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Abstract

A lack of knowledge of naturally occurring pathogens is limiting our ability to use the Antarc-

tic to study the impact human-mediated introduction of infectious microorganisms have on

this relatively uncontaminated environment. As no large-scale coordinated effort to remedy

this lack of knowledge has taken place, we rely on smaller targeted efforts to both study

present microorganisms and monitor the environment for introductions. In one such effort,

we isolated Campylobacter species from fecal samples collected from wild birds in the Ant-

arctic Peninsula and the sub-Antarctic island of South Georgia. Indeed, in South Georgia,

we found Campylobacter lari and the closely related Campylobacter peloridis, but also dis-

tantly related human-associated multilocus sequence types of Campylobacter jejuni. In con-

trast, in the Antarctic Peninsula, we found C. lari and two closely related species,

Campylobacter subantarcticus and Campylobacter volucris, but no signs of human introduc-

tion. In fact, our finding of human-associated sequence types of C. jejuni in South Georgia,

but not in the Antarctic Peninsula, suggests that efforts to limit the spread of infectious

microorganisms to the Antarctic have so far been successful in preventing the introduction

of C. jejuni. However, we do not know how it came to South Georgia and whether the same

mode of introduction could spread it from there to the Antarctic Peninsula.
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Introduction

The Antarctic is among the most isolated places on Earth. By virtue of inhabiting such a

remote location, Antarctic animals were long thought to be protected from disease introduc-

tion from other regions. However, recent studies have reported the presence of human and

animal pathogens previously believed to be absent from the region [1, 2], including Salmonella
enterica serovar Enteriditis phage type 4 [3–5] and influenza A viruses [6]. In addition to find-

ing pathogens with presumed non-Antarctic origin in Antarctic wildlife, it has been shown

that penguins kept in captivity are susceptible to a range of infectious diseases not observed in

the Antarctic (see [2], and references therein). Sustained transmission of some of these patho-

gens are unlikely, due to the absence of suitable vectors in the Antarctic. Others may only be

limited by geographical barriers. The breakdown of such barriers due to human activity may

therefore pose a threat to the Antarctic ecosystem.

There has been no causal evidence of human-mediated pathogen introduction to the

Antarctic [7]. However, due to a lack of knowledge concerning naturally occurring patho-

gens in the region, it is difficult to determine whether a detected pathogen has been intro-

duced by humans or not. Furthermore, any study of disease in the Antarctic faces several

challenges, including the environment, which poses a major hurdle to longitudinal monitor-

ing of individuals and populations, and limited access to sufficient laboratory infrastructure,

which makes the study of fastidious microorganism difficult. Nevertheless, overcoming

these obstacles and furthering our understanding of disease in the region is a priority for

both conservation efforts and our ability to use the Antarctic to study human impact on a

relatively uncontaminated environment [7–9].

In the present study, we focused on Campylobacter, a genus of bacteria that are often found

in the gut microbiota of both wild and domestic animals, especially in avian species [10]. This

genus includes Campylobacter jejuni, one of the leading causes of bacterial gastroenteritis in

humans (e.g. [11–13]). At least five species of Campylobacter have been found in the Antarctic

and the surrounding sub-Antarctic: Campylobacter insulaenigrae [14], Campylobacter jejuni
[15, 16], Campylobacter lari [14, 17, 18], Campylobacter subantarcticus [19] and Campylobacter
volucris [18]. In addition, at least one unidentified C. lari-like bacterium has been reported

[20]. So far, three isolates of C. jejuni ST-45 from Macaroni penguins (Eudyptes chrysolophus)
on Bird Island, South Georgia, constitutes the only detection plausibly associated with human

activity [15, 16]. Therefore, the aim of our study was twofold: i) to look for potentially intro-

duced Campylobacter, i.e. human-associated strains of primarily C. jejuni, and ii) to further

increase our knowledge of Campylobacter spp. in the Antarctic and sub-Antarctic, particularly

in light of recent characterizations of novel C. lari-like Campylobacter species [19, 21, 22].

