh water and in seawater. 

The concentrations of arsenic in fresh water vary between 1 to 100 μg/L or even more. 

The concentration of arsenic in the world’s oceans is at ~1-2 μg/L (Francesconi, 2005). 

Arsenic in ground water is largely the result of minerals dissolving from weathered rocks 

and soils. High concentrations of arsenic in ground water became a problem in recent 

years, due to the shortage of usable surface water. The use of deep tubewells for water 

supply in the Ganges Delta causes serious arsenic poisoning to large numbers of 

people in India (Kim et al., 2002). Arsenic contamination of ground water is prevalent in 

many countries throughout the world including India, Bangladesh, Thailand, Taiwan, 

and Mainland China. 

Anthropomorphic sources include arsenical-containing fungicides, pesticides and 

herbicides, insecticides, rodenticides, wood-preservatives, animal feeds, paints, dyes, 

and semiconductors.  Lead arsenate was used to control the codling moth from the 

1800s to the 1940s (when DDT became available). CCA (chromated copper arsenate) 

is the best known of the arsenical wood preservatives. The treated wood has a 

characteristic greenish tint. This wood has been widely used in decks and play 

structures. Arsenic is still being used in lawn and turf herbicides. Products with names 

like All-In-One Weed Killer, Crabgrass Killer, and Liquid Edger contain various arsenic 

compounds. Conventional poultry farmers often feed chickens roxarsone, one of many 

drugs approved by the Food and Drug Administration for the purpose to kill microbes 

but actually containing arsenic. Arsenic helps remove impurities during glass making. It 

is also used as a colorant in fireworks and a doping material in semiconductor 
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manufacturing. In the end, all of these arsenics will end up somewhere, usually in 

topsoil and water, where arsenic could be enriched by crops and enters the food chain.  

Arsenic will accumulate in crops if the crops are irrigated with arsenic 

contaminated water or grown in the soils contaminated by arsenic from herbicide or 

insecticide. As one of the most popular crops in the world, rice is of particular concern 

(Williams et al., 2005). Flooded soils, in which paddy rice is cultivated, lead to rapid 

mobilization of arsenite (As(III)), which becomes available for rice to take up (Xu et al., 

2008). Among the cereals, rice accumulates relatively high proportions of arsenic in its 

edible parts. Rice grain contains arsenic that range from 0.08 to 0.20 mg/kg if grown on 

non-contaminated soils (Zavala and Duxbury, 2008). It could be as high as 2.0 mg/kg if 

rice is grown in contaminated areas (Tripathi et al., 2007). 

Arsenic contamination of drinking water is a serious environmental problem 

worldwide because of the large number of contaminated sites that have been identified 

and the large number of people at risk (Chappell et al., 1997). An estimated 100 million 

people in more than 70 countries are at risk of exposure to unacceptable arsenic levels 

in either well water or ground water. This has become a major public health issue in the 

developing world, primarily Bangladesh and surrounding countries, where many 

thousands of individuals are suffering from precancerous arsenic-related disease. In 

2001, the US Environmental Protection Agency lowered the Maximum Contaminant 

Level (MCL) in drinking water from 50 μg/L to 10 μg/L. The World Health Organization 

(WHO) standard is also 10 μg/L. There are many locations in the United States where 

groundwater contains arsenic concentrations in excess of the new standard of 10 μg/L 

<http://water.usgs.gov/nawqa/trace/arsenic/>.  
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 As a consequence of its environmental pervasiveness, exposure and health 

effects, arsenic ranks first on the United States Government’s Comprehensive 

Environmental Response, Compensation, and Liability (Superfund) Act Priority List of 

Hazardous Substances. <http://www.atsdr.cdc.gov/cercla/05list.html>  

1.1.2  Health effect of arsenic 

Humans are exposed to arsenic mainly through either oral or inhalation routes. 

Oral exposure occurs via consumption of contaminated water, food and drugs. 

Occupational exposure occurs mainly through inhalation via semiconductor and glass 

manufacturing, or power generation by the burning of arsenic-contaminated coal (Yager 

and Wiencke, 1993). Large dose of arsenic exposure will cause acute toxicity including 

gastrointestinal discomfort, vomiting, diarrhea, bloody urine, anuria, shock, convulsions, 

coma, and death. The toxicity of arsenic is related to the chemical form and its oxidative 

state. Dimethyl arsenate (DMAs(V)) and methylarsenate (MAs(V)) are less toxic, than 

As(V). The sequence is as the following, DMAs(V),MAs(V)<As(V)<As(III)<MAs(III) 

(Hughes, 2002). General noncarcinogenic symptoms of chronic arsenic poisoning in 

humans are weakness, loss of appetite and energy, loss of hair, hoarseness of voice, 

loss of weight, and mental disorders (Hindmarsh and McCurdy, 1986). Following 

absorption of trivalent or pentavalent arsenic compounds, arsenic is initially 

accumulated in the liver, kidney, lung, spleen, aorta, and skin. One of the hallmarks of 

chronic toxicity in humans from oral exposure to arsenic are skin lesions, which are 

characterized by hyperpigmentation, hyperkeratosis, and hypopigmentation (Cebrian et 

al., 1983). In Taiwan, Blackfoot Disease, a peripheral vasoocclusive disease which 

leads to gangrene of the extremities, is also observed in individuals chronically exposed 
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to arsenic in their drinking water (Tseng, 1977). Other targets include nervous system 

(peripheral neuropathy) (Valentine et al., 1982), and vascular system (Wu et al., 1989).  

 Inorganic arsenic is classified by the International Agency for Research on 

Cancer (Higginson and DeVita, 1980) and the U.S. Environmental Protection Agency 

(EPA, 1988) as a human carcinogen. Epidemiological studies have revealed an 

association between arsenic concentrations in drinking water and increased incidences 

of skin cancers (including squamous cell carcinomas and multiple basal cell 

carcinomas), as well as cancers of the liver, bladder, respiratory and gastrointestinal 

tracts (Chen et al., 1985; Chen et al., 1986; Smith et al., 1992).  In the past few 

decades, arsenic exposure has attracted great interest, due to occupational disease of 

lung cancer among copper smelter workers, and the connection with increased risk of 

skin, lung and bladder cancers. 

1.1.3  Medical application of arsenic 

Although arsenic is toxic, few things in this world are completely evil. Arsenic 

compounds have also been used to treat diseases like trypanosomiasis and 

promyelocytic leukemia. Roughly a century ago, arsenic formed the structural 

centerpiece of arsphenamine, known as Salvarsan or Compound 606, this molecule 

was the first wonder drug: the cure for syphilis. Arsphenamine was soon followed by 

neoarsphenamine, which was water-soluble and easier to administer (Sneader, 1985). 

These drugs were used for syphilis chemotherapy for forty years, until the advent of 

penicillin rendered them obsolete.  

 In the realm of inorganic arsenic, arsenic trioxide (As2O3), solubilized as the 

arsenite salt of an alkali metal, is a prominent medicinal compound. In the 18th century, 
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Dr. Thomas Fowler developed a therapeutic agent known as Fowlers solution by 

combining arsenic trioxide with potassium bicarbonate (Scheindlin, 2005). Throughout 

the 19th century Fowler’s Solution was deemed a useful alternative to quinine for 

malaria, and there were also claims of beneficial effects in syphilis and sleeping 

sickness. It was also sporadically tried for the treatment of leukemia and found effective 

for inducing remission in chronic myelogenous leukemia (CML). In the early 1970s, 

some Chinese physicians, analyzing a number of traditional preparations used in 

treating cancer, found As2O3 to be a common component of these products. They 

proceeded to test the compound in a variety of cancers, and obtained remission rates of 

90% in relapsed acute promyelocytic leukemia (APL) (Niu et al., 1999). Recent studies 

show that arsenic directly targets to cysteine residues in zinc fingers within PML-

RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its 

interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme 

UBC9, resulting in enhanced SUMOylation and degradation (Zhang et al., 2010). 

Further research on anticancer activity of arsenic is still going on. Preliminary results 

have been reported on various diseases such as multiple myeloma (MM), acute 

lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) (Verstovsek and 

Estrov, 2004).  

 There are also organic arsenic derivatives under development. Organic 

phenylarsenic acid (PAA) compounds with potent in vitro activity against human acute 

lymphoblastic leukemia cells showed 50% inhibition of cell growth (Liu et al., 2003). S-

dimethylarsino-glutathione has been identified as a lead compound among more than 

100 derivatives and is currently being developed for clinical use by ZIOPHARM 
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Oncology, Inc. A Phase II trial is nearing completion in patients with primary liver cancer 

and advanced myeloma, a Phase II trial is ongoing in patients with lymphomas, and a 

Phase I oral trial is in progress.  

1.1.4  Mechanisms of arsenic toxicity 

 Arsenic occurs predominantly in inorganic form as arsenate (As(V)) and arsenite 

(As(III)). Pentavalent Arsenate is an analogue of phosphate and thus interferes with 

essential cellular processes such as oxidative phosphorylation and ATP synthesis. For 

example, arsenate reacts in vitro with glucose to form glucose-6-arsenate, which 

resembles glucose-6-phosphate, can inhibit hexokinase (Lagunas, 1980). At both the 

substrate and mitochondrial level, arsenolysis diminishes in vitro formation of ATP by 

the replacement of phosphate with arsenate in the enzymatic reactions. Depletion of 

ATP by arsenate has been observed in cellular systems (Gresser, 1981). ATP levels 

are reduced in rabbit (Delnomdedieu et al., 1994b) and human erythrocytes (Winski and 

Carter, 1998) after in vitro exposure to arsenate.   

 The toxicity of trivalent arsenite is due to its propensity to bind to sulfhydryl 

groups, with consequent detrimental effects on general protein functioning. A main 

target is pyruvate dehydrogenase (PDH), which is a multi subunit complex that requires 

the cofactor lipoic acid, a dithiol, for enzymatic activity.  Arsenite inhibits PDH (Szinicz 

and Forth, 1988), perhaps by binding to the lipoic acid moiety. Lipoate is needed in the 

formation of acetyl-CoA from pyruvate and in the formation of succinyl-CoA from alpha-

ketoglutarate. Therefore, arsenic blocks the Krebs Cycle and interrupts oxidative 

phosphorylation, resulting in a marked depletion of cellular ATP and eventually death of 

the metabolizing cell. Other targets include numerous other cellular enzymes, which are 
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involved in cellular glucose uptake, gluconeogenesis, fatty acid oxidation and production 

of glutathione. The binding of arsenite to the critical sulfhydryl groups in these enzymes, 

interferes the normal protein function and lead to toxicity. 

 Reactive oxygen species can be induced by arsenite that can eventually alter the 

redox status of the cell and present a stressful and toxic situation and induce large 

deletion mutations in hamster-human hybrid cells (Hei et al., 1998). Many mechanism of 

arsenic carcinogenicity have been proposed, including genotoxicity, cell proliferation, 

altered DNA repair and DNA methylated oxidative stress, co-carcinogenesis, and tumor 

promotion (Hughes, 2002). DMAs has the potential to promote rat urinary bladder 

carcinogenesis and one of the mechanisms involved is its stimulation of cell proliferation 

in the urinary bladder epithelium (Wanibuchi et al., 1996). A significant dose-dependent 

decrease in activity of a DNA repair enzyme, poly-(ADP-ribose)polymerase by arsenite 

was observed (Yager and Wiencke, 1997).  

1.2  Arsenic detoxification  

 In response to the ubiquity of arsenic in the environment and to counteract the 

deleterious effects of arsenic, nearly every organism, from E. coli to human, evolved 

resistance strategies, including arsenite oxidation or methylation into less toxic species, 

as well as active extrusion of arsenite from the cell (Rosen, 2002).  

1.2.1 Arsenic uptake systems 

 In solution at neutral pH, arsenic acid exists as the arsenate oxyanion. Since 

arsenate is very similar with phosphate, the phosphate transporters are usually hijacked 

to catalyze the arsenate uptake. In the prokaryote E. coli, there are two phosphate 

transporters, Pit and Pst (Rosenberg et al., 1977). Both catalyze arsenate uptake, but 
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the Pit system appears to be the predominant system for arsenate (Willsky and Malamy, 

1980). Similarly, in the eukaryote Saccharomyces cerevisiae several phosphate 

transporters, such as PHO84 (Bun-Ya et al., 1992), PHO86 and PHO87 (Bun-ya et al., 

1996), participate in arsenate uptake. Specific arsenate transporters have been 

identified in plant that are believed to mediate a large part of the observed arsenate 

influx and these include the A. thaliana Pht1;1 and 1;4 high and medium affinity 

phosphate uptake systems (Shin et al., 2004).  Human AQP9 expressed in Xenopus 

laevis oocytes increased the uptake of MAs(V) and DMAs(V), two major pentavalent 

arsenic cellular metabolites (McDermott et al., 2010). 

 The pKa of arsenous acid is 9.2. At neutral pH, it is present in solution primarily 

as neutral As(OH) 3 (Ramirez-Solis et al., 2004), which might be considered an inorganic 

equivalent of glycerol. Recently, arsenite uptake was found through aquaglyceroporins 

in bacteria, yeast and mammalian cells. A screen of a random mutagenesis E. coli 

library turned up that mutation in GlpF leads to resistance to Sb(III) (Sanders et al., 

1997). The chemical properties of Sb(III) and As(III) are very close, and, even though 

the mutant did not exhibit increased arsenite resistance, GlpF was shown to increase 

As(III) uptake if it is overexpressed in E. coli (Meng et al., 2004). S. cerevisiae cells with 

FPS1 gene deleted are more sensitive to arsenite, indicating that the glycerol channel 

Fps1p mediates uptake of arsenite and antimonite (Wysocki et al., 2001).  Xenopus 

laevis oocytes microinjected with either mouse AQP7 or rat AQP9 cRNA exhibited 

increased transport of As(III), which suggests that AQP9 and AQP7 may be major 

routes of arsenite uptake into mammalian cells (Liu et al., 2002). The ability of the four 

known human members of the aquaglyceroporin family, hAQP3, hAQP7, hAQP9, and 
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hAQP10, to facilitate As(OH)3 movement in Xenopus oocytes was also examined. The 

order of effectiveness as an As(III) transporter was found to be hAQP9 > hAQP7, with 

little or no transport by hAQP3 or hAQP10 (Liu et al., 2004b). AQP9 was also shown to 

be able to transport MAs(III) (Liu et al., 2006b). In S. cerevisiae cells, hexose 

permeases are found to be involved in arsenite uptake (Liu et al., 2004a). Human and 

rat GLUT1 catalyzed uptake of both As(OH)3 and CH3As(OH)2 in oocytes (Liu et al., 

2006a). Plants take up arsenite significantly if they are grown in reducing environments 

such as paddy-grown rice and aquatic species. It was hypothesized that plants also 

take up arsenite through aquaporins (Meharg and Jardine, 2003), although the 

molecular identity of the proteins that participate in uptake, efflux, compartmentation 

and long-distance transport of As(III) is largely unknown. Heterologous expression of 

NIPs, a subfamily of plant aquaporins, in yeast, confirmed the arsenite transport 

capacity of AtNIP7;1 and OsNIP2;1, but in addition showed that all group II NIPs are 

capable of arsenite transport (Bienert et al., 2008).  

1.2.2  Arsenic metabolism 

 After arsenic is taken up into the cells, usually it is metabolized intentionally or 

adventitiously by reduction, oxidative methylation and glutathione conjugation, and then 

it is pumped out of the cell or sequestered in intracellular organelles.  

 When the pentavalent oxyanion arsenate is taken up, it is reduced to As(III) prior 

to extrusion or sequestration. Three independently evolved families of arsenate 

reductase enzymes have been recognized (Mukhopadhyay et al., 2002). The product of 

arsC, the last gene of the ars operon of E. coli plasmid R773 is an arsenate reductase, 

which belongs to the first family. R773 ArsC uses glutaredoxin as the reducing agent 
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and only has one cysteine residue participating in the reaction. The crystal structure of 

the 16-kDa R773 ArsC has been reported with bound substrate (arsenate) and product 

(arsenite) (Martin et al., 2001).  A second family of arsenate reductases also widely 

distributed in bacteria is represented by the arsC gene product of Staphylococcus 

aureus plasmid pI258 (Ji and Silver, 1992). The pI258 enzyme uses thioredoxin as the 

source of reducing potential (Ji et al., 1994) and has two intramolecular cysteine 

residues that participate in the catalytic cycle (Messens et al., 1999). The crystal 

structure of the pI258 ArsC has been solved and this enzyme is related to low 

molecular-weight protein tyrosine phosphatases and exhibits low-level phosphatase 

activity (Zegers et al., 2001). The third family of arsenate reductases is related to the 

superfamily of protein phosphatases that includes CDC25a, a cell cycle phosphatase. 

Yeast Acr2p and Leishmania LmACR2 both belong to this family. Acr2p has a single 

active site cysteine residue and uses glutaredoxin and glutathione as reductants 

(Mukhopadhyay et al., 2000). LmACR2 is a bifunctional protein with both protein 

tyrosine phosphatase activity and pentavalent antimony reduction activity. It’s proposed 

that the physiological function of LmACR2 is to dephosphorylate phosphotyrosine 

residues in leishmanial proteins but not to reduce the pentavalent antimony for 

detoxification (Zhou et al., 2006). Specific arsenate reductases have been identified in 

many plant species including Arabidopsis (Dhankher et al., 2006), P. vittata (Ellis et al., 

2006), and rice (Duan et al., 2007). Many plant arsenate reductases are also 

bifunctional and show tyrosine phosphatase activity. They are homologous to the 

human cell-cycle dual-specificity phosphatase CDC25.  
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 Metabolic conversion of inorganic arsenic into methylated products is a multistep 

process that yields mono-, di-, and trimethylated arsenicals. The methylation is 

proposed to occur by a series of reductions of pentavalent to trivalent arsenicals 

coupled to oxidative methylations (Challenger, 1945).  In recent years, it has become 

apparent that formation of methylated metabolites of inorganic arsenic is not necessarily 

a detoxification process, since intermediates and products formed in this pathway may 

be more reactive and toxic than inorganic arsenic.  Toxicity of the arsenic metabolites is 

DMAs(III),MAs(III)>As(III)>As(V)>DMAs(V),MAs(V)>TMAsO (Akter et al., 2005). But the 

final major pentavalent products, DMAs(V) and TMAsO are approximately a hundred-

fold and a thousand-fold less toxic than As(III), respectively (Hirano et al., 2004).  

Arsenic methylation by fungi and other eukaryotes has been well documented (Bentley 

and Chasteen, 2002) . In rat liver, a novel SAM-dependent pathway has been 

discovered that involves a 42-kDa methyltransferase (designated cyt19) linked to 

thioredoxin-thioredoxin reductase system (Thomas et al., 2004; Zakharyan et al., 1995). 

Only recently its homolog, ArsM, has been identified in 125 bacteria and 16 archaea, 

and was characterized in Rhodopseudomonas palustris. ArsM not only conferred 

arsenic resistance, but also generates trimethyl arsine gas (TMAs(III)). Reduced 

glutathione was used as the electron donor (Qin et al., 2006). Cyanidioschyzon sp. 

isolate 5508 oxidized As(III) to As(V), reduced As(V) to As(III), and methylated As(III) to 

form TMAsO and DMAs(V). Two arsenic methyltransferase genes, CmarsM7 and 

CmarsM8, were cloned from this organism and demonstrated to confer resistance to 

As(III) in an arsenite hypersensitive strain of Escherichia coli. The two recombinant 

CmArsMs were purified and shown to transform As(III) into MAs(V), DMAs(V), TMAsO, 



 

 

13

and TMAs(III) gas, with an optimum temperature around 60-700C (Qin et al., 2009). 

Since ArsM homologues are widespread in nature, arsenic methylation by microbes is 

proposed to have an important impact on the global arsenic cycle.   

1.2.3  Extrusion systems 

 There are two basic mechanisms of arsenite extrusion. One is carrier-mediated 

efflux via an arsenite carrier protein, and the other by an arsenite-translocating ATPase 

(Dey and Rosen, 1995). The most common mechanism of arsenite resistance is efflux 

from cells catalyzed by members of two different and unrelated families of permeases, 

ArsB and Acr3.  

Majority of bacteria use ArsB, which is found in most ars operons, to extrude 

arsenite. By itself, ArsB is a secondary efflux protein coupled to the protonmotive force 

and confers a moderate level of arsenite resistance (Kuroda et al., 1997). ArsB 

transports As(III) but has higher affinity for Sb(III). ArsB is an antiporter that catalyzes 

the exchange of trivalent metalloid for protons, coupling arsenite efflux to the 

electrochemical proton gradient (Meng et al., 2004). When ArsA is co-expressed with 

ArsB, an ArsAB complex is formed that is obligatorily coupled to ATP. ArsB associates 

with the ArsA ATPase to form a pump that confers high level resistance. ArsB is unique 

in that it exhibits a dual mode of energy coupling depending on the subunit composition 

(Dey and Rosen, 1995).  Some bacteria have three-gene arsRBC operons and extrude 

arsenite by ArsB alone, while others have five-gene arsRDABC operons and use the 

ArsAB pump (Rosen, 1999). It has been proposed that the five-gene operons arose by 

insertion of the arsDA genes into a three-gene operon (Rosen, 1999, 2002). Recently, 

ArsD was shown to be an arsenic chaperone. ArsD sequesters the free arsenite in the 
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cell cytosol, delivers it to the ArsAB pump for extrusion thus confers higher resistance to 

arsenite than ArsAB pump alone (Lin et al., 2006). 

The Acr3 family includes members found in bacteria, archaea and fungi.  

Unfortunately, many members of the Acr3 family have been given the name ArsB even 

though they exhibit almost no sequence similarity to ArsB. The first identified member is 

from in the SKIN element of B. subtilis (Sato and Kobayashi, 1998). S. cerevisiae Acr3p 

confers arsenite resistance (Ghosh et al., 1999; Wysocki et al., 1997). Yeast Acr3p 

favors As(III) as substrate rather than Sb(III).  C. glutamicum ATCC 13032 has been 

shown to have three genes for Acr3 homologues, each of which contribute to the high 

level of arsenite resistance in this organism (Ordonez et al., 2005). Expression of C. 

glutamicum or Alkaliphilus metalliredigens acr3 genes in an arsenite-hypersensitive 

strain of E. coli in which all ars genes were deleted confers resistance to As(III). This 

heterologously expressed Acr3 catalyzes efflux of arsenite from E. coli.  It exhibits 

significant differences from R773 ArsB.  While ArsB exchanges As(III) with protons, 

Acr3 does not, but how it is coupled to the proton-motive force is unknown at this point.  

Like the yeast Acr3p, the C. glutamicum Acr3 is also more specific for As(III) than Sb(III), 

in contrast to ArsB, which has higher affinity for Sb(III) than As(III) (Fu et al., 2009).  

 In eukaryotic cells, arsenite resistance is mainly conferred by members of the 

MRP (multidrug resistance-associated protein) group of the ABC superfamily of 

transport ATPases (Cole et al., 1994; Deeley et al., 2006), which physiologically 

catalyze export of GS-conjugates such as leukotriene C4 (LTC4) (Leier et al., 1994). 

MRP1-catalyzed export of glutathione from cells was increased by arsenite, suggesting 

that MRP1 functions as an As(GS)3 carrier (Zaman et al., 1995). In the liver MRP2 
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extrudes arsenic glutathione complexes into bile and may be a major route of arsenic 

detoxification in humans (Kala et al., 2000). PgpA, another MRP homolog, was also 

demonstrated to transports As(GS)3 in Leishmania (Legare et al., 2001). In S. 

cerevisiae, an MRP homolog, Ycf1p, has been shown to transport As(GS)3 into the 

vacuole and confers arsenite resistance in yeast (Ghosh et al., 1999).  

1.3  ArsA and ArsD from E. coli R773 plasmid 

 In bacteria, the genes for arsenic detoxification are usually encoded by arsenic 

resistance (ars) operons. Nearly every sequenced bacterial genome contains an ars 

operon. Many ars operons have only three genes, arsRBC, where ArsR is an As(III)-

responsive transcriptional repressor, ArsB is a As(OH)3/H
+ antiporter that extrudes 

As(III), conferring resistance (Meng et al., 2004), and ArsC is an arsenate reductase 

that converts As(V) to As(III), the substrate of ArsB, hence extending the range of 

resistance to include As(V) (Mukhopadhyay and Rosen, 2002).  Some ars operons have 

two additional genes, arsD and arsA, such as the arsRDABC operon in E. coli plasmid 

R773, and cells expressing the arsRDABC operon are more resistant to As(V) and 

As(III) than those expressing arsRBC operons because ArsA forms a complex with 

ArsB that catalyzes ATP-driven As(III)/Sb(III) efflux. While ArsD exhibits weak repressor 

activity (Chen and Rosen, 1997; Wu and Rosen, 1993), its primary function has recently 

been shown to be as an arsenic metallochaperone that delivers As(III) to the ArsA 

ATPase (Lin et al., 2006). Interaction with ArsD increases the affinity of ArsA for As(III), 

producing increased efflux and resistance at environmental concentrations of arsenic.  

1.3.1  Co-existence of ArsA and ArsD in ars operons 
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 Nearly every sequenced bacterial genome contains an ars operon. Although the 

majority is three-gene arsRBC operons, to date, there are more than fifty bacterial and 

archaeal arsenic resistance operons and gene clusters that contain arsA and arsD 

genes. It is striking that arsA and arsD genes are always found together in ars operons. 

The order of the genes in those operons may differ from each other, but the arsD gene 

nearly always precedes an arsA gene. The linkage of these two genes suggests first, 

that ArsD and ArsA co-evolved before their association with ArsB, second that the 

arsDA genes moved laterally into an ars operon as a unit and third, that ArsD has a 

biochemical function related to ArsA in arsenic detoxification.   

1.3.2  ArsA ATPase 

 The 583-residue ArsA ATPase is a member of a family of ATPases that probably 

arose from GTPases (Leipe et al., 2002). It is normally bound to ArsB (Dey et al., 1994), 

but, in the absence of ArsB, ArsA is found in the cytosol and can be purified as a 

soluble protein. ArsA has two halves, A1 and A2, that are connected by a 25-residue 

linker (Li and Rosen, 2000). The crystal structure of the enzyme has been determined 

(Zhou et al., 2000).Three types of domains can be resolved. First, there are two 

nucleotide-binding domains (NBDs). The NBDs are folded structures that both contain 

residues from both A1 and A2. A metalloid binding domain (MBD) that binds three 

As(III) or Sb(III) is located about 20 Å from the NBDs. This is an allosteric site at the 

opposite end of the protein from the NBDs (Figure 1-1). Of the three Sb(III), one is 

connected to Cys113 and Cys422 (MBS1), a second to Cys172 and His453 (MBS2), 

and the third to His148 and Ser420 (MBS3) (Zhou et al., 2000). Each metalloid is bound 

by two ArsA residues. The highest affinity site is composed of Cys-113 and Cys-422 
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(Ruan et al., 2006), and a third cysteine, Cys-172, can participate in high affinity binding 

(Ruan et al., 2008).  Binding of As(III) or Sb(III) brings the two halves of ArsA together, 

activating ATP hydrolysis. Connecting the single MBD to the two NBDs are two 

signature sequences that serve as signal transduction domains (STDs), 

D142TAPTGH148TIRLL in A1 (STD1) and D447TAPTGH453TLLLL in A2 (STD2), that 

corresponds to the Switch II region of many other nucleotide binding proteins and have 

been proposed to be involved in transmission of the energy of ATP hydrolysis to 

metalloid transport (Zhou and Rosen, 1997). In the ArsA structure these sequences are 

seen as extended stretches of residues physically linking the NBDs through Asp142 and 

Asp447 at the N-terminal end to the MBD through His148 and His453. Asp142 and 

Asp447 are Mg2+ ligands in NBD1 and NBD2, respectively, and His148 and His453 are 

Sb(III) ligands in the MBD (Zhou et al., 2000). This physical connection between the 

domains allows ATP hydrolysis at the NBDs to alter the affinity for As(III), and, 

reciprocally, allows metalloid binding at the MBD to alter the affinity for and rate of 

hydrolysis of ATP.  

