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The  description of the permeability properties of biological membranes in terms of 

parallel pathways for lipid-insoluble and lipid=soluble molecules has its roots in the 

studies of Overton (1) and Collander and Barlund (2) and has been presented in 

detail in several books, such as those of Davson and Danielli (3) and H6ber (4). The  

concept of the equivalent pore as a description of the path taken by lipid-insoluble 

molecules grew from the treatments of Koefoed-Johnsen and Ussing (5) and Pappen- 

heimer, Renkin, and Borrero (6) and has been used by Solomon and coworkers (7-11) 

to characterize the behavior of single cell membranes, particularly those of red cells. 

More powerful mathematical treatments based on irreversible thermodynamics have 

been applied to biological systems, and new experimental evidence bearing on the 

equivalent pore concept has been obtained both from biological systems and from 

organic membranes. It  appears desirable, therefore, to reexamine both the theoretical 

basis for the equivalent pore concept and the evidence bearing on its validity when 

applied to single biological membranes. 

Since a great deal of the discussion will be concerned with diffusion, it is important 

to understand the nature of this process, which was perhaps best described by Ein- 

stein (12) : " the molecular theory of heat affords a . . .  point of view from which the 

process of diffusion can be considered. The process of irregular motion which we have 

considered as the h e a t . . ,  content of a substance will operate in such a manner that 

the single molecules of a liquid will alter their positions in the most irregular manner 

thinkable. This wandering about of the molecules of the solute--fortuitous to a certain 

extent--will have as a result that the original non-uniform distribution of concentra- 

tion of the solute will gradually give place to a uniform one." 

Diffusion may be contrasted with viscous or bulk flow, in which a number of mole- 

cules in a liquid move together in response to a physical force, often a pressure 

gradient. Account is taken of the attractive forces between neighboring portions of the 

fluid. As Prandtl and Tietjens (13) point out, " in homogeneous fluids the behavior of 

individual fluid particles is not of particular interest; one only wants to know the state 

of motion and its alteration with time at every point." The matter was put very suc- 

cinctly by Onsager (14), who stated: "viscous flow is a relative motion of adjacent 

portions of a liquid. Diffusion is a relative motion of its constituents." 

When solvent passage through a membrane can take place only by dissolution of 

the molecules in the membrane, solvent transport takes place by diffusion alone. 

When a pressure gradient is imposed across a pipe whose diameter is greater by orders 
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336 s C E L L  M E M B R A N E  B I O P H Y S I C S  

of magnitude than that of the solvent and solute molecules, viscous flow alone is of 

primary importance. We are interested in the intermediate range between these two 

extremes, and shall try to show what equations, still largely empirical, may be applied 

to fluxes through channels with dimensions comparable to those of solute and solvent. 

We shall start by an examination of the relationship of channel dimensions to fric- 

tional coefficients, including the Staverman reflection coefficient, and then examine 

diffusion coefficients as an index of channel radius. Next we shall discuss the htrther 

information that can be obtained from the relation of the diffusion coefficient of water 

through a membrane to its hydraulic conductivity under a pressure gradient. Finally, 

these several methods will be applied to a description of channels in red cell mem- 

branes. 

H Y D R O D Y N A M I C  R E L A T I O N S  B E T W E E N  P O R E  

D I M E N S I O N S  AND F R I C T I O N  

Several equations have been put forward to describe the quantitative relationship 

between pore dimensions and frictions. In the case of free diffusion in one dimension 

in a solution, Fick's law can be stated as 

J .  = - D . ( ~ / ~ x ) .  ( 1 ) 

J ,  is the solute flux in moles per unit time and area, c is concentration in moles/cm 3, 

and x is distance. D, is the diffusion coefficient in free solution (cm2/sec), equal to 

R T / f  °, in which R and T have their usual meanings a n d f  ° is the friction of I mole of 

solute with water. In order to describe membrane permeability, Pappenheimer et al. 

(6) used an equation similar to the following: 

J,  = DsA,(,'Xc/~x). ( 2 ) 

The partial differential has been replaced by a difference taken across the membrane 

(taken in the opposite direction to produce the change in sign); Ax is considered to 

represent the total path length through the membrane, probably greater than the 

membrane thickness because of tortuosity. The additional restrictions to diffusion 

introduced by the membrane are included in the factorA8, which includes two terms. 

First are the geometrical restrictions introduced by the fact that the diffusion area is 

usually limited to a portion of the total membrane area. Since we shall be concerned 

primarily with transport through apertures that behave as pores traversing the mem- 

brane, the first term may be expressed as Ap/A, the ratio of the total pore area to the 

total membrane area. The additional restrictions due to friction experienced by the 

solute in diffusing through the membrane are included in the second term, A~a/A~. 

A,~ is the total apparent area for solute diffusion; Asa/A~ has a limiting value of 1.0 

when the pores are so large that solute-membrane friction may be neglected. Thus 

A,  = (A~/A)(A~d/A~). In diffusion through biological membranes it is not possible to 

separate A, and Ax, so the parameter to be determined is A,/Ax.  In the case of arti- 

ficial membranes there are techniques for determining Ap/A and also methods by 

which Ax may be approximated, though with varying degrees of success. 

In order to describe the friction of a particle within the membrane pore, Pappen- 
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A. K. SOLOMON Characterization of Biological Membranes by Equivalent Pores 337 s 

heimer et ah (6) used the following equation which Ladenburg (15) had derived on 

hydrodynamic grounds to correct Stokes' law for viscous drag between particles and 

the walls of a cylinder in which the measurement was made: 

gt/gO, = 1 q- 2.4a (3 )  

in which g'  is the friction exerted on the solute molecule because of interactions within 

the pore, and go, that in free solution; a = a/r, the ratio of the radius of the solute 

molecule, a, to the pore radius, r; the primed symbols are used to denote the Laden- 

burg equation. Pappenheimer et al. also pointed out that an additional factor had to 

be considered to take account of the probability that a particle will actually enter the 

pore. Assuming that a molecule could only enter the pore by diffusion if it did not 

strike the rim of the pore, Pappenheimer et al. (6) used the following: 

A,d/A~, --- (1 - a)2/(1 -b 2.4a) = (1 - a)2g°'/g '. ( 4 )  

Renkin (16) pointed out that the following equation, derived by Faxen (17) on 

theoretical grounds, is to be preferred to the Ladenburg equation: 

gO/g = 1 - 2 . 1 0 4 a  + 2 . 0 9 a  a - -  0 . 9 5 0 : .  ( 5 )  

Faxen's equation was derived to describe the friction of spheres in tubes and depends 

upon the implicit hydrodynamic requirement that the fluid be considered a con- 

tinuum. In addition, he gave several important conditions to be observed in the 

application of his equation. The most restrictive appears to be that molecules consti- 

tuting the fluid in the tube be small compared with the sphere. As will be discussed, 

this equation has been applied to situations in which this condition is not fulfilled. 

The other conditions appear to be more generally satisfied in studies of membrane 

permeability. 

In a detailed study Bacon (18) had shown that the viscosity of falling spheres could 

be well described by the Faxen equation. Bacon computed viscosities from the ter- 

minal velocity of falling bails of 0.1-0.8 cm diameter in tubes of 2.5-7.9 cm diameter 

and found the Faxen equation to be valid for values of a as great as 0.32, though the 

Ladenburg equation gave errors as great as 40 % at this value of a. Calculated vis- 

cosities were within 1% of the absolute viscosities over a range of 7.5-3600 poises. 

Renkin (16) combined the Faxen equation with the equation for steric hindrance at 

the pore entrance to give the following equation, in which the restriction to diffusion 

is expressed in terms of the ratio of the apparent area for diffusion, A,d,  to the total 

pore area, A~ : 

Asa/A1, -- (1 - a)2(go/g). (6 )  

Renkin also derived a similar equation for bulk flow through the pores, and used this 

in a discussion of experiments on ultrafiltration through cellophane membranes. 