Materials and methods

Ethics statement

Samples were collected in accordance with the Wildlife and Protected Areas (WPA) Ordi-

nance enacted by the Government of South Georgia and the South Sandwich Islands, and the

Protocol on Environmental Protection to the Antarctic Treaty. Permission to collect samples

were granted by the Government of South Georgia and the South Sandwich Islands (WPA/

2012/034), the Swedish Polar Research Secretariat (2012-169) and the Chilean Antarctic Insti-

tute (INACH 654/2014, 23/2015, 46/2016). Ethical consideration of sample methodology was

approved by the Swedish animal ethics committee (Linköpings djurförsöksetiska nämnd, per-

mits 112-11, 2-15).
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Sampling

Fieldwork was conducted during the austral summer in the Antarctic and Sub-Antarctic in

four years. In November 2012, we sampled birds at three locations in South Georgia: Strom-

ness (-54.16˚, -36.71˚), Grytviken (-54.27˚, -36.51˚) and Gold Harbor (-54.63˚, -35.93˚); and

six locations in the Antarctic Peninsula: Danco Harbor (-64.73˚, 62.59˚), Deception Island

(-62.98˚, -60.65˚), Orne Harbor (-64.62˚, -62.53˚), Paradise Harbor (-64.82˚, -62.87˚), Peter-

mann Island (-65.17˚, -64.14˚) and Yankee Harbor (-62.53˚, -59.77˚). In January and February

2014, we sampled birds at five locations in the Antarctic Peninsula: Ardley Island (-62.21˚,

-58.93˚), base Gabriel González Videla (-64.82˚, -62.85˚), Cape Legoupil (-63.32˚, -57.90˚),

Kopaitik Island (-63.32˚, -57.85˚) and Neko Harbor (-64.84˚, -62.53˚). In January and Febru-

ary 2015, we sampled birds at three locations in the Antarctic Peninsula: Cape Shirreff

(-62.46˚, -60.79˚), Kopaitik Island and Narebski Point (-62.24˚, -58.78˚). In January 2016, we

sampled birds at four locations in the Antarctic Peninsula: Ardley Island, Cape Legoupil,

Kopaitik Island and Rakusa Point (-62.16˚, 58.46˚).

In total, 2,278 samples were collected. Samples were predominantly collected from brush-

tailed penguins (Pygoscelis spp.): Adélie penguins (Pygoscelis adeliae; n = 134), chinstrap pen-

guins (Pygoscelis antarctica; n = 960) and gentoo penguins (Pygoscelis papua; n = 828). In addi-

tion, samples were collected from giant petrels (Macronectes spp.; n = 43), kelp gulls (Larus
dominicanus; n = 151), king penguins (Aptenodytes patagonicus; n = 27), skuas (Stercorarius
spp.; n = 46) and snowy sheathbills (Chionis albus; n = 89).

Sampling strategy is one factor that can affect prevalence estimates. Bearing this in mind,

samples were obtained from birds captured with hand nets or from fresh feces directly from

the nest when possible; when not, fecal samples were obtained from the spots on the ground

where the birds had been seen standing still for a while, either alone or in single-species

groups. In the latter case—which was particularly common for king penguins, kelp gulls, skuas

and snowy sheathbills—care was taken to avoid droppings involving material from more than

one bird. Consequently, the risk of one sample containing bacteria from several birds was lim-

ited, although occasional contamination cannot be ruled out.

Sampling methodology was similar in all years, and consisted of either fecal samples or clo-

acal swabs. Collected samples were kept in Amies charcoal medium (Copan Diagnostics, Inc.

Murrieta, CA, USA) at +4˚C. In 2012, the samples were kept refrigerated in Amies medium

for about three weeks until they reached the Swedish National Veterinary Institute (SVA)

where they were cultured immediately. In 2014, 2015 and 2016, the samples were kept in

Amies charcoal medium for less than 24 h and then either cultured in a field-based laboratory

(2015) or frozen to -70˚C in lysogeny broth (LB) with 5% glycerol and transported in an

unbroken freeze chain to Linnaeus University, Sweden (2014 and 2016). In the latter cases, the

time from sampling to culturing was no longer than 3 months.