 Specific spectroscopic probes, single tryptophan residues, were introduced into 

strategic locations in ArsA. The fluorescent properties of these tryptophan residues 

change in response to nucleotide binding, hydrolysis and/or conformational changes in 

domains. The intrinsic fluorescence of Trp159 has allowed real time monitoring of the 

conformation of ArsA during the individual steps of the catalytic cycle and has allowed 

modeling of the reaction cycle (Walmsley et al., 1999, 2001). The results suggest that 

the rate-limiting step in the overall reaction in the absence of metalloid activation is the 
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isomerization of a longlived conformation of the enzyme, and that binding of metalloid 

overcomes this rate-limiting step, increasing the rate of hydrolysis.  

 In the crystal structure NBD1 is occluded and has ADP bound. NBD2 is more 

open, and ATP can be exchanged into the site (Zhou et al., 2000). This gives the 

appearance of an alternation of sites, and alternating site mechanisms are found in 

other transport ATPases. There is good evidence to suggest non-equivalence of the two 

sites. NBD1 hydrolyzes ATP in the absence of activation while NBD2 does not (Kaur, 

1999). For this reason, basal hydrolysis has been termed unisite catalysis. In the 

presence of metalloid, both sites hydrolyze ATP and participate in multisite catalysis. 

Two single tryptophan residues, Trp141 and Trp446, had been used to study either 

NBD1 or NBD2. Trp141 is adjacent to NBD1 and to the N-terminal Asp142 of the A1 

signature sequences. Trp446 is in the equivalent position in NBD2, next to Asp447 of 

the A2 signature sequence. The fluorescent properties of these two mutants allow 

measurement of the rate of hydrolysis in each site singly. The fluorescent properties of 

Trp141 clearly show that NBD1 hydrolyzes ATP during unisite catalysis (Zhou and 

Rosen, 1997). In contrast, Trp446 fluorescence indicates that NBD2 is catalytically 

inactive until metalloid is bound, that is, only under multisite conditions (Zhou et al., 

2002). Although the two NBDs are not equivalent in all respects, the existing data 

cannot yet distinguish between different functions for the two or alternating sites 

catalysis.  

1.3.3  Evidence for physical interaction between ArsD and ArsA  

 Yeast two-hybrid analysis demonstrates that ArsD and ArsA physically and 

specifically interact (Lin et al., 2006).  Among the four soluble proteins encoded by the 
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R773 arsRDABC operon, ArsA was found to interact with ArsD but not with the ArsR 

repressor or the ArsC arsenate reductase;  ArsD interacted with ArsA and with itself, 

which would be expected since ArsD is a homodimer (Chen and Rosen, 1997), but not 

with ArsR or ArsC; ArsR, which is a homodimer, also interacts with itself, but not with 

the other proteins. Since there is no arsenic or antimony in yeast cells, ArsD and ArsA 

must interact in the absence of metalloid. However, when Cys12, Cys13 or Cys18, the 

residues in ArsD that form the metalloid binding site (described in more detail below), 

were mutated to serines, the serine-substituted ArsD mutants neither activate ArsA 

ATPase activity nor bind Sb(III) in this mutated site (Y.F. Lin and B.P. Rosen, 

unpublished), consistent with the idea that it is the metalloid-bound form of ArsD that 

activates ArsA. These data suggest that ArsD interacts with ArsA with high affinity when 

metalloid is bound but with low affinity in the absence of metalloid such as in the yeast 

cytosol in the two-hybrid assays. 

 Direct physical interaction between ArsD and ArsA was observed by chemical 

crosslinking with dibromobimane (dBBr), a fluorogenic, homobifunctional thiol-specific 

crosslinking reagent that becomes highly fluorescent when its two alkylating groups 

react with cysteine residues within 3 to 6 Å of each other (Kosower et al., 1980). When 

the mixture of ArsD and ArsA was reacted with dBBr, a crosslinked species was 

detected that reacted with both anti-ArsA and anti-ArsD antibodies. MgATP is required 

for the formation of ArsD-ArsA crosslinked product. These results suggest first that ArsD 

and ArsA interact at their cysteine-rich metalloid binding sites and second that ArsD 

interacts with nucleotide-bound form of ArsA. 

1.3.4  Cell biology of ArsD function 
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 That arsD and arsA genes are nearly always found together in ars operons 

implies co-evolution for a common function, most likely arsenic detoxification. Cells co-

expressing arsDAB were more resistant to high concentrations of As(III) compared to 

cells expressing only arsAB, consistent with interaction of ArsD with ArsA increasing the 

efficiency of the ArsAB pump  (Lin et al., 2006).  The concentration of arsenic in such 

growth experiments is usually in the millimolar range, which might be found in a volcanic 

area such as Yellowstone National Park, but such concentrations are much greater than 

would be found under most environmental conditions. To examine whether the 

presence of a functional arsD gene conferred an growth advantage to cells at lower 

levels of arsenic, two batches of cells of an E. coli strain in which the chromosomal ars 

operon had been deleted were mixed together and grown at equal amount in the 

presence of 10 μM sodium arsenite, a concentration present in many deep tube wells in 

Bangladesh. One batch of cells had a plasmid with only the arsAB genes, and the other 

had the arsDAB genes. After a little more than a week, the cells with arsDAB had 

largely replaced those with only arsAB, demonstrating that ArsD provides a competitive 

advantage for growth in soil or water with moderate amounts of arsenic contamination. 

 Examination of As(III) accumulation in intact cells revealed that ArsD enhances 

the ability of the pump to extrude As(III) and reduces the intracellular arsenic 

concentration to subtoxic levels. Cells expressing only arsB were able to lower the 

intracellular level of As(III) compared to a strain with no ars, reflecting the ability of ArsB 

to catalyze As(OH)3/H
+ exchange (Meng et al., 2004). When  arsA and arsB were co-

expressed, the cells have more efficient As(III) extrusion than with arsB alone (Dey and 

Rosen, 1995).  When arsD was co-expressed with arsAB, the cells exhibited a further 



 

 

21

reduction in As(III) accumulation (Lin et al., 2006). These lines of evidence support the 

idea that ArsD increases the efficiency of the ArsAB pump.  The competitive advantage 

provided by direct interaction of ArsD with ArsA provides a driving force for the co-

evolution of the two genes. 

1.3.5  Biochemistry of ArsD function 

 The hallmark of metallochaperones is delivery of metal ions directly to target 

proteins (Rosenzweig, 2002). The ability of ArsD to transfer Sb(III) to ArsA  was  shown 

by mixing Sb(III)-loaded ArsD with ArsA, separating the two proteins and determining 

how much Sb(III) was bound to ArsA. In the presence (but not the absence) of 

magnesium and a nucleotide, ArsA was able to extract Sb(III) from ArsD.  

 Metalloid transfer studies of the transfer of As(III) or Sb(III) from ArsD to ArsA are 

consistent with a mechanism in which this metallochaperone accelerates the rate of 

transfer to its partner. However, for ArsD and ArsA, this transfer process is 

thermodynamically unfavorable because ArsD has higher affinity for metalloid than does 

ArsA.  However, if the metalloid bound to the ArsAB pump is pumped out of the cell, 

mass action will provide the directionality of the reaction. This suggests that ArsD might 

not only serve a role in protecting the cell from free metalloid but also in loading ArsA for 

metalloid extrusion.  Indeed, because ArsD has higher affinity for metalloid than ArsA, it 

can ‘scavenge’ the cytosol for free metalloid for delivery to ArsA, allowing the ArsAB 

pump to confer resistance at significantly lower concentrations of As(III).  The Km of 

ArsB as a secondary carrier is 0.14 mM (Kuroda et al., 1997), but natural waters range 

in concentration of total inorganic arsenic from 7 nM to 70 µM, and concentrations of 

arsenic in drinking water in worst arsenic-contaminated wells in West Bengal and 
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Bangladesh are approximately 40 µM (Smedley and Kinniburgh, 2002).  By lowering the 

concentration of substrate at which the pump functions efficiently, ArsD and ArsA 

provide cells with a mechanism to respond to environmental concentrations of metalloid. 

 ArsD not only delivers metalloids to ArsA but also enhances its ATPase activity 

at low metalloid concentrations. In the presence of ArsD, the apparent affinity of ArsA 

for As(III) is largely increased but the Vmax remains unchanged in ATPase reactions (Lin 

et al., 2006). ArsD makes the enzyme more effective at low concentrations of metalloid, 

a property expected for a metallochaperone. As(III) or Sb(III) activates the ATPase 

activity of ArsA, so that the increase in affinity of ArsA for metalloids in the presence of 

ArsD can simply be attributed to the higher affinity of ArsD in the ArsD-ArsA complex, 

that is, ArsD allows for activation of ArsA ATPase at lower metalloid concentrations.  

This explains how cells expressing arsDAB can rapidly replace cells expressing only 

arsAB at a subtoxic concentration of As(III).   

 In summary, the increase in ArsA efficiency resulting from interaction with ArsD 

leads in vitro to augmented activity of the ArsAB extrusion pump, to greater resistance 

in organisms with the arsDAB genes, and finally to increased fitness for growth in the 

low but ubiquitous levels of environmental arsenic. 

1.3.6  Metalloid binding sites in ArsD 

 R773 ArsD has three vicinal cysteine pairs, Cys12-Cys13, Cys112-Cys113 and 

Cys119-Cys120. Alignment of the primary sequence of homologues of R733 ArsD 

indicates that the cysteine pair Cys12-Cys13 and a single additional cysteine, Cys18 

are conserved in homologues. Two other cysteine pairs, Cys112-Cys113 and Cys119-

Cys120, are found in some homologues but not others. A series of cysteine mutants 
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and truncations of ArsD were constructed, purified and studied for the metalloid binding 

(Lin et al., 2007a). Mutants or truncations with only a single vicinal cysteine pair can still 

bind to a phenylarsine oxide affinity column, which indicates indirectly that each 

cysteine pair can form an independent metalloid binding site (Li et al., 2001).  In more 

recent experiments, binding of Sb(III) was measured directly (Lin et al., 2007a).  Wild-

type R773 ArsD binds three Sb(III) per monomer. If two of the three cysteine pairs were 

changed to alanine or serine residues, or if the C-terminal vicinal pairs were removed by 

construction of truncated versions, variants with only a single vicinal pair were found to 

bind one Sb(III) per monomer, showing directly that each cysteine pair forms an 

independent metalloid binding site. If the conserved cysteine Cys18 was mutated, the 

mutant with the only first cysteine pair, Cys12-Cys13, was unable to bind Sb(III).  This 

suggests that the cysteine pair Cys12-Cys13 and Cys18 form a 3-coordinate thiolate 

metalloid binding site, which has been termed MBS1. The metalloid binding sites 

formed by cysteine pairs Cys112-Cys113 and Cys119-Cys120 are designated MBS2 

and MBS3, respectively. All three binding sites have similar affinity to Sb(III), 

approximately 1 μM. 

 A truncated ArsD lacking both MBS2 and MBS3 (ArsD1-109), still interacted with 

ArsA in the yeast-two-hybrid assay and had the same stimulatory effect on ArsA 

ATPase activity as wild-type ArsD (Lin et al., 2007a).  In contrast, an ArsD derivative 

lacking MBS1 but retaining MBS2 (ArsD1-118,C12A/C13A) was unable to interact with ArsA 

in yeast-two-hybrid assay and did not stimulate ArsA activity. These results suggest that 

MBS1, but not MBS2 or MBS3, participate in metalloid transfer to ArsA and in activation 

of ArsA ATPase activity. Cells expressing a mutated arsD1-118, C112A/C113A gene, which 
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encodes an ArsD derivative having only MBS1, in trans with arsAB accumulated As(III) 

to nearly the same extent as those expressing wild type arsDAB. These cells also have 

a modest reduction in arsenite resistance compared to cells expressing wild type 

arsDAB. However, the cells expressing other ArsD mutants lacking MBS1 (arsDC12/C13A 

or arsDC18A) accumulate slightly more As(III) than cells with only arsAB and were no 

more resistant to As(III) than cells with only arsAB. These in vivo results strongly 

support the hypothesis that MBS1 (Cys12, Cys13 and Cys18), but not MBS2 or MBS3, 

is required for metallochaperone activity. 

1.3.7  Proposed mechanism of metalloid transfer from ArsD to ArsA 

 The fact that the MBSs in ArsA and MBS1 in ArsD appear to be involved in 

interaction suggests that metalloid binding sites in both proteins are brought into close 

proximity, allowing transfer of metalloid directly from the binding site on ArsD to the 

binding site on ArsA.  It is plausible that this interaction destabilizes the metalloid 

binding sites on ArsD, reducing its affinity, while stabilizing the metalloid binding sites on 

ArsA by occluding the metalloid within the complex, thus enabling transfer of metalloid 

to ArsA. In this manner, the thermodynamically unfavorable process of transferring the 

metalloid from a high to a low-affinity site could be overcome, although, as mentioned 

above, this might not be a concern if the transferred metalloid is rapidly extruded from 

the cell.  While the details of metalloid transfer from ArsD to ArsA are unknown at this 

time, the mechanism of transfer of copper from the metallochaperone CCS to the 

superoxide dismutase SOD1 is instructive (Lamb et al., 2001; Torres et al., 2001).  The 

cysteine residues of CCS project into the active site of SOD1.  By doing so, Cu(I) 

bridges the donating cysteine residues of CCS and the receiving histidine residues, 
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stabilizing the heterodimer and facilitating metal transfer. In effect, transfer of copper 

between the Atx1 and Ccc2p is ‘catalyzed’ by the metallochaperone.  We propose a 

similar mechanism of As(III) transfer from ArsD to ArsA in which there is a step-wise 

exchange of sulfur ligands from ArsD cysteines to ArsA cysteines (Figure. 2-12). The 

MBS1 (metalloid binding site 1) of ArsD and MBSs of ArsA come close to each other, 

then the As(III) bound by ArsD will be released by one cysteine of ArsD and coordinated 

by the cysteine of ArsA to form an As(III) intermediated complex. Through step by step 

change of the thiol-ligands of As(III) from ArsD to ArsA, finally As(III) is coordinated by 

the three cysteines from ArsA. 

1.4  Other metallochaperones 

Arsenic is a non-essential element in any organism. ArsD functions to sequester 

toxic arsenic and deliver it to the extrusion pump. Similar metal-chaperones have been 

found for essential but toxic metals such as copper and iron. They sequester free metal 

in cells and specifically deliver to target proteins. Though copper and iron are essential, 

both Cu(I) and Fe(II) could undergo Fenton or Fenton-like chemistry to generate highly 

toxic hydroxyl radical. Accumulation of free Cu(I) and Fe(II) is detrimental to the cell. On 

one hand, the metal-chaperone could sequester the metal and keep the concentration 

of free metal at very low concentration. On the other hand, the chaperones specifically 

deliver metal to the target proteins, which could be the enzyme requiring the metal as 

cofactor, the extrusion pump or the metal-storage protein.  

 Metal-chaperones deliver metals to the target proteins. Usually without a metal, 

the chaperone protein does not interact with the target protein or does so very weakly. 

In the presence of metal, the interaction is strengthened. After the metal is delivered, 
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the chaperone protein dissociates from the target protein, and a new cycle starts. For 

this cycle to be efficient, the chaperone-target interaction should be transient and weak. 

This is one reason that it’s difficult to study how chaperone proteins interact with their 

target proteins. 

1.4.1  Copper chaperones 

Copper chaperone has been found from prokaryotic cells to eukaryotic cells. In 

vitro, most copper enzymes easily acquire their metal without the help of any auxiliary 

proteins.  However, in living cells such as yeast, the cytoplasmic free copper 

concentration is estimated to be less than 10-18 M since SOD1 cannot get Cu(I) even 

though the total copper concentration is very high. Almost no free copper exist in the 

cells, and copper chaperone proteins are required for the maturation of the enzyme 

(Rae et al., 1999).   

 Enterococcus hirae has a copYZAB operon encoding proteins involved in copper 

homeostasis. CopA and CopB are P-type ATPase pumps, importing and exporting 

copper, respectively. CopY is a operon repressor in the absence of Cu(I). CopZ is 

required for delivery of Cu(I) to CopY to activate transcription of the operon (Odermatt 

and Solioz, 1995). Through gel-filtration, Cu(I)-CopZ transfer Cu(I) to CopY. But these 

two proteins do not come off the gel-filtration column as a complex (Cobine et al., 1999). 

The interaction between CopZ and CopY was suggested to be mediated by charged 

residues. MNKr2, a homolog of CopZ, the second copper binding site of human Menkes 

ATPase, can be engineered to gain the function similar of CopZ to transfer Cu(I) to 

CopY through changing the different charged residues (Cobine et al., 2002), suggesting 

CopZ and CopY interact through these charged residues. Surface Plasmon Resonance 
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show that CopZ specifically interacts with CopA immobilized on the chip. Cu(I) 

increased the affinity of interaction between CopZ and CopA 15-fold by decreasing the 

dissociation rate of the two proteins. Mutation of Cys to Ser of the N-terminal copper 

binding motif CXXC of CopA abolishes the modulation of interaction affinity by Cu(I), but 

the mutant still binds to CopZ as well as wild-type CopA in the absence of Cu(I) 

(Multhaup et al., 2001). Recent studies show that N-terminal copper binding site of 

CopA may only serve as a regulatory site, while CopZ is able to directly transfer Cu(I) to 

TM-MBS, the transmembrane copper binding site (Gonzalez-Guerrero and Arguello, 

2008).  

 CopZ homologues are Atx1 in yeast and HAH1 in human. Ccc2 in yeast and 

Menkes (ATP7A) and Wilson (ATP7B) ATPase in humans are CopA homologues that 

also have several copies of CopZ-like copper binding motif in their N-termini. These 

MBDs (metal binding domain) have been proposed to accept Cu(I) from chaperone 

proteins. Atx1 interacts with the N-terminal MBD of Ccc2 in the yeast two-hybrid system 

(Pufahl et al., 1997). The transfer from Atx1 to the MBD of Ccc2 is reversible, which 

suggests the transfer from Atx1 to Ccc2 is not due to higher affinity for Cu(I). But Atx1 

can protect Cu(I) from other copper scavengers in the cell such as glutathione, and 

directly bring Cu(I) to the target protein through protein-protein interaction (Huffman and 

O'Halloran, 2000). The binding interface between Atx1 and the first MBD of Ccc2 has 

been characterized by NMR. By following the 15N and 1H chemical shifts, a new species 

is detected. This species is in fast exchange with the parent species on the NMR time 

scale. Nuclear relaxation data are consistent with the formation of an adduct (Arnesano 

et al., 2001). Based on NMR chemical shift mapping information, a structure model of 
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the transient complex was proposed through in silico docking. The model shows that the 

interaction is mainly of an electrostatic nature with hydrogen bonds stabilizing the 

complex (Arnesano et al., 2004). Coupling site-directed mutagenesis and NMR study, 

the contribution of copper and cysteine residues of the binding site was studied. The 

copper is essential for the weak and transient metal-mediated interaction (Banci et al., 

2006). Recently, a new target protein, copper amine oxidase Cao1 is also shown to 

accept Cu(I) from Atx1. And these two proteins were shown to interact with each other 

in yeast two-hybrid system (Peter et al., 2008).        

 Hah1 compensates for the function of Atx1 in atx1Δ yeast (Hung et al., 1998). 

Coimmunoprecipitation experiments revealed that HAH1 interacts with both the Wilson 

(ATP7B) and Menkes (ATP7A) proteins and that this interaction depends on available 

copper. This provides a mechanism for the function of HAH1 as a copper chaperone in 

mammalian cells to transfer to ATP7A and ATP7B (Hamza et al., 1999). Yeast two-

hybrid experiments show copper-dependent interaction between HAH1 and the 2nd or 

4th MBD of ATP7B (van Dongen et al., 2004), also with 2-6 MBD of ATP7A (Larin et al., 

1999). The interaction between HAH1, and the second or the fifth soluble domains of 

ATP7A (MNK2 and MNK5, respectively), was investigated in solution using 

heteronuclear NMR. The copper-transfer properties of MNK2 and MNK5 are similar, 

and differ significantly from those previously observed for the yeast homologous 

system. No stable adduct is formed between either of the MNK domains and HAH1. The 

copper(I) transfer reaction is slow on the time scale of the NMR chemical shift, and the 

equilibrium is significantly shifted towards the formation of copper(I)-MNK2/MNK5 

(Banci et al., 2005). NMR titration show the formation of an adduct by Cu(I)-HAH1 with 
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WLN4 that is in fast exchange on the NMR time scale with the isolated protein species 

as confirmed by 15N relaxation data. A similar interaction is also observed between 

Cu(I)-HAH1 and WLN2; however, the relative amount of the adduct in the protein 

mixture is lower. In both cases the interaction interface can not be mapped by NMR 

(Achila et al., 2006).  

 Another example of a copper chaperone is the chaperone protein involved in the 

maturation of superoxide dismutase (SOD1). In Saccharomyces cerevisiae, it’s LYS7 

and in human it’s CCS. They are responsible for the delivery of copper to copper/zinc 

superoxide dismutase (Culotta et al., 1997). Interaction of the yeast copper chaperone 

yCCS in complex with its partner protein, superoxide dismutase (SOD1), has been 

elucidated crystallographically using a mutant SOD1 (Lamb et al., 2001). In this mutant 

SOD1, His48, one of the ligand for copper was mutated to Phe. yCCS, and this mutant 

SOD1 form a stable complex (Lamb et al., 2000).  

1.4.2  Iron chaperones 

 Frataxin, the protein lacked in the neurological disease Friedreich's ataxia, 

functions as a mitochondrial iron chaperone for iron-sulfur cluster and heme 

biosynthesis. Frataxin interacted with aconitase in a citrate-dependent fashion, reduced 

the level of oxidant-induced inactivation, and converted inactive [3Fe-4S]1+ enzyme to 

the active [4Fe-4S]2+ form of the protein. Thus, frataxin is an iron chaperone protein that 

protects the aconitase [4Fe-4S]2+ cluster from disassembly and promotes enzyme 

reactivation (Bulteau et al., 2004). Yeast frataxin was shown to interact with 

ferrochelatase by NMR (He et al., 2004). This model was proposed based on the 

structural information to show the channel of iron transfer from frataxin to ferrochelatase 
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for the heme synthesis (Bencze et al., 2007). Yeast frataxin Yfh1 binds to the central 

Fe/S-cluster (ISC)-assembly complex, which is composed of the scaffold protein Isu1 

and the cysteine desulphurase Nfs1. Association between Yfh1 and Isu1/Nfs1 was 

markedly increased by ferrous iron, but did not depend on ISCs on Isu1. Functional 

analyses in vivo showed an involvement of Yfh1 in de novo ISC synthesis on Isu1 

(Gerber et al., 2003). The iron-bound form of ISU is viable for assembly of holo ISU, 

either by subsequent addition of sulfide or by NifS-mediated sulfur delivery. Without 

sulfur delivery, isothermal titration calorimetry (ITC) shows that holo human frataxin 

forms a complex with ISU with sub-micromolar binding affinities, while apo frataxin does 

not bind to ISU, suggesting an important role for iron in cross-linking the two proteins 

and/or stabilizing the structure of frataxin that is recognized by ISU (Yoon and Cowan, 

2003). In Drosophila, holo frataxin also forms a complex with ISU that can be trapped 

without the sulfide delivery and can be detected by ITC (Kondapalli et al., 2008). 

 Ferritins are the main iron storage proteins found in animals, plants, and bacteria. 

The capacity to store iron in ferritin is essential for life in mammals. Human ferritins 

expressed in yeast contain little iron. Human poly (rC)-binding protein 1 (PCBP1) 

increased the amount of iron loaded into ferritin when expressed in yeast. 

Coimmunoprecipitation shows PCBP1 binding to ferritin. In vitro, PCBP1 binds iron and 

facilitates iron loading into ferritin (Shi et al., 2008).  

1.5  Summary 

 Arsenic is widely distributed throughout the earth’s crust and is brought into water 

and soils due to natural weathering process and human activities. Severe health effects 

have been observed in populations exposed to arsenic, which include cancer, 
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cardiovascular disease, peripheral neuropathies and diabetes mellitus. Because of the 

prevalence of arsenic in the environment, nearly every organism, from E. coli to humans, 

has genes for arsenic detoxification.  

The ArsAB pump in E. coli, encoded by the ars operon of plasmid R773, confers 

resistance to arsenicals and antimonials.  ArsA is the catalytic subunit of the pump that 

hydrolyzes ATP in the presence of arsenite or antimonite.  ArsB is a membrane protein 

containing arsenite-conducting pathway. ArsA forms complex with ArsB, therefore ATP 

hydrolysis is coupled to extrusion of As(III) or Sb(III) through ArsB. Upon 

overexpression, ArsA exists primarily as a soluble protein in the cytosol.  Purified ArsA 

is an As(III)/Sb(III)-stimulated ATPase.  

ArsD is an arsenite chaperone for ArsA. ArsD sequesters free As(III) in the cell 

and then delivers to ArsA. ArsD increases the apparent affinity of ArsA for As(III) by 

about 60 fold from 1.2mM to 20μM (Lin et al., 2006). This effect is more significant at 

‘physiological’ concentration of As(III) in the cell. There is no data of the maximum 

concentration of free As(III) inside the cells, at which the cells can tolerate.  Most likely it 

is less than 50μM suggested by measuring growth of E. coli cells, lacking arsenic 

resistance operon, with addition of As(III) in the medium. 50μM As(III) inhibits cell 

growth. The free As(III) inside the cell should not be higher than outside of the cell 

(Hung-Chi Yang, Barry Rosen, unpublished). By increasing affinity of ArsA for As(III), 

ArsD also increased ArsA ATPase activity at the ‘physiological’ concentration of As(III). 

Therefore, ArsAB pump efficiency is increased and less As(III) will be accumulated in 

the cells. On the other hand, since ArsD is a protein with higher affinity for As(III), there 

is less chance for free As(III) to bind to other proteins interfering their function after the 
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formation of ArsD-As(III) complex. So ArsD also confers the cell with the advantage of 

low availability of free As(III), therefore decreasing the deleterious effect of free As(III).   

ArsD has been shown to transfer Sb(III) to ArsA in the presence of Mg2+ and ATP. 

ArsD and ArsA can be crosslinked by dibromobimane, a homofunctional cysteine 

crosslinker with arm length about 6Å. The N-terminal metal binding site of ArsD, formed 

by Cys12, Cys13 and Cys18, is required for the metallochaperone function. From ArsA 

crystal structure, three cysteine residues, Cys113, Cys172 and Cys422 are found to 

near each other and involved in As(III) binding. Since both ArsD and ArsA use cysteine 

residues as ligands for As(III), all these results suggest that ArsD interacts with ArsA 

through their arsenic binding sites. However, the interaction detail is not known yet and 

the process of arsenic transfer is also not known. I approached the answers from three 

directions in chapters 2, 3 and 4. In chapter 2, the binding affinity of ArsD for As(III) was 

determined, and ATP hydrolysis was shown to be required for As(IIII) transfer from ArsD 

to ArsA. The results suggest that ATP hydrolysis changes ArsA to a conformation with 

higher affinity for As(III), and As(III) is transferred at this step. In chapter 3, the relation 

between ArsD dimerization and metallo-chaperone function was studied. In chapter 4, 

yeast two-hybrid analysis was used to select mutations affecting the interaction between 

ArsD and ArsA, which shed light on the interface between ArsD and ArsA. 
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CHAPTER 2 

Arsenic binding and transfer by the ArsD As(III) metallochaperone 

2.1 Introduction 

In bacteria and archaea various ars operons encode ArsAB ATPases that pump 

the trivalent metalloids As(III) or Sb(III) out of cells. In these operons, an arsD gene is 

almost always adjacent to the arsA gene, suggesting a related function. Most transition 

and heavy metal ions do not exist as free ions in the cytosol but are sequestered by a 

variety of proteins variously called metal ion chaperones, scaffolds or intracellular 

carriers (Field et al., 2002).  ArsD was recently shown to be a chaperone for transfer of 

cytosolic As(III) to the 583-residue ArsA ATPase, the catalytic subunit of the efflux pump 

(Lin et al., 2006; Lin et al., 2007a).  ArsD is a 120-residue protein with three conserved 

cysteine residues, Cys12, Cys13 and Cys18 required for chaperone activity (Lin et al., 

2007a). ArsA exhibits a low, basal rate of ATPase activity in the absence of As(III) or 

Sb(III) and a higher, activated rate in their presence.  ArsA has a high affinity metalloid 

binding site composed of Cys113 and Cys422 (Ruan et al., 2006), and a third residue, 

Cys172, that participates in high affinity binding and activation of ATP hydrolysis (Ruan 

et al., 2008).  In analogy with the mechanism of copper transfer from chaperones to 

copper pumps or enzymes (Boal and Rosenzweig, 2009), we previously proposed a 

step-wise transfer from the cysteines of ArsD to the cysteines of ArsA (Lin et al., 

2007b). ArsD increases the affinity of ArsA for As(III), permitting detoxification of 

environmental concentrations of arsenic. 