Renkin assumed that laminar flow takes place through the membrane and that the 

velocity of the flow in each laminar shell depends upon the distance of the shell from 

the axis of the tube. This gives a parabolic velocity profile as described by the Poiseuille 
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338 s CELL MEMBRANE BIOPHYSICS  

equation. Using a steric hindrance factor derived by Ferry (19), Renkin  gave the 

following equation for the frictional effects in bulk flow (A,I is the apparent  area 

for filtration) : 

a , # a ,  = [ 2 0  - a ) , -  ( l  - ~),](go/g). (7) 

In  this instance, the term in the square brackets has been adjusted to take account  

of the velocity profile, whereas the go/g term remains as for diffusion. Fig. I, taken 

f rom Renkin 's  paper,  shows the relation between the apparent  pore areas calculated 

by equation 6 and equation 7. I n  general, it is not  possible to measure A T in 

biological membranes,  so water flow is measured also and the ratio A~f/A,of is used in 

o. 
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FIOURE I. As/Av, the ratio of the 

apparent area for solute diffusion 
to the total pore area (Asd/Av), and 
the ratio of the apparent area for 

solute filtration, to total pore area 

(Aal/Ap), are expressed as a func- 

tion of the ratio of the radius, a, of 

the solute molecule to the radius, r, 

of the equivalent pore. The full 

line (diffusion) is drawn according 

to equation 6, and the dashed line 

(filtration) is drawn according to 

equation 7. The figure has been 

redrawn, with permission, from 

Renkin (16). 

the computat ion.  This is given by 

a , f  _ [2(1 --  a,) ~ --  (1 --  a~)4](g~/g, ") ( 8 )  

awf [2(1 -- a~) 2 --  (1 --  a~)4](g~/g~) 

in which the subscript s refers to use of the solute radius, and w refers to the water 

radius. 

T he  assumptions on which both equations 6 and 7 have been developed, and par- 

ticularly their extension to equivalent pores so narrow that  the molecular mechanism 

of diffusion and of bulk flow is not understood, mean  that  both equations are to be 

considered as empirical descriptions of the relation between frictions and pore dimen- 

sions. Their  applicability rests upon  the ability of these two equations to provide a 

self-consistent description of the membrane  pore. Thus  it is necessary that  the param-  

eters derived from equations 6 and 7 be consistent with data  derived from all other 

measurements of membrane  permeabili ty if they are to be considered applicable to 

pores of dimensions comparable  with those of solute and solvent molecule. 
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R E L A T I O N  B E T W E E N  R E F L E C T I O N  C O E F F I C I E N T  

AND F R I C T I O N A L  C O E F F I C I E N T S  

In 1951, Staverman (20) introduced the reflection coefficient, o, to describe the 

osmotic properties of leaky semipermeable membranes which permit restricted pas- 

sage of solute. The osmotic pressure developed in such a system is given by 7rob. = 

o1rtheor, in which 7rob8 is the measured osmotic pressure and 7rtheor is the van' t  Hoff  

theoretical osmotic pressure. (I -- a) was to be obtained in an idealized ultrafiltration 

experiment as the ratio of the solute concentration after it had flowed through the 

membrane to the solute concentration before, after correction for the diffusion of the 

solute down its concentration gradient. In 1956, Durbin, Frank, and Solomon (21) 

first applied these considerations to a biological membrane. The passage of lipid- 

insoluble molecules was considered to be restricted to pores, and the membrane was 

treated operationally as an array of equivalent pores. They  devised the equation 

1 - -  o = A , t / A , o f  ( 9 ) 

to relate the reflection coefficient to the hydrodynamic frictions. A,s and A`ol are the 

apparent areas for filtration of solute and water as given in equation 8. Subsequently, 

a consistent theoretical treatment of coupled flows in membranes, with the methods 

of irreversible thermodynamics, was introduced by Kedem and Katchalsky in 1958 

(22), and a deeper insight into the relations between forces and flows in such systems 

was obtained by the use of phenomenological coefficients which obeyed the Onsager 

reciprocal relations. In the same year, Spiegler (23) derived a relationship between 

the phenomenological coefficients and frictional coefficients which he introduced to 

describe the multiple interactions between solute, solvent, and membrane in New- 

tonian terms. In the systems to be discussed, three frictional coefficients are impor- 

tant: fa~,, the friction between 1 mole of solute and the water; f , , , ,  the friction be- 

tween I mole of solute and the membrane; and f`o,,, the friction between 1 mole of 

water and the membrane. 

In 1961, Dainty (24) derived a relationship which related Gr to the Spiegler fric- 

tional coefficients fs`o and f,, ,  ; subsequently Dainty and Ginzburg (25) derived the 

following relation to apply when solute passage was restricted to the pores: 

1 -- a L ~  - f , ` o + f , ~  - A`of (10)  

in which K,' is the partition coefficient for the solute between the water in thepores  

and the external solutions, w, is the permeability coefficient for the solute, V, the 

solute partial molar volume, and L,  the hydraulic conductivity of the membrane. 

The  term ¢o,V,/L, enters because a is defined under the condition of zero volume flow, 

whereas the relation with the frictional coefficients is derived at zero water flow. 

Equation 10 may also be given as 

1 - -  ~ = A,I/A`Ol, 
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34 ° s C E L L  M E M B R A N E  B I O P H Y S I C S  

so that 

~' = ¢ + o o s ~ , / L , .  

At zero volume flow, the solute flow must be balanced by solvent flow, and the cor- 

rection term cosV,/L~, is the contribution of that solute flow. When the solute flows 

only through pores that offer considerable restriction to its passage, the correction 

term is usually small. However, in cases in which solute can move preferentially to 

solvent, as by dissolution in the membrane,  the ~,V,/L~, term can become important  

and lead to the production of negative anomalous osmosis. Kedem and Katchalsky 

(26) come to a slightly different conclusion about  the relationship between the fric- 

tional coefficients and the apparent  pore areas. They  use the ratio of the apparent  

pore areas for diffusion, A,,~/A,o,~, rather than the ratio for filtration, A,r/A~s, given 

by Dainty and Ginzburg. Kedem and Katchalsky give the following equation (their 

equation 4-11): 

co.Y', A,e 
1 - - ~ - -  L,  =A~--~" (11) 

Since the difference between A #/A,~I and A,a/A~e is appreciable, it is necessary to 

choose between these two theoretical derivations. The  difference lies in the use of the 

tortuosity factor, ~ ,  originally introduced by Mackie and Meares (27) and used by 

Kedem and Katchalskyin their derivation of equation 11. 2~x/O, is used by them to 

represent "in an overall manner  the water path in the membrane ."  However, the 

tortuosity factor was introduced by Mackie and Meares to apply to polymeric mem- 

branes in which the membrane exerts no mechanical sieve action on the movement  

of the solute. Indeed, sieve actions are important even in the theory originally de- 

rived by Mackie and Meares, as pointed out by Lagos and Kitchener (28), who criti- 

cized the whole concept of tortuosity as lacking in rigor and taking no account of the 

size of the moving particle. Furthermore, Ginzburg and Katchalsky (29) have shown 

experimentally that the tortuosity in Visking dialysis tubing is dependent on the size 

of the solute molecule. When the tortuosity is not introduced into the derivation of 

equation 11, it can be shown that the equality toA.~a/Awa does not hold, and we may 

conclude that the treatment of Dainty and Ginzburg is correct. 

EXPERIMENTAL STUDY OF RELATION BETWEEN 

(1 - t r )  A N D  A1./Awy IN  V I S C O U S  F L O W  

Two experimental investigations bearing on this relation in artificial membranes 

have been made, one by Renkin (16) in 1955, and the other by Durbin (30) in 1960. 

In  the light of more recent knowledge the results of both investigations need further 

evaluation. 1 For example, Renkin's equations for ultrafiltration do not include any 

1 Lakshminarayanaiah (58) has criticized the measurements of Renkin (16) and Durbin (30) on the 
gound that their membranes were supported when filtration measurements were made, and not 
when diffusion measurements were made. Both authors point out that filter paper was interposed 
between the membrane and its support in order to permit filtration over the entire membrane area. 
Lakshminarayanaiah also followed this procedure, but found a significant increase in the hydraulic 
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explicit mention of the reflection coefficient, and Durbin's  measurements do not 

consider the effect of the ¢osV,/L~ term; neither author has been concerned with the 

effect of the unstirred layer. In  both cases, the molecular dimensions used for the 

various solutes are not necessarily correct. This is particularly important  in the case 

of H~O, for which the radius was considered to be 1.9-2.0 A, much larger than the 

currently accepted value of 1.5 A. 

The  artificial membranes are not very thick, and the pores in these membranes 

may be only of the order of I m m  long. I t  is desirable to see whether the usual velocities 

of flow are sufficient to establish laminar flow in these pores by the usual hydro- 

dynamic criteria; otherwise the entire pore might represent a transition region. The  

Reynolds numbers are so small (of the order of 10 -9 at usual velocities) that the length 

required to reach laminar  flow is negligible, even for Sylvania wet gel with an equiva- 

lent pore radius of the order of 100 A, the largest in the group. 