Isolation and identification

All samples were enriched in Bolton broth (X135, Lab M, Lancashire, England; or CM0983,

Oxoid, Basingstoke, England) supplemented with CVTN selective supplement (X132, Lab M)

or modified Bolton broth selective supplement (SR0208, Oxoid,) and incubated at 37 ± 1˚C for

48 ±4 h. Samples were plated on mCCDA (modified charcoal cefoperazone deoxycholate agar,

SR0155, Oxoid) and incubated at 41.5 ± 0.5˚C for 48 ± 4 h. Samples showing presumed Cam-
pylobacter growth were re-cultured on conventional blood agar and incubated at 41.5 ± 0.5˚C

for 48 ± 4 h. All incubations were performed in a microaerobic environment generated using

CampyGen sachets (CN0025, Oxoid).
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Isolates from 2012 were identified to species using phenotypic tests [23], PCR [24], and

MALDI-TOF mass spectrometry [25]. Five of the isolates could not be unambiguously identi-

fied to species using MALDI-TOF. One of these isolates could not be analyzed further, but the

remaining four were identified to species level by whole-genome sequencing and subsequent

16S rRNA gene analysis. Briefly, sequencing libraries were prepared using the Nextera XT kit

(Illumina, San Diego, CA, USA) and 250 bp paired-end sequencing was performed on a

MiSeq sequencer (Illumina). A partial (1,313 bp) 16S rRNA sequence that was shared between

all Campylobacter spp. 16S rRNA gene sequences available in GenBank at the time (November,

2013) was identified and used as a reference sequence. For each isolate, the partial 16S rRNA

gene sequence was determined by mapping the reads to the reference sequence using the

crossmatch function of Consed [26]. The sequences were subsequently aligned with all Cam-
pylobacter spp. 16S rRNA gene sequences available in GenBank at the time (November, 2013),

and a phylogenetic analysis was performed using MrBayes [27]. The four isolates (74507,

74514, 74521 and 74521) grouped with the C. peloridis reference sequence (GenBank accession

number: AM922331) (see S1 Fig).

Isolates from 2014, 2015 and 2016 were identified to species following the atpA determina-

tion scheme developed by Miller et al. [28], supplemented with additional atpA reference

sequences from C. blaseri 17S00004-5T (GenBank accession number: MG958595), C. ornitho-
cola WBE38T (KX467979), C. pinnipediorum RM17260T (CP012546), C. hepaticus HV10T

(LUKK01000000), C. iguaniorum 1485ET (CP009043), C. geochelonis RC20T (FIZP01000001),

C. corcagiensis CIT 045T (JFAP00000000). Briefly, the atpA gene was amplified and sequenced

using a primer pair capable of targeting all known species of Campylobacter at the time of the

schemes development (March, 2014). The sequences were subsequently aligned with the refer-

ence sequences using MAFFT v. v7.313 [29], and a phylogenetic analysis was performed using

RAxML v. 8.2.9 [30]. All species formed monophyletic clades with the exception of C. lari
which was paraphyletic with respect to C. subantarcticus (see S2 Fig). However, as there was

strong support for the C. subantarcticus delimitation, samples falling within the larger C. lari-
C. subantarcticus clade was treated as C. subantarcticus if they fell within the C. subantarcticus-
clade and otherwise as C. lari.

All C. jejuni strains and a subset of the C. lari strains were typed using multilocus sequence

typing (MLST) and the PubMLST databases (http://pubmlst.org/campylobacter/) as previously

described [31–33].

Results

We isolated Campylobacter in samples from the majority of the sampling locations and from

almost all of the sampled species (Table 1, with detailed information in S1 Table). Campylobac-
ter colonization was modest in penguins, nowhere exceeding 8.5%. The colonization was simi-

larly modest in giant petrels (14.0%) and kelp gulls (13.9%), although locally it reached as high

as 30.6% in kelp gulls. The colonization was markedly higher in skuas (50%) and sheathbills

(48.3%) and in some locations reached 100% for these species. However, sample sizes were

generally small for the non-penguin species.

Isolates recovered from the Antarctic Peninsula were identified as C. lari (75 isolates) or

one of two closely related species: C. subantarcticus (25 isolates) and C. volucris (3 isolates). In

addition, three isolates were identified as C. lari-like. C. lari was found in chinstrap and gentoo

penguins, as well as kelp gulls, skuas and snowy sheathbills, whereas C. subantarcticus was

only found in chinstrap penguins and a snowy sheathbill and C. volucris only in gentoo pen-

guins (Table 2, with detailed information in S1 Table).
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Table 1. Occurrence of Campylobacter spp. in wild birds from South Georgia and the Antarctic Peninsula.