 In this study the properties of As(III) binding by ArsD and subsequent transfer to 

ArsA were examined.  X-ray absorption spectroscopy was used to show that As(III) is 
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coordinated with three sulfur atoms, consistent with Cys12, Cys13 and Cys18 forming 

the As(III) binding site. Assays with single-tryptophan derivatives of ArsA have been 

informative about As(III) or Sb(III) binding properties and catalysis (Walmsley et al., 

1999, 2001; Zhou et al., 2001; Zhou and Rosen, 1997; Zhou et al., 2002), so an assay 

using intrinsic protein fluorescence was developed as a probe of metalloid binding to 

ArsD.  Two single tryptophan derivative of ArsD were constructed by changing either 

Thr15 or Val17 to tryptophan in a tryptophan-free background. Both exhibited quenching 

of fluorescence upon binding of As(III) or Sb(III), from which the apparent affinity for 

metalloid could be estimated. Since it is likely that cytosolic As(III) is bound to reduced 

glutathione (GSH), the effect of GSH on binding to ArsD was examined.  GSH greatly 

increased the rate of binding As(III) to ArsD, suggesting that ArsD accepts metalloid 

from the As(GS)3 complex. In contrast, GSH did not affect the As(III)-stimulated ArsA 

ATPase activity, suggesting that As(III) is directly transferred from ArsD to ArsA, as 

opposed to release from ArsD, binding to GSH and then interaction of ArsA with the 

As(GS)3 complex.  To differentiate between these two possibilities, the effect of the 

As(III) chelator dimercaptosuccinic acid (DMSA) was examined.  The chelator did not 

affect transfer, indicating channeling of As(III) from ArsD to ArsA.  Transfer occurs only 

under conditions where ArsA hydrolyzes ATP, suggesting that ArsD transfer As(III) to 

an ArsA conformation transiently formed during catalysis and not simply to the closed 

conformation that ArsA adopts when As(III) and MgATP are bound (Zhou et al., 2001). 

2.2 Materials and Methods 

2.2.1 Strains, plasmids and media 

E. coli cells were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 
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37°C.  Ampicillin (100 µg/ml) or kanamycin (40 µg/ml) was added as required. E. coli 

strain JM109 [recA1 supE44 endA1 hsdR17 gyrA96 relA1 thiΔ(lac-proAB) F’ (traD36 

proAB+ lacIq lacZΔM15)] was used for molecular cloning. E. coli strain BL21(DE3) [F- 

ompT hsdSB (rB-mB-) gal dcm (DE3 [lacI lacUV5-T7 gene1 ind1 Sam7 nin5]) was used 

for protein expression and purification. ArsA with a C-terminal 6-histidine tag was 

expressed from plasmid pAlter-dAhB (Li and Rosen, 2000). ArsD contains three vicinal 

cysteine pairs, of which the last two are not required for chaperone activity, so the last 

11 residues containing those two cysteine pairs were removed, creating the ArsD1-109 

truncation. N-terminal MBP-fused ArsD1-109 (henceforth designated MBP-ArsD109) was 

expressed from plasmid pMAL-ArsD109 (Lin et al., 2007a). ArsD1-109 with an N-terminal 

six-histidine tag (henceforth designated as wild type ArsD109) was expressed from 

plasmid pET28a-ArsD109. The codons for the two native ArsD tryptophan residues, 

Trp35 and Trp97, were mutated to tyrosine codons by site directed mutagenesis in 

plasmid pET28a-ArsD109, generating pET28a-ArsD109W35/97Y. In this plasmid Thr15 

and Val17 codons were mutated to tryptophan codons, generating pET28a-

ArsD109T15W and pET28a-ArsD109V17W, respectively. The codon for Cys12, Cys13 and 

Cys18 was individually mutated to glycine codons in pET28a-ArsD109, generating 

pET28a-ArsD109C12G, pET28a-ArsD109C13G and pET28a-ArsD109C18G, respectively. 

The codons for Cys12, Cys13 and Cys18 were mutated to glycine codons in pET28a-

ArsD109T15W, generating pET28a-ArsD109C12G,T15W, pET28a-ArsD109C13G,T15W and 

pET28a-ArsD109C18G,T15W. Growth in liquid culture was estimated from the absorbance 

at 600 nm. The strains and plasmids are listed in Table 2-1. 

2.2.2 DNA manipulation and mutagenesis 
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Plasmid extraction, DNA restriction endonuclease analysis, ligation and other 

general molecular biological procedures were performed as described (Sambrook et al., 

1989).  Transformation of E. coli cells was carried out using a BIO-RAD MicroPluser 

(BIO-RAD, Hercules, CA). DNA purification kits were obtained from QIAGEN (Valencia, 

CA).  Either a Qiaprep Spin Miniprep kit or a Qiaquick gel extraction kit (QIAGEN) was 

used to prepare plasmid DNA for restriction enzyme digestion, sequencing, and 

recovering DNA fragments from agarose gels. The sequence of new plasmid constructs 

was confirmed by DNA sequencing of the entire gene. Site-directed mutagenesis was 

performed using Quick-change Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA) 

and confirmed by sequencing.  DNA sequencing was performed using a CEQ2000 DNA 

sequencer (Beckman Coulter, Brea, CA).  The primers used are listed in Table 2-2. 

2.2.3 Protein expression and purification 

Cells bearing the indicated plasmids were grown in LB medium overnight at 37°C 

and then diluted 50-fold into 1 L of the same medium. Proteins were expressed by 

induction with 0.3 mM isopropyl-ß-D-thiogalactopyranoside at A600 of 0.6-0.8 for 3 hrs. 

MBP-ArsD109 was purified from E. coli strain BL21(DE3) bearing plasmid pMAL-

ArsD109 as described (Lin et al., 2006). Cells were harvested by centrifugation and 

washed once with a buffer containing 50 mM MOPS, pH 7.5, 0.5 M NaCl, 5 mM DTT 

and 10 mM 2-mercaptoethanol (Buffer A). The cells were suspended in 5 ml of Buffer A 

per gram of wet cells and lysed by a single passage through a French press at 20,000 

psi.  Diisopropyl fluorophosphate (DIFP) (Sigma) was added at 2.5 μl/g wet cells 

immediately following French press. Unbroken cells and membranes were removed by 

centrifugation at 150,000 x g for 1 hr at 4oC. The supernatant was loaded to 10 ml 
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amylose column (New England Biolabs, Ipswich, MA) pre-equilibrated with Buffer A.  

Unbound proteins were washed by 200 ml of buffer A, and MBP-ArsD109 was eluted 

with Buffer B (50 mM MOPS, pH 7.5, 0.5 M NaCl, 5 mM DTT, 10mM maltose and 10 

mM 2-mercaptoethanol), followed by addition of 0.25 mM EDTA and 5 mM DTT to each 

fraction. MBP-ArsD109 containing fractions were identified by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE), pooled, concentrated by Amicon 

Ultra-15 Centrifugal Filter Unit with Ultracel-10 membrane (Millipore), mixed with 10% 

glycerol, aliquoted and stored at -80oC until used. ArsA with a six histidine tag at the C-

terminus was purified from cells of strain BL21(DE3) expressing pAlter-1-dAhB plasmid, 

as described (Zhou and Rosen, 1997). Basically similar procedure was used as 

purification of MBP-ArsD109, but with different buffer and column. Probond Ni-column 

(Invitrogen) was used. Buffer A(50 mM MOPS, pH 7.5, 0.5 M NaCl, 30 mM Imidazole  

and 10 mM 2-mercaptoethanol) and Buffer B(50 mM MOPS, pH 7.5, 0.5 M NaCl, 300 

mM Imidazole  and 10 mM 2-mercaptoethanol) were used. ArsD and its derivatives with 

a six histidine tag at the N-terminus were purified similarly. Purified proteins were stored 

at -80°C until use, and their concentrations were determined according to the method of 

Bradford (Bradford, 1976) or from the absorption at 280 nm (Gill and von Hippel, 1989). 

2.2.4 Circular dichroism measurements 

Circular dichroism (CD) spectra from 190 to 260 nm were acquired with a 

spectrometer from Olis Inc. (Bogart, GA) at 20 °C using a 0.2-cm path-length cell at 

1.75-nm intervals. Three scans were averaged for each spectrum. ArsDs were assayed 

at 10 μM in 10 mM potassium phosphate buffer, pH 7.5. 

2.2.5 X-ray absorption spectroscopy (XAS) 
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XAS samples were prepared in 50 mM MOPS, 0.5 M NaCl and 30% glycerol, pH 

7.5. For wild-type ArsD109, 4 mM protein was incubated with 3.2 mM sodium arsenite 

for 1 hr on ice, and unbound As(III) was removed with a Bio-Gel P-6 column. For C12G, 

C13G and C18G, 4mM protein was incubated with 1 mM As(III) for 1hr.  A higher 

protein:ligand ratio was used since unbound As(III) was not removed by gel filtration 

due to weak binding by the mutant proteins. Solution samples were loaded in Lucite 

cells, wrapped in Kapton tape and flash frozen in liquid nitrogen.  

XAS data were collected at the Stanford Synchrotron Radiation Laboratory 

(SSRL) on beamline 9-3, equipped with Si[220] double crystal monochromator equipped 

with a harmonic rejection mirror.  Samples were maintained at 10 K using Oxford 

Instruments continuous-flow liquid helium cryostats. Protein fluorescence excitation 

spectra were collected using a 30-element Ge solid-state array detector.  A germanium 

filter (0.6 mM in width) and solar slits were placed between the cryostat and detector to 

filter scattering fluorescence not associated with protein bound arsenic signals. XAS 

spectra were acquired in 5 eV steps in the pre-edge region (11,625-11,825 eV), 0.25 eV 

steps in the edge region (11,850-11,900 eV) and 0.05 Å-1 increments in the extended x-

ray absorption fine structure (EXAFS) region out to a k range of 13 Å-1.  The data were 

integrated from 2 to 20 s in a k-weighted manner in the EXAFS region for a total scan 

length of 45 min. X-ray energies were calibrated using an arsenic foil absorption 

spectrum collected simultaneously with the protein data. The first inflection point for the 

arsenic foil edge was assigned to 11,867 eV.  Each fluorescence channel of each scan 

was examined for spectral anomalies prior to averaging and spectra were closely 

monitored for photodegradation.  The data represent an average of 6 to 7 scans. 
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XAS data were processed using the Macintosh OS X version of the EXAFSPAK 

software suite (available on the World Wide Web) integrated with the Feff v7 software 

(Ankudinov and Rehr, 1997) for theoretical model generation.  Data reduction followed a 

previously published protocol for a spectral resolution in bond lengths of 0.13 Å 

(Lieberman et al., 2006).  EXAFS fitting analysis was performed on raw/unfiltered data. 

Protein EXAFS data were fit using single scattering Feff v7 theoretical models, 

calculated for carbon, oxygen, sulfur and copper coordination to simulate arsenic-ligand 

environments, with values for the scale factors (Sc) and E0 calibrated by fitting 

crystallographically characterized arsenic model compounds.  Criteria for judging the 

best-fit EXAFS simulations utilized both the lowest mean square deviation between data 

and fit, corrected for the number of degrees of freedom (F’), and reasonable Debye-

Waller factors (σ2 < 0.006 Å2). 

2.2.6 Fluorescence measurements 

Fluorescence measurements were conducted with a QuantaMaster™ UV VIS 

QM-4 Steady State Spectrofluorometer (Photon Technology International, Birmingham, 

NJ) at room temperature.  For time based measurements, the excitation wavelength 

was 295 nm, and the emission wavelength was 345 nm.  Emission scans were acquired 

between 310 and 390 nm.  As(III) or Sb(III) was added as sodium arsenite or potassium 

antimonyl tartrate, respectively, at the indicated concentrations to a cuvette containing 2 

ml of 1 μM ArsD in a buffer consisting of 50 mM MOPS-KOH, pH 7.5, 0.25 mM EDTA. 

GSH was added to the indicated concentrations. Additions were made from 

concentrated solutions, and fluorescence was corrected for dilution. To examine the 

effect of pH, buffers containing 50 mM sodium acetate, pH 4.0, 50 mM sodium acetate, 
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pH 5.0, 50 mM MES, pH 6.0, 50 mM MOPS, pH 7.0, 50 mM Tris, pH 8.0 or 50 mM 

CHES, pH 9.0, were used. 

2.2.7 ATPase activity assays 

ATPase activity was estimated using a couple assay (Vogel and Steinhart, 1976), 

as described (Hsu and Rosen, 1989). ArsA was added at a final concentration of 0.3 μM 

into an assay mixture containing 5 mM ATP, 1.25 mM phosphoenolpyruvate, 0.25 mM 

NADH, 10 units of pyruvate kinase and lactate dehydrogenase with or without the 

indicated concentrations of potassium antimonyl tartrate or sodium arsenite, in the 

buffer containing 50 mM MOPS-KOH, pH 7.5, 0.25 mM EDTA. ArsD was added at the 

indicated concentrations. The mixture was pre-warmed to 37°C, and the reaction was 

initiated by addition of 2.5 mM MgCl2 and measured at 340 nm. The linear steady state 

rate of ATP hydrolysis was used to calculate specific activity. The reaction volume was 

0.2 ml each in 96-well microplates, and the reactions were monitored by microplate 

reader SPECTRA max 340PC (Molecular Devices). GSH or DMSA was added as 

indicated. 

2.2.8 Metalloid transfer assays  

Transfer assays were performed as described (Lin et al., 2007b) except that 

purified MBP-ArsD109 was used in place of cytosol fractions containing MBP-ArsD109. 

A 0.5 ml amylose column pre-equilibrated with 4 ml of buffer consisting of  50 mM 

MOPS-KOH, 0.5 mM NaCl, pH 7.5 (column buffer) was used.  Purified MBP-ArsD109 

was dialyzed against column buffer supplemented with 5 mM β-mercaptoethanol and 

0.5 mM dithiolthreitol and loaded to the column, which was then washed with 1 ml of 

column buffer. Next 0.5 ml of 1 mM sodium arsenite was added to the column, which 
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was then washed with 4 ml of column buffer.  BSA or purified ArsA (0.5 ml of 20 μM of 

either protein) was applied to the columns with 5 mM MgATP, MgADP or MgATPγS, as 

indicated.  The column was eluted with 1 ml of column buffer supplemented with the 

appropriate nucleotide and then 2 ml of column buffer. Finally the column was eluted 

with 1.5 ml of 10 mM maltose. Ten fractions of 0.5 ml were collected and analyzed by 

sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) (Laemmli, 

1970). For assays conducted at 4ºC, everything was pre-cooled to 4ºC for 30 min.  The 

protein concentration of each fraction was determined according to the method of 

Bradford (Bradford, 1976). The arsenic concentration was quantified by inductively 

coupled plasma mass spectroscopy (ICP-MS).  

2.3 Results 

2.3.1 Cys12, Cys13 and Cys18 form a three-coordinate As(III) binding site in 

ArsD  

R773 ArsD has three cysteine pairs, Cys12-Cys13, Cys112-Cys113 and Cys119-

Cys120, plus an additional cysteine at residue 18.  However, only cysteine residues 12, 

13 and 18 are conserved in known homologues, and truncation of the last two vicinal 

pairs had no effect on ArsD chaperone activity, and this variant, with a N-terminal six-

histidine tag was used as the wild type ArsD109 for further analysis (Lin et al., 2007a). 

(It should be pointed out that six-histidine tags do not bind As(III) (Qin et al., 2007)).  

The nature of the binding site was investigated in structural detail using XAS using wild 

type and mutant ArsD109s lacking individual cysteine residues (C12G, C13G and 

C18G). XANES analysis indicated arsenic in both the wild type and mutant proteins is 

As(III) (Figure 2-1). The observed value for the first inflection point energy is 11868 eV, 



 

 

42

consistent with observed values for As(III) in protein and model systems (Ramirez-Solis 

et al., 2004). XANES spectra for wild type ArsD109 are unique from those observed for 

the three mutant proteins, indicating the distinctive structural environment that 

coordinates As(III) in the wild type sample is different from that seen in the mutant 

samples. On the other hand, the structural environment of each mutant sample is 

closely related to the other mutant samples. 

The EXAFS fitting results are most consistent with trivalent arsenic being 

maintained in a 3-coordinate all-sulfur structural environment in wild type ArsD109 

(Figure 2-2). This environment is different in the mutants. The structural environment for 

the wild type protein is dominated by a symmetric three sulfur coordination environment 

to the As(III) at an average bond length of 2.24 Å. Addition of a small oxygen/nitrogen 

scattering contribution to the As-S3 fits for the wild type suggests a possible low 

percentage partial dissociation of the bound metalloid (Table 2-3). There was no sulfur 

ligation in any of the three cysteine mutants. EXAFS analysis of C18G suggests an 

average nearest neighbor coordination environment constructed of three As-O 

interactions at 1.79 Å.  In the remaining two mutants, the data are best fit with two 

independent As-O/N environments constructed of two oxygen ligands at 1.79 Å and a 

third oxygen/nitrogen ligand interaction between 2.13 and 2.16 Å. The most likely 

explanation for these results is that As(III) is bound to the thiolates of Cys12, Cys13 and 

Cys18 in the wild type, but that, in the mutants, binding to the two remaining cysteines is 

weak, and most of the arsenic is present as As(OH)3 . 

2.3.2 Tryptophan fluorescence reports trivalent metalloid binding by ArsD 

Previous assays to quantify arsenic binding by wild type and mutant ArsDs used 
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ICP-MS (Lin et al., 2006; Lin et al., 2007a). To develop a real-time assay for arsenic 

binding, single tryptophan derivatives of ArsD109 were constructed. ArsD has two 

native tryptophan residues, Trp35 and Trp97. Trp35 does not respond to As(III), but the 

fluorescence of Trp97 is quenched when As(III) binds to the vicinal pair, Cys112-

Cys113 but not to the Cys12-Cys13-Cys18 As(III) binding site (Li et al., 2001; Li et al., 

2002).  A tryptophan-free derivative lacking the last two vicinal cysteine pairs was 

constructed (W35/97Y).  Two derivatives with single tryptophan residues near the As(III) 

binding site were then constructed by changing Thr15 or Val17 to tryptophan. 

Introduction of either tryptophan residue had no apparent effect on ArsD structure or 

function. The overall secondary structure of these two mutants, T15W and V17W, were 

similar to wild-type ArsD109, as determined by circular dichroism (Figure 2-3A), and 

both stimulated ArsA ATPase activity nearly as well as wild-type ArsD109 (Figure 2-3B; 

data not shown for V17W).  Tryptophan-free W35/97Y showed very low background 

fluorescence (Figure 2-4A). Both single tryptophan derivatives exhibited considerable 

intrinsic protein fluorescence compared with W35/97Y, with emission maxima of 

approximately 340 nm compared with an emission maximum of approximately 355 nm 

for free tryptophan in solution.  Denaturation of the proteins with guanidine red shifted 

the emission maxima to approximately 352 nm.  The fluorescence of either T15W or 

V17W was quenched approximately 50% by addition of high concentrations of As(III) or 

Sb(III) (Figure 2-4B). 

 In the absence of added thiols, the rate of fluorescence quenching, presumably 

proportional to the rate of As(III) binding, was very slow, requiring more than 0.5 hr to 

attain a steady-state level of fluorescence when 1 μM protein was mixed with 5 μM 
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As(III) (Figure 2-5A). From the As(III) concentration dependence of fluorescence 

quenching, apparent binding constants for the two single tryptophan proteins could be 

calculated from the relationship kobs = koff + kon*[As(III)] (Tamerler et al., 2006), where 

kobs is the rate of quenching fitted with SigmaPlot 9.0 (Figure 2-5B).  For V17W, koff was 

calculated as (4 ± 2) x 10-4 s-1, and kon was calculated as (2 ± 0.06) x 10-4 s-1.μM-1. From 

the ratio koff/kon = kd, a binding affinity of 2 ± 1 μM was calculated. For T15W, koff was 

estimated as (3 ± 1) x 10-4 s-1, and kon as (2 ± 0.05) x 10-4 s-1.μM-1, and kd = 1.5 ± 0.5 

μM. Thus, the values for the two single tryptophan derivatives are in agreement. 

2.3.3 Effect of cysteine substitutions on As(III) binding 

Substitutions of the three cysteines in ArsD were previously result in loss of 

Sb(III) binding ability by gel filtration assays (Lin et al., 2007a).  As noted above, no 

sulfur ligation was observed with any of the three cysteines mutants in the EXAFS 

experiments. However, neither EXAFS nor binding assays by gel filtration are as 

sensitive as fluorescence assays and cannot measure low affinity binding. As(III) 

binding parameters were estimated from quenching of T15W fluorescence of each 

cysteine mutant (Figure 2-5B). C18G/T15W, which retains the Cys12 and Cys13 vicinal 

pair, has kon = (5 ± 0.1) x 10-5 s-1.μM-1, koff = (1.4 ± 0.1) x 10-3 s-1 and kd = 28 ± 3 μM. 

C12G/T15W, which retains Cys13 and Cys18, has kon = (5 ± 0.1) x 10-5 s-1.μM-1, koff = 

(2.4 ± 0.1) x 10-3 s-1 and kd = 48 ± 3 μM. C13G/T15W, which retains Cys12 and Cys18, 

has kon = (4 ± 0.2) x 10-5 s-1.μM-1, koff = (2.7 ± 0.1) x 10-3 s-1 and kd = 68 ± 6 μM. Thus, 

the affinity of each of the three cysteine mutants decreased by 20-fold or more 

compared with the parental protein containing Cys12, Cys13 and Cys18. 

2.3.4 Reduced glutathione increases the rate of binding of As(III) to ArsD but not 
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ArsA In vivo  

As(III) is nearly completely complexed with GSH (Delnomdedieu et al., 1994a). 

As GSH is the major intracellular thiol in E. coli, cytosolic As(III) would be expected to 

be primarily in the form of As(GS)3 (Apontoweil and Berends, 1975).  For that reason, 

the effect of 5 mM GSH on the rate of binding of 50 μM sodium arsenite to 1 μM V17W 

was examined over a pH range of 4.0 to 9.0 (Figure 2-6).  The rate of fluorescence 

quenching increased with increasing pH with or without GSH. In the absence of GSH, 

the rate of fluorescence quenching was about 10-fold faster at pH 9 than at pH 7. 

Addition of GSH accelerated the rate by 10-fold at pH 7.5, and the rate was too fast to 

measure accurately at pH 8 or higher.  The pH dependence in the absence of GSH 

indicates binding of As(III) by thiolates of the three ArsD cysteines but could also reflect 

dissociation of As(OH)3 to As(OH)2
-1 (pKa of 9.23).  Acceleration by GSH is consistent 

with binding of As(III) by thiolates of GS-1 (pKa of 8.7), which is highly pH dependent 

(Yehiayan et al., 2009), consistent with intermolecular transfer of metalloid from As(GS)3 

to ArsD. 

 The effect of GSH was investigated in more detail. In the absence of GSH, 

fluorescence of V17W decreased very slowly when 50 μM sodium arsenite was added 

at pH 7.5 (Figure 2-7A).  Addition of 0.2 mM GSH had little effect, but 5 mM GSH 

increased the rate substantially.  Addition of 5 mM of either β-mercaptoethanol or L-

cysteine also increased the rate of quenching with As(III) (Figure 2-7B).  While ArsD 

might be able to accept As(III) from complexes with other monothiols, but only GSH is 

present intracellularly in concentrations high enough to be involved physiologically. In 

contrast, 2.5 μM potassium antimonyl tartrate rapidly quenched fluorescence in the 
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absence of added monothiols (Figure 2-7B), consistent with the fact that ArsD has 

higher affinity for Sb(III) than As(III) (Li et al., 2002). Addition of 5 mM tris(2-

carboxyethyl)phosphine (TCEP), which is a stronger reductant than GSH but is not a 

monothiol, did not increase the rate of quenching (Figure 2-7A), indicating that the effect 

of GSH is not simply to protect either ArsD or As(III) from oxidation. Since formation of 

As(GS)3 is slow at pH 7.5 (Yehiayan et al., 2009), 4 mM sodium arsenite was pre-

incubated with 16 mM GSH for 10 min to allow for formation of the complex.  When 

preformed As(GS)3 was added at 50 μM, the rate of quenching was too fast to quantify 

(Figure 2-7A), supporting our hypothesis that As(GS)3 is a direct donor of metalloid to 

ArsD. 

 To examine whether GSH also facilitates As(III) binding to ArsA, the stimulation 

of ArsA activity by As(III) was determined in the presence or absence of GSH (Figure 2-

8). ArsA exhibited an apparently affinity of around 0.6 mM for As(III) with or without 

GSH. These results indicate that ArsA accepts either free As(III) or from As(GS)3 with 

low affinity, but As(GS)3 does not replace ArsD as an intracellular metallochaperone for 

high affinity As(III) binding. 

To see the effect of glutathione on the cooperation of ArsD and ArsA, the change 

of apparent affinity of ArsA for As(III) by ArsD was determined in the absence and 

presence of 5 mM glutathione. 3 μM ArsD increases apparent affinity of ArsA to about 

34 μM in the absence of glutathione and 5 μM in the presence of glutathione (Figure 2-

9A). To study in more detail, the change of apparent affinity of ArsA for As(III) by 

different concentrations of ArsD was determined. 0.3 μM ArsA was used in the assay. In 

the absence of glutathione, when ArsD concentration was increased from 0.3 μM to 3 
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μM, the apparent affinity was increased from 0.6 mM to a plateau of 30 μM.  In the 

presence of 5mM glutathione, when ArsD concentration was increased from 0.3μM to 

3μM, the apparent affinity was increased from 0.6 mM to a plateau of 5 μM, six fold less 

comparing in the absence of glutathione (Figure 2-9B). From another aspect, in the 

presence of glutathione, less ArsD is required to stimulate ArsA ATPase activity to the 

same extent. To exclude the possibility that the effect of glutathione is due to prevention 

of ArsA and ArsD from oxidation, 5mM TCEP was added in the buffer and it show 

almost no effect on the cooperation of ArsA and ArsD (Figure 2-9B). These results 

suggests that glutathione increases the binding rate of As(III) to ArsD, therefore 

increasing the transferring rate of As(III) from ArsD to ArsA and stimulating ArsA 

ATPase activity at low concentration of As(III) when As(III) binding is the rate-limiting 

step in ArsA ATP hydrolysis cycle. 

2.3.5 ArsD transfers As(III) directly to ArsA  

From the results of yeast two-hybrid analysis, it is clear that ArsD and ArsA 

physically interact (Lin et al., 2006). How is As(III) transferred during this interaction?  

One possibility is that the metalloid dissociates from ArsD and re-associates with ArsA. 

A second possibility is that there is direct transfer from the thiols of ArsD to the thiols of 

ArsA in a step-wise fashion (Lin et al., 2007a), similar to the mechanism of copper 

transfer from the yeast Atx1p chaperone to the Ccc2p copper efflux pump (Pufahl et al., 

1997).   

Metabolic trapping is often applied to examine for channeling (Anderson, 1999; 

Kwok et al., 2006). To differentiate between channeling and a dissociation/re-

association mechanism, the As(III) chelator DMSA was added to the reaction. DMSA 
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has an apparent affinity of approximately 20 μM for As(III) (Spuches et al., 2005), which 

is between the ArsD and ArsA affinities.  Direct transfer of As(III) from ArsD to ArsA 

would be expected to be insensitive to DMSA.  In contrast, if As(III) dissociates from 

ArsD before binding to ArsA, an excess of DMSA should prevent transfer. Using the 

stimulation of ArsA ATPase by the ArsD-As(III) complex, the effect of DMSA was 

examined (Figure 2-10).  DMSA did not affect the basal activity of ArsA, but the As(III)-

stimulated rate of ArsA activity was inhibited by DMSA.  In that experiment ArsA + As(III) 

was titrated with DMSA, and the stimulated ATPase activity returned to basal level at 

higher concentrations of DMSA.  When ArsD was preincubated with As(III) and then 

added to ArsA, the rate of ATP hydrolysis was stimulated, reflecting the chaperone 

activity of ArsD.  Titration of that mixture with DMSA resulted in an initial decrease in 

activity as free As(III) was chelated, but the activity plateaued at a level corresponding 

to the activated rate.  Since ArsD has higher affinity for As(III) than DMSA, it is able to 

retain and transfer metalloid even at higher concentrations of DMSA.  These results are 

consistent with direct transfer of As(III) from ArsD to ArsA.   