As Dainty (31) and Ginzburg and Katchalsky (29) have pointed out, the presence 

of the unstirred layer leads to great difficulties in the interpretation of studies of dif- 

fusion and bulk flow across artificial membranes.  The  effect, as Dainty (31) has shown, 

is of much less significance in bulk flow than in diffusion. In  Renkin's ultrafiltration 

experiments the stirring bar  rested directly on the membrane  on the filtrand side, so 

the stirring must have been very efficient. Both Renkin and Durbin characterized 

their membranes  by measuring the diffusion of tritiated water, T H O ,  as will be dis- 

cussed in a later section. From the results of these measurements it is possible to com- 

pute the unstirred layer effect for Visking dialysis tubing in both studies, based on the 

assumption of a layer 25 ~ thick on the side to which the tracer was added, and no 

unstirred layer on the pure solvent side of the membrane.  In  both cases, the effect on 

the membrane  diffusion coefficient amounts to a few per cent, so that no correction 

need be applied in the case of bulk flow. 

The  equation that Renkin used in computing the results of his ultrafiltration ex- 

periments can be shown to be almost equivalent to the usual expression derived by 

irreversible thermodynamics. Renkin's equation is 

c2 = \A~I } cl + j ,  (12) 

where cl is the concentration of the filtrand and c2 is the concentration of the filtrate. 

J ,  is the volume flow (volume per unit time and area), dn/dt is the rate of solute dif- 

fusion caused by the concentration difference, that is, 

(an~at) = ( J ~ ) , , . o  = o~A~:8 

conductivity without the support. It is not clear how much of this may be ascribed to pressure- 
induced stretching of the membrane. Lakshminarayanaiah obtained a similar effect in his diffusion 
measurements, but the contribution of the unstirred layer could not be measured exactly. Since the 

validity of the criticism depends upon exact details of membrane stretching and the importance of 
the unstirred layer in Lakshminarayanaiah's measurements, it is very difficult to a~ess the importance 

of this objection to the experiments of Renkin and Durbin. 
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in which ,/8 is solute flow in moles per unit time and area and ATr, = RT(Cl --c,). 

Renkin's experimental measurements seem to have been made under conditions close 

to the steady state, since the ratio cl/c2 did not vary appreciably during the course of 

the experiment. Multiplying through by or,, and remembering that A, / /A~/  = (1 -- 

o'), we obtain: 

J,c~ = J ,  ~- (1 -- ~)¢iJ, "[" tfl,ATr, . (13) 

In  the steady state, J ,  c2 is approximately equal to J , .  Since Cl/C2 varies between 0.6 

and 1.0, ci is not very far from ~8 (c, approximates the mean concentration and is 

1.0 

O.B 

o 
0.{ 

,.= 

~, 0.4 

m 

0 . ~  

~ - - ' - - - ' - - ~ ] ~ "  ~ r  ='5 A UREA 

VISKING DIALYSIS TUBING 

1 [ I I 
OZ 0.4 0.6 0.8 

FILTRATION RATE ~ X 10 4 
cm ~ 

FIOtm~ 2. The sieving co- 
etfident of Visking dialysis 
tubing plotted by Renldn (16) 
following equation 8 and 12. 

r, equivalent pore radius. The 
figure has been redrawn with 
permission. 

defined by G = (c2 -- ci)/In (c2/cl)). Equation 13 is not very different from the 

usual equation for solute flux, 

J ,  = (1 -- o')G J ,  + oo,A~'.. (14) 

One reason equation 13 is approximate is that no allowance has been made for the 

tosV,/L~, term in the substitution of (1 - ~r) for As//A,os. However, as will be shown 

in the discussion of Durbin's  experiments, corrections due to this term are very small 

for filtration through porous membranes when the solute and solvent traverse the same 

channels. Fig. 2 shows a comparison of Renkin's experimental data with theoretical 

curves drawn according to equations 8 and 12; the data are consonant with a 15 A 

equivalent pore radius. The  agreement is only qualitative, since no correction has 

been made by the introduction of more recent values for the molecular radii of HEO 

and the solutes. Nonetheless Fig. 2 offers support for the treatment of hydrodynamic 

friction in filtration by equations dependent on the relative dimensions of the filtered 

molecule and the equivalent pore. 
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The  data presented by Durbin (30) for bulk flow through Visking dialysis tubing 

can be recomputed so that equation 10 may be tested directly. Gr for D~O was 0.002 

in this membrane,  and the to,V,/Lv term amounts to 0.01, so that a '  for D~O is effec- 

tively 0,01. The effect of the to,V,/Lp term on the other solutes is unimportant.  As 

will be discussed later, Soil (32) has shown that the most appropriate parameter  for 

the effective molecular dimension in bulk flow may  be obtained by treating the per- 

meating molecule as a cylinder and obtaining its radius from molecular models. In  

general this leads to smaller radii than those used by Durbin. Since the inulin used by 

Durbin had a mean molecular weight of 3100, about half the value of 5600 which 

b 
i 

1.0 

0 .9  

O.S 

0.7 

0.6 

0.5 

0.4 

0,3 

0.2 

0.1 

0 

× 

I I ] [ I [ I 
2 . 0  4 . 0  6 . 0  8 . 0  IO.O 12 .0  14.0  

SOLUTE RADIUS (A) 

FIOUgE 3. (1 -- or'), recom- 
puted from Durbin's data 
(30), plotted as a function of 
solute radius. The point for 
albumin, to which Durbin has 
assigned a radius of 37 A 
which is beyond the limit of 
the figure is at 1 - ~r r = 0 as 

expected, r, equivalent pore 
radius. 

characterizes the most homogeneous preparations (33), these data have not been 

included. As expected, ¢ = 1.0 for bovine serum albumin, to which Durbin assigns 

a radius of 37 A. Fig. 3 shows the recomputed data for the equivalent pore radius as 

determined by least squares on a computer. The value comes to 22 A, essentially 

unchanged from the 23 A figure used by Durbin, based on his original assumptions. 

D I F F U S I O N  C O E F F I C I E N T S  AS AN I N D E X  OF 

E Q U I V A L E N T  P O R E  D I M E N S I O N S  

As early as 1930, Friedman and Kraemer  (34) used diffusion in the study of the struc- 

ture of gelatin gels. They  estimated the equivalent pore radius in three different gels 

by a study of the diffusion coefficients of sucrose, glycerol, and urea. Essentially, their 

method consisted in the application of the Ladenburg correction (equation 3) term to 
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344  s CELL MEMBRANE BIOPHYSICS 

compute an equivalent pore radius from the restriction offered by the gel to free 

diffusion. The molecular radii were determined from the Stokes-Einstein relationships, 

and corrections were made for mechanical blocking by the gelatin and the viscosity 

T A B L E I  

CALCULATION OF PORE SIZE F R O M  D I F F U S I O N  IN GELATIN* 

Size of pores 

Substance diffusing 5% gel 10% gel 15% gel 

A A A 

Urea  47 15 5 

Glycerol 57 17 10 

Sucrose 55 14 8 

* D a t a  from F r i e d m a n  and K r a e m e r  (34). 

of the solution in which the experiments were performed. The results they obtained 

are given in Table I, and it can be seen that the agreement is very good for pores with 

equivalent radius in the range of 10-50 A. Friedman (35) obtained similar results on 

=o 
X 
3K 
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0.4 

0.5 

0.2 

0.1 

] I I I I ) 
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MOLECULAR RADIUS {A) 

Fmum~ 4. Diffusion coefficients, 
K, in a 5% gelatin gel from the 
data of Friedman (35) for methanol, 
ethanol, urea, glycerol, glucose, 
and lactose. The radii have been 
computed from equivalent spheres 
based on dimensions taken from 
molecular models. The curve has 
been drawn by eye and is not 
based on theory. 

agar gels, though the agreement among pore radii was not as good. Friedman also 

made an extensive study of the diffusion of a number of nonelectrolytes into a 5 % 

gelatin gel. Fig. 4 shows the relation between his diffusion coefficient, denoted by K, 
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and the equivalent sphere radius of the diffusing solute, computed from molecular 

models. The  figure illustrates the increasing restriction on diffusion in such a gel with 

increasing size of the diffusing molecule. The  quantitative interpretation of these data 

must be accepted with some reserve, however, since Friedman and Shearer (36) have 

subsequently shown that nonelectrolytes exert an appreciable and concentration- 

dependent effect upon the diffusion of urea in gelatin gels. Although Friedman made 

a correction for this effect in the original calculation, it is not entirely clear that all the 

factors were taken into account. Furthermore, Gary-Bobo (personal communication; 

see also reference 37) has studied diffusion in 10% gelatin gels and found that mole- 

cules such as inulin and hemoglobin can permeate such gels, a result which would 

not be expected from the Friedman and Kraemer model. However, gelatin varies 

from batch to batch and the experimental methods and conditions differed greatly, 

so that the two sets of data are not directly comparable. 

v 
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~ "  VISKING DIALYSIS 
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MOLECULAR RADIUS, A 

FxouR.s 5. Apparent diffusion 
area per unit path length in 
Visking dialysis tubing as meas- 
ured by Renkin, and repro- 
duced with permission, (16). 
The molecular radii are 
those given by the authors 
The length of the bars give. 
standard errors of the means 
r, equivalent pore radius. 