Year Region Location Species Positive (sampled)

2012 Antarctic Peninsula Danco Harbor Skua 0 (1)

Snowy sheathbill 3 (3)

Deception Island Giant petrel 0 (1)

Kelp gull 1 (63)�

Orne Harbor Kelp gull 0 (3)

Snowy sheathbill 1 (4)

Paradise Harbor Snowy sheathbill 0 (2)

Petermann Island Kelp gull 0 (6)

Snowy sheathbill 0 (1)

Yankee Harbor Skua 1 (5)

South Georgia Gold Harbor Giant petrel 4 (22)

Kelp gull 0 (1)

King penguin 0 (27)

Skua 4 (7)

Snowy sheathbill 8 (12)

Grytviken Kelp gull 11 (36)

Stromness Giant petrel 3 (20)

Kelp gull 3 (26)

Skua 2 (9)

2014 Antarctic Peninsula Ardley Island Gentoo penguin 1 (160)

Base Gabriel González Videla Gentoo penguin 4 (92)

Skua 8 (10)

Snowy sheathbill 11 (17)

Cape Legoupil Gentoo penguin 6 (159)

Skua 1 (1)

Snowy sheathbill 13 (30)

Kopaitik Island Gentoo penguin 2 (342)

Snowy sheathbill 7 (17)

Neko Harbor Gentoo penguin 0 (47)

Kelp gull 6 (16)

Skua 3 (6)

2015 Antarctic Peninsula Cape Shirreff Chinstrap penguin 2 (327)

Kopaitik Island Chinstrap penguin 31 (371)

Narebski Point Chinstrap penguin 2 (258)

2016 Antarctic Peninsula Ardley Island Adelie penguin 0 (31)

Chinstrap penguin 0 (4)

Gentoo penguin 0 (15)

Skua 4 (7)

Cape Legoupil Adelie penguin 0 (1)

Gentoo penguin 0 (13)

Kopaitik Island Adelie penguin 0 (87)

Snowy sheathbill 0 (3)

Rakusa Point Adelie penguin 0 (15)

�The positive sample was identified as C. lari-like by MALDI-TOF, but could not be analyzed further.

https://doi.org/10.1371/journal.pone.0206502.t001
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Isolates recovered from South Georgia were identified as C. jejuni (18 isolates) or either C.
peloridis (8 isolates) or C. lari-like bacteria (9 isolates). There were large overlaps between host

species, with giant petrels and skuas carrying both C. jejuni and C. lari-like bacteria, and

snowy sheathbills carrying C. jejuni, C. peloridis and C. lari-like bacteria (Table 2).

All but two of the 18 C. jejuni isolates recovered belonged to known MLST sequence types

(ST-45, ST-227 and ST-883) (Table 3). Sequence types ST-45 and ST-883 were found in multi-

ple locations and in samples from multiple host species. Sequence type ST-227 was only found

in kelp gulls in Grytviken. The remaining two isolates belonged to a novel sequence type. Both

isolates were from giant petrels in Stromness (Table 3).

Table 2. Number of samples positive for each of the five species of Campylobacter. Numbers indicate samples for which species were determined by atpA sequencing;

numbers in parentheses indicate additional samples for which species were determined by phenotypic tests, PCR and MALDI-TOF, but not by atpA sequencing. In the lat-

ter case, the methods used do not distinguish between C. lari and C. subantarcticus or C. volucris; these samples should therefore be considered positive for C. lari-like

bacteria.