2.3.6 Transfer of As(III) from ArsD to ArsA requires catalysis  

We have previously shown that ArsD transfers Sb(III) to ArsA in the presence of 

MgATP (Lin et al., 2007a).  Here transfer of As(III) from ArsD to ArsA was compared 

under catalytic and noncatalytic conditions. Purified MBP-ArsD109 was bound to an 

amylose column. Sufficient As(III) was added to the column to saturate ArsD, following 

which free As(III) was washed off.  Next either ArsA or BSA pre-incubated with 

nucleotides was passed through the column.  When ArsA pre-incubated with MgATP 

was passed through the column at room temperature, conditions under which ArsA 
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hydrolyzes ATP, nearly all of the As(III) eluted in the ArsA-containing fractions, with 

almost none in the MBP-ArsD109-containing fractions (Figure 2-11A and B). In contrast, 

when BSA preincubated with MgATP was passed through the column, almost none of 

the As(III) eluted in the BSA-containing fractions, but eluted in the MBP-ArsD109-

containing fractions (Figure 2-11C).  

When MgADP was used instead of MgATP, As(III) eluted with MBP-ArsD109 and 

not with ArsA (Figure 2-11D).  Similarly, the MgATP-γ-S, a nonhydrolyzable nucleotide, 

did not promote transfer (Figure 2-11E).  When the reaction with MgATP and column 

elution were at 40 C, where ArsA hydrolyzes ATP very slowly, almost no As(III) eluted 

with ArsA but remained bound to MBP-ArsD109 (Figure 2-11F). These data 

demonstrate that ATP hydrolysis is required for As(III) transfer from ArsD to ArsA. 

2.4 Discussion 

 In vivo results quite clearly demonstrate that ArsD is an As(III)/Sb(III) chaperone 

that transfers metalloid to the ArsA ATPase (Lin et al., 2006; Lin et al., 2007a), but the 

molecular details of the process are lacking.  In this study the questions of the nature of 

the metalloid binding site in ArsD and requirements for the transfer reaction were 

addressed. 

From genetic analysis and conservation of residues in homologues, it seemed 

likely that the metalloid binding site in ArsD involved the three conserved cysteines, 

residues 12, 13 and 18.  Here the EXAFS data with wild type ArsD unambiguously 

demonstrate that the binding site is a three-coordinate sulfur-containing site, similar in 

nature but not sequence to the ArsA As(III) binding site (Bhattacharjee et al., 1995) and 

the three convergently evolved sites of three different ArsR repressors (Ordóñez et al., 
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2008; Qin et al., 2007; Shi et al., 1996).  This suggests that a common type of As(III) 

binding site in proteins is composed of three cysteine residues, with similar As-S bond 

distances of 2.24 Å and probably similar geometries.   

 While EXAFS is useful for determining the environment surrounding the bound 

metalloid, a more complete analysis requires quantitative measurements of As(III) 

binding.  Previous assays using gel filtration yield stoichiometries, but it is difficult to 

extract more detailed information from analysis conducted after the reaction is complete.  

Changes in intrinsic protein fluorescence can provide real-time information about ligand 

binding or catalysis.  Full length ArsD has three vicinal cysteines pairs, Cys12-Cys13, 

Cys112-Cys113 and Cys119-Cys120, and two tryptophan residues, Trp35 and Trp97.  

Trp97 fluorescence reports binding of Sb(III) or As(III) to the vicinal Cys112-Cys113 pair 

(Li et al., 2001; Li et al., 2002).  However, only the N-terminal Cys12-Cys13 pair is 

involved in chaperone activity; the C-terminal pairs are dispensable and not present in 

the constructs used for this study. For that reason, the two endogenous tryptophan 

residues were altered by site-directed mutagenesis, and new tryptophan residues 

introduced singly at positions 15 and 17, near the Cys12-Cys13-Cys18 As(III) binding 

site. Fluorescence of either single tryptophan derivative was blue-shifted approximately 

14 nm compared with free tryptophan. The fluorescence was red-shifted and decreased 

by denaturation with guanidine. These results indicate that the two tryptophan residues 

are in a less aqueous environment compared with free tryptophan.  These two 

tryptophans are located between the three cysteines that form the As(III) binding site.  

Both single tryptophan derivates of ArsD exhibited substantial quenching of protein 

fluorescence upon addition of either As(III) or Sb(III), consistent with the region of ArsD 
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containing the metalloid binding site undergoing a conformational change when the site 

is filled. 

 However, the rate of quenching with As(III) was slower than might be expected 

for a simple binding reaction.  If in vivo binding to ArsD was slower than the transfer to 

ArsA, then free arsenite might accumulate in the cytosol, negating the value of a 

chaperone.  As(III) likely forms a As(GS)3 complex with cytosolic GSH, the major 

reduced thiol in E. coli, where it can accumulate to concentrations as high as 10 mM 

(Apontoweil and Berends, 1975; Fahey and Sundquist, 1991). However, ArsA accepts 

metalloid from As(GS)3 no faster than it binds free As(III), so, even though GSH might 

serve as an As(III) buffer, it does not aid in detoxification via the ArsAB pump.  In 

contrast, ArsD accepts metalloid from As(GS)3 faster than can be determined with our 

instrumentation. These considerations lead us to propose that the physiological donor to 

ArsD is As(GS)3 (Figure 2-12).  As arsenite enters E. coli cells via the aquaglyceroporin 

GlpF as As(OH)3, the high concentration of GSH would by mass action rapidly drive 

exchange of hydroxyls for thiols. 

 The next series of steps is proposed to involve the step-wise transfer of As(III) 

from ArsD thiolates to ArsA thiolates.  The lack of effect of the As(III) chelator DMSA on 

the transfer reaction indicates that transfer is direct channeling from one protein to the 

other, rather than dissociation from ArsD and re-association with ArsA. The transfer 

reaction itself apparently requires ArsA to be undergoing catalysis. As(III) is not 

transferred from ArsD to ArsA in the presence of MgADP or MgATP-γ-S, but only in the 

presence of MgATP, and then only at a temperature at which hydrolysis occurs.  During 

the catalytic cycle ArsA undergoes a series of conformational changes in which the A1 
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and A2 halves are open relative to each other to a tightly closed conformation in which 

the product MgADP is trapped (Zhou et al., 2000, 2001).  In our model, ArsD would 

interact with one of the transitional conformations, with transfer of As(III) integral to 

formation of the closed conformation.  Further details of the transfer reaction will require 

structural information about ArsD and the ArsD-ArsA complex. 
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CHAPTER 3   

Correlation between ArsD dimerization and metallochaperone function 

3.1 Introduction 

 In vivo results demonstrate that ArsD is an As(III)/Sb(III) chaperone that transfers 

metalloid to the ArsA ATPase (Lin et al., 2006). ArsD and ArsA interact with each other 

by yeast two-hybrid analysis. ArsD transfers As(III) to ArsA in the presence of Mg2+ and 

ATP. Channeling of arsenic from ArsD to ArsA protected As(III) from chelation by the 

chelator dimercaptosuccinic acid (DMSA). ArsA (Zhou et al., 2000) and ArsD (Ye et al., 

2010). Structures have been solved by crystallization. But the details of interaction 

between ArsD and ArsA are still unknown. Non-tagged wild-type ArsD has been shown 

to be a homodimer by Sephacryl S-200 chromatography (Chen and Rosen, 1997). ArsD 

is also a dimer in the crystal structure. In this section, the question, whether ArsD 

dimerization is required for its function is studied. 

 The residues in dimerization interface observed in the ArsD crystal structure 

were mutated by site-directed mutagenesis. The dimerization status of the mutants was 

analyzed by gel-filtration chromatography. The activity of the mutants was also 

examined. 

 In addition, we did random mutagenesis of the arsD gene by error-prone PCR 

induced with Mn2+ (Cadwell and Joyce, 1992). Then ArsD mutants that lose interaction 

with wild-type ArsD was selected by reverse yeast two-hybrid analysis. The yeast two-

hybrid system is a genetic system engineered to study protein-protein interactions 

(Fields and Song, 1989). Yeast two-hybrid analysis takes advantage of the properties of 

yeast transcriptional factor such as GAL4. GAL4 is a transcriptional activator required 
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for expression of genes encoding enzymes for utilizing galactose. It consists of two 

separate and essential domains. One is the N-terminal DNA binding domain (BD). The 

other is the C-terminal activation domain (AD). The BD binds to a small DNA element 

(UAS, upstream activation sequence), usually in the promoter region of the activated 

genes. The AD recruits the transcriptase to initiate transcription. By expressing a bait 

protein fused with BD and prey protein fused with AD separately from different 

plasmids, a functional GAL4 transcriptional activator can be reconstituted through their 

interaction. A reporter gene was engineered in the yeast chromosome as a marker for 

selection. When the two proteins interact, the reporter gene will be expressed. Usually 

the yeast two-hybrid system uses a nutritional synthetic gene such as his3, a histidine 

synthesis gene, as reporter gene. So only when two proteins interact with each other 

can the yeast cells grow on medium lacking histidine. New systems are also 

constructed using a toxic gene such as ura3 as a reporter gene. ura3 encodes orotidine 

5-phosphate decarboxylase. It can metabolize 5-FOA (5-fluoroorotic acid) to 5-

fluorouridine, an analog of uridine, inhibiting cell growth. Therefore it can be used to 

select for the mutants with weaker interaction or no interaction by growing the yeast 

cells on the plate with 5-FOA.  

3.2 Materials and Methods 

3.2.1 Strains, plasmids and media 

E. coli cells were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 

37°C.  Ampicillin (100 µg/ml) or kanamycin (40 µg/ml) was added as required. E. coli 

strain JM109 [recA1 supE44 endA1 hsdR17 gyrA96 relA1 thiΔ(lac-proAB) F’ (traD36 

proAB+ lacIq lacZΔM15)] was used for molecular cloning. E. coli strain BL21(DE3) [F- 
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ompT hsdSB (rB-mB-) gal dcm (DE3 [lacI lacUV5-T7 gene1 ind1 Sam7 nin5]) was used 

for protein expression and purification. ArsA with a C-terminal 6-histidine tag was 

expressed from plasmid pAlter-dAhB (Li and Rosen, 2000). N-terminal MBP-fused 

ArsD1-109 (henceforth designated MBP-ArsD109) was expressed from plasmid pMAL-

ArsD109 (Lin et al., 2007a). ArsD1-109 with an N-terminal six-histidine tag (henceforth 

designated as wild type His6-ArsD109) was expressed from plasmid pET28a-ArsD109. 

Site-directed mutagenesis was done on plasmid pET28a-ArsD109 to get the mutant 

ArsD109S68A/R87A/R96A. Plasmid pGBT9 and pACT2 were used as S. cerevisiae/E. coli 

shuttle vectors for yeast two-hybrid assay (Lin et al., 2007b).  S. cerevisiae strain 

AH109 (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4∆, gal80∆, 

LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2,URA3::MEL1UAS-MEL1TATA-

lacZ) (Clontech, Mountain View, CA) and MAV203 (MATα; leu2-3,112; trp1-901; 

his3Δ200; ade2-101; cyh2R; can1R; gal4Δ; gal80Δ; GAL1::lacZ; 

HIS3UASGAL1::HIS3@LYS2; SPAL10::URA)  (Invitrogen, Carlsbad, CA) were used for 

yeast two-hybrid assay. Yeast cells were grown in complete yeast extract-peptone-

dextrose (YPD) or minimal synthetic dextrose (SD) media with the appropriate 

supplements at 30°C (Adams et al., 1998). Growth in liquid culture was estimated from 

the absorbance at 600 nm. The strains and plasmids are listed in Table 3-1. 

3.2.2 DNA manipulation and mutagenesis 

Plasmid extraction, DNA restriction endonuclease analysis, ligation and other 

general molecular biological procedures were performed as described (Sambrook et al., 

1989).  Transformation of E. coli cells was carried out using a BIO-RAD MicroPluser 

(BIO-RAD, Hercules, CA). Transformation of Yeast cells was performed using Fast 
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Yeast Transformation™ kit from G-Biosciences (Maryland Heights, MO). DNA 

purification kits were obtained from QIAGEN (Valencia, CA).  Either a Qiaprep Spin 

Miniprep kit or a Qiaquick gel extraction kit (QIAGEN) was used to prepare plasmid 

DNA for restriction enzyme digestion, sequencing, and recovering DNA fragments from 

agarose gels. Zymoprep II™ Yeast Plasmid Miniprep (Zymo Research, Orange, CA) 

was used to extract plasmid from yeast cells. The sequence of new plasmid constructs 

was confirmed by DNA sequencing of the entire gene. Site-directed mutagenesis was 

performed using Quick-change Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA) 

and confirmed by sequencing.  DNA sequencing was performed using a CEQ2000 DNA 

sequencer (Beckman Coulter, Brea, CA).  The primers used are listed in Table 3-2. 

3.2.3 Protein expression and purification 

Cells bearing the indicated plasmids were grown in LB medium overnight at 37°C 

and then diluted 50-fold into 1 L of the same medium. Proteins were expressed by 

induction with 0.3 mM isopropyl-ß-D-thiogalactopyranoside at A600 of 0.6-0.8 for 3 hrs. 

MBP-ArsD109 was purified from E. coli strain BL21(DE3) bearing plasmid pMAL-

ArsD109 as described (Lin et al., 2006). ArsA with a six histidine tag at the C-terminus 

was purified from cells of strain BL21(DE3) expressing pAlter-1-dAhB plasmid, as 

described (Zhou and Rosen, 1997). ArsD and its derivatives with a six histidine tag at 

the N-terminus were purified similarly. Purified proteins were stored at -80°C until use, 

and their concentrations were determined according to the method of Bradford 

(Bradford, 1976) or from the absorption at 280 nm (Gill and von Hippel, 1989). 

3.2.4 Gel-filtration chromatography 

A 1.5cm diameter column filled with 165ml home-packed Superdex-75 (GE 
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Healthcare) gel-filtration column was used to analyze His6-ArsD109 truncation and 

ArsD109 derivatives on a Bio-rad Biological LP chromatography system. 1.5mg 

ovalbumin, 1.5mg carbonic anhydrase and 1.5mg ribonuclease were used as internal 

standard. 2mg His6-ArsD109 or His6-ArsD109 mutants and protein standards in 1ml 

buffer were loaded onto the column pre-equilibrated with column buffer (50mM MOPS, 

200mM NaCl, 5mM 2-mercaptoethanol and 2mM DTT, pH 7.5). A 1.5cm diameter 

column filled with 165ml home-packed Sephacryl-200 (GE Healthcare) gel-filtration 

column was used to analyze MBP-ArsD109 on a Bio-rad Biological LP chromatography 

system. 1.5mg aldolase, 1.5mg conalbumin, and 1.5mg ovalbumine were used as 

internal standard. 2.4mg MBP-ArsD109 and protein standards in 1ml buffer were loaded 

onto the column pre-equilibrated with same column buffer as above. Then the column 

was washed with 200ml of column buffer. Elutions were collected as 1.5ml each 

fraction. Fractions were analyzed by 16% SDS-PAGE for His6-ArsD109 and 12% SDS-

PAGE for MBP-ArsD109. Standard proteins are from Gel Filtration LMW Calibration Kit 

and Gel Filtration HMW Calibration Kit (GE Healthcare). 

3.2.5 ATPase activity assays 

ATPase activity was estimated using a couple assay (Vogel and Steinhart, 1976), 

as described (Hsu and Rosen, 1989). ArsA was added at a final concentration of 0.3 μM 

into an assay mixture containing 5 mM ATP, 1.25 mM phosphoenolpyruvate, 0.25 mM 

NADH, 10 units of pyruvate kinase and lactate dehydrogenase with or without the 

indicated concentrations of potassium antimonyl tartrate or sodium arsenite, in the 

buffer containing 50 mM MOPS-KOH, pH 7.5, 0.25 mM EDTA. ArsD was added at the 

indicated concentrations. The mixture was pre-warmed to 37°C, and the reaction was 
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initiated by addition of 2.5 mM MgCl2 and measured at 340 nm. The linear steady state 

rate of ATP hydrolysis was used to calculate specific activity. The reaction volume was 

0.2 ml each in 96-well microplates, and the reactions were monitored by microplate 

reader SPECTRA max 340PC (Molecular Devices).  

3.2.6 Generation of a random mutated library of PCR fragments  

Random mutagenesis of ArsD was performed using ep-PCR (Cadwell and Joyce, 

1992) by employing biased nucleotide composition of the PCR buffer, high 

concentration of Mg2+ and addition of Mn2+. The ep-PCR reaction mixture (50 μl) 

contained 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 7 mM MgCl2, 0.2 mM each of dATP 

and dGTP, 1 mM each of dCTP and dTTP, 25 pmol each of the oligonucleotide primers, 

80 ng of template DNA, 2.5 U of Taq DNA polymerase (Invitrogen). pGBT9-D plasmid 

DNA was used as template. Primer pGBT9-s (TAA AGA TGC CGT CAC AGA TAG ATT 

G) and pGBT9-a (ACC TGA CCT ACA GGA AAG AGT TAC T) were used as primer, 

and 0.5 mM Mn2+ was added. PCR condition was 1× 96 °C for 3 min, 30× 94 ° for 30 s, 

1×55 °C for 30 s, 1×72 °C for 100s, and, finally, 1× 72 °C for 10 min. The ep PCR 

product was analyzed by agarose gel, extracted from gel and quantified by absorption 

at 260nm.  

3.2.7  Yeast two-hybrid analysis 

Two yeast stains, AH109 (Fields and Song, 1989) and MAV203 (Vidal et al., 

1996), were used. Both are GAL4-based yeast two-hybrid system. Yeast cells are co-

transformed with ars gene-fused pGBT9-X (BD-X) and pACT2-Y (AD-Y) plasmids. 

pGBT9 was modified to pGBT9-k by inserting kanamycin resistant gene for easier 

selection of the mutants. Primers pET28a-3600-AatII (CTA TGA CGT CCA ACC CGG 
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TAA GAC ACG ACT TAT C) and pET28a-5300-AatII (CTA TGA CGT CCG CCC GCT 

CCT TTC GCT TTC TTC C) were used to amplify kanamycin resistant gene from 

pET28a by PCR. Then the PCR product was analyzed by agarose gel, extracted from 

gel and digested by AatII. pGBT9 was also digested with AatII. Then digested PCR 

fragment and vector are ligated and transformed into JM109. The cells were plated on 

the LB plate with kanamycin to select for the vector, pGBT9-k, which shows kanamycin 

resistance. For unknown reason, pGBT9-k loses ampicillin resistance.  

MAV203 was firstly used to select for ArsD mutants that lose the capability of 

dimerization with wild-type ArsD. The ep-PCR fragment was mixed with pGBT9-k vector 

linearized by EcoRI and BamHI, and co-transformed with pACT2-D into MAV203 and 

selected on the SD-L-W plate supplemented with 0.2% 5-FOA (5-Fluoroorotic Acid) 

(Fermentas, Burlington, Ontario). The PCR fragment will be ligated into the vector in 

vivo through homology recombination (Hua et al., 1997). The colonies were pooled and 

colony-PCR was done with primer pGBT-s and pGBT9-a. PCR product was purified by 

agarose gel-extraction, mixed with pGBT9-k vector linearized by EcoRI and BamHI, and 

co-transformed with pACT2-A into AH109 and selected on the SD-L-W-H plates lacking 

histidine. To determine protein-protein interaction by growth of series of dilutions, the 

transformed cells were cultured overnight in SD medium at 30°C and then washed, 

suspended and adjusted to an absorbance of 1 at A600nm in 20 mM Tris-HCl pH 7.5. 

Portions of the cell suspensions (1 μl) were inoculated in serial 10-fold dilutions on SD 

agar plates lacking histidine or with 3-AT at indicated concentration. The plates were 

incubated at 30°C for 3 days.   

3.2.8  Sequencing of ArsD mutant genes in yeast colonies  
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Each yeast colony was grown in corresponding liquid SD medium. The plasmids 

were isolated from yeast by Zymoprep II™ Yeast Plasmid Miniprep Kit (Zymo Research 

Cop. Orange, CA), transformed to E. coli JM109 and grown on LB plate with kanamycin. 

Then the plasmids were extracted from E. coli JM109 and sequenced with the GAL4-BD 

sequencing primer (GAG TAG TAA CAA AGG TCA A).  

3.3 Results  

3.3.1 Dimerization equilibria of MBP-ArsD109 and His6-ArsD109  

Non-tagged wild-type ArsD has been shown to be a homodimer by Sephacryl S-

200 chromatography (Chen and Rosen, 1997). In my studies, both N-terminal MBP 

(maltose binding protein) tagged ArsD and N-terminal six-histidine-tagged ArsD were 

used. Both MBP-ArsD109 and His6-ArsD109 could stimulate ArsA ATPase activity. 

ArsA exhibits apparent affinity for As(III) of approximately 0.5 mM. Both MBP-ArsD109 

and His6-ArsD109 increased ArsA the apparent affinity for As(III) to around 10 μM 

(Figure 3-1). However, these two different ArsD derivatives showed different 

dimerization equilibria by gel-filtration chromatography. The apparent molecule weight 

of MBP-ArsD109 monomer is 56 kDa. It elutes out between standard conalbumin (75 

kDa) and ovalbumin (43 kDa) and is more likely a monomer (Figure 3-2A). The 

molecule weight of His6-ArsD109 is predicted to be 16 kDa for a monomer and 32 kDa 

for a dimer. It elutes out before standard carbonic anhydrase (29 kDa) and so is more 

likely a dimer (Figure 3-2B). Since dimerization is concentration dependent, both MBP-

ArsD109 and His6-ArsD109 could be in equilibrium between monomer and dimer. This 

leads to the question whether ArsD interacts with ArsA as a dimer or a monomer. It is 

also possible that both dimer and monomer are able to interact with ArsA. 
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3.3.2 Mutations at the putative dimerization interface shift ArsD to a monomer 

We attempted to make monomeric ArsD by mutating residues located at the 

major dimerization interface observed in the crystal structure to test whether it is still 

active. Whether the crystallographic ArsD dimer represents the solution dimer is not 

know, but the observed dimer has an extensive interface between two subunits mainly 

contributed by the 4th β-sheet and 3rd and 4th α-helix. In the crystallographic dimer, a 

total surface area of 1,338 Å2 is buried between the two ArsD monomers. This 

represents 11.5% of the total solvent-accessible surface. The dimer is mainly held 

together by hydrogen bonds. Notably, there are at least 10 hydrogen bonds, and the 

donors from one monomer and the acceptor from the other are less than 3.2 Å apart. 

The hydrogen bond and salt bridge was shown in Figure 3-3. The amide and carbonyl 

groups of Ala85 from one monomer make hydrogen bonds to the carbonyl and amide of 

Ala85 from the other monomer, respectively. The hydroxyl of the Ser68 side chain from 

one monomer is hydrogen bonded to the carbonyl of Val83 from the other monomer. 

The carbonyl of Gly86 from one monomer makes hydrogen bonds to the side chain 

amides of Arg96 from the other monomer. The carbonyl of Gly86 from one monomer 

also makes hydrogen bonds to the side chain amides of Arg87 from the other monomer. 

Arg96 and Glu71 form salt-bridge.  

The side chains of Ser68, Arg87 and Arg96 are predicted to contribute hydrogen 

bonds and a salt bridge. A triple mutant was made by mutating these three residues to 

alanines. Eight hydrogen bonds should be eliminated if no new bonds are formed. This 

triple mutant His6-ArsD109S68A/R87A/R96A is predicted to have molecular weight of 16 kDa 

for a monomer and 32 kDa for a dimer, similar to the wild-type His6-ArsD109. In gel-
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filtration chromatography, this mutant elutes after carbonic anhydrase (29 KDa) (Figure 

3-4A) and so is most likely in an equilibrium between dimer and monomer, compared 

with wild-type His6-ArsD109, which elutes before carbonic anhydrase (Figure 3-2B). 

Thus the dimerization equilibrium of this mutant is shifted toward the monomer. This 

suggests that Ser68, Arg87 and Arg96 are involved in dimerization in the solution, and 

that the dimer interface in the crystal structure is similar to that in solution. 

We further mutated four other residues, Glu81, Thr82, Val83 and Met84 to 

alanine residues, creating His6-ArsD109S68A/R87A/R96A/E81A/T82A/V83A/M84A. These seven 

mutations totally changed the 4th β-sheet, which is predicted to be involved in 

dimerization. In gel-filtration chromatography, this mutant elutes between carbonic 

anhydrase (29 kDa) and ribonuclease (13 kDa), suggesting that it is in equilibrium 

between monomer and dimer (Figure 3-4B). However, it does not totally correspond to a 

monomer size, making interpretation difficult.  

The mutant ArsD109S68A/R87A/R96A/E81A/T82A/V83A/M84A stimulated ArsA ATPase 

activity as well as the wild type. Both of wild type His6-ArsD109 and this mutant 

increased the apparent affinity of ArsA for As(III) to around 10 μM (Figure 3-4C), 

suggesting that dimerization may be not required for the ArsD metallochaperone 

function. However, since the mutants are in monomer-dimer equilibrium, this conclusion 

is not firm. 

3.3.3 Generating an ArsD mutant with weaker dimerization 

Since we were unable to change ArsD entirely to a monomeric form by site-

directed mutagenesis, we use yeast random mutagenesis coupled with the yeast two-

hybrid system to select for ArsD mutants that show weaker dimerization. Yeast strain 
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MAV203 has ura3 reporter gene that encodes an enzyme metabolizing 5-FOA (5-

fluoroorotic acid) to 5-fluorouridine, an analog of uridine, inhibiting cell growth. Therefore 

MAV203 can be used to select for mutants with weaker interaction or no interaction as a 

result of ability to grow on plates with 5-FOA (Vidal et al., 1996). ArsD have been shown 

to dimerize by GAL4 yeast two-hybrid analysis with yeast strain AH109 (Lin et al., 

2007b). We confirmed that ArsD also dimerizes in MAV203 and determined that 

MAV203 co-transformed with pACT2-D (encoding wild type AD-ArsD) and pGBT9-D 

(encoding wild type BD-ArsD) cannot grow on SD-L-W plates with 0.2 % 5-FOA. So we 

used 0.2 % 5-FOA to select for ArsD mutants that cannot interact with wild type ArsD or 

interacts more weakly.  

 Using a pair of primers homologous to regions on pGBT9-D (encoding BD-ArsD) 

flanking the inserted arsD gene, error-prone PCR was performed on ArsD as described 

under ‘Materials and Methods’. The purified PCR product was mixed with pGBT9-k 

vector linearized by EcoRI and BamHI, and co-transformed with pACT2-D (encoding 

wild type AD-ArsD) into MAV203 and selected on SD-L-W plates with 0.2 % 5-FOA. 240 

colonies could grow on 5-FOA plates, 8% of the 3000 clones that grew on plates without 

5-FOA. Presumably these colonies might contain not only ArsD mutants interacting 

more weakly with wild type ArsD, but also truncated ArsD mutants, non folding ArsD 

mutants, or even empty pGBT9 vector. Since ArsD interacts with ArsA in yeast strain 

AH109 (Lin et al., 2007b), we further screened the mutants for their ability to still interact 

with ArsA. If they retained the ability to interact with ArsA, they should fold normally. We 

pooled the resulting 240 colonies and used the same primer, homologous to regions on 

pGBT9-D flanking the inserted arsD gene for colony PCR. Then the purified PCR 
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products were mixed with vector plasmid pGBT9-k linearized by EcoRI and BamHI. The 

mixture was co-transformed with pACT2-A (encoding AD-ArsA) into AH109, and 

colonies were selected on SD-L-W-H plates. 55 colonies grew on SD-L-W-H plates, 

0.8% compared with 6500 colonies on the SD-L-W plates. 24 colonies were picked and 

sequenced. Finally, we isolated two ArsD mutants that showed no interaction with wild 

type ArsD but retained interaction with ArsA (Figure 3-5A). These two mutants are 

ArsDL36H, I43F,G86E and ArsDG86E.  