Pappenheimer et al. (6) in 1951 first used diffusion coefficients to characterize a 

biological system in studies on capillary permeability. These authors found that the 

restricted diffusion area across the capillary wall could be described with reasonable 

accuracy by equation 4 which combines the Ladenburg restriction within the pore 

with a correction for steric hindrance at the entrance to the equivalent pore. These 

results will not be discussed in detail, since it is not clear that diffusion took place 

across a single homogeneous barrier in this complex system. 

Subsequently, Renkin (16) made a study of restricted diffusion through porous 

cellophane membranes. He made use of the Faxen treatment and fitted his data to 

equation 6. Fig. 5 shows that this equation provided a reasonable fit to the data for an 

equivalent pore radius of 15 A for Visking dialysis tubing. These measurements bring 

out the consistency in the application of these equations to pores of relatively small 

dimensions. As has been discussed in the previous section, 15 A was obtained as the 
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equivalent pore radius for this membrane in Renkin's measurements of the restriction 

offered to filtration. 

A number  of other studies have been made with synthetic membranes,  particu- 

larly ion-exchange resins. There are two examples of studies in which the apparent  

porosity of the membranes could be controlled by physical means. In  neither case was 

any abrupt  change in membrane  parameters observed as the porosity went from the 

~E 
o 

0 

q 

7 

6 

5 

S 

2 

I -  

I I I , I I , I 

0 4 8 12 16 20 24 28 

HYDROLYSIS TIME IN HOURS 

FiouP~ 6. Resistance of polyvinyl- 
butyral membranes hydrolyzed at 
60°C in 4 N sulfuric acid, redrawn, 
with permission, from Gregor and 
Kantner (38). The abscissa gives 
hydrolysis time in hour. 

lowest to the highest value. This is an important  observation, since it indicates no dis- 

continuity which might be ascribed to sudden changes in the nature of the fluid in 

pores of apparent  dimensions of 20-100 A. Gregor and Kantner  (38) prepared mem-  

branes of polyvinyl butyral film whose porosity was controlled by the time of hydroly- 

sis in 4 N sulfuric acid. As shown in Fig. 6, the ohmic resistance in the membrane 

T A B L E  I I  

DIFFUSION OF NONELECTROLYTES IN RESIN* 

D X I 0 S  

Grams H20 per 

Relative humidity 100 g dry resin Glycerol Glucose Sucrose 

Cmft/ge¢ 

0.980 48.8 1.50 0.94 0.15 
0.902 30.4 0.35 0.23 0.02 
0.807 19.3 0.06 0.05 0.01 

* D a t a ,  wi th  permission,  f r om Lagos  a n d  K i t e h e n e r  (28). 

varied smoothly with hydrolysis time. In  the tightest membrane  the permeability 

coefficient for urea was 0.049 as compared to 0.019 for sucrose, which would roughly 

correspond to a membrane  with an equivalent pore radius in the 15-30 A range. 

Lagos and Kitchener (28) studied the diffusion of three nonelectrolytes in strips of 

polystyrenesulfonic acid ion-exchange resins whose permeability could be closely con- 

trolled by the relative humidity in the experimental chamber. As Table I I  shows, 
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A. K. SOLOMON Characterization of Biological Membranes by Equivalent Pores 347 s 

these membranes could discriminate between glycerol, glucose, and sucrose, and no 

marked discontinuities of behavior appear as the hydration is changed by a factor 

of 3. 

Peterson and Gregor (39) report that the effective pore diameter of the cation- 

permeable membrane Nalfilm 1 is 6.0 A, as measured by the diffusion of unhydrated 

quaternary ammonium ions of different size The restriction to diffusion was calcu- 

lated by equation 5, the Faxen equation. This 6.0 A value was in good agreement with 

an average distance of separation of fixed sites of 8.7 A calculated from volume meas- 

urements. The equivalent pore diameter was also used to calculate the hindered 

diffusion for the co-ion, (21. The calculated value for the ratio of diffusion coefficient 

in the membrane to the free diffusion coefficient was 0.016 as compared with an 

experimental value of 0.014. Less good agreement was found for the counterion, K;  

this has been ascribed to electrostatic binding to the fixed charges. 

Subsequently Kawabe et al. (40) measured the pore radii of Nalfilm 1 and several 

other polyethylene-styrene graft copolymer resins. They found that more consistent 

results could be obtained on the basis of an equivalent slit model than on that of a 

cylindrical equivalent pore model. These authors used equations similar to equation 

6, replacing the steric hindrance term with the one appropriate for a slit, taken from 

Ferry (19) and using the slit form of the Faxen equation (41). They  computed the 

steric hindrance term and the Faxen term separately and have emphasized the im- 

portance of each separate term in the computation. In the usual Faxen treatment, 

terms higher than the fifth power of a are neglected; Kawabe et al. point out that the 

seventh-power term should also be included. Equivalent slit radii of about 5 A were 

given for Nalfilm 1, and similar values for the other resins studied. Consistent results 

were obtained from the diffusion of both alkali cations and tetraalkylammonium ions. 

R E L A T I O N  OF W A T E R  D I F F U S I O N  TO O S M O T I C  

F L O W  AS AN I N D E X  OF E Q U I V A L E N T  P O R E  

D I M E N S I O N S - - T H E O R Y  

Koefoed-Johnsen and Ussing (5) and Pappenheimer et al. (6) have independently 

pointed out that the ratio of the hydraulic conductivity, measured under either an 

osmotic or a hydraulic pressure gradient, to the transmembrane water-diffusion coeffi- 

cient, as measured by tracers, provides information which can be used to calculate an 

equivalent pore radius for the channels in the membrane. The tracer measurement 

provides a value for A s/Ax (equation 2) which is A,ffAx when the substance traced is 

water. If the same pore dimensions determine both hydraulic conductivity and diffu- 

sion, and if Poiseuille's law may be applied to flow through these pores, and if the 

only substance flowing through the pores is water, 

& = (Aw/~,,)(rV8,7,~),~P (is) 

in which 7/~ is the viscosity of water and AP is the pressure difference. Thus r 2 may be 

obtained in principle from these two separate measurements. These measurements 

were first applied by Pappenheimer et al. to the determination of the equivalent pore 

radius in capillary membranes. They obtained a value of 30 A, the same figure which 
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348 s CELL MEMBRANE BIOPHYSICS 

they obtained from the restricted diffusion through capillary membranes. This con- 

sistency would seem to provide good evidence for the general applicability of this 

treatment, but the evidence is clouded by the fact that these authors did not take 

account of the influence of the reflection coefficient on osmotic pressure, as has been 

discussed by Kedem and Katchalsky (22). Furthermore, as already pointed out, it is 

unlikely that only a single barrier is traversed between capillary lumen and inter- 

stitlal fluid; the presence of series barriers would introduce further complexities. 

Durbin et al. (21) showed that the mathematical derivations given by Koefoed- 

Johnsen and Ussing and by Pappenheimer et al. were equivalent when the solutions 

were dilute and the osmotic volume flow was small. In a review article, Solomon (9) 

gave the following equations for the computation of the equivalent pore radius, r, 

by this method: 

X = (8~l,~D,o/k')(Pt/Pa- 1). (16) 

k is related to r by equation 17 below. D~ is the diffusion coefficient for water, and k' 

is a conversion factor (RT/V,~) having the value of 1.35 X 109 dynes/era * at 23°C. 