Region Species C. jejuni C. lari C. peloridis C. subantarcticus C. volucris
Antarctic Peninsula Adelie penguin 0 0 0 0 0

Chinstrap penguin 0 12 0 23 0

Gentoo penguin 0 10 0 0 3

Giant petrel 0 0 0 0 0

Kelp gull 0 6 0 0 0

Skua 0 14 (1) 0 2 0

Snowy sheathbill 0 33 (2) 0 0 0

South Georgia Giant petrel 4 (3) 0 0 0

Kelp gull 6 (1) 4 (3) 0 0

King penguin 0 0 0 0 0

Skua 3 (3) 0 0 0

Snowy sheathbill 5 (2) (1) 0 0

https://doi.org/10.1371/journal.pone.0206502.t002

Table 3. Allele numbers, sequence types (STs) and clonal complexes (CCs) of Campylobacter jejuni from South Georgia. New STs are shown in bold.

Location Species ST aspA glnA gltA glyA pgm tkt uncA CC

Gold Harbor Giant petrel 45 4 7 10 4 1 7 1 ST-45

Skua 45 4 7 10 4 1 7 1 ST-45

883 2 17 2 3 2 1 5 ST-21

883 2 17 2 3 2 1 5 ST-21

Snowy sheathbill 883 2 17 2 3 2 1 5 ST-21

883 2 17 2 3 2 1 5 ST-21

883 2 17 2 3 2 1 5 ST-21

883 2 17 2 3 2 1 5 ST-21

883 2 17 2 3 2 1 5 ST-21

Grytviken Kelp gull 45 4 7 10 4 1 7 1 ST-45

227 2 4 5 2 2 1 5 ST-206

227 2 4 5 2 2 1 5 ST-206

227 2 4 5 2 2 1 5 ST-206

Stromness Giant petrel 883 2 17 2 3 2 1 5 ST-21

9080 2 1 4 28 58 25 87 ST-1332

9080 2 1 4 28 58 25 87 ST-1332

Kelp gull 45 4 7 10 4 1 7 1 ST-45

45 4 7 10 4 1 7 1 ST-45

https://doi.org/10.1371/journal.pone.0206502.t003
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Of the 24 C. lari isolates chosen for MLST analysis, 20 could be assigned to one of 17 novel

sequence types (Table 4). Of the remaining four, the tkt locus could not be amplified and thus

no sequence type assigned.

Discussion

In the worst-case scenario, the introduction of novel pathogens to an ecosystem may prelude

an ecological catastrophe [34]. Nevertheless, in the absence of mass mortality, the establish-

ment of a novel pathogen may impact reproductive investment and success, which in turn

may reduce the population size, disrupt the food web and increase the risk of species extinction

[35, 36]. Appropriately, the threat of such introductions to the Antarctic has been recognized

[7, 37]. However, whether the current measures put in place to mitigate the threat are suffi-

cient, especially in the face of the predicted increase in human presence, has been called into

question [9, 38, 39].

We isolated Campylobacter spp. from apparently healthy birds, as was done in previous

studies [18, 40]. While the absence of overt signs of disease suggests commensal colonization

rather than infection, clinical signs are rarely observed even in birds that mount an immune

response to infection [41–43], and mild symptoms or opportunistic infections cannot be ruled

out. Even if this is taken into account, it seems unlikely that the introduction of Campylobacter
spp. would have a substantial adverse impact on the Antarctic ecosystem. They may, however,

be used as indicators for microbial pollution, signaling areas where care must be taken lest we

cause outbreaks of more virulent pathogens.

Table 4. Allele numbers and sequence types (STs) of 24 Campylobacter lari isolates from the Antarcitc Peninsula in 2014. New STs are shown in bold.

Location Species ST adk atpA glnA glyA pgi pgm tkt
Base Gabriel González Videla Gentoo penguin 152 92 80 66 63 122 83 61

Skua 145 67 58 85 61 78 76 57

Snowy sheathbill 143 56 62 52 63 62 54 56

144 96 57 1 2 58 63 52

149 98 57 1 1 56 79 59

150 95 80 65 63 81 81 93

151 99 81 86 63 79 83 60

– 93 78 66 63 80 80 –

150 95 80 65 63 81 81 93

Kopaitik Island Gentoo penguin 142 95 80 67 63 123 83 93

Skua 153 62 78 1 2 1 1 32

Snowy sheathbill 139 92 78 64 59 77 71 53

– 93 78 66 63 80 72 –

– 93 78 66 63 80 72 –

140 93 78 66 63 80 73 54

– 94 79 65 60 80 74 –

141 92 78 67 63 122 75 55

154 100 57 67 63 62 82 62

155 101 82 68 64 82 83 63

Neko Harbor Kelp gull 146 62 2 2 2 75 77 58

147 2 77 2 62 58 63 33

147 2 77 2 62 58 63 33

148 97 57 1 2 58 78 44

Skua 144 96 57 1 2 58 63 52

https://doi.org/10.1371/journal.pone.0206502.t004
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While the chosen culturing method generates the microaerobic atmosphere required for

growth of most of the Campylobacter species previously observed in the Antarctic and sub-