Only the G86E mutation was found in both mutants. Gly86 sits in the dimerization 

interface (Figure 3-3C), suggesting this mutant might be a monomer. His6-ArsD109G86E 

was constructed by site-directed mutagenesis. The protein was expressed, purified and 

analyzed by gel-filtration chromatography. His6-ArsD109G86E eluted between carbonic 

anhydrase (29 KDa) and ribonuclease (13 KDa), suggesting an equilibrium between 

monomer and dimer (Figure 3-5B). Compared with wild-type His6-ArsD109, which 

elutes before carbonic anhydrase (Figure 3-2B), mutant His6-ArsD109G86E was shifted 

toward monomer, consistent with yeast two-hybrid analysis.  

The ability of mutant ArsD109G86E to stimulate ArsA ATPase activity was 

examined. His6-ArsD109G86E increased the apparent affinity of ArsA for As(III) to around 

10 μM (Figure 3-6), again suggesting dimerization may be not required for the ArsD 

metallochaperone function. 

3.4 Discussion 

In vivo results demonstrate that ArsD is an As(III)/Sb(III) chaperone that transfers 

metalloid to the ArsA ATPase (Lin et al., 2006; Lin et al., 2007a), but the molecular 

details of the process are lacking. Structural information about ArsD and the ArsD-ArsA 
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complex is needed to understand the details. ArsD has been shown to be a dimer in 

crystal structure. In this study the correlation between ArsD dimerization and 

metallochaperone function was studied.  

Non-tagged wild-type E. coli R773 ArsD has been shown to be a homodimer by 

Sephacryl S-200 chromatography (Chen and Rosen, 1997). ArsD is also a dimer in the 

crystal structure (Ye et al., 2010). ArsD constructs with either an N-terminal maltose 

binding protein (MBP) tag or an N-terminal His6 tag were used in this study. They were 

both active but behaved differently in gel-filtration chromatography. The monomer-dimer 

equilibrium of MBP-ArsD109 is toward monomer, while the equilibrium of His6-ArsD109 

is toward dimer.  These results could mean that either monomer or dimer of ArsD 

interact with ArsA, so further analysis was required. 

The crystallographic dimerization interface of ArsD involves a series of hydrogen 

bonds and one salt bridge, with the side chains of Ser68, Arg87 and Arg96 participating. 

As a consequence of mutating these residues to alanines, there was a shift in the 

equilibrium toward the monomer direction, but each mutant was still active in terms of 

metallochaperone activity. Using the yeast two-hybrid assay to select and screen 

mutants with reduced interaction with wild-type ArsD but retaining interaction with ArsA, 

the mutation G86E was found to decrease ArsD dimerization. Gly86 is located in the 

dimerization interface in the crystal structure. Gel-filtration chromatography confirmed 

that the equilibrium of His6-ArsD109G86E is shifted toward monomer direction, and this 

mutant retains ability to stimulate ArsA ATPase activity. All these results suggest that 

the dimerization region observed in the crystal structure also exists in solution, and that 

dimerization is not strictly required for ArsD metallochaperone function. 
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Recently the crystal structure of another ArsD homolog from Bacteroides 

vulgatus ATCC 8482 was deposited in the Protein Data Base (pdb: 3KTB; Kim, 

Y.,   Tesar, C.,   Feldmann, B.,   Joachimiak, A., Midwest Center for Structural 

Genomics (MCSG), unpublished). E. coli R773 ArsD is clearly a dimer (Figure 3-7A). 

However, Bacteroides vulgatus ATCC 8482 ArsD has four molecules in the 

crystallographic unit (Figure 3-7C).  In all four molecules, Cys13 and Cys18 form intra-

subunit disulfide bonds. Each two of the subunits form an inter-subunit disulfide bond 

with Cys12 from each subunit. Then two dimers form a tetramer noncovalently. 3KTB 

and R773 ArsDs can be superimposed with an RMSD of 1.0 Å (Figure 3-7B). 

 Although Bacteroides vulgatus ATCC 8482 ArsD is a tetramer in crystal 

structure, it is not known the aggregation status in the solution. But the structure 

definitely suggests different subunit contact positions. The cysteine residues position of 

Bacteroides vulgatus ATCC 8482 ArsD is very consistent with our previous result of 

cysteine crosslinking by dibromobimane that Cys12, Cys13 and Cys18 from one subunit 

are close to the cysteine residues from another subunit (Lin et al., 2007a). So it is also 

possible R773 ArsD may have more than one site of contact between subunits, one at 

the interface shown in R773 ArsD crystal structure and another one is close to the 

cysteines. This may be one reason that no mutant is totally monomeric ArsD. 

 Very recently a new ArsD mutant, P52L, which exhibits increased affinity for wild 

type ArsD was isolated using random mutagenesis and a modified yeast two-hybrid 

assay (unpublished data). In the standard assay cells of histidine-requiring yeast are 

screened for interaction between proteins by the ability to grow in the absence of 

histidine.  3-Aminotriazole (3-AT) is a HIS3 competitive inhibitor that prevents growth. 
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The two proteins fused to AD and BD should interact stronger to support the yeast cell 

growth on the plates with 3-AT. Yeast cells co-transformed with BD-ArsD P52L (mutant 

ArsD fused to BD) and AD-ArsD (wild-type ArsD fused to AD) grow in the presence of 

60 mM 3-AT (Figure 3-8). Interestingly, the yeast two-hybrid results suggest that P52L 

loses interaction with ArsA (Figure 3-8). This may indicate that there is another 

dimerization interface that involves Pro52 (Figure 3-9A and B). The crystal structure 

suggests that a hydrophobic patch may be involved in interaction between subunits in 

neighboring asymmetric units, including Leu48, Phe52, Met53, Phe55, Val56, Val61, 

Ile66 and Ala70, which may form an extensive hydrophobic interface (Figure 3-9C and 

D). Residues Leu48, Pro52, Met53 and Val56 are close to an adjacent subunit, 

contributing to this crystallographic dimerization interface. Although the side chains of 

residues Phe55, Val61 and Ile66 point inward, they are less than 5Å from corresponding 

residues in the adjacent subunit, close enough to form an intra-subunit hydrophobic 

core. They may be important for maintaining the angles between the α2 and α3 helixes 

and may contribute to dimerization as well (Figure 3-9E). This hypothesis can explain 

why mutations in the previous dimerization interface do not result in strict monomer. 

This idea will be tested by future students in the lab.   

 In addition, ultra-centrifugation will be used to analyze the aggregation status of 

ArsD in the solution and to obtain the associating constant of ArsD. In summary, it is still 

unclear whether ArsD is a monomer or dimer when it interacts with ArsA.  
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CHAPTER 4 

Mapping ArsA-ArsD interaction interface by genetic analysis 

4.1 Introduction 

 ArsD is an As(III)/Sb(III) chaperone that transfers metalloid to the ArsA ATPase 

(Lin et al., 2006). ArsD transfers As(III) to ArsA in the presence of Mg2+ and ATP. 

Correspondingly, ArsD can be crosslinked with ArsA in the presence of Mg2+ and ATP, 

by the homofunctional cysteine crosslinker dibromobimane. ArsA structure has been 

solved by crystallization (Zhou et al., 2000). Cys113, Cys172 and Cys422 are close to 

each other and involved in metal binding (Ruan et al., 2006, 2008). ArsD structure has 

been recently solved (Ye et al., 2010). Though the metal binding site is missing in the 

structure, biochemical results suggest that Cys12, Cys13 and Cys18 form a three-sulfur 

coordinated metal binding site important for transferring As(III) to ArsA (Lin et al., 

2007a). According to this, we proposed a model for the metal transfer similar as the 

model shown in Figure 2-12 (Lin et al., 2007a), that ArsA and ArsD interact at their 

metal binding sites, then As(III) is transferred through ligand-exchange between 

cysteine residues of ArsA and ArsD. Consistent with this model, As(III) is protected from 

sequestration by As(III) chelator, DMSA, during transfer from ArsD to ArsA, suggests 

that ArsA-ArsD interaction forms a channel for As(III) transferring from MBS of ArsD to 

MBS of ArsA. However, a detail of interaction between ArsD and ArsA is still unknown.  

Copper chaperone has been found from prokaryotic cells to eukaryotic cells. 

They are most well studied metallochaperone protein. The study of interaction between 

copper chaperone proteins and their targets are summarized in Table 4-1. So far, no co-

crystallization of the wild-type chaperone proteins and their targets has been successful. 
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Through gel-filtration, Cu(I)-CopZ transfer Cu(I) to CopY. But these two protein do not 

come off the gel-filtration column as a complex (Cobine et al., 1999). Similar to this, 

ArsD transfers As(III) to ArsA but they do not form stable complex. The interaction 

between HAH1, and the second or the fifth soluble domains of ATP7A (MNK2 and 

MNK5, respectively), was investigated in solution using heteronuclear NMR. No stable 

adduct is formed between either of the MNK domains and HAH1 (Banci et al., 2005). 

NMR titration shows the formation of an adduct by Cu(I)-HAH1 with WLN4 that is in fast 

exchange on the NMR time scale with the isolated protein species as confirmed by 15N 

relaxation data. A similar interaction is also observed between Cu(I)-HAH1 and WLN2; 

however, the relative amount of the adduct in the protein mixture is lower. In both cases 

the interaction interface can not be mapped by NMR (Achila et al., 2006). All these 

results suggest that the interaction between copper chaperone proteins and their targets 

is weak and transient. Maybe this is a common nature for all metallochaperone proteins 

since their roles are to escort the metal to the target proteins but not stick to their target 

proteins. Unless we can stop the transfer process, the complex will not be stable. One 

example is the complex structure of yeast copper chaperone yCCS and its partner 

protein, superoxide dismutase (SOD1). His48, one of the ligand for copper was mutated 

to Phe in SOD1; in this mutant transfer could not be completed. yCCS and this mutant 

SOD1 form stable complex (Lamb et al., 2000) and can be co-crystallized (Lamb et al., 

2001).  

 Another complex structure was characterized by combination of NMR and in 

silico modeling. The study was conducted with Atx1 and the first MBD of Ccc2. By 

following the 15N and 1H chemical shifts, a new species was detected. This species is in 
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fast exchange with the parent species on the NMR time scale. Nuclear relaxation data 

are consistent with the formation of an adduct (Arnesano et al., 2001). Based on NMR 

chemical shift mapping information, a structure model of the transient complex was 

proposed through in silico docking. The model shows that the interaction is mainly of an 

electrostatic nature with hydrogen bonds stabilizing the complex (Arnesano et al., 

2004).    

 Crystallization and NMR are two major tools to get the details of structural 

information. Dr. Abdul Ajees Abdul Salam in our laboratory is trying to get the crystal 

structure of ArsA-ArsD complex, but with no success so far. Dr. Jun Ye and I tried NMR 

study on ArsD in the hope of mapping interaction interface by following the 15N and 1H 

chemical shifts. However, the inhomogeneous nature of ArsD aggregation state at high 

concentration such as 1 mM required for NMR study has delayed complete assignment. 

 Yeast two-hybrid has been used to show interaction between Atx1 and the N-

terminal MBD of Ccc2 (Pufahl et al., 1997), between Atx1 and copper amine oxidase 

Cao1 (Peter et al., 2008),  between HAH1 and the 2nd or 4th MBD of ATP7B (van 

Dongen et al., 2004), and also between HAH1 and 2nd-6th MBD of ATP7A (Larin et al., 

1999).    

 The yeast two-hybrid system is a genetic system engineered to study protein-

protein interaction (Fields and Song, 1989). It has been widely used to build protein-

protein interaction networks (Bruckner et al., 2009). Yeast two-hybrid analysis takes 

advantage of the properties of yeast transcriptional factor such as GAL4. GAL4 is a 

transcriptional activator required for expression of genes encoding enzymes for utilizing 

galactose. It consists of two separate and essential domains. One is the N-terminal 
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DNA binding domain (BD). The other is the C-terminal activation domain (AD). DNA 

binding domain (BD) binds to a small DNA element (UAS, upstream activation 

sequence), usually in the promoter region of the activated genes. The activation domain 

(AD) recruits the transcriptase to initiate the transcription. By expressing bait protein 

fused with BD and prey protein fused with AD separately from different plasmids, only 

when bait protein and prey protein interact with each other, a functional GAL4 

transcriptional activator can be reconstituted. Usually a reporter gene was engineered in 

the yeast chromosome as a marker for selection. When two proteins interact, the 

reporter gene will be expressed. Normal yeast two-hybrid analysis uses nutrition 

synthetic genes such as his3, a histidine synthesis gene, as a reporter. So only when 

two proteins interact with each other, can the yeast cells grow on media lacking 

histidine. New systems have also been devised using a toxic gene such as ura3 as a 

reporter gene. ura3 encodes orotidine 5-phosphate decarboxylase. It can metabolize 5-

FOA (5-fluoroorotic acid) to 5-fluorouridine, an analog of uridine, inhibiting cell growth. 

Therefore it can be used to select for the mutants with weaker interaction or no 

interaction by growing the yeast cells on the plate with 5-FOA. This is also called 

reverse yeast two-hybrid analysis (Vidal et al., 1996). Mutations interfering with 

interaction can give information about the protein-protein interaction interface. The 

normal yeast two-hybrid analysis has been used to select for the mutants retaining the 

interaction. The absence of interference of these mutation points was used to map the 

protein-protein interaction interface (Dhayalan et al., 2008).  

 Using a yeast two-hybrid system based on the GAL4 transcriptional factor, ArsD 

and ArsA were shown to interact with each other (Lin et al., 2006). Plasmid pACT2 was 
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used to express ArsD or ArsA fused with GAL4 activation domain (GAL4-AD). Plasmid 

pGBT9 was used to express ArsD or ArsA fused with GAL4 DNA binding domain 

(GAL4-BD). Yeast strain AH109 with his3 as reporter gene was used to show ArsD-

ArsA interaction. his3 encodes imidazole glycerol-phosphate dehydratase, catalyzing 

the sixth step in histidine biosynthesis. ArsD-ArsA interaction is indicated by cell growth 

on the plate lacking histidine.  

 Histidine synthesis by HIS3 enzyme is competitively inhibited by 3-AT (3-amino-

1,2,4-triazole) (Klopotowski and Wiater, 1965). If 3-AT was added to the medium, the 

yeast cells need to synthesize more HIS3 to grow normally. 3-AT has been used in the 

yeast three-hybrid system to select RNA with higher affinity to the protein (Cassiday and 

Maher, 2003; Hook et al., 2005).   

 We did random mutagenesis by error-prone PCR induced with Mn2+ on both 

ArsA and ArsD (Cadwell and Joyce, 1992). Then we selected for mutants that lose 

interaction using reverse yeast two-hybrid analysis. 3-AT was used with the yeast two-

hybrid strain AH109 using his3 as a report gene to select for mutants showing stronger 

interaction. In addition, we also did site-directed mutagenesis on lysine residues of ArsD 

and obtained mutants losing function. All these mutants will give us information about 

ArsA-ArsD interaction interface. 

4.2 Materials and Methods 

4.2.1  Reagents 

3-AT (3-amino-1,2,4-triazole) was purchased from MP Biomedicals (Solon, OH). 

5-FOA (5-Fluoroorotic Acid) was purchased from Fermentas (Burlington, Ontario). 

Yeast minimal SD base, amino acid Drop-out supplements, -Leu/-Trp and -Leu/-Trp/-His 
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were purchased from Clontech (Mountain view, CA). Sulfo-NHS Acetate 

(Sulfosuccinimidyl Acetate) was purchased from Thermo Scientific (Rockford, IL). 

Unless otherwise mentioned, all other chemicals were obtained from Sigma. 

4.2.2 Strains, plasmids and media 

E. coli strain JM109 [rcA1 supE44 endA1 hsdR17 gyrA96 relA1 thiΔ(lac-proAB) 

F’ (traD36 proAB+ lacIq lacZΔM15)] was used for molecular cloning. E. coli strain 

BL21(DE3) [hsdS gal(ΔcIts857 ind1 Sam7 nin5 lacUV5-T7 gene1)] was used for protein 

expression and purification. ArsA with C-terminal His6 tag was cloned in the expression 

vector pAlter-1 as pAlter-dAhB (Li and Rosen, 2000). Six histidines tagged ArsD1-109 

truncation was cloned in the expression vector pET28a as pET28a-ArsD109 (Chapter 2). 

E. coli cells were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 37°C.  

Ampicillin (100 µg/ml), kanamycin (40 µg/ml) and 0.3 mM isopropyl-ß-D-

thiogalactopyranoside were added as required. Plasmids pGBT9 and pACT2 were used 

as S. cerevisiae/E. coli shuttle vectors for yeast two-hybrid assay (Lin et al., 2007b).  S. 

cerevisiae strains AH109 (MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4∆, 

gal80∆, LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2,URA3::MEL1UAS-

MEL1TATA-lacZ) (Clontech, Mountain View, CA) and MAV203 (MATα; leu2-3,112; trp1-

901; his3Δ200; ade2-101; cyh2R; can1R; gal4Δ; gal80Δ; GAL1::lacZ; 

HIS3UASGAL1::HIS3@LYS2; SPAL10::URA)  (Invitrogen, Carlsbad, CA) were used for 

yeast two-hybrid assay. Yeast cells were grown in complete yeast extract-peptone-

dextrose (YPD) or minimal synthetic dextrose (SD) media with the appropriate 

supplements at 30°C (Adams et al., 1998). Growth in liquid culture was estimated from 

the absorbance at 600 nm. The strains and plasmids are listed in Table 4-2. 
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4.2.3 DNA manipulation and mutagenesis 

Plasmid extraction, DNA restriction endonuclease analysis, ligation and other 

general molecular biological procedures were performed as described (Sambrook et al., 

1989).  Transformation of E. coli cells was carried out using a BIO-RAD MicroPluser 

(BIO-RAD, Hercules, CA). Transformation of Yeast cells was performed using Fast 

Yeast Transformation™ kit from G-Biosciences (Maryland Heights, MO). DNA 

purification kits were obtained from QIAGEN (Valencia, CA).  Either a Qiaprep Spin 

Miniprep kit or a Qiaquick gel extraction kit (QIAGEN) was used to prepare plasmid 

DNA for restriction enzyme digestion, sequencing, and recovering DNA fragments from 

agarose gels. Zymoprep II™ Yeast Plasmid Miniprep (Zymo Research, Orange, CA) 

was used to extract plasmid from yeast cells. The sequence of new plasmid constructs 

was confirmed by DNA sequencing of the entire gene. Site-directed mutagenesis was 

performed using Quick-change Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA) 

and confirmed by sequencing.  DNA sequencing was performed using a CEQ2000 DNA 

sequencer (Beckman Coulter, Brea, CA).  The primers used are listed in Table 4-3. 

4.2.4 Generation of a random mutated library of PCR fragments  

Random mutagenesis of ArsA or ArsD was performed using ep-PCR (Cadwell 

and Joyce, 1992) by employing biased nucleotide composition of the PCR buffer, high 

concentration of Mg2+ and addition of Mn2+. The ep-PCR reaction mixture (50 μl) 

contained 20 mM Tris–HCl (pH 8.4), 50 mM KCl, 7 mM MgCl2, 0.2 mM each of dATP 

and dGTP, 1 mM each of dCTP and dTTP, 25 pmol each of the oligonucleotide primers, 

80 ng of template DNA, 2.5 U of Taq DNA polymerase (Invitrogen).  
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 For ArsA, pACT2-A plasmid DNA was used as template, and pACT2-s (CTA TTC 

GAT GAT GAA GAT ACC CCA CCA AAC CC) and pACT2-a (AGG TTA CAT GGC 

CAA GAT TGA AAC TTA GAG GAG) were used as primer, 0.1mM Mn2+ was added. 

PCR condition was 1× 96 °C for 3 min, 30× 94 ° for 30 s, 1× 55 °C for 30 s, 1× 72 °C for 

4 min, and, finally, 1× 72 °C for 10 min. For ArsD, pGBT9-D plasmid DNA was used as 

template, and pGBT9-s (TAA AGA TGC CGT CAC AGA TAG ATT G) and pGBT9-a 

(ACC TGA CCT ACA GGA AAG AGT TAC T) were used as primer. 0.5mM Mn2+ was 

added. PCR condition was similar to the condition for ArsA, only extension time at 72°C 

is changed to 100 s. The ep PCR product was analyzed by agarose gel, extracted from 

gel and quantified by absorption at 260nm. 

4.2.5  Yeast two-hybrid analysis 

Two yeast stains, AH109 (Fields and Song, 1989) and MAV203 (Vidal et al., 

1996), were used. Both are GAL4-based yeast two-hybrid system. AH109 was used to 

analyze protein-protein interaction or select the mutants that retaining capability of 

interaction or showing stronger interaction in the presence of 3-AT (3-amino-1,2,4-

triazole) (Sigma-Aldrich, St. Louis, MO). MAV203 was used to select for the mutants 

that lose the capability of interaction through counter-selection in the presence of 5-FOA 

(5-Fluoroorotic Acid) (Fermentas, Burlington, Ontario). Yeast cells are co-transformed 

with ars gene-fused pGBT9-X (BD-X) and pACT2-Y (AD-Y) plasmids. To determine 

protein-protein interaction by growth of series of dilutions, the transformed cells were 

cultured overnight in SD medium at 30°C and then washed, suspended and adjusted to 

an absorbance of 1 at A600nm in 20 mM Tris-HCl pH 7.5. Portions of the cell suspensions 
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(1 μl) were inoculated in serial 10-fold dilutions on SD agar plates lacking histidine or 

with 3-AT at indicated concentration. The plates were incubated at 30°C for 3 days.   

 pGBT9 was modified to pGBT9-k as in Chapter 2. To select for ArsD mutants, 

the ep-PCR fragment was mixed with pGBT9-k vector linearized by EcorI and BamHI, 

and co-transformed with pACT2-A or pACT2-D into yeast-strains and selected on the 

indicated plates. The PCR fragment will be ligated into the vector in vivo through 

homology recombination (Hua et al., 1997). To select for ArsA mutants, the ep-PCR 

fragment was mixed with pACT2 vector linearized by EcorI EcoRI and BamHI, and co-

transformed with pGBT9-k-D into yeast-strains and selected on the indicated plates. 

4.2.6  Sequencing of ArsD and ArsA mutant genes in yeast colonies  

Each yeast colony was grown in corresponding liquid SD medium. The plasmids 

were isolated from yeast by Zymoprep II™ Yeast Plasmid Miniprep Kit (Zymo Research 

Cop. Orange, CA), transformed to E. coli JM109 and grown on LB plate with ampicillin 

for ArsA and kanamycin for ArsD. Then the plasmids were extracted from E. coli JM109 

and sequenced as the following. For ArsD, mutant genes on pGBT9-k vector were 

sequenced with the GAL4-BD sequencing primer (GAG TAG TAA CAA AGG TCA A). 

For ArsA, mutant genes on pACT2 vector were sequenced with five sets of primers 

(GAL4-AD sequencing primer: AAT ACC ACT ACA ATG GAT; ArsA-100-s:  GTC CTG 

CCT GAT GAC GTT GTT TCC A; ArsA-220-s: GTC GCC CGG ACT CAT CTG GAA 

CTT G; ArsA-420-s: AAG AGG ACT TAC GCT CAC CTT GCA C; ArsA-480-a: CGT 

GAC CAG TAA CAC TTT AGT GCG). 

4.2.7 Protein expression and purification 

Cells bearing the indicated plasmids were grown in LB medium overnight at 37°C 
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and then diluted 50-fold into 1 L of the same medium. Proteins were expressed by 

induction with 0.3 mM isopropyl-ß-D-thiogalactopyranoside at A600 of 0.6-0.8 for 3 hrs. 

ArsA with a six histidine tag at the C-terminus was purified from cells of strain 

BL21(DE3) expressing pAlter-1-dAhB plasmid, as described (Zhou and Rosen, 1997). 

Cells were harvested by centrifugation and washed once with a buffer containing 50 mM 

MOPS, pH 7.5, 0.5 M NaCl, 30 mM Imidazole and 10 mM 2-mercaptoethanol (Buffer A). 

The cells were suspended in 5 ml of Buffer A per gram of wet cells and lysed by a single 

passage through a French press at 20,000 psi.  Diisopropyl fluorophosphate (DIFP) 

(Sigma) was added at 2.5 μl/g wet cells immediately following French press. Unbroken 

cells and membranes were removed by centrifugation at 150,000 x g for 1 hr at 4oC. 

The supernatant was loaded to 10 ml Probond Ni-column (Invitrogen) pre-equilibrated 

with Buffer A.  Unbound proteins were washed by 60 ml of buffer A, and ArsA was 

eluted with imidazole gradient generated by Buffer A and Buffer B(50 mM MOPS, pH 

7.5, 0.5 M NaCl, 300 mM Imidazole and 10 mM 2-mercaptoethanol), followed by 

addition of 0.25 mM EDTA and 5 mM DTT to each fraction. ArsA containing fractions 

were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), pooled, concentrated by Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-10 

membrane (Millipore), mixed with 10% glycerol, aliquoted and stored at -80oC until used. 

ArsD and its derivatives with a six histidine tag at the N-terminus were purified similarly. 

Purified proteins were stored at -80°C until use, and their concentrations were 

determined according to the method of Bradford (Bradford, 1976) or from the absorption 

at 280 nm (Gill and von Hippel, 1989). 

4.2.8 ATPase activity assays 
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ATPase activity was estimated using a couple assay (Vogel and Steinhart, 1976), 

as described (Hsu and Rosen, 1989). ArsA was added at a final concentration of 0.3 μM 

into an assay mixture containing 5 mM ATP, 1.25 mM phosphoenolpyruvate, 0.25 mM 

NADH, 10 units of pyruvate kinase and lactate dehydrogenase with or without the 

indicated concentrations of sodium arsenite, in the buffer containing 50 mM MOPS-KOH, 

pH 7.5, 0.25 mM EDTA. ArsD was added at the indicated concentrations. The mixture 

was pre-warmed to 37°C, and the reaction was initiated by addition of 2.5 mM MgCl2 

and measured at 340 nm. The linear steady state rate of ATP hydrolysis was used to 

calculate specific activity. The reaction volume was 0.2 ml each in 96-well microplates, 

and the reactions were monitored by microplate reader SPECTRA max 340PC 

(Molecular Devices).  

4.2.9 Acetylation of lysine by Sulfo-NHS acetate 

The Buffer of purified ArsD or ArsD derivatives was exchanged with a buffer 

containing 50 mM MOPS-KOH, 200mM NaCl, pH 7.8, 0.25 mM EDTA, 5mM TCEP and 

5mM DTT. Dissolve Sulfo-NHS acetate in pure water to 100mM. Dilute protein to 1 mM 

concentration. Add Sulfo-NHS acetate at 10 fold concentration of free amine in the 

protein solution. It is like mixing 1 ml of 1 M protein solution with 0.7 ml of 100 mM 

Sulfo-NHS acetate for ArsD109 or 0.3 ml of 100 mM Sulfo-NHS acetate for 

ArsD109K2/104A-K37/62R and ArsD109K2/104A-K60/90A. Mixture was incubated for 60 min at 

room temperature. 200 ul of 0.5 M Tris pH 6.8 was added to quench the reaction for 20 

min. Then protein was diluted with 10ml buffer of 50 mM MOPS-KOH, pH 7.5, 200 mM 

NaCl, 0.25 mM EDTA, 5 mM TCEP and 5 mM DTT and concentrated to 1ml with 

Amicon Ultra-15 Centrifugal Filter Unit. Repeat dilution with buffer and concentrating for 



 

 

79

three more times to totally change protein buffer. Finally protein was concentrated, 

mixed with 10% glycerol, aliquoted and stored at -80oC until used. 

4.2.10 Metalloid binding assay  

The buffer of purified ArsD was exchanged with a buffer containing 50 mM 

MOPS-KOH, pH 7.5, 0.25 mM EDTA (ATPase assay buffer), using a Bio-Gel P-6 Micro 

Bio-Spin column (Bio-Rad, Hercules, CA).  Purified protein (100 μM) was incubated at 

4oC with 300 μM potassium antimonyl tartrate. After 1 h, each sample was passed 

through a Bio-Gel P-6 column pre-exchanged with the ATPase assay buffer. ArsA 

protein concentration in the flow through was quantified from the absorption at 280 nm 

(Gill and von Hippel, 1989) or according to the method of Bradford (Bradford, 1976). 