At this temperature, (871,~D~/k') = 14.3 X 10 -16 cm 2. P / a n d  Pa are permeability 

coefficients for filtration and diffusion respectively, and must be expressed in identical 

units. For small equivalent pores, it is necessary to take account of the difference 

between the steric hindrance in diffusion and bulk flow, that is, the difference be- 

tween equations 6 and 7. This may be done by computing the equivalent pore radius 

by the following equation: 

r = - - a w + ~ C / ~ + X  (17) 

in which aw is the radius of the water molecule. 

When PaganeUi and Solomon (7) first extended this treatment to apertures in 

single biological membranes with radii as small as 4 A, they emphasized the conjec- 

tural nature of the extrapolation to these dimensions. They  pointed out that though 

there was experimental evidence to support the use of equations 6 and 7 in the descrip- 

tion of flow through cellophane membranes of 15 A pore radius, there was none below 

that radius. As has been discussed, equation 5 has subsequently been shown by Peter- 

son and Gregor (39) to give consistent results for radii of 6 A. Paganelli and Solomon 

also pointed out the difficulties inherent in the assumption of bulk values for the dif- 

fusion coefficient and viscosity of water when it is contained within the membrane. 

They introduced the term equivalent pore radius to describe the operational nature of 

this description: a radius equivalent to the pore radius of an ideal membrane contain- 

ing uniform, circular pores in which diffusion and bulk flow may be described by 

equations of Fick and Poiseuille. The  assumption is nowhere made that all the pores 

are uniform and circular, that they all have the same radius, or that they remain fixed 

in position or in time. Indeed, the equivalent pore radius need not be the actual pore 

radius. Paganelli and Solomon pointed out that the equivalent pore radius for the 

human red cell "may be regarded for the moment as an attempt to describe in opera- 

tional terms a physical property of a complex biological membrane." 

In a subsequent review, Solomon (9) stressed the predictive use of the concept to 
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express the passive permeability properties of biological membranes to hydrophilie 

molecules by a single parameter which describes the steric and frictional properties of 

the pore. The ultimate test of the validity of the concept of the equivalent pore radius 

is whether this parameter does indeed provide a consistent descriptive account of the 

passive qualities of simple biological membranes, independent of the method of meas- 

urement. In a subsequent section, it will be shown that this seems to be the case for the 

red cell membranes of man, dog, and beef. 

Mikulecky (42) has recently discussed the theoretical relation between diffusion 

and viscous flow in an article which is prefaced by a quotation from Onsager (14). 

Onsager's first paragraph, which has already been used in our introduction, is fol- 

lowed by: "Strictly speaking, the two [viscous flow and diffusion] are inseparable; for 

the 'hydrodynamic' velocity in a diffusion mixture is merely an average determined 

by some arbitrary convention." Mikulecky derives the equation for water flow through 

the membrane and emphasizes the arbitrary nature of the assumptions necessary for 

its solution. One set of assumptions comprises the ones that have been used in deter- 

mining the equivalent pore by equation 16. Mikulecky points out the need for experi- 

mental verification of these relations and stresses the absolute requirement that con- 

sistent results be obtained when the model is subjected to a variety of experimental 

tests. 

Is it reasonable to assign bulk viscosity and diffusion coefficients to the fluid within 

the equivalent pores? Fortunately, as Blank (Personal communication) has pointed 

out the diffusion coefficient and the viscosity appear in equation 16 as the product, 

D,~w. In classical terms, the Stokes-Einstein equation gives D~ = RT/6zr~,~aw, so 

that the product D~,~ is independent of the viscosity within the equivalent pore and 

is a function only of universal constants and the radius of the water molecule. Even 

though Stokes' law does not strictly apply to such small molecules, it is a reasonable 

first approximation, and it seems clear that the product D~/~ is much less dependent 

on the properties of the fluid within the equivalent pore than either the diffusion 

coefficient alone or the viscosity alone. 

A similar conclusion can be reached from a consideration of the ratio in frictional 

terms. The apparent area for filtration is given by equation 7: 

A . # A ,  = [2(1  - a ) ' -  (1 - -  , , ) , ] (gO/g)  

and the apparent area for diffusion is given by equation 6: 

(7) 

The ratio of the two is 

= (1 - ( 6 )  

A,ffA,d -- 2 - (I - a)~. (18) 

Within the pore all the frictional terms in the Faxen equation for gO/g (equation 5) 

cancel out, and one is left with only the ratio of the steric hindrance terms, which has 

already been introduced into the computation as equation 17. Thus, from this view- 

point also, the ratio of the two permeability coefficients is far less sensitive to the fric- 

tion within the pore than is either coefficient alone. 
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Longuet-Higgins and Austin (43) have considered the theoretical problems con- 

cerned with the application of Poiseuille's law to pores in which the dimensions are so 

small that one solvent molecule cannot "overtake" another. On theoretical grounds 

an equation is derived in which the coefficient for hydrodynamic flow depends on the 

self-diffusion coefficient for the solute rather than on the fourth power of the radius as 

used in PoiseuiUe's law. Longuet-Higgins and Austin conclude that for equivalent pore 

radii less than 4.5 A, a diffnsional mechanism will be operative; above this value, the 

mechanism of transport will be hydrodynamic, by Poiseuille flow. As will be shown in 

a later section, the coefficients for hydrodynamic flux are experimentally greater than 

those for diffusion in biological membranes characterized by a 4.5 A equivalent pore 

radius. Thus experimental evidence indicates that the equivalent pore radius of a 

channel in which diffusion alone is operative is appreciably smaller than that pro- 

posed by Longuet-Higgins and Austin. 

When the channels are so narrow that water transport can take place only by dif- 

fusion through the channel, the flux is proportional to the channel area, that is, to r 2. 

When the channels are so large that the diffusional component may be neglected in 

comparison with viscous flow, Poiseuille's law obtains and flux is proportional to #. 

In the transitional region the flux must be proportional to some power of r greater 

than 2 and less than 4. The question at issue for the present purposes is the relationship 

of this power to the radius of the equivalent pore. As Mikuleeky has pointed out, the 

theoretical value depends upon the model chosen. In practice it would seem likely 

that for pores of 4-6 A radius, the experimental power would lie between 3 and 4. 

Since, as will be shown later, agreement between the several methods of determining 

equivalent pore radii is quite good, it would appear that the sensitivity of the method 

to the power of the radius may be relatively small in the range of 4-6 A. An adequate 

theoretical treatment that covers the transitional region will probably be based on 

statistical considerations; it is of the highest importance that such a treatment be be- 

veloped soon. 

E X P E R I M E N T A L  S T U D I E S  ON V I S C O S I T Y  AND F L O W  

IN S M A L L  C H A N N E L S  

The experimental evidence bearing on the viscosity of fluid in very small pores de- 

pends on the system used. Fedyakin (44) studied the thermal expansion of water in 

glass capillaries of radius from 100 to I000 A. He found that the coefficient of volume 

expansion had a different temperature coefficient from that in bulk solution, and also 

depended on the pore radius. He concluded that the liquid structure in the capillary 

differed from that in bulk solution. In a later paper Fedyakin (45) found the viscosity 

of water to be linearly dependent on capillary tube radius in the range from 200 to 

1000 A. In a review of these and other studies, Derjaguin (46) concluded that the 

viscosity of solutions in boundary layers changed jumpwise at a small distance from 

the wall. Derjaguin also pointed out that sliding along the walls of microcapillaries 

probably plays a major role in the flow process. He also interpreted the thermal ex- 

pansion studies of Fedyakin as indicating that the structure of water in microeapil- 

laries is more compact than in bulk solution, and that no breakup and rearrangement 

of structure occurs when the temperature is raised, in contrast to the behavior in bulk 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/jg

p
/a

rtic
le

-p
d
f/5

1
/5

/3
3
5
/1

4
1
7
5
8
0
/3

3
5
s
.p

d
f b

y
 g

u
e
s
t o

n
 2

2
 A

u
g
u
s
t 2

0
2
2



A. K. SOT.OUON Characterization of Biological Membranes by Equivalent Pores 35 t s 

solution. All this evidence has been obtained in glass and mica systems and is entirely 

different from what has been found in cellophane membranes and resins. 