Antarctic, it does not generate hydrogen or formate. This excludes several species—C. conci-
sus, C. curvus, C. rectus, C. mucosalis, C. showae, C. gracilis—that require hydrogen or for-

mate as electron donors for microaerobic growth [10]. In addition, little is known about

how different species of Campylobacter respond to prolonged storage in Amies medium or

lysogeny broth. Barring these limitations, our findings corroborate earlier work suggesting

that wild birds in the Antarctic are predominantly colonized by C. lari and closely related

species [17–20]. Due to the limited number of studies of C. lari in wild birds, it is difficult to

draw conclusions as to whether the isolated strains are indigenous or if the Antarctic acts as

a sink, repeatedly reseeded from an outside source. Some evidence favoring the former is

provided by the MLST of the 24 C. lari isolates yielding 17 novel sequence types, but without

a clearer picture of C. lari host association outside of the Antarctic this remains largely

speculative.

Notably, to our knowledge, this is only the second time that C. subantarcticus has been iso-

lated in the wild. C. subantarcticus—initially described during a polyphasic taxonomic study of

C. lari-like isolates from Bird Island, South Georgia [19]—responds well to isolation with rou-

tine protocols used in studies of other Campylobacter species. That it is largely absent in the lit-

erature suggests that it may be geographically restricted to the Antarctic and sub-Antarctic,

restricted to the host species that occur in the region, or both. However, Campylobacter species

other than C. jejuni and C. coli have generally received little attention and the apparent absence

of C. subantarcticus in other regions and in non-Antarctic species may be the result of such

oversight.

While we found no evidence of introduction of human-associated strains of Campylobacter
to the Antarctic Peninsula, we did isolate such human-associated strains in South Georgia.

Two of the three known sequence types recovered—ST-227 and ST-883—belong to clonal

complexes frequently isolated from humans and domestic animals [44–46], but rarely from

wild birds [47, 48]. The third of the three known sequence types recovered—ST-45—has fre-

quently been isolated from humans and domestic animals [44–46], but unlike the other two is

also common in wild birds [47, 49, 50].

There are several routes by which human-associated C. jejuni may have found its way to

South Georgia. Some of the potential routes are historical and associated with the whaling era

(1904–1965); alongside direct transmission from humans, these include the introduction of

other known hosts for Campylobacter, including chickens, geese, pigeons, ducks, pigs and

sheep [51]. Other potential routes may be more recent and include transmission from tourists

or personnel, and yet another potential route is through transmission from remote areas by

migrating birds. While the re-isolation of C. jejuni ST-45—the same sequence type isolated in

1998 on Bird Island, South Georgia, by Broman et al. [15]—may reflect persistent circulation

of C. jejuni following a single introduction event, the presence of two additional human-associ-

ated sequence types suggests repeated introduction, but offers no further clues on the route of

introduction.

In contrast to South Georgia, C. jejuni has never been found in the Antarctic, despite con-

siderable monitoring effort [17, 18, 20]. The reason for this discrepancy remains unclear. Since

the abandonment of the whaling stations in the 1960s, South Georgia houses no permanent

residents, and personnel and tourist numbers are similar to comparable regions on the Penin-

sula [52, 53]. Furthermore, even though South Georgia is not encompassed by the Antarctic

treaty regulations, similar management guidelines to limit the human impact are in place [52].

Thus, the presence of several human-associated MLST sequence types of C. jejuni in South

Georgia is worrying because we do not know how they found their way there. At the same
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time, it is encouraging that we did not find C. jejuni south of the 60˚S latitude—within the

Antarctic Treaty Area and the pristine Antarctic—which suggests that current measures to

reduce the risk of pathogen introduction may be paying off.
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