Flow through were diluted with 2% HNO3, and the quantity of metalloid was measured 

by inductively coupled mass spectrometry (ICP-MS) with a PerkinElmer ELAN 9000.  

Antimony standard solutions in the range of 1-20 ppb in 2% HNO3 were obtained from 

Ultra Scientific, Inc. (North Kingstown, RI). From the ratio of antimony concentration and 

protein concentration in the flow through, the binding molar ratio is calculated. 

4.3 Results 

4.3.1 ArsD mutants showing stronger interaction with ArsA 

AH109 uses his3 as the reporter gene. his3 will be transcribed when two proteins 

interact with each other. Histidine synthesis by HIS3 enzyme is competitively inhibited 

by 3-AT (3-amino-1,2,4-triazole) (Klopotowski and Wiater, 1965). If 3-AT was added to 

the medium, the yeast cells need to synthesize more HIS3 to grow normally. Here 3-AT 

was used in yeast two-hybrid analysis to qualitatively distinguish interaction strength 

between two proteins and select for stronger interaction mutants. Using a pair of primer 
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homologous to regions on pGBT9-D flanking the inserted arsD gene, error-prone PCR 

was done on ArsD in the presence of Mn2+. The purified ep-PCR product was mixed 

with pGBT9-k vector linearized by EcoRI and BamHI, co-transformed with pACT2-D into 

AH109 and selected on SD-L-W-H plates with 10 mM 3-AT. The PCR fragment was 

ligated into the vector in vivo through homology recombination (Hua et al., 1997). 

Around 30 colonies grew on SD-L-W-H plates with 10 mM 3-AT. We sequenced the 

ArsD gene in each colony. Some contained a single mutation, while others contained 

multiple mutations. Some mutations occurred only once, but mutations such as S14R, 

T20I, Q24L, D28V and Q34R were found in many mutants. These mutations were 

reintroduced by site-directed mutagenesis as single mutation and tested to see whether 

they increased the strength of interaction with ArsA, as shown in Figure 4-1 (only 

mutants with stronger interaction are shown).   

ArsDs with any of nine mutations at eight positions, including two at Asp 28, 

D28V and D28V, exhibit stronger interaction with ArsA (Figure 4-1). AH109 yeast cells 

co-transformed with pGBT9-k-D (encoding the GAL4 DNA binding domain fused with 

wild-type ArsD, BD-ArsD) and pACT2-A (encoding the GAL4 activation domain fused 

with wild-type ArsA, AD-ArsA) do not grow on SD-L-W-H plates with 10 mM 3-AT, while 

AH109 yeast cell co-transformed with pGBT9-k-DS14R (encoding BD-ArsDS14R) and 

pACT2-A grows normally on plates with 30mM 3-AT, and the mutation has no effect on 

dimerization with wild-type ArsD when co-transformed with pACT2-D (encoding wild-

type AD-ArsD) (Figure 4-1, right panel). ArsD mutants, T20I, Q24L, D28V, D28T, T31A, 

Q34R and V61A behave similarly as the S14R mutant. Mutant Q38R only slightly 

increases the strength of interaction with ArsA, as shown that cells grow on plates 
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containing 10 mM 3-AT but not on plates containing 30 mM 3-AT. Ser 14 and Thr 20 are 

in the loop containing the metal binding site formed by three cysteine residues Cys12, 

Cys13 and Cys18. Four residues, Gln24, Asp28, Thr31 and Gln34, are located on the 

same face of the first α-helix (Figure 4-7A). Q38R shows a slight effect on the 

interaction with ArsA and is located just following the above four residues on the same 

α-helix. These results suggest that a strip formed by these 5 residues on this α-helix 

may be involved in direct contact of ArsD with ArsA.  

4.3.2  Lys37 and Lys62 are involved in interaction with ArsA 

One unsuccessful approach had been to attempt to crosslink the ArsD dimer 

using amine-specific homofunctional crosslinker.  As part of that, we made series of 

ArsD lysine mutants to reduce nonspecific crosslinking. ArsD has 6 lysine residues, 

Lys2, Lys 37, Lys60, Lys62, Lys90 and Lys104. One of the mutants, ArsD109K2/104A-

K37/62A, was not able to stimulate ArsA ATPase activity (Figure 4-2A), suggesting that 

one or more of those four lysine residues might be involved in ArsD metallochaperone 

function, shown as increasing the apparent affinity of ArsA for As(III) in this assay. To 

identify which lysine residue(s) is (are) involved, we examined more ArsD mutants 

carrying fewer lysine mutations.  ArsD109K2/104A stimulates ArsA ATPase activity as well 

as the parental ArsD109. ArsD109 increases ArsA apparent affinity for As(III) from 535 

μM to 15 μM, and ArsDK2/104A increases to 8 μM. However, ArsD109K37A and 

ArsD109K62A individually only increase ArsA apparent affinity for As(III) to 126 μM and 

289 μM respectively, suggesting that Lys37 and Lys62 together, but not Lys2 and 

Lys104, may play roles during arsenic transfer from ArsD to ArsA. Thus, it appears that 
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the two mutations at Lys37 and Lys62 are synergistic in their effect on ArsD 

metallochaperone function. 

We further examined lysine residues Lys60 and Lys90 to see whether they are 

involved in the arsenic transfer. By mutating both of them to alanine, ArsD109K2/104A-

K60/90A increases ArsA apparent affinity for As(III) to 21 μM (Figure 4-2B), almost same 

as wild-type ArsD109, indicating that neither Lys60 nor Lys90 are required for arsenic 

transfer from ArsD to ArsA.   

To examine the requirement for a positive charge, Lys37 and Lys62 were 

changed to arginine. ArsD109K2/104A-K37/62R increases the apparent affinity of ArsA for 

As(III) to 15 μM, similar to ArsD109 (Figure 4-2B). Compared with ArsD109K2/104A-K37/62A, 

which loses ability to stimulate ArsA ATPase activity, arginine mutant ArsD109K2/104A-

K37/62R is still active, suggesting that a positive charge may be required for ArsD 

metallochaperone function. This was further supported by chemical modification of 

lysine residues with Sulfo-NHS acetate (sulfosuccinimidyl acetate), which acetylates 

amine group and neutralizes the positive charge.  ArsD109 increases the apparent 

affinity of ArsA for As(III) from 521 μM to 12 μM before acetylation, and 204 μM after 

acetylation, consistent with the involvement of lysine residues in metallochaperone 

activity. Acetylation decreases wild-type activity dramatically although not completely, 

which might be due to partial acetylation (Figure 4-3). Mutant ArsD109K2/104A-K60/90A, with 

only lysine residues Lys37 and Lys62 remaining, increases the apparent affinity of ArsA 

for As(III) to 26 μM before acetylation, and 283 μM after acetylation. This suggests that 

acetylation of Lys37 and Lys62 causes loss of ArsD metallochaperone function. Mutant 

ArsD109K2/104A-K37/62R, with only lysine residues Lys60 and Lys90 left, increases ArsA 
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apparent affinity for As(III) to 12 μM before acetylation, and 7 μM after acetylation. This 

is consistent with the result above that Lys 60 and Lys 90 are not required for 

stimulating ArsA ATPase activity. It also indicates that acetylation has no effect on other 

non-lysine residues. It is not surprised that acetylation has no effect on ArsD109K2/104A-

K37/62R, in which Lys37 and Lys62 were mutated to arginine, since acetylation by Sulfo-

NHS does not change the positive charge of arginine residues. All of these results 

suggest that Lys37 and Lys62 are involved for the ArsD metallochaperone function and 

that a positive charge at these positions is important. 

The antimony binding capability of the mutant ArsD109K2/104A-K37/62A was 

measured by gel-filtration and ICP-MS quantification. As expected, the parental 

ArsD109 binds approximately one Sb(III) per monomer (Lin et al., 2007a). 

ArsD109C12/13S-C18A, with no metalloid binding site, binds only a background level of 

Sb(III) (Lin et al., 2007a). ArsD109K2/104A-K37/62A binds Sb(III) as well as ArsD109, about 

one Sb(III) per monomer (Figure 4-4A). Interaction between ArsD lysine mutants and 

ArsA was investigated using yeast two-hybrid analysis. All of the mutants interact with 

wild-type ArsD, suggesting these mutants fold and dimerize (Figure 4-4B). This is also 

supported by the fact that these mutants can be overexpressed in E. coli and purified 

from the cytosolic soluble fraction. ArsDK2/104A-K37/62A does not interact with ArsA, while 

ArsDK2/104A-K37/62R and ArsDK2/104A-K60/90A interacts with ArsA as well as wild-type ArsD. 

This is consistent with above results that ArsD109K2/104A-K37/62A does not stimulate ArsA 

ATPase activity, but ArsD109K2/104A-K37/62R and ArsD109K2/104A-K60/90A do stimulate. K37A 

and K62A mutations were separated, and their individual effects on ArsA interaction 

was examined by yeast two-hybrid analysis. ArsD109K2/104A-K37A interacts with ArsA 
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poorly compared with wild-type ArsD, while ArsD109K2/104A-K62A interacts with ArsA 

almost same as wild-type, indicating that Lys37 may be more important than Lys62 in 

terms of interaction with ArsA. 

All these results suggest that mutating Lys37 and Lys62 to alanine does not 

affect metal binding ability of ArsD but causes loss of interaction with ArsA, leading to 

inability of transfer As(III) to ArsA and to stimulate ArsA ATPase activity. In the crystal 

structure, Lys37 is in the same first α-helix as residues Gln24, Asp28, Thr31, Gln34 and 

Gln38 (Fig. 4-7A). This is consistent with our hypothesis that this helix is involved in 

interaction with ArsA. On the other hand Lys62 is adjacent to Val61, located in the third 

α-helix, which is on the other side of the ArsD structure compared with the first α-helix 

(Figure 4-7A). The above results show that a V61A mutant interacts more strongly with 

ArsA, suggesting that the third α-helix, in which Val61 and Lys62 are located, may be 

another point of interaction with ArsA.  

4.3.3  ArsD mutants showing weaker interaction with ArsA 

Yeast strain MAV203 has the reporter gene ura3, which encodes an enzyme that 

metabolizes 5-FOA (5-fluoroorotic acid) to 5-fluorouridine, a toxic analogue of uridine 

that inhibits cell growth. Therefore MAV203 can be used to select for mutants with 

weaker or no interaction by selecting for growth on plates with 5-FOA (Vidal et al., 1996). 

ArsA and ArsD have been shown to interact with each other in GAL4 yeast two-hybrid 

system AH109 (Lin et al., 2007b). We confirmed that ArsA and ArsD also interact with 

each other in strain MAV203 and determined that MAV203 co-transformed with pACT2-

A (encoding AD-ArsA) and pGBT9-D (encoding wild-type BD-ArsD) cannot grow on SD-
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L-W plates with 0.2 % 5-FOA. So we use 0.2 % 5-FOA to select for ArsD mutants that 

cannot interact with ArsA or interact more weakly.  

 Using a pair of primer homologous to regions on pGBT9-D (encoding BD-ArsD) 

flanking the inserted arsD gene, error-prone PCR was done as described under 

‘Materials and Methods’. The purified PCR product was mixed with pGBT9-k vector 

linearized by EcoRI and BamHI, and co-transformed with pACT2-A (encoding AD-ArsA) 

into MAV203 and selected on SD-L-W plates with 0.2 % 5-FOA. 70 colonies were 

isolated from 5-FOA plates, 7% of the 1000 clones on plates without 5-FOA. Of these 

mutants, some will be ArsD mutants that interact more weakly with ArsA, but others 

may be prematurely chain terminating ArsD mutants, unfolded ArsD mutants, or even 

empty pGBT9 vector. Since ArsD forms a dimer in yeast two-hybrid AH109 (Lin et al., 

2007b), we further screened for those mutants that could still dimerize with wild-type 

ArsD, with the assumption that these should fold normally. We pooled all 70 colonies, 

and used the same primer, homologous to regions on pGBT9-D flanking the inserted 

arsD gene, for colony PCR. The purified PCR products were mixed with plasmid 

pGBT9-k that had been linearized with EcoRI and BamHI, co-transformed with plasmid 

pACT2-D (encoding AD-ArsD) into AH109 and selected on SD-L-W-H plates. 300 

colonies grew on SD-L-W-H plates, 7% of the 4000 colonies that grew on SD-L-W 

plates. 30 colonies were purified and sequenced. Finally we isolated 5 ArsD mutants 

showing weaker or no interaction with ArsA but still dimerizing with wild-type ArsD 

(Figure 4-5A). These mutants are ArsDV17A, ArsDV22A, ArsDV27D, ArsDQ51H, and ArsDF55L. 

Residues Val17 and Val22 are in the loop containing the metalloid binding site (Cys12, 

Cys13 and Cys18). Val27 is in the first α-helix, in which residues Gln24, Asp28, Thr31, 
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Gln34, Lys37 and Gln38 have been shown above to be important for the interaction with 

ArsA (Figure 4-7A). This supports our hypothesis that this first α-helix is involved in the 

interaction with ArsA. 

4.3.4  ArsA mutants restoring interaction with ArsD mutants 

To select for mutants that restored the ability of ArsD mutants to interact with 

ArsA, we used random mutagenesis of ArsA in plasmid pACT2-A. Using a pair of primer 

homologous to regions on pACT2 flanking the multiple cloning sites, error-prone PCR 

was done on ArsA, as described under ‘Materials and Methods’. The purified PCR 

product was mixed with the plasmid pACT2 linearized with EcoRI and BamHI, co-

transformed with ArsD mutants in the plasmid pGBT9-k into strain AH109 and selected 

on SD-L-W-H plates. Five ArsA mutants, ArsAP9L,L74H,D121G,F123L,E425A, ArsAD121E, 

ArsAG111C,E400V,L530H,Q557L, ArsAL179R,H219L, and ArsAA29S,R88G,D121N,V215A,T401A, restored 

interaction with ArsDV22A but also retained ability of interaction with wild-type ArsD 

(Figure 4-5B). Three ArsA mutants, ArsAD121E, ArsAE425K,L564H, and ArsAD417N, restored 

interaction with ArsDF55L (Figure 4-5C).  Six ArsA mutants, ArsAL152R,F162L,D513Y,S560C, 

ArsAD121E,L207P, ArsAI65T,Q84L,D121E,H453L, ArsAV101A,R151H,S570T, ArsAT149A,I150H,E438D, and 

ArsAD121G,E405V,E415V,H558R, restored interaction with ArsDQ51H (Figure 4-5D). All of the 

ArsA mutants retained the ability to interact with wild-type ArsD, and one mutant 

ArsAD121E, restored interaction with both ArsDV22A and ArsDF55L. This suggests that the 

compensation of mutation on ArsA is not specific for the particular mutation in ArsD but 

increase interactions from another site in ArsD, since an extensive interaction interface 

was identified on ArsD.  

4.3.5  ArsA mutants showing stronger interaction with ArsD 
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Using a pair of primer homologous to regions on pACT2 flanking the multiple 

cloning sites, error-prone PCR was done on ArsA. The purified PCR product was mixed 

with vector pACT2 linearized by EcoRI and BamHI, co-transformed with pGBT9-D into 

AH109 and selected on SD-L-W-H plates with 20 mM 3-AT. Six ArsA mutants show 

stronger interaction with wild-type ArsD (Figure 4-6). AH109 yeast cells co-transformed 

with pACT2-A or other ArsA mutants and pGBT9-k-D (encoding wild-type ArsD) were 

spotted on SD-L-W-H plates with different concentrations of 3-AT. Cells with wild-type 

ArsA cannot grow on plates with 10 mM 3-AT. ArsAI117M,E425G and ArsAH368L,E425k confer 

resistance to 60 mM 3-AT, and both have Glu425 mutation. ArsAF120L,L193S and 

ArsAF54L,F120L,H219R,E254V,F443L,K475R,A533T confer resistance to 120 mM 3-AT, and both have 

mutations at Phe120. ArsAD121E and ArsAD121N confer resistance to 30 mM 3-AT, and 

both have mutation at Asp121 position. These results suggest that ArsA residues 

Glu425, Phe120 and Asp121 may be involved in interaction with ArsD. 

 Another Asp121 mutant, ArsAD121G,E405V,E415V,H558R, which was isolated as 

complementing mutation Q51H in ArsD, also confers resistance to 60 mM 3-AT. 

ArsAP9L,L74H,D121G,F123L,E425A was isolated by ability to complement mutation V22A in ArsD. 

This multiple mutant contains changes at Asp121 and Glu425 and confers resistance to 

90 mM 3-AT (Figure 4-6). 

4.4 Discussion 

ArsD transfers As(III) to ArsA in the presence of Mg2+ and ATP (Lin et al., 2006). 

In vitro experiments suggest that ArsD and ArsA interact through their metal binding 

sites. ArsA and ArsD crystal structures have been solved individually, but the details of 

their interactions are still unknown. In this study, yeast forward and reverse two-hybrid 
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selections were used to isolate mutants with stronger or weaker interactions, providing 

information about the physical interface between ArsA and ArsD.  Totally 16 mutations 

in ArsD were identified to affect ArsA-ArsD interaction (Table 4-4).  

Using 3-AT and strain AH109 with his3 as report gene, nine ArsD mutants were 

found to increase the strength of interaction with ArsA. They include ArsDS14R, ArsDT20I, 

ArsDQ24L, ArsDD28V, ArsDD28T, ArsDT31A, ArsDQ34R, ArsDQ38R and ArsDV61A. Using reverse 

yeast two-hybrid selection, five ArsD mutants were isolated that show loss of or weaker 

interaction with ArsA. These mutants still dimerize with wild-type ArsD, indicating that 

the mutations do not cause protein misfolding. These five mutants are ArsDV17A, 

ArsDV22A, ArsDV27D, ArsDQ51H and ArsDF55L.  

Through site-directed mutagenesis, Lys37 and Lys62 were found to be significant 

for ArsD metallochaperone function. If mutated Lys37 or Lys62 to alanine individually, 

the resulting ArsD proteins partially lose the ability to stimulate ArsA ATPase activity. If 

mutated to alanine together, the resulting protein was unable to stimulate ArsA, 

suggesting a synergistic effect of these two lysines. However, if mutated to arginines, 

the resulting protein is still active, indicating that a requirement for positively charged 

residues. The effect of acetylation of lysine residues with Sulfo-NHS acetate further 

supported the requirement for positive charge. When both Lys37 and Lys62 were 

mutated to alanines, the resulting protein retains the ability to bind antimony but loses 

interaction with ArsA in yeast two-hybrid analysis. 

In total, 16 mutations of 15 amino residues show either stronger or weaker 

interactions with ArsA. They are at amino acid residues, Ser14, Val17, Thr20, Val22, 

Gln24, Val27, Asp28, Thr31, Gln34, Lys37, Gln38, Gln51, Phe55, Val61 and Lys62 
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(Table 4-4). These residues were mapped on the structure of ArsD (Figure 4-7). The 

ArsD monomer has a thioredoxin fold of four β-strands flanked by four α-helices.  

Residues 12 to 22 are mostly disordered in this structure. To show all the mutations, an 

ArsD structural model with residues 12 to 22 inserted was constructed by homology 

modeling (Ye et al., 2010). ArsD helices α1 and α4 are on one side of the ß-strands; α2 

and α3 are on the other side. α2 is almost perpendicular to α3, with only one residue 

between them. ß1 is between ß2 and ß3, parallel to ß2 and anti-parallel to ß3. ß3 and 

ß4 form a ß-hairpin. Residues 70 to 72 form a short 310 helix.  

Four residues, Ser14, Val17, Thr20 and Val22, are in the same loop as Cys12-

Cys13-Cys18. This is consistent with our model that the region near metal binding site 

is involved in direct contact with ArsA. Seven residues, Gln24, Val27, Asp28, Thr31, 

Gln34, Lys37 and Gln38, are in helix α1 just following the loop containing the metal 

binding site. They are aligned on one side of the helix and solvent exposed, suggesting 

that this surface is directly involved in interaction, or, alternatively, that the helix helps to 

position the metalloid binding loop in correct orientation to interact with ArsA. Another 

four residues Gln51, Phe55, Val61 and Lys62, are on helices α2 and α3. This region 

could also be involved in interaction with ArsA or, again, may also serve to position the 

loop for interaction with ArsA.   

Metallated ArsD interacts with and transfers As(III) to ArsA during catalysis, when 

the ATPase cycles between open to closed conformations (Lin et al., 2007a; Ruan et 

al., 2006). The x-ray crystal structure of ArsA has been solved in the closed form (Zhou 

et al., 2000, 2001). A yeast homologue termed Arr4p or Get3 (Auld et al., 2006) is 

involved in targeting tail-anchored proteins in the endoplasmic reticulum (Bozkurt et al., 
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2009). Recently crystal structures of Get3 were solved in the open (nucleotide free) and 

closed (ADP-AlF4
-) conformations (Mateja et al., 2009). ArsA has two homologous 

halves, A1 and A2, each with a nucleotide binding domain (NBD) connected by a short 

linker, while Get3 is a dimer of two identical monomers, each homologous to either A1 

or A2. In the open Get3 conformation there is a large conformational change, and the 

two monomers are separated by approximately 37º rotation of one subunit towards the 

other relative to their orientation in the closed form, which is more compact.  The ADP-

AlF4
- closed ArsA structure can be superimposed with Get3 closed structure with an 

RMSD of 3.4 Å for 420 Cα atoms (Figure 4-9A). ArsA NBD1 (residue 1-297)  and NBD2 

(298-583) can be superimposed with the two monomers in the Get3 open structure, with 

RMSD of 2.3 Å and 3.0 Å, respectively (Figure 4-9B).  An open model of the ArsA 

structure based on the open Get3 structure was generated for analysis of ArsA-ArsD 

interactions and docking studies (Figure 4-9C) (Ye et al., 2010).  

The open ArsA and metallated ArsD models were docked by using the fully 

automated, web-based program ClusPro Version 2.0 with balanced coefficients and 

default parameters (Ye et al., 2010).  The ClusPro docking server yielded several top-

scoring solutions.  One of the solutions with relative good score was consistent with 

biochemical analysis indicating that the three cysteines of ArsD and the three cysteines 

of ArsA must be in proximity for transfer (Figure 4-10). According to this model, most 

likely ArsA and ArsD interact with each other at multiple points. It is consistent with 

yeast two-hybrid results that the loop containing Cys12-Cys13-Cys18 metal binding site 

and helix α1 are directly involved in protein contact.  
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Six ArsA mutants, ArsAI117M,E425G, ArsAH368L,E425k, ArsAF120L,L193S, 

ArsAF54L,F120L,H219R,E254V,F443L,K475R,A533T, ArsAD121E and ArsAD121N, show stronger 

interaction with wild-type ArsD. Mutations at Glu425, Phe120 and Asp121 occurred 

twice in different mutants, and they are spatially closing to ArsA MBS (metalloid binding 

site) (Figure 4-8). These mutations might change the local conformation of the MBS to 

increase the strength of interaction with ArsD, or they are possibly located in the 

interaction interface. Whichever it is, that all these mutations are located close to the 

ArsA MBS supports the model that ArsA and ArsD interacts at their metal binding sites.    

ArsA mutants were isolated that restore interaction with ArsDV22A, ArsDQ51H or 

ArsDF55L.  One common feature of all ArsA complementary mutants is that they all have 

one mutation spatially closing to the ArsA MBS, while most other mutations are 

scattered around all over the protein. The mutations near the MBS could slightly change 

the local conformation of MBS and restore the interaction with ArsD mutants. Among all 

14 ArsA mutants, seven contain mutations at Asp121, and two have mutations at 

Glu425. These two positions were shown to increase the interaction strength when they 

are mutated. These results suggest that restoration of interaction with ArsD mutants is 

not site-specific, but more likely ArsD and ArsA have multi-point contact sites, 

considering the extensive interaction interface on ArsD was identified. The loss of 

interaction at one point can be compensated by stronger interaction at another site.  

Currently, the effect of mutation F120L, D121E, D121G, E425K and E425A on 

ArsA and on ArsA-ArsD interaction is being studied. By changing these residues to 

other residues, more mutants will be constructed and studied. These ArsA mutants 

could be useful for co-crystallization with ArsD since they show stronger interaction with 



 

 

92

ArsD. Probably these mutants could lock ArsA to the open conformation therefore 

interacting with ArsD better. All ArsD mutants showing stronger interaction with ArsA in 

yeast two-hybrid analysis will also be tried to co-crystallize with ArsA.  