For example, the studies of Madras  et al. (47) lead to a different conclusion. Water  

was driven through a swollen cellophane membrane  by a hydrostatic pressure differ- 

ence, and the flow was expressed as J ,  = KAP/~IAx. Their  results on the temperature 

dependence of K/71Ax have been plotted in Fig. 7 and show, as expected, that the 
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~otrms 7. Permeability coefficients for bulk water flow under a hydrostatic pressure 
head, as measured by Madras et al. (47). The upper curve represents the change in 
the coefficient, KhlAx, as a function of temperature. The lower curve has been corrected 
by multiplying by the bulk viscosity of water, ~/. 

coefficient, K/~Ax, is a function of temperature. However, when this coefficient is 

multiplied by 7, the bulk viscosity of water, to produce K/Ax, it is apparent  that  the 

permeabil i ty coefficient, K, is virtually independent of temperature. This cellophane 

membrane  has been characterized by a comparison of the water content with the 

hydraulic conductivity, and found to have an equivalent pore radius of 15 A. This 

value may  well be low, as indicated by the studies of Renkin (16), who showed this 

method to give a consistently lower value of equivalent pore radius than that obtained 

by the other methods we have discussed. In  all cases, J ,  was found to be proportional 
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to AP, which Madras et al. have interpreted as evidence of viscous flow. These results 

are in conflict with the evidence of Fedyakin and the conclusions of Derjaguin. It  must 

be emphasized that the systems are different and that flow in narrow glass micro- 

capillaries may indeed be different from that in cellophane membranes. Behavior in 

membranes of cellophane and collodion and in ion-exchange resins appears to be 

self-consistent. 

Another example of flow through small apertures that is different from that in 

cellophane membranes is to be found in the Debye and Cleland (48) study of flow of 

n-decane through porous Vycor tubing under a hydrostatic pressure head. In this 

system, they compute that the capillary radius would be about 26 A if the porous 

tube were considered to be an array of uniform parallel capillaries. Debye and Cleland 

varied the temperature and measured the permeability coefficient, K, which should 

be independent of the viscosity. As the viscosity of the n-decane changed from about 

2 X 10 -3 poise to 13 X 10 -3 poise, the permeability coefficient, instead of remaining 

constant as expected, decreased from about 4.5 X 10 -16 cm ~ to 2.6 X 10 -16 cm ~. 

Debye and Cleland suggest that their results may be accounted for by a bimodal model. 

An external sheath is considered free to slide along the wall of the equivalent pore. 

Thus the layer at the surface of the wall is not static as is assumed in the derivation of 

Poiseuille's law. Within the moving sheath, there is a region in which the velocity pro- 

file follows Poiseuille's law. In this treatment, there are two adjustable constants, the 

thickness of the sliding layer, and the friction between the layer and the wall. A 

sliding layer has also been proposed by Derjaguin, who suggests that such an effect in 

microcapiilaries might result in flow proportional to the third rather than the fourth 

power of the radius. 

The  characteristics of flow of pure liquids in small capillaries depend upon two fric- 

tional coefficients, the solvent-solvent friction and the solvent-membrane friction. 

Thus there is no experimental contradiction between the results of Debye and Cleland 

and those obtained with cellophane membranes, since both the solvent and the mem- 

brane are different. The  situation is somewhat different when the results of Fedyakin 

and those described by Derjaguin are compared with those on cellophane membranes. 

Here the membrane is different and the solvent is the same. The results obtained by 

Fedyakin and his colleagues are apparently characteristic of water layers as thick as 

1000 A, in which the water-water friction ought to predominate. I t  is very hard to 

reconcile these findings with those of Madras et al., who showed that flow through 

cellophane membranes was governed by the bulk water viscosity coefficient, which is 

a measure of water-water friction. The results of many other studies both in artificial 

membranes and in ion-exchange resins are consistent with those of Madras et al., 

and we may be justified in extrapolating them to apertures as small as the equivalent 

pores in biological membranes. However, as the equivalent pore radius becomes 

smaller, the relative importance of the solvent-membrane friction increases, and in 

this respect cellophane membranes and ion-exchange resins are hardly satisfactory 

models for biological systems. 

Evidence for an ordered flow in biological membranes of 4-6 A equivalent radius 

comes from the studies of Soil (39). Soil concluded that the small lipid-insoluble 

solute molecules usually used in permeability experiments were not truly spherical, 

as was ordinarily assumed. He treated them as cylinders and used molecular models to 
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obtain the diameter, d, and length, h. Subsequently Soll studied the validity of the 

cylindrical model by making a statistical analysis of correlations with both d and h. 

He analyzed the reflection coefficients determined on red cell membranes of man (11) 

and dog (49), as will be described later. There was a significant correlation between 

the solute diameter and the reflection coefficient. Correlation with the cylinder length 

was of less significance and could be ascribed to the interdependence of cylinder diam- 

eter and length. 

The  diffusion coefficient in free solution (data from Longsworth, reference 50) 

was then examined and found to be significantly correlated with the length of the 

equivalent cylinder rather than the diameter. Table I I I  compares the correlation 

coefficients in the two cases and indicates that there is a substantial and measurable 

difference between hydraulic flow through pores of 4-6 A equivalent radius and dif- 

fusion in free solution. Soil concludes that the dynamics associated with bulk solvent 

flow tend to align the long axis of the cylindrical molecule parallel to the direction 

of flow. 

T A B L E  I I I  

CORRELATION COEFFICIENTS BETWEEN MOLECULAR 
DIMENSIONS, REFLECTION COEFFICIENTS IN 

RED CELL MEMBRANES AND FREE DIFFUSION 

Correlation coefficients 

With log (solute With log (solute 
diamet~, d) length, h) 

Log* (1 -- ~r) 0.89 0.38 
Log~ diffusion coefficient 0.30 0.88 

* For nine solutes measured on human red cell membranes by Goldstein and 

Solomon (11). 
J~ For the seven of those solutes whose diffusion coefficients were measured 
in free solution by Longsworth (50). 

E X P E R I M E N T A L  C H A R A C T E R I Z A T I O N  OF A R T I F I C I A L  

M E M B R A N E S  BY C O M P A R I S O N  OF H Y D R A U L I C  C O N -  

D U C T I V I T Y  AND T R A C E R  W A T E R  D I F F U S I O N  

Though the process of osmosis is well understood thermodynamically, there is no 

truly satisfactory kinetic theory of the process (see Dainty, reference 51 for a discus- 

sion). Early experimental evidence that the kinetics of bulk flow differed from tracer 

diffusion was given for biological membranes by Pappenheimer et al. (6), Pappen- 

heimer (52), and Durbin et al. (21). Later, Mauro (53) studied both processes in a 

cellophane membrane and found, for the same gradient, that bulk flow was 730 times 

greater than tracer diffusion flow. Robbins and Mauro (54) studied these two perme- 

ability processes in a series of three collodion membranes of graded porosity. They  

calculated equivalent pore radii by equation 16 and obtained consistent results for 

their tightest membrane, whose equivalent pore radius was calculated as 21 A. This 

figure was consistent with the permeability of inulin, for which ~ was calculated to be 

0.62. Less consistent results were obtained with the membranes of larger pore radius, 
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for reasons which are not clear. Meschia and Setnikar (55) measured osmotic flow in 

a collodion membrane with pores whose radius was about 90 A, as calculated by 

equation 16. This estimate would seem to be in qualitative agreement with their 

determination that or = 0.02 for raffinose, which in cylindrical conformation has a 

4.1 A radius and 19 A length. Meschia and Setnikar demonstrated experimentally the 

importance of ~ in determining the direction and velocity of solvent flow in osmotic 

measurements. 

Thau  et al. (56) have characterized a series of artificial membranes by the ratio 

PI/Pa, which they denote as g. Though no account has been taken of the unstirred 

layer, Ginzburg and Katchalsky (29) have pointed out that it plays a negligible role 

in membranes of low permeability, and all but one of the membranes studied by Thau  

et al. had ¢o's of 10 -I5 mole/dyne see. The series ranged from paper coated with poly- 

ethyl acrylate as an example of a liquid membrane to cellophane as an example of a 

membrane that was truly porous. The ratio PI/Pa varied from 1.1 for polyethyl 

acrylate-coated paper to 80 for cellophane. When PI/Pa = 1, there can be no viscous 

flow and the only passage through the membrane is by dissolution of single molecules 

of water in the membrane and subsequent independent diffusion of water molecules 

across the membrane. When the Pj/Pa ratio is very much greater than 1, there is a 

large component of bulk flow, and this process, in which water-water friction is of 

great importance, predominates. As already discussed, viscous flow is expected to be 

dominant through pores of large equivalent radius, because this flow depends upon 

the fourth power of the radius, whereas diffusion depends only upon the square. 