In addition, methods quantitatively measuring ArsA-ArsD interaction will be very 

helpful to understand not only the effect of the mutations but also the basic mechanism 

of arsenic transfer. Some preliminary work using SPR (surface plasmon resonance) has 

been done. By immobilizing ArsD on the chip and flowing ArsA solution through the 

surface, ArsA-ArsD interaction could be watched. The result until now looks promising 

but stricter negative control is needed. ArsD109K2/104A-K37/62A could be a good negative 

control. This mutant has been shown not to stimulate ArsA ATPase activity and not to 

interact with ArsA in yeast two-hybrid analysis. Single molecule fluorescence resonance 

energy transfer could also be used to study ArsA-ArsD interaction. It has been 

successfully used to study transient interaction between copper chaperone HAH1 and 

Wilson disease protein (Benitez et al., 2008). This method has advantage not only to 

study ArsA-ArsD interaction in simulated pre-hydrolysis state, intermediate or post-

hydrolysis state but also to watch interaction change between single ArsA-ArsD 

molecule pair during ATP hydrolysis. 
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Table 2-1 

Strains and plasmids used in CHAPTER 2 

Strains/Plasmids Genotype/description Reference 

Strains   

JM109 endA1, recA1, gyrA96, thi, hsdR17 (rk-, 
mk+), relA1, supE44, λ-, Δ(lac-proAB), [F’, 
traD36, proAB, lacIqZΔM15] 

(Sambrook et al., 
1989) 

BL21(DE3)  [F- ompT hsdSB (rB-mB-) gal dcm (DE3 [lacI 
lacUV5-T7 gene1 ind1 Sam7 nin5]) 

(Sambrook et al., 
1989) 

Plasmids   

pAlter-dAhB Six histidine codons added to the 3’-end of 
arsA gene (Apr) 

(Li and Rosen, 
2000) 

pMAL-ArsD109 arsD1-109 truncation was fused to the C-
terminal of MBP (Apr) 

(Lin et al., 
2007a) 

pET28a For expression of his-tagged protein 
controlled by T7 promoter (Kanar) 

Novagen 

pET28a-ArsD109 arsD1-109 truncation was inserted into 
pET28a through EcoRI and SalI sites 
(Kanar) 

This study 

pET28a-ArsD109 
W35/97Y 

Trp35 and Trp97 were mutated to Tyr by 
site directed mutagenesis on pET28a-
ArsD109 (Kanar) 

This study 

pET28a-ArsD109 
T15W 

Thr15 was mutated to Trp by site directed 
mutagenesis on pET28a-ArsD109 W35/97Y 
(Kanar) 

This study 

pET28a-ArsD109 
V17W 

Val17 was mutated to Trp by site directed 
mutagenesis on pET28a-ArsD109 W35/97Y 
(Kanar) 

This study 

pET28a-ArsD109 
C12G  

Cys12 was mutated to Gly by site directed 
mutagenesis on pET28a-ArsD109 (Kanar) 

This study 
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Table 2-1 

Strains and plasmids used in CHAPTER 2 (continued) 

Strains/Plasmids Genotype/description Reference 

Plasmids   

pET28a-ArsD109 
C13G  

Cys13 was mutated to Gly by site directed 
mutagenesis on pET28a-ArsD109 (Kanar) 

This study 

pET28a-ArsD109 
C18G  

Cys18 was mutated to Gly by site directed 
mutagenesis on pET28a-ArsD109 (Kanar) 

This study 

pET28a-ArsD109 
C12G,T15W 

Cys12 was mutated to Gly by site directed 
mutagenesis on pET28a-ArsD109 T15W 

(Kanar) 

This study 

pET28a-ArsD109 
C13G,T15W 

Cys13 was mutated to Gly by site directed 
mutagenesis on pET28a-ArsD109 T15W 

(Kanar) 

This study 

pET28a-ArsD109 
C18G,T15W 

Cys18 was mutated to Gly by site directed 
mutagenesis on pET28a-ArsD109 T15W 

(Kanar) 

This study 
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Table 2-2 

Oligonucleotide primers used in CHAPTER 2 

Primer Sequence (5’–3’) Target / Direction 

T7 promoter 
sequencing primer 

TAATACGACTCACTATAGGG pET28a forward sequencing 
primer 

T7 terminator 
sequencing primer 

GCTAGTTATTGCTCAGCGG pET28a reverse sequencing 
primer 

ArsD-T15W-s GCGATGTGTTGCAGCTGGGGC
GTCTGCGGTACAG 

Mutate ArsD Thr15 to Trp, 
sense 

ArsD-T15W-a CTGTACCGCAGACGCCCCAGC
TGCAACACATCGC 

Mutate ArsD Thr15 to Trp, 
antisense 

ArsD-V17W-s GTGTTGCAGCACCGGCTGGTG
CGGTACAGATGTTG 

Mutate ArsD Val17 to Trp, 
sense 

ArsD-V17W-a CAACATCTGTACCGCACCAGCC
GGTGCTGCAACAC 

Mutate ArsD Val17 to Trp, 
antisense 

ArsD-C12G-s GGTATTTGACCCGGCGATGGGT
TGCAGCACCGGCGTC 

Mutate ArsD Cys12 to Gly, 
sense 

ArsD-C12G-a GACGCCGGTGCTGCAACCCAT
CGCCGGGTCAAATACC 

Mutate ArsD Cys12 to Gly, 
antisense 

ArsD-C13G-s GTATTTGACCCGGCGATGTGTG
GCAGCACCGGCGTCTGC 

Mutate ArsD Cys13 to Gly, 
sense 

ArsD-C13G-a GCAGACGCCGGTGCTGCCACA
CATCGCCGGGTCAAATAC 

Mutate ArsD Cys13 to Gly, 
antisense 

ArsD-C18G-s GTTGCAGCACCGGCGTCGGCG
GTACAGATGTTGATC 

Mutate ArsD Cys18 to Gly, 
sense 

ArsD-C18G-a GATCAACATCTGTACCGCCGAC
GCCGGTGCTGCAAC 

Mutate ArsD Cys18 to Gly, 
antisense 

ArsD-12G15W-s GGTATTTGACCCGGCGATGGGT
TGCAGCTGGGGCGTC 

Mutate ArsD Cys12 to Gly 
and Thr15 to Trp, sense 

ArsD-12G15W-a GACGCCCCAGCTGCAACCCAT
CGCCGGGTCAAATACC 

Mutate ArsD Cys12 to Gly 
and Thr15 to Trp, antisense 
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 Table 2-2 

Oligonucleotide primers used in CHAPTER 2 (continued) 

Primer Sequence (5’–3’) Target / Direction 

ArsD-13G15W-s GTATTTGACCCGGCGATGTGTG
GCAGCTGGGGCGTCTGC 

Mutate ArsD Cys13 to Gly 
and Thr15 to Trp, sense 

ArsD-13G15W-a GCAGACGCCCCAGCTGCCACA
CATCGCCGGGTCAAATAC 

Mutate ArsD Cys13 to Gly 
and Thr15 to Trp, antisense 

ArsD-18G15W-s GTTGCAGCTGGGGCGTCGGCG
GTACAGATGTTGATC 

Mutate ArsD Cys18 to Gly 
and Thr15 to Trp, sense 

ArsD-18G15W-a GATCAACATCTGTACCGCCGAC
GCCCCAGCTGCAAC 

Mutate ArsD Cys18 to Gly 
and Thr15 to Trp, antisense 
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Table 2-3 

Summary of the best-fit parameters from the ArsD1-109-As EXAFS fitting analysisa.  
Fits in bold are the best fit for each sample. 

 
Ligand Environmentb Ligand Environmentb 

 

Sample Atomc R(Å)d C.N.e Å 2 f Atomc R(Å)d C.N.e Å 2 f F’ g 

ArsD1-109,C18G O/N 1.79 3.0 5.53     0.58 

 S 2.5 1 12.6     4.6 

 O/N 1.79 2.0 3.2 O/N 2.28 1.0 16.5 0.96 

 O/N 1.79 2.0 3.2 S 2.48 0.5 10.2 0.93 

          

ArsD1-109,C13G O/N 1.79 2.0 3.0     0.79 

 S 1.97 1 3.02     1.98 

 O/N 1.79 2.5 4.37 O/N 2.13 1.0 3.63 0.67 

 O/N 1.79 2.0 4.8 S 1.96 1.0 8.8 0.66 

          

ArsD1-109,C12G O/N 1.79 2.0 4.50     1.6 

 S 2.5 1 20.4     4.1 

 O/N 1.79 2.0 4.86 O/N 2.16 1.5 4.16 1.58 

 O/N 1.79 2.0 4.87 S 2.41 1.0 24.3 1.56 

          

ArsD1-109 O/N 2.08 3 0.9     3.86 

 S 2.24 3 2.4     0.89 

 O/N 2.01 2 -4.1 O/N 2.13 1 -7.8 6.01 

 O/N 2.06 0.5 4.4 S 2.24 3 2.6 0.84 
 

a Data were fit over a k range of 1 to 13 Å-1.   

b Independent metal-ligand scattering environment 

c Scattering atoms: O (oxygen), N (nitrogen), S (sulfur) and C (carbon), Cu (Copper) 

d Average metal-ligand bond length from three independent samples 

e Average metal-ligand coordination number from three independent samples 

f Average Debye-Waller factor in Å2 x 103 from three independent samples 

g Number of degrees of freedom weighted mean square deviation between data and fit.
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Table 3-1 

Strains and plasmids used in CHAPTER 3 

Strains/Plasmids Genotype/description Reference 

E.coli strains 

JM109 endA1, recA1, gyrA96, thi, hsdR17 (rk-, mk+), 
relA1, supE44, λ-, Δ(lac-proAB), [F’, 
traD36, proAB, lacIqZΔM15] 

(Sambrook et al., 
1989) 

BL21(DE3)  [F- ompT hsdSB (rB-mB-) gal dcm (DE3 [lacI 
lacUV5-T7 gene1 ind1 Sam7 nin5]) 

(Sambrook et al., 
1989) 

S. cerevisiae strains 

AH109 MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, 
gal4∆, gal80∆, LYS2::GAL1UAS-GAL1TATA-HIS3, 
GAL2UAS-GAL2TATA-ADE2,URA3::MEL1UAS-
MEL1TATA-lacZ 

Clontech 

MAV203 MATα; leu2-3,112; trp1-901; his3Δ200; ade2-101; 
cyh2R; can1R; gal4Δ; gal80Δ; GAL1::lacZ; 
HIS3UASGAL1::HIS3@LYS2; SPAL10::URA3. 

Invitrogen 

Plasmids   

pGBT9 GAL4(1-147) DNA-binding domain, TRP1 (Apr) Clontech 

pACT2 GAL4(768-881) activation domain, LEU2 (Apr) Clontech 

pACT2-A arsA gene cloned in pACT2 (Apr) (Lin et al., 2006) 

pACT2-D arsD gene cloned in pACT2 (Apr) (Lin et al., 2006) 

pGBT9-D arsD gene cloned in pGBT9 (Apr) (Lin et al., 2006) 

pGBT9-k Kanamycin resistance gene is amplified from 
pET28a and inserted into pGBT9 at AatII site 
(Kanar) 

This study 

pGBT9-k-D Kanamycin resistance gene is amplified from 
pET28a and inserted into pGBT9-D at AatII 
site (Kanar) 

This study 

pGBT9-k-D G86E Selected by yeast two-hybrid (Kanar) This study 
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Table 3-1 

Strains and plasmids used in CHAPTER 3 (continued) 

Strains/Plasmids Genotype/description Reference 

Plasmids   

pAlter-dAhB Six histidine codons added to the 3’-
end of arsA gene (Apr) 

(Li and Rosen, 
2000) 

pET28a For expression of his-tagged protein 
controlled by T7 promoter (Kanar) 

Novagen 

pET28a-ArsD109 arsD1-109 truncation was inserted into 
pET28a through EcoRI and SalI sites 
(Kanar) 

Chapter 2 

pET28a-ArsD109 
G86E 

Gly86 was mutated to Glu by site 
directed mutagenesis on pET28a-
ArsD109 (Kanar) 

This study 

pET28a-ArsD109 
S68A/R87A/R96A 

Ser68, Arg87 and Arg96 were 
mutated to Ala by site directed 
mutagenesis on pET28a-ArsD109 
(Kanar) 

This study 

pET28a-ArsD109 
S68A/R87A/R96A/E81A/T8

2A/V83A/M84A 

Ser68, Arg87, Arg96, Glu81, Thr82, 
Val83 and Met84 were mutated to Ala 
by site directed mutagenesis on 
pET28a-ArsD109 (Kanar) 

This study 

pMAL-ArsD109 arsD1-109 truncation was fused to the 
C-terminal of MBP (Apr) 

(Lin et al., 
2007a) 
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Table 3-2 

Oligonucleotide primers used in CHAPTER 3 

Primer Sequence (5’–3’) Target / Direction 

GAL4-BD 
sequencing primer 

GAGTAGTAACAAAGGTCAA pGBT9 Forward sequencing 
primer 

T7 promoter 
sequencing primer 

TAATACGACTCACTATAGGG pET28a forward sequencing 
primer 

T7 terminator 
sequencing primer 

GCTAGTTATTGCTCAGCGG pET28a reverse sequencing 
primer 

pET28a-3600-
AatII 

CTATGACGTCCAACCCGGTAA
GACACGACTTATC 

Sense primer for amplifying 
kanamycin resistance gene 
from pET28a 

pET28a-5300-
AatII 

CTATGACGTCCGCCCGCTCCT
TTCGCTTTCTTCC 

Antisense primer for 
amplifying kanamycin 
resistance gene from 
pET28a 

pGBT9-s TAAAGATGCCGTCACAGATAGA
TTG 

Sense primer for ep-PCR of 
ArsD on pGBT9-k-D  

pGBT9-a ACCTGACCTACAGGAAAGAGTT
ACT 

Antisense primer for ep-
PCR of ArsD on pGBT9-k-D 

D109-XhoI CAGCTCGAGTTAAGGCGCTAA
TCCCACTTTATCCAG 

Using with pGBT9-s to 
amplify ArsD mutant gene 
from pGBT-k-DX vector to 
put into pET28 vector  
between EcoRI and XhoI 

ArsD-S68A-s GTTTATTGAAGCTGCCGGGGC
AGAAGGTC 

Mutate ArsD Ser68 to Ala, 
sense 

ArsD-S68A-a GACCTTCTGCCCCGGCAGCTT
CAATAAAC 

Mutate ArsD Ser68 to Ala, 
antisense 

ArsD-R87A-s GAAACAGTGATGGCCGGGGCT
TACCCGAAACGCGC 

Mutate ArsD Arg87 to Ala, 
sense 

ArsD-R87A-a GCGCGTTTCGGGTAAGCCCCG
GCCATCACTGTTTC 

Mutate ArsD Arg87 to Ala, 
antisense 
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Table 3-2 

Oligonucleotide primers used in CHAPTER 3 (continued) 

Primer Sequence (5’–3’) Target / Direction 

ArsD-R96A-s CGCGCTGAGCTGGCTGCCTGG
TTTGGCATTCCACTG 

Mutate ArsD Arg96 to Ala, 
sense 

ArsD-R96A-a CAGTGGAATGCCAAACCAGGC
AGCCAGCTCAGCGCG 

Mutate ArsD Arg96 to Ala, 
antisense 

ArsD-81-84A-s CATTGTTGTTACTGGATGGCGC
AGCAGCGGCAGCCGGGGCTTA
CCCGAAACG 

Mutate ArsD residues from 
81 to 84 to Ala, sense 

ArsD-81-84A-a CGTTTCGGGTAAGCCCCGGCT
GCCGCTGCTGCGCCATCCAGT
AACAACAATG 

Mutate ArsD residues from 
81 to 84 to Ala, antisense 
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Table 4-1 

Summary of study of interaction between copper-chaperone proteins and their targets 

 

Species Chaperone Target protein Yeast-2-hybrid In vitro binding NMR 

Enterococcus 
hirae 

CopZ CopY    

  CopA  
SPR (Multhaup et 

al., 2001) 
 

Yeast Atx1 Ccc2 
(Pufahl et al., 

1997) 
 

Complex detected

(Arnesano et al., 
2001) 

  CAOs 
(Peter et al., 

2008) 
  

human HAH1 MNK 
(Larin et al., 

1999) 

Co-IP 

(Hamza et al., 
1999) 

Complex Not-
detected 

(Banci et al., 
2005) 

  WLN 
(van Dongen et 

al., 2004) 

Pull-down, Co-IP 

(Hamza et al., 
1999) 

Lower ratio of 
complex 

(Achila et al., 
2006) 
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Table 4-2 

Strains and plasmids used in CHAPTER 4 

Strains/Plasmids Genotype/description Reference 

E.coli strains 

JM109 endA1, recA1, gyrA96, thi, hsdR17 (rk-, mk+), 
relA1, supE44, λ-, Δ(lac-proAB), [F’, 
traD36, proAB, lacIqZΔM15] 

(Sambrook et al., 
1989) 

BL21(DE3)  [F- ompT hsdSB (rB-mB-) gal dcm (DE3 [lacI 
lacUV5-T7 gene1 ind1 Sam7 nin5]) 

(Sambrook et al., 
1989) 

S. cerevisiae strains 

AH109 MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, 
gal4∆, gal80∆, LYS2::GAL1UAS-GAL1TATA-HIS3, 
GAL2UAS-GAL2TATA-ADE2,URA3::MEL1UAS-
MEL1TATA-lacZ 

Clontech 

MAV203 MATα; leu2-3,112; trp1-901; his3Δ200; ade2-101; 
cyh2R; can1R; gal4Δ; gal80Δ; GAL1::lacZ; 
HIS3UASGAL1::HIS3@LYS2; SPAL10::URA3. 

Invitrogen 

Plasmids   

pGBT9 GAL4(1-147) DNA-binding domain, TRP1 (Apr) Clontech 

pACT2 GAL4(768-881) activation domain, LEU2 (Apr) Clontech 

pACT2-A arsA gene cloned in pACT2 (Apr) (Lin et al., 2006)

pACT2-D arsD gene cloned in pACT2 (Apr) (Lin et al., 2006)

pGBT9-A arsA gene cloned in pGBT9 (Apr) (Lin et al., 2006) 

pGBT9-D arsD gene cloned in pGBT9 (Apr) (Lin et al., 2006) 

pGBT9-k Kanamycin resistance gene is amplified 
from pET28a and inserted into pGBT9 at 
AatII site (Kanar) 

Chapter 3 

pGBT9-k-D Kanamycin resistance gene is amplified 
from pET28a and inserted into pGBT9-D at 
AatII site (Kanar) 

Chapter 3 
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Table 4-2 

Strains and plasmids used in CHAPTER 4 (continued) 

Strains/Plasmids Genotype/description Reference 

Plasmids   

pGBT9-k-D S14R Ser14 was mutated to Arg by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D T20I Thr20 was mutated to Ile by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D Q24L Gln24 was mutated to Leu by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D D28V Asp28 was mutated to Val by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D D28T Asp28 was mutated to Thr by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D T31A Thr31 was mutated to Ala by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D Q34R Gln34 was mutated to Arg by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D Q38R Gln38 was mutated to Arg by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D V61A Val61 was mutated to Ala by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D F55L Selected by yeast two-hybrid (Kanar) This study 

pGBT9-k-D Q51H Selected by yeast two-hybrid (Kanar) This study 

pGBT9-k-D V22A Val22 was mutated to Ala by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D V17A Val17 was mutated to Ala by site directed 
mutagenesis on pGBT9-k-D (Kanar) 

This study 

pGBT9-k-D V27D Selected by yeast two-hybrid (Kanar) This study 
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Table 4-2 

Strains and plasmids used in CHAPTER 4 (continued) 

Strains/Plasmids Genotype/description Reference 

Plasmids   

pAlter-dAhB Six histidine codons added to the 3’-end of 
arsA gene (Apr) 

(Li and Rosen, 
2000) 

pET28a For expression of his-tagged protein 
controlled by T7 promoter (Kanar) 

Novagen 

pET28a-ArsD109 arsD1-109 truncation was inserted into 
pET28a through EcoRI and SalI sites 
(Kanar) 

Chapter 2 

pET28a-ArsD109 
K2/104A 

Lys2 and Lys104 were mutated to Ala by 
site directed mutagenesis on pET28a-
ArsD109 (Kanar) 

This study 

pET28a-ArsD109 
K2/104A-K37/62A 

Lys37 and Lys62 were mutated to Ala by 
site directed mutagenesis on pET28a-
ArsD109 K2/104A  (Kanar) 

This study 

pET28a-ArsD109 
K2/104A-K37/62R 

Lys37 and Lys62 were mutated to Arg by 
site directed mutagenesis on pET28a-
ArsD109 K2/104A  (Kanar) 

This study 

pET28a-ArsD109 
K2/104A-K60/90A 

Lys60 and Lys90 were mutated to Ala by 
site directed mutagenesis on pET28a-
ArsD109 K60/90A  (Kanar) 

This study 

pGBT9-k-D K2/104A-

K37/62A 
arsD K2/104A-K37/62A inserted into pGBT9-k 
(Kanar) between EcoRI and BamHI 

This study 

pGBT9-k-D K2/104A-

K37/62R 
arsD K2/104A-K37/62R inserted into pGBT9-k 
(Kanar) between EcoRI and BamHI 

This study 

pGBT9-k-D K2/104A-

K60/90A 
arsD K2/104A-K60/90A inserted into pGBT9-k 
(Kanar) between EcoRI and BamHI 

This study 

pGBT9-k-D K2/104A-

K37A 
arsD K2/104A-K37A inserted into pGBT9-k 
(Kanar) between EcoRI and BamHI 

This study 

pGBT9-k-D K2/104A-

K62A 
arsD K2/104A-K62A inserted into pGBT9-k 
(Kanar) between EcoRI and BamHI 

This study 
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Table 4-3 

Oligonucleotide primers used in CHAPTER 4 

Primer Sequence (5’–3’) Target / Direction 

GAL4-BD   
sequencing primer 

GAGTAGTAACAAAGGTCAA pGBT9 Forward sequencing 
primer 

GAL4-AD 
sequencing primer 

AATACCACTACAATGGAT pACT2 Forward sequencing 
primer 

ArsA-100-s GTCCTGCCTGATGACGTTGTTT
CCA 

ArsA forwarding sequencing 
primer from 100th residue 

ArsA-220-s GTCGCCCGGACTCATCTGGAA
CTTG 

ArsA forwarding sequencing 
primer from 220th residue 

ArsA-420-s AAGAGGACTTACGCTCACCTTG
CAC 

ArsA forwarding sequencing 
primer from 420th residue 

ArsA-480-a CGTGACCAGTAACACTTTAGTG
CG 

ArsA reversing sequencing 
primer from 480th residue 

pET28a-3600-
AatII 

CTATGACGTCCAACCCGGTAA
GACACGACTTATC 

Sense primer for amplifying 
kanamycin resistance gene 
from pET28a 

pET28a-5300-
AatII 

CTATGACGTCCGCCCGCTCCT
TTCGCTTTCTTCC 

Antisense primer for 
amplifying kanamycin 
resistance gene from 
pET28a 

pGBT9-s TAAAGATGCCGTCACAGATAGA
TTG 

Sense primer for ep-PCR of 
ArsD on pGBT9-k-D  

pGBT9-a ACCTGACCTACAGGAAAGAGTT
ACT 

Antisense primer for ep-
PCR of ArsD on pGBT9-k-D 

 pACT2-s CTATTCGATGATGAAGATACCC
CACCAAACCC 

Sense primer for ep-PCR of 
ArsA on pACT2-A 

 pACT2-a AGGTTACATGGCCAAGATTGAA
ACTTAGAGGAG 

Antisense primer for ep-
PCR of ArsA on pACT2-A 
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Table 4-3 

Oligonucleotide primers used in CHAPTER 4 (continued) 

Primer Sequence (5’–3’) Target / Direction 

ArsD-S14R-s ACCCGGCGATGTGTTGCAGAAC
CGGCGTCTGCGGTACAG 

Mutate ArsD Ser14 to Arg, 
sense 

ArsD-S14R-a CTGTACCGCAGACGCCGGTTCT
GCAACACATCGCCGGGT 

Mutate ArsD Ser14 to Arg, 
antisense 

ArsD-T20I-s CACCGGCGTCTGCGGTATAGAT
GTTGATCAGGCTCT 

Mutate ArsD Thr20 to Ile, 
sense 

ArsD-T20I-a AGAGCCTGATCAACATCTATAC
CGCAGACGCCGGTG 

Mutate ArsD Thr20 to Ile, 
antisense 

ArsD-Q24L-s GCGGTACAGATGTTGATCTGGC
TCTGGTCGATTTTTC 

Mutate ArsD Gln24 to Leu, 
sense 

ArsD-Q24L-a GAAAAATCGACCAGAGCCAGAT
CAACATCTGTACCGC 

Mutate ArsD Gln24 to Leu, 
antisense 

ArsD-D28V-s GTTGATCAGGCTCTGGTCGTTT
TTTCTACAGATGTGCAAT 

Mutate ArsD Asp28 to Val, 
sense 

ArsD-D28V-a ATTGCACATCTGTAGAAAAAAC
GACCAGAGCCTGATCAAC 

Mutate ArsD Asp28 to Val, 
antisense 

ArsD-D28T-s TGATCAGGCTCTGGTCACTTTT
TCTACAGATGTGC 

Mutate ArsD Asp28 to Thr, 
sense 

ArsD-D28T-a GCACATCTGTAGAAAAAGTGAC
CAGAGCCTGATCA 

Mutate ArsD Asp28 to Thr, 
antisense 

ArsD-T31A-s GGCTCTGGTCGATTTTTCTGCA
GATGTGCAATGGCTCAA 

Mutate ArsD Thr31 to Ala, 
sense 

ArsD-T31A-a TTGAGCCATTGCACATCTGCAG
AAAAATCGACCAGAGCC 

Mutate ArsD Thr31 to Ala, 
antisense 

ArsD-Q34R-s CGATTTTTCTACAGATGTGCGA
TGGCTCAAACAATGCGG 

Mutate ArsD Gln34 to Arg, 
sense 

ArsD-Q34R-a CCGCATTGTTTGAGCCATCGCA
CATCTGTAGAAAAATCG 

Mutate ArsD Gln34 to Arg, 
antisense 
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Table 4-3 

Oligonucleotide primers used in CHAPTER 4 (continued) 

Primer Sequence (5’–3’) Target / Direction 

ArsD-Q38R-s GATGTGCAATGGCTCAAACGAT
GCGGTGTACAAATTGAG 

Mutate ArsD Gln38 to Arg, 
sense 

ArsD-Q38R-a CTCAATTTGTACACCGCATCGT
TTGAGCCATTGCACATC 

Mutate ArsD Gln38 to Arg, 
antisense 

ArsD-V61A-s CTTTGTACAGAACGAGAAGGCC
AAAGCGTTTATTGAAGCTT 

Mutate ArsD Val61 to AIa, 
sense 

ArsD-V61A-a AAGCTTCAATAAACGCTTTGGC
CTTCTCGTTCTGTACAAAG 

Mutate ArsD Val61 to AIa, 
antisense 

ArsD-K2A-s ATCCGAATTCCCGGGGGCAAC
GTTAATGGTATTTGA 

Mutate ArsD Lys2 to Ala on 
pET28a-ArsD109, sense 

ArsD-K2A-a TCAAATACCATTAACGTTGCCC
CCGGGAATTCGGAT 

Mutate ArsD Lys2 to Ala on 
pET28a-ArsD109, antisense

ArsD-K37A-s ACAGATGTGCAATGGCTCGCAC
AATGCGGTGTACAAAT 

Mutate ArsD Lys37 to Ala, 
sense 

ArsD-K37A-a ATTTGTACACCGCATTGTGCGA
GCCATTGCACATCTGT 

Mutate ArsD Lys37 to Ala, 
antisense 

ArsD-K62A-s TACAGAACGAGAAGGTCGCAG
CGTTTATTGAAGCTTC 

Mutate ArsD Lys62 to Ala, 
sense 

ArsD-K62A-a GAAGCTTCAATAAACGCTGCGA
CCTTCTCGTTCTGTA 

Mutate ArsD Lys62 to Ala, 
antisense 

ArsD-K104A-s TTGGCATTCCACTGGATGCAGT
GGGATTAGCGCCTT 

Mutate ArsD Lys104 to Ala, 
sense 

ArsD-K104A-a AAGGCGCTAATCCCACTGCATC
CAGTGGAATGCCAA 

Mutate ArsD Lys104 to Ala, 
antisense 

ArsD-K60A-s AGCTTTGTACAGAACGAGGCGG
TCAAAGCGTTTATTGA 

Mutate ArsD Lys60 to Ala, 
sense 

ArsD-K60A-a TCAATAAACGCTTTGACCGCCT
CGTTCTGTACAAAGCT 

Mutate ArsD Lys60 to Ala, 
antisense 
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Table 4-3 

Oligonucleotide primers used in CHAPTER 4 (continued) 

Primer Sequence (5’–3’) Target / Direction 

ArsD-K90A-s ATGGCCGGGCGTTACCCGGCA
CGCGCTGAGCTGGCTCGC 

Mutate ArsD Lys90 to Ala, 
sense 

ArsD-K90A-a GCGAGCCAGCTCAGCGCGTGC
CGGGTAACGCCCGGCCAT 

Mutate ArsD Lys90 to Ala, 
antisense 

ArsD-K37R-s ACAGATGTGCAATGGCTCAGAC
AATGCGGTGTACAAAT 

Mutate ArsD Lys37 to Arg, 
sense 

ArsD-K37R-a ATTTGTACACCGCATTGTCTGA
GCCATTGCACATCTGT 

Mutate ArsD Lys37 to Arg, 
antisense 

ArsD-K62R-s TACAGAACGAGAAGGTCAGAGC
GTTTATTGAAGCTTC 

Mutate ArsD Lys62 to Arg, 
sense 

ArsD-K62R-a GAAGCTTCAATAAACGCTCTGA
CCTTCTCGTTCTGTA 

Mutate ArsD Lys62 to Arg, 
antisense 

Ec-N-ArsD-K2A-s TCCGGAATTCATGGCAACGTTA
ATGGTATTTG 

Sense primer for amplifying 
ArsD K2/104A mutants to put 
into pGBT9-k between 
EcoRI and BamHI 

Bm-D109-K104A-a CGCGGATCCTTAAGGCGCTAAT
CCCACTGCATCCAG 

Antisense primer for 
amplifying ArsD K2/104A 
mutants to put into pGBT9-k 
between EcoRI and BamHI 

T7 promoter 
sequencing primer 

TAATACGACTCACTATAGGG pET28a forward sequencing 
primer 

T7 terminator 
sequencing primer 

GCTAGTTATTGCTCAGCGG pET28a reverse sequencing 
primer 
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Table 4-4 

ArsD mutations increasing or decreasing ArsA-ArsD interaction  

method effect mutations 

yeast two-hybrid stronger interaction with ArsA S14R, T20I, Q24L, D28T, 
D28V, T31A, Q34R, Q38R, 
V61A 

yeast two-hybrid weaker interaction with ArsA V17A, V22A, V27D, Q51H, 
F55L 

site-directed 
mutagenesis 

weaker interaction with ArsA K37A, K62A 
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Figure 1-1. Structure of R773 ArsA ATPase (Lin et al., 2007b).   
 