Classically, any Pz/Pa value greater than unity has been interpreted as an indication 

of viscous flow and thus as an implication of the presence of a porous structure. How- 

ever, in the special membranes which were made by coating paper with liquid or 

filling the apertures in polyvinyl chloride membranes with liquid, Thau, Bloch, and 

Kedem found PI/Pa ratios up to 2.1. They consider these membranes to behave as 

liquids rather than as porous structures, so that their results indicate that water-water 

friction within the membrane can be of the same order as the water-membrane friction 

in some instances; hence in specialized structures there appear to be ways to transport 

water molecules in small clusters other than by bulk flow. 

In other membranes such as the acrylamide polymer gel studied by White (57), 

the P.c/Pa ratio seems to provide a good index of the pore dimensions. White varied 

the polymer concentration from 5 to 35 %, and the permeability coefficient varied 

almost logarithmically with polymer concentration, as Fig. 8 shows. Pf/Pa also varied 

smoothly with polymer concentration, as shown in Fig. 9. White estimated his equiva- 

lent pore radius from the ratio of the hydraulic conductivity to the membrane water 

content, which, as has been discussed by Renkin (16), probably gives too low an 

estimate. At the highest polymer concentration, White calculated the equivalent pore 

radius to be 5 A. Under these conditions Ps/Pa was 1.75, indicating that there still 

remained a substantial viscous flow contribution. The variation of Pf/Pa is smooth 

and uniform, as is the change in the properties of the polymer. Bulk flow surely pre- 

dominates in the polymers with the largest pores, and there seems to be no reason 

to ascribe the 1.75 ratio in the tightest membranes to any cause other than the con- 

tinued participation of viscous flow in the transport of water across the membrane. 
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Lakshminarayanaiah (58) used the PI/P~ ratio to measure the equivalent pore 

radius of two cation-exchange membranes, using equations similar to 16 and 17. One 

of these membranes, denoted as AMF C-103, had previously been characterized by 

Kawabe et al. (40). These authors had studied the diffusion of alkyl cations and 

tetraalkylammonium ions, and had found that their data were best fitted by a slit 

model with an equivalent pore radius of about 5 A for AMF C-103; this result is 

similar to their findings with Nalfilm 1, already discussed. From his data on the dif- 

fusion of tritiated water and viscous water flow, Lakshminarayanaiah concluded 

that AMF C-103 was characterized by an equivalent pore radius of 7.6 A, by using 

a cylindrical pore model. This must be eomidered very good agreement and illus- 

trates again the consistency of the results obtained when small apertures are charac- 

terized by these several methods. 

4° r 

> . - o  

N 

u.l 3 

Fxo~a~ 8. 

O O 

2 

I I I I t I I 
0 5 10 15 2O 25  3O ~$ 

% POLYMER 

The permeability coefficient, K, of an acrylamide polymer as a funcdon of 
the percentage of polymer in the gel, redrawn, with permission, from White (57). K is 
similar to the permeability coefficient in Fig. 7 and to that used by Debye and Cleland 
(48). 

The membranes probably most similar to biological ones are the bimolecular lipid 

membranes originaUy described by Mueller et al. (59), which are probably less than 

100 A thick. They  have been prepared from brain lipids and are presumed to be 

similar to the lipid bilayers found between the protein sheets in biological membranes. 

In this instance there is no evidence supporting the presence of any structure with 

porelike characteristics. Although initial reports suggested that the PffPa ratio might 

be greater than 1 for such membranes, these observations have subsequently been 

attributed to the effect of the unstirred layer. Cass and Finkelstein (60) have now 

shown that Pf = Pn in such a membrane, exactly in accord with expectations based 

on the classical treatment. In general, PI > Pn for single biological membranes such 

as the red cell membrane, as will be discussed below. The difference between this in- 

equality and the equality found by Cass and Finkelstein for lipid bilayers strongly 
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supports the view that red cell membranes are characterized by structures that permit 

viscous flow. 

E Q U I V A L E N T  P O R E  D I M E N S I O N S  IN R E D  C E L L  M E M -  

B R A N E S  

No modern coherent theory has been developed to describe the motions of solute 

molecules in small pores. Equations from several sources have been used to provide 

partial solutions to different aspects of the problem. As we have stressed, most of these 

do not rest on a firm theoretical ground, and they are to be considered, at best, as 

22 

20 
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12 
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"~ I0 
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I I I [ I I I 
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% POLYMER 

FIou~  9. P.t/Pa as a function 
of the polymer concentration in 

the gel whose hydraulic con- 
ductivity has been illustrated in 
Fig. 8. The data have been 
taken from White (57). 

semiempirical. Since the equivalent pore model is based on a semiempirical theory, 

the best test of the efficacy of the model is the consistency of the results ob- 

tained. Fortunately, in the case of cellophane and ion-exchange membranes there is 

a good deal of evidence in support of the main features. 

The same assumptions are involved in the measurement of the equivalent pore 

radius of biological tissues, and the same requirement exists that consistent results be 

obtained when the passive permeabili ty of the membrane  to lipid-insoluble molecules 

is investigated by all the means available. Since any barrier in series with the mem-  

brane causes a modification of the permeability properties, we shall limit our discus- 

sion to mammal ian  red cells, in which a single membrane can be studied in free sus- 

pension. The  methods available are the diffusion coefficients of selected lipid-insoluble 
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solutes, the reflection coefficients of similar solutes, and the PffPd ratio for water. 

Detailed investigations in which two or more of these parameters have been measured 

have been made for three species: man, beef, and dog. 

Diffusion Measurements in Red Cells 

In man, the diffusion of small lipid-insoluble molecules into the red cells is very rapid, 

and no direct measurements of permeability coefficients for such molecules (D,A,/Ax 
in equation 2) have yet been published. However, the time required for red cells to 

hemolyze in solutions of permeating substances is an effective index of solute diffusion 

(see Davson and Danielli, reference 3). Table IV presents a comparison of hemolysis 

times in human red cells for two homologous series of compounds. The data in the 

upper part of the table for the lipophilic monocarboxylic acids indicate that progres- 

sion from a 3-carbon to a 5-carbon acid is accompanied by about a 2-fold decrease 

T A B L E  I V  

PERMEABILITY PROPERTIES OF HUMAN RED CELL MEMBRANES 

Lipophilic monocarboxylic acids 
Time for 50% 
penetration(61) 

Propionic acid (3-carbon) 
Butyric acid (4-carbon) 
Valeric acid (5-carbon) 

$¢¢ 

0.412 

0 .379 

0.218 

Hydrophilic alcohols 
Relative time of 

hemolysis (62) 

Ethylene glycol (2-carbon) 
Glycerol (3-carbon) 
Erythritol (4-carbon) 

$¢¢ 

1.7 
~ . 0  

10,750.0 

in hemolysis time, a relatively small increase in permeability. However, the relative 

hemolysis times for the three hydrophilic alcohols in the lower part of the table 

change by almost four orders of magnitude. These data provide strong support for 

the existence of separate routes of entrance for the two classes of substances. Table IV 

shows that there is a particularly steep increase in hemolysis time between glycerol 

and erythritol. Since the viscometric radii (63) of these two molecules are 3.1 and 

3.5 A respectively, these data would be consonant with an equivalent pore radius 

greater than 3.5 A, since the cells do indeed hemolyze in erythritol. 

Giebel and Passow (64) have studied the diffusion permeability of beef red cells 

to homologous series of both mono- and dicarboxylic acids by an ingenious method 

based on the exchange of intracellular C1. The lipophilic monocarboxylic acids pene- 

trate very much faster than the hydrophilic dicarboxylic acids; Giebel and Passow 

ascribe this difference to dissolution of the lipophilic molecules in the membrane 

fabric. In the case of the dicarboxylic acids there is a sharp decrease in permeability 

between molecules 7-7.5 A long and those 9 A long. Giebel and Passow consider 
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this decrease to represent steric hindrance and conclude that the equivalent pore 

radius lies between 3.8 and 4.5 A. Such an equivalent pore radius is in good agree- 

ment with the observations of Laris (65), who used a chemical method to measure 

the permeability of beef red cells to glucose (viseometric radius, 4.2 A). He found no 

measurable entrance of this molecule into the cells even after 19-24 hr of incubation; 

this would suggest that the upper limit for the equivalent pore radius is less than 4.2 A. 