(A): The overall structure of ArsA is shown as a ribbon diagram.  Mg2+-ADP is bound to 
each of the two NBDs in the A1 and A2 halves of ArsA, while three Sb(III) are bound at 
the single MBD.   
(B)  The metalloid binding domain composed of three 3-coordinate As(III)/Sb(III) binding 
sites. Each site has two protein ligands, one from A1 and one from A2, plus a non-
protein ligand that appears to be a chloride in the crystal structure but could be a 
hydroxyl in the native protein.  The high affinity site is composed of Cys-113 from A1 
and Cys-422 from A2.  The other two sites are composed of His-148 from A1 and Ser-
420 from A2 and Cys-172 from A1 and His-453 from A2.  The two histidines come from 
the signal transduction domains (D142/447TAPTGH148/453) that connect the two nucleotide 
binding domains, NBD1 and NBD2, to the MBD.  Binding of metalloid acts like 
molecular glue to hold A1 and A2 in a conformation in which residues from both 
contribute to the formation of NBD1 and NBD2.  Thus metalloid binding increases the 
affinity of NBD1 and NBD2 and activates catalysis. 
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Figure 2-1. Normalized XANES spectra of ArsD and its derivatives.  
 
Spectra from top to bottom include: C18G (A), C13G (B), C12G (C) and wild type 
ArsD109 (D). Spectra were offset for clarity. 
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Figure 2-2. ArsD EXAFS data and simulations.   
 
Raw EXAFS data and phase shifted Fourier Transforms of As bound to C18G (A, B), 
C13G (C, D), C12G (E, F) and wild type ArsD109 (G, H). Raw unfiltered data is given as 
solid lines, while the best-fit simulated data are shown as dotted lines. 
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Figure 2-3. ArsD109 tryptophan mutants fold normally and have same activity as 
wild type.  
 
(A) Circular CD spectra were collected with (●) 10 μM ArsD109, (Δ) tryptophan-free 
ArsD109-W35Y/W97Y, (■) T15W and (◊) V17W.  
(B) ArsA ATPase activity was assayed at the indicated concentrations of sodium 
arsenite in the presence or absence of ArsD derivatives. ArsA ATPase activity was 
assayed as described under “Materials and Methods”. (●), no addition; (○), ArsD109; 
(▼), tryptophan-free ArsD109-W35Y/W97Y; , T15W. The curves were fitted using 
SigmaPlot 9.0, with error bars represent standard deviation. 
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Figure 2-4. Protein fluorescence of single tryptophan derivatives T15W and 
V17W reports metalloid binding.   
 
Emission scans were performed with excitation at 295 nm, as described under Materials 
and Methods. 
(A) (▼), 1 µM tryptophan; (●), tryptophan-free W35Y/97Y; (■), T15W; (▲), V17W; (○), 
W35Y/97Y + 6 M guanidine-HCl; (□), T15W + 6 M guanidine-HCl; (Δ), V17W + 6 M 
guanidine-HCl.   
(B) (○), T15W; ( ), T15W + 5 mM As(III); (□), T15W + 0.1 mM Sb(III);  (●), V17W; (▼), 
V17W + 5 mM As(III); (■), V17W + 0.1 mM Sb(III); (◊), tryptophan-free W35Y/97Y. 
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Figure 2-5. Binding of As(III) by single tryptophan derivatives T15W and V17W 
and cysteine mutants.   
 
(A) Time course of 1 µM V17W fluorescence quenched by different concentration of 
As(III). The data were fitted using SigmaPlot 9.0 with function F=F0-Fm*(1-e-kobst), in 
which Kobs is the binding rate used in Fig B. 
(B) The rate of fluorescence quenching, Kobs, was determined as a function of arsenite 
concentration with excitation and emission wavelengths of 295 and 345 nm, 
respectively.  (●), T15W; (○), V17W; (■), T15W/C12G; (Δ), T15W/C13G; (▼), 
T15W/C18G.  The data were fitted using SigmaPlot 9.0, with error bars representing the 
standard deviation from three assays. 
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Figure 2-6. GSH accelerates binding of As(III) binding by V17W.    
 
The rate of fluorescence quenching, Kobs, was determined as a function of pH in the 
presence (○) or absence (●) of 5 mM GSH. 

pH

3 4 5 6 7 8 9 10

K
o

b
s(

s-1

)

0.00

0.02

0.04

0.06

0.08

0.10

without GSH

with 5mM GSH



  

 

119

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-7. As(GS)3 is the metalloid donor to ArsD.   
 
Fluorescence of V17W was measured with excitation and emission wavelengths of 295 
and 345 nm, respectively.   
(A) At the arrow the following additions were made:  (▲), 50 µM As(III); ( ), 0.2 mM 
GSH followed by 50 µM As(III); (◊), 5 mM TCEP followed by 50 µM As(III); (●), 5 mM 
GSH followed by 50 µM As(III); (■), 50 µM As(GS)3.  
(B) At the arrow the following additions were made:  (●), 50 µM As(III); (○), 5 mM L-
cysteine followed by 50 µM As(III); (▼), 5 mM β-mercaptoethanol followed by 50 µM 
As(III); (Δ), 2.5 µM Sb(III). 
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Figure 2-8. As(GS)3 does not activate ArsA. 
 
Activated ATPase activity of 0.3 µM ArsA was determined at the indicated 
concentrations of sodium arsenite, as described under Materials and Methods. (●), no 
addition; (○), 5 mM GSH; (■), 6 µM ArsD.  The data were fitted using SigmaPlot 9.0, 
with error bars representing the standard deviation from three assays. 
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Figure 2-9. GSH helps cooperation of ArsA and ArsD. 
 
(A) ATPase activity of 0.3 µM ArsA was determined at the indicated concentrations of 
sodium arsenite in the presence of 3 µM ArsD in buffer with or without 5mM GSH. ArsA 
ATPase activity was assayed as described under “Materials and Methods”. (●), no 
addition; (○), 5 mM GSH. The curves were fitted using SigmaPlot 9.0, with error bars 
representing standard deviation from three assays. 
(B) The apparent affinity of ArsA for As(III), in ArsA ATPase activity assay, was 
determined at different concentrations of ArsD in different buffers. The enhancement of 
apparent affinity of ArsA for As(III) by ArsD was measured in buffers supplemented with 
or without TCEP and GSH. (●), buffer alone; (▼), buffer supplemented with 5mM TCEP; 
(○), buffer supplemented with 5mM glutathione.   
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Figure 2-10. ArsD channels As(III) to ArsA.   
 
The effect of the As(III) chelator DMSA on metalloid transfer from ArsD to ArsA was 
estimated from the activation of ATPase activity of 0.3 μM ArsA, as described under 
Materials and Methods.  ATP hydrolysis was measured in the presence of the indicated 
concentrations of DMSA with (●) ArsA alone, ( ) ArsA + 0.5 mM sodium arsenite or (■) 
ArsA + 0.5 mM sodium arsenite plus 6 μM ArsD.  The error bars represent the standard 
deviation from three assays. 
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Figure 2-11. Metalloid transfer from ArsD occurs during ArsA catalysis. 
 
As(III) transfer assays were performed as described under Materials and Methods.  
MBP-ArsD was bound to an amylose resin, following the column was charged with 
sodium arsenite to saturate ArsD.  Next purified ArsA or BSA were applied to the 
columns with the indicated nucleotides (5 mM) at room temperature unless otherwise 
noted. Experiments were done at room temperature, except experiment in F was done 
at 4ºC.  (A), 10 fractions were collected and analyzed by SDS PAGE. Nearly all of the 
BSA or ArsA eluted in fraction 2, and fraction 9 contained nearly all of the MBP–ArsD.   
Nucleotides:  (B), ArsA + MgATP; (C), BSA + MgATP, (D), ArsA + MgADP; (E), ArsA + 
MgATP-γ-S; (F), ArsA + MgATP at 4ºC. The concentration of protein (open bar) and 
As(III) (●) was quantified in each fraction.  The error bars represent the standard 
deviation from three assays. 
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Figure 2-12. Model of transfer from As(GS)3 to ArsD to ArsA.  
 
In the first step As(OH)3 forms As(GS)3 with intracellular GSH. In the next step ArsD 
extracts As(III) from As(GS)3 by thiol exchange with residues Cys12, Cys13 and Cys18. 
In a step-wise series of thol exchanges (with an unknown order), the bound As(III) is 
transferred to the thiolates Cys113, Cys172 and Cys422 of ArsA when the two 
nucleotide binding domains, NBD1 and NBD2, hydrolyze ATP.  Binding of As(III) and 
ATP induces a series of conformational changes in ArsA resulting in activation of 
catalysis, with final extrusion of the metalloid out of the cells. 
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Figure 3-1. MBP-ArsD109 and His6-ArsD109 both stimulate ArsA ATPase activity.  
 
ArsA ATPase activity was assayed at the indicated concentrations of sodium arsenite in 
the presence or absence of ArsD derivatives. ArsA ATPase activity was assayed as 
described under “Materials and Methods”. (●), no addition; (○), MBP-ArsD109; (▼), 
His6-ArsD109. The curves were fitted using SigmaPlot 9.0, with error bars representing 
standard deviation from three assays. 
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Figure 3-2. Dimerization equilibrium states of MBP-ArsD109 and His6-ArsD109.  
 
(A) 2.4 mg of MBP-ArsD109 in 1 ml of buffer was loaded to a 1.5 cm diameter column 
filled with 165 ml Sephacryl-200 gel-filtration column on a Bio-rad Biological LP 
chromatography system as described under “Materials and Methods”. 1.5 mg aldolase, 
1.5 mg conalbumin, and 1.5 mg albumine were used as internal standards. The column 
was washed with 200 ml of column buffer. Elutions were collected as 1.5 ml each 
fraction. Fractions 59-83 were analyzed by 12 % SDS-PAGE.  
 (B) 2 mg of His6-ArsD109 in 1 ml of buffer was separated by Superdex-75 
chromatography as above. 1.5mg ovalbumin, 1.5mg carbonic anhydrase and 1.5mg 
ribonuclease were used as internal standards. The column was washed with 200ml of 
column buffer. Elutions were collected as 1.5ml each fraction. Fractions 66-102 were 
analyzed by 16 % SDS-PAGE.  
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Figure 3-3. ArsD dimerization interface in crystal structure.  
 
The ArsD dimerization interface was rendered with Pymol software. Subunit A is colored 
in green and subunit B is colored in cyan. The residues involved in potential hydrogen 
and salt bridge were shown in stick form and labeled. The distances of hydrogen bond 
and the salt bridge was measured, with distances labeled in blue. The unit for distance 
is Å.  
(A) Cartoon view. 
(B) Ribbon view. 
(C) Ribbon view of magnified dimerization interface. 
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Figure 3-4. His6-ArsD109S68A/R87A/R96A shifts equilibrium to monomer and still 
activates ArsA ATPase activity.  
 
(A) 2 mg His6-ArsD109S68A/R87A/R96A in 1 ml of buffer was separated by Superdex-75 gel 
chromatography, as described above. Fractions 66-102 were analyzed by 16% SDS-
PAGE. 
(B) 2 mg His6-ArsD109S68A/R87A/R96A/E81A/T82A/V83A/M84A in 1 ml of buffer was separated by 
Superdex-75 gel chromatography, as described above. Fractions 66-105 were analyzed 
by 16 % SDS-PAGE. 
(C) ArsA ATPase activity was assayed at the indicated concentrations of sodium 
arsenite in the presence or absence of ArsD derivatives. ArsA ATPase activity was 
assayed as described under “Materials and Methods”. (●), no addition; (Δ), His6-
ArsD109; (■), His6-ArsD109S68A/R87A/R96A/E81A/T82A/V83A/M84A. The curves were fitted using 
SigmaPlot 9.0, with error bars representing standard deviation from three assays. 
 
 



  

 

131

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-5. Dimerization equilibrium of His6-ArsD109G86E shifts to monomer. 
 
(A) Yeast two-hybrid analysis was performed as described under “Materials and 
Methods.” S. cerevisiae strain AH109 bearing both GAL4 activation domain (AD) and 
binding domain (BD) fusion plasmids was grown in SD medium overnight and 
inoculated on agar plates with SD lacking histidine with 10-fold serial dilutions. The first 
row was cells with the empty vector serving as control. ArsD and ArsD mutants were 
fused to BD domain, as indicated on the left side. They are tested with ArsA fused to AD 
(left panel) or ArsD fused to AD (right panel). 
(B) 2 mg His6-ArsD109G86E in 1 ml of buffer was separated by Superdex-75 gel 
chromatography, as described above.. Fractions 69-108 were analyzed by 16 % SDS-
PAGE. 
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Figure 3-6. His6-ArsD109G86E activates ArsA ATPase.  
 
ArsA ATPase activity was assayed at the indicated concentrations of sodium arsenite in 
the presence or absence of ArsD derivatives. ArsA ATPase activity was assayed as 
described under “Materials and Methods”. (●), no addition; (Δ), His6-ArsD109; (■), His6-
ArsD109G86E. The curves were fitted using SigmaPlot 9.0, with error bars representing 
standard deviation from three assays. 
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Figure 3-7. Comparison of R773 ArsD structure and Bacteroides vulgatus ATCC 8482 ArsD.  
 
R773 ArsD structure (pdb: 3KGK) and Bacteroides vulgatus ATCC 8482 ArsD structure (pdb: 3KTB) were compared and 
presented in cartoon view with Pymol software.  
(A) R773 ArsD structure (pdb: 3KGK) in cartoon view. 
(B) Alignment of chain A of R773 ArsD (3KGK) with chain A of Bacteroides vulgatus ATCC 8482 ArsD (3KTB) with 
cysteine residues shown in stick. 
(C) Bacteroides vulgatus ATCC 8482 ArsD structure (pdb: 3KTB) in cartoon view with cysteine residues shown in stick. 
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Figure 3-8. ArsDP52L dimerize more strongly with wild type ArsD in yeast two-hybrid.  
 
S. cerevisiae strain AH109 bearing both GAL4 activation domain (AD) and binding domain (BD) fusion plasmids was 
grown in SD medium overnight and inoculated with 10-fold serial dilutions on SD agar plates, lacking histidine and 
supplemented with different concentrations of 3-AT. Top panel shows wild-type ArsD and ArsD P52L fused to BD co-
transformed with wild-type ArsD fused to AD. Bottom panel shows wild-type ArsD and ArsD P52L fused with BD co-
transformed with wild-type ArsA fused to AD.  
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Figure 3-9. A hypothetic dimerization interface.  
 
R773 ArsD structure (pdb: 3KGK) was rendered by Pymol, with backbone shown as cartoon. A patch of residues 
including Leu48, Phe52, Met53, Phe55, Val56, Val61, Ile66 and Ala70 was shown with stick and labeled. These residues 
are colored in magenta in one subunit and blue in another subunit. 
(A) Full view of a second dimerization interface between subunits from different asymmetric units. 
(B) Magnified view of the interface. 
(C) and (D) view of the hydrophobic patch from the top. 
(E) Interface shown with the surface of the hydrophobic patch. 
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Figure 4-1. ArsD mutants showing stronger interaction with ArsA.  
 
S. cerevisiae strain AH109 bearing both GAL4 activation domain (AD) and binding domain (BD) fusion plasmids was 
grown in SD medium overnight and inoculated with 10-fold serial dilutions on SD agar plates, lacking histidine and 
supplemented with different concentrations of 3-AT. Left 4 strips show wild-type ArsD or ArsD mutants fused to BD co-
transformed with wild-type ArsA fused to AD. Right 4 strips show wild-type or ArsD mutants fused with BD co-transformed 
with wild-type ArsD fused to AD. The ArsD mutants were indicated on the left. 
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Figure 4-2. Mutating Lys37 and Lys62 to alanine abolishes ArsD function as an 
arsenic chaperone.  
 
ArsA ATPase activity was assayed at the indicated concentrations of sodium arsenite in 
the presence or absence of ArsD derivatives. ArsA ATPase activity was assayed as 
described under “Materials and Methods”. The curves were fitted using SigmaPlot 9.0, 
with error bars represent standard deviation. 
(A) (○), no addition; (●), ArsD109; (▼), ArsD109K2/104A-K37/62A; (Δ), ArsD109K2/104A; (□), 
ArsD109K37A; (■), ArsD109K62A. 
(B) (●), no addition; (○), ArsD109; (▲), ArsD109K2/104A-K60/90A; (Δ), ArsD109K2/104A-K37/62A; 
(▼), ArsD109K2/104A-K37/62R.  
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Figure 4-3. Acetylation of Lys37 and Lys62 sabotages ArsD metallochaperone 
function.  
 
ArsA ATPase activity was assayed at the indicated concentrations of sodium arsenite in 
the presence or absence of ArsD derivatives. ArsA ATPase activity was assayed as 
described under “Materials and Methods”. (●), no addition; (□), ArsD109; (■), acetylated 
ArsD109; (▲), ArsD109K2/104A-K60/90A; (Δ), acetylated ArsD109K2/104A-K60/90A; (▼), 
ArsD109K2/104A-K37/62R; (▼), acetylated ArsD109K2/104A-K37/62R. The curves were fitted 
using SigmaPlot 9.0, with error bars represent standard deviation. 
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Figure 4-4. ArsD K2/104A-K37/62A still binds As(III) but does not interact with ArsA. 

 
(A) The antimony binding ability of ArsD and ArsD mutants was measured by mixing 
100 μM of ArsD and 300 μM of potassium antimonyl tartrate. After incubation, the 
mixture was passed through gel-filtration column to remove free antimony. Then protein 
concentration and antimony concentration was determined to get the antimony binding 
molar ratio. Details were described under “Materials and Methods”, and error bars 
represent standard deviation. 
(B) Yeast two-hybrid analysis was performed as described under “Materials and 
Methods.” S. cerevisiae strain AH109 bearing both GAL4 activation domain (AD) and 
binding domain (BD) fusion plasmids was grown in SD medium overnight and 
inoculated on agar plates with SD lacking histidine with 10-fold serial dilutions. The first 
row was cells with the vector serving as control. ArsD and ArsD mutants were fused to 
BD domain, as indicated on the left side. They are tested with ArsA fused to AD (left 
panel) or ArsD fused to AD (right panel). 
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Figure 4-5. ArsD mutants showing weaker interaction with ArsA and the corresponding complementary ArsA 
mutants.  
 
Yeast two-hybrid analysis was performed as described under “Materials and Methods.” S. cerevisiae strain AH109 
bearing both GAL4 activation domain (AD) and binding domain (BD) fusion plasmids was grown in SD medium overnight 
and inoculated on agar plates with SD lacking histidine with 10-fold serial dilutions. 
 
(A) wild-type ArsD or ArsD mutants fused with BD domain were co-transformed with AD-ArsA (ArsA fused with AD) or 
AD-ArsD (ArsD fused with AD). As a negative control, AD vector (pACT2) and BD vector (pGBT9) were co-transformed. 
(B) ArsA complementary mutants restore interaction with ArsDV22A. Wild-type ArsA or ArsA mutants fused with AD domain 
were co-transformed with BD-ArsD (ArsD fused with BD) or BD-ArsDV22A (ArsDV22A fused with BD). 
(C) ArsA complementary mutants restore interaction with ArsDF55L. Wild-type ArsA or ArsA mutants fused with AD domain 
were co-transformed with BD-ArsD (ArsD fused with BD) or BD-ArsDF55L (ArsDF55L fused with BD). 
(D) ArsA complementary mutants restore interaction with ArsDQ51H. Wild-type ArsA or ArsA mutants fused with AD domain 
were co-transformed with BD-ArsD (ArsD fused with BD) or BD-ArsDQ51H (ArsDQ51H fused with BD). 
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Figure 4-6. ArsA mutants showing stronger interaction with ArsD.  
 
S. cerevisiae strain AH109 bearing both GAL4 activation domain (AD) and binding domain (BD) fusion plasmids was 
grown in SD medium overnight and inoculated with 10-fold serial dilutions on SD agar plates, lacking histidine and 
supplemented with different concentrations of 3-AT. Wild-type ArsA and ArsA mutants fused with AD domain were co-
transformed with BD-ArsD (ArsD fused with BD domain). 
 

� ArsA mutant 4: F54L, F120L, H219R, E254V, F443L, K475R, A533T

� ArsA mutant 7: D121G,E405V,E415V,H558R

� ArsA mutant 8: P9L, L74H, D121G, F123L, E425A
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Figure 4-7. Mapping mutations on ArsD structure.  
 
An ArsD structure model based on R773 ArsD structure (pdb: 3KGK) was used to show all mutations with effect on ArsA-
ArsD interaction (Ye et al., 2010). The figures are generated with Pymol software. Three cysteine residues Cys12, Cys13 
and Cys18 are colored in magenta. Residues Val17, Val22, Val27, Lys37, Gln51, Phe55 and Lys62, lowing down the 
interaction strength, are colored in red. Residues Ser14, Thr20, Gln24, Asp28, Thr31, Gln34, Gln38 and Val61, increasing 
interaction strength, are colored in blue. All these residues are shown with stick. 
(A) in cartoon view. 
(B) in cartoon view with surface. 
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Figure 4-8. Mapping mutations on ArsA structure.  
 
ArsA structure (pdb: 1F48) was used to show all mutations with effect on ArsA-ArsD interaction. The figures are 
generated with Pymol software. ArsA-A1 part (residues 1-297) is shown in green. ArsA-A2 part (residues 308-586) is 
shown in orange. Three cysteine residues Cys113, Cys172 and Cys422 are colored in magenta. Residues Phe120, 
Asp121 and Glu425, increasing interaction strength, are colored in blue. All these residues are shown with stick. 
(A) front view. 
(B) bottom view. 
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Figure 4-9. Comparison of ArsA and Get3 structure (Ye et al., 2010).  
 
ArsA was superimposed with closed and open Get3. 
(A) Superimposition of ArsA (PDB ID: 1IHU) with Get3 closed structure (PDB ID: 2WOJ).  ArsA-A1 (green), ArsA-A2 
(orange), Get3 monomer-1 (Blue) and Get3 monomer-2 (light-blue) are shown as cartoon.  
(B) Superimposition of ArsA-A1 (residues 1-297) and ArsA-A2 (residues 298-583) with Get3 open structure 
(2WOO).  ArsA-A1 (green), ArsA-A2 (orange), Get3 monomer-1 (Blue) and Get3 monomer-2 (gray) are shown as 
cartoon.  
(C) ArsA open structure was modeled based on the Get3 open structure. ArsA-A1 (green) and ArsA-A2 (orange) are 
shown as a cartoon representation.  Cysteine residues are shown in ball and stick with yellow color. 
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Figure 4-10. Structure model of ArsA-ArsD complex (Ye et al., 2010).  
 
ArsA-ArsD model was calculated with Cluspro docking server. One of the best models is shown here.  ArsA is rendered 
as cartoon with green and orange color. ArsD model is shown in cyan.  As(III)/Sb(III) atom is shown as solid sphere in 
magenta color and cysteines (yellow) are shown as ball and stick.   
(A) In cartoon view. 
(B) Figure 8A is shown in surface representation with 40% transparency. 
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 Arsenic is a metalloid toxicant that is widely distributed throughout the earth’s 

crust and causes a variety of health and environment problems. As an adaptation to 

arsenic-contaminated environments, organisms have developed resistance systems. In 

bacteria and archaea various ars operons encode ArsAB ATPases that pump the 

trivalent metalloids As(III) or Sb(III) out of cells. In these operons, an arsD gene is 

almost always adjacent to the arsA gene, suggesting a related function. ArsA is the 

catalytic subunit of the pump that hydrolyzes ATP in the presence of arsenite or 

antimonite.  ArsB is a membrane protein which containing arsenite-conducting pathway. 

ArsA forms complex with ArsB, therefore ATP hydrolysis is coupled to extrusion of As(III) 

or Sb(III) through ArsB.  

 Most transition and heavy metal ions do not exist as free ions in the cytosol but 

are sequestered by a variety of proteins called metal ion chaperones, scaffolds or 

intracellular carriers. ArsD was recently shown to be a chaperone for transfer of 

cytosolic As(III) to the 583-residue ArsA ATPase, the catalytic subunit of the efflux pump. 

ArsD is a 120-residue protein with three conserved cysteine residues, Cys12, Cys13 

and Cys18 required for chaperone activity. ArsA exhibits a low, basal rate of ATPase 
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activity in the absence of As(III) or Sb(III) and a higher, activated rate in their presence.  

ArsA has a high affinity metalloid binding site composed of Cys113 and Cys422 and a 

third residue, Cys172, which participates in high affinity binding and activation of ATP 

hydrolysis. By directly transferring As(III) to ArsA, ArsD also increased ArsA ATPase 

activity at environmental concentrations of arsenic. Therefore, ArsAB pump efficiency is 

increased and less As(III) will be accumulated in the cells. In analogy with the 

mechanism of copper transfer from chaperones to copper pumps or enzymes, a step-

wise transfer of As(III) from the cysteines of ArsD to the cysteines of ArsA, was 

proposed.    

 The properties of As(III) binding by ArsD and subsequent transfer to ArsA were 

examined. X-ray absorption spectroscopy was used to show that As(III) is coordinated 

with three sulfur atoms, consistent with Cys12, Cys13 and Cys18 forming the As(III) 

binding site. An assay using intrinsic protein fluorescence was developed as a probe of 

metalloid binding to ArsD.  Two single tryptophan derivatives of ArsD were constructed 

by changing either Thr15 or Val17 to tryptophan in a tryptophan-free background. Both 

exhibited quenching of fluorescence upon binding of As(III) or Sb(III), from which the 

apparent affinity for metalloid could be estimated. Since it is likely that cytosolic As(III) is 

bound to reduced glutathione (GSH), the effect of GSH on binding to ArsD was 

examined.  GSH greatly increased the rate of binding As(III) to ArsD, suggesting that 

ArsD accepts metalloid from the As(GS)3 complex. In contrast, GSH did not affect the 

As(III)-stimulated ArsA ATPase activity, suggesting that As(III) is directly transferred 

from ArsD to ArsA, as opposed to release from ArsD, binding to GSH and then 

interaction of ArsA with the As(GS)3 complex.  To differentiate between these two 
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possibilities, the effect of the As(III) chelator dimercaptosuccinic acid (DMSA) was 

examined. The chelator did not affect transfer, indicating channeling of As(III) from ArsD 

to ArsA.  Transfer occurs only under conditions where ArsA hydrolyzes ATP, suggesting 

that ArsD transfer As(III) to an ArsA conformation transiently formed during catalysis 

and not simply to the closed conformation that ArsA adopts when As(III) and MgATP 

are bound. 

 R773 ArsD was shown to be a dimer in crystal structure. Whether the 

dimerization form is a physiological one existing in the solution, was studied by 

mutagenesis. Residues, Ser68, Arg87 and Arg96, involved in dimerization were 

mutated to alanine. ArsD dimerization equilibrium was shifted to the monomer direction 

by mutating these residues to alanine, but not totally a monomeric form. One mutant 

ArsDG86E was selected from reverse yeast two-hybrid analysis, showing no dimerization 

with wild-type ArsD. Gel-filtration chromatography confirmed mutation G86E shifts ArsD 

dimerization equilibrium to the monomer direction, but not totally change ArsD to a 

monomeric form. Since Gly86 sits on the dimerization interface in the crystal structure, it 

is most likely the crystallographic ArsD dimer forms in the solution. All these mutants 

still retain the ability to stimulate ArsA ATPase activity, suggesting dimerization is not 

strictly required for ArsD metallochaperone function. 

 ArsA and ArsD crystal structure have been solved individually. But little is known 

about ArsA-ArsD interaction interface. Yeast two-hybrid and reverse yeast two-hybrid 

are combined to select for totally 14 ArsD mutants with weaker or stronger interaction 

with ArsA. Additionally, Lys37 and Lys62 were shown to be important for ArsD function 

by site-directed mutagenesis. ArsD loses function when Lys37 and Lys62 were mutated 
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to alanine as well as acetylated by Sulfo-NHS acetate. The charge carried by Lys37 and 

Lys6 was shown to be important since protein is still active when they are mutated to 

arginine. Yeast two-hybrid confirmed mutating Lys37 and Lys62 to alanine has effect on 

ArsA-ArsD interaction. Mapping all the mutations on ArsD structure gives us information 

on ArsA-ArsD interaction interface. Four residues, Ser14, Val17, Thr20 and Val22, are 

in the loop containing the important metal binding site Cys12-Cys13-Cys18. This 

suggests the metal binding site may be directly involved in the interaction with ArsA. 

Seven residues, Gln24, Val27, Asp28, Thr31, Gln34, Lys37 and Gln38 are located on 

helix α1. They are aligned at one side of helix α1 and solvent exposed, suggesting this 

region might be directly involved in interaction. A structure model of ArsA-ArsD complex 

was generated by docking. The model suggested an extensive interaction interface at 

multiple directions, consistent with most of the yeast two-hybrid results.  
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