Wilbrandt (66) studied the entrance of a series of hexoses and pentoses into dog 

red cells by measuring volume changes resulting from solute permeation. No entrance 

of glucose could be detected by this method. It  will be shown below that in this species 

for glucose is very close to 1, so that no detectable volume changes would necessarily 

be expected. Galactose, whose viscometric radius is also 4.2 A, entered slowly. The 

pentose arabinose (viscometric radius 3.8 A) permeated somewhat more rapidly. 

Laris (65) used chemical analyses to detect a slow entrance of glucose into dog red 

cells over a 6 hr period. His results are thus consistent with Wilbrandt's and point 

to an equivalent pore radius somewhat greater than 4.2 A. 

Reflection Coefficient Measurements in Red Cells 

Goldstein and Solomon (11) measured the reflection coefficients of a series of lipid- 

insoluble nonelectrolytes in human red ceils. In order to avoid correction for pene- 

tration by the permeating solute, they used a rapid-reaction, continuous-flow method 

and extrapolated their data to zero time. They  measured the volume flow, J , ,  and 

found by interpolation the concentration of external permeant which would reduce 

J ,  to zero at zero time. Since ¢r is defined, at J ,  -- 0, as the ratio of the theoretical 

osmotic pressure difference of the impermeant species to that of the permeant species, 

the computation is not difficult. The  use of the flow method was subsequently criti- 

cized by Dainty (31), who suggested that the presence of an unstirred layer might 

affect the accuracy of the results. Subsequently, Sha'afi et al. (67) measured the 

thickness of the unstirred layer in an improved rapid-reaction, stop-flow apparatus 

of a similar type and found it to be about 5.5/~. This is so small that it does not 

affect either the measurements of the reflection coefficient or those of osmotic or 

diffusional permeability by the flow method. 

Rich et al. (49) also measured the reflection coefficients of a number of hydrophilic 

nonelectrolytes in the dog red cell, by using the improved rapid-reaction stop-flow 

apparatus, a is related to the equivalent pore radius by equation 10 E(I -- o') = 

A,ffAwf], in which o" = o" + o~sVs/L~, and equation 8 which relates Ast/A~t to the 

equivalent pore dimensions. Rich et al. also showed that the difference between a 

and ~' was relatively unimportant for urea in dog red cells. It  is also unimportant 

for the other molecules studied, since co, decreases very much more rapidly than I?, 

increases. They computed a value of 0.95 for o'~1 . . . . .  and found that volume flow due 

to this difference could not be detected by their apparatus, in agreement with Wil- 

brandt's (66) observations. Fig. 10 shows the results of the reflection coefficient studies 

in both man and dog, fitted by least squares to equivalent pore radii determined by 

equations 8 and 10. The values of 4.3 A for man and 6.0 A for dog obtained by this 

method agree well with the results of the solute diffusion measurements. 
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Pf/Pn Measurements in Red Cells 

Water  diffuses into h u m a n  red ceils very rapidly with a half-time of about  7 msec. 

T he  diffusion permeabil i ty coefficient (Pa) of tritiated water in h u m a n  red cells was 

measured by PaganeUi and Solomon (7) in a rapid-reaction, contlnuous-flow appa-  

ratus. At  the same time the hydraul ic  conductivi ty (Pt) was measured by  Sidel and 

1.0! 
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z glycol 
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man 
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I I I I 
4.Q 1.0 2.0 3.0 4.0 

MOLECULAR RADIUS of PROBING MOLECULE(A) 

FZGURE 10. The relationship of (l - ~r) to the molecular radius of the probing mole- 

cule, from the data of Goldstein and Solomon (11) and of Rich et al. (49). The curves 

are drawn according to equations 8 and I0. The molecular radii are viscometric radii 

from Schultz and Solomon (3) and the curves have been fitted by least squares on a 

computer. The length of the bars gives standard errors of the mean. The aberrant point 

for dog is ethylene glycol. 

Solomon (68) in a different type of flow apparatus.  These values of PI  and Pa were 

then combined to compute  an equivalent  pore radius according to equations 16 and 

17. More  recently, Barton and Brown (69) have made  tracer diffusion measurements 

in an improved continuous-flow apparatus  which enabled them to make observations 

over a longer time period. T h e y  found the rate constant for T H O  diffusion in h u m a n  

red cells to be 0.091 msec -1 rather  than 0.119 msec -1 as given by Paganelli  and 

Solomon. Sha'afi  et al. (67) have also made  a new measurement  of  PI  and obtained 

a value in very good agreement  with that  found earlier by Sidel and Solomon. Using 
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the new data (67, 69), the equivalent pore radius for human red cells becomes 4.5 A, 

in good agreement with the other results. 

Villegas et al. (8) measured the Ps/P,~ ratio in beef and dog. Subsequent measure- 

ments of P! by Rich et al. (49) agreed well with the data on beef; the equivalent pore 

radius is calculated to be 4.1 A, in good agreement with the solute diffusion studies. 

In the case of the dog, the recent measurement by Rich et al. (49) was not in agree- 

ment with the earlier one given by Villegas, Barton, and Solomon, so a new measure- 

ment (49) was also made of Pa, using the improved equipment of Barton and Brown 

(69). The  equivalent pore radius calculated from these results by equations 16 and 17 

is 5.9 A, in good agreement with the values found by the other methods. 

Table V shows a comparison of the results obtained by all the methods of investi- 

gation in all three species. For each species the results are in very close agreement 

and entirely consistent. This provides strong support for the application of the 

equivalent pore concept to the measurement of channel dimensions in single biologi- 

T A B L E  V 

E Q U I V A L E N T  P O R E  R A D I U S  I N  R E D  CELLS 

O F  D I F F E R E N T  S P E C I E S  

Equivalent pore radius 

Reflection 
coe~cient 

Speciea Diffuaion method method P t/Pg method 

A A A 

M a n  > 3 . 5  4.3 4 .5  

Dog > 4 . 2  6.2 5.9 

Beef 3.8--4.2 - -  4.1 

cal membranes. Some reservations still remain, the most important being that no 

account has been taken of the influence of the medium osmolarity and the red cell 

volume on the parameters that have been measured. As Ginzburg and Katchalsky 

(29) have shown, such effects take place in cellophane membranes, and preliminary 

studies in our laboratory indicate that they also affect the hydraulic conductivity of 

red cell membranes. 

The  ability to separate steric restrictions from other interactions with the mem- 

brane opens the way to a number of important experiments. One intriguing question 

concerns the nature of the water-membrane friction within the equivalent pores. A 

comparison of the apparent activation energy for water diffusion in human red cells, 

whose equivalent pore radius is 4.4 A, and in dog red cells, whose equivalent pore 

radius is 6.1 A, should provide important data and may lead to a partial experimental 

separation of solvent-solvent and solvent-membrane friction in small pores. Once the 

normal steric hindrance and friction are established, the behavior of aberrant lipid- 

insoluble molecules can be interpreted in terms of reactions taking place within the 

pore. In this connection studies of temperature coefficients will be most important. 

Several molecules are already known to affect the permeability of ions, other solutes, 
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or solvent. They should be studied to determine whether their effect may be ascribed 

to alterations in the equivalent pore. Segregation of the permeability properties that 

are attributable to the equivalent pore makes it possible to study the permeability of 

lipid-soluble molecules, and thus to approach directly the measurement of chemical 

and physical forces within the lipid layer of the membrane. 

A great deal more has been learned since the equivalent pore theory was first ap- 

plied to the very small apertures that characterize single biological membranes. It is 

gratifying to know that the use of frictional coefficients and the treatment of coupled 

flows by irreversible thermodynamic methods leads to theoretical equations in accord 

with those initially made. Recent studies of ion exchange resins have given consistent 

results for pores of 6-8 A equivalent radius. The ratio of the osmotic permeability 

coefficient to the diffusion permeability coefficient of lipid bilayers is unity, in accord 

with our expectations for a nonporous structure. In cellophane membranes water 

appears to retain its bulk viscosity as the apertures are shrunken from 25 A down to 

about 5 A. All of this evidence from several disparate sources lend support to the use of 

the equivalent pore theory in the characterization of biological membranes. 

The author would like to express his thanks to Drs. S. R. Caplan, C. Gary-Bobo, and R. Sha'afi for 
stimulating discussion and criticism. 